
*Corresponding author Tel.: #404-651-4065; fax: #404-651-3498.
E-mail address: gpzhang@sur.edu (G. Peter Zhang).

Computers & Operations Research 28 (2001) 381}396

A simulation study of arti"cial neural networks for nonlinear
time-series forecasting

G. Peter Zhang!,*, B. Eddy Patuwo", Michael Y. Hu",#

!Department of Decision Sciences, J. Mack Robinson College of Business, Georgia State University,
Atlanta, GA 30303-3083, USA

"Graduate School of Management, Kent State University, Kent, OH 44242-0001, USA
#Chinese University of Hong Kong, People+s Republic of China

Received 1 February 1999; received in revised form 1 July 1999

Abstract

This study presents an experimental evaluation of neural networks for nonlinear time-series forecasting.
The e!ects of three main factors * input nodes, hidden nodes and sample size, are examined through
a simulated computer experiment. Results show that neural networks are valuable tools for modeling and
forecasting nonlinear time series while traditional linear methods are not as competent for this task. The
number of input nodes is much more important than the number of hidden nodes in neural network model
building for forecasting. Moreover, large sample is helpful to ease the over"tting problem.

Scope and purpose

Interest in using arti"cial neural networks for forecasting has led to a tremendous surge in research
activities in the past decade. Yet, mixed results are often reported in the literature and the e!ect of key
modeling factors on performance has not been thoroughly examined. The lack of systematic approaches to
neural network model building is probably the primary cause of inconsistencies in reported "ndings. In this
paper, we present a systematic investigation of the application of neural networks for nonlinear time-series
analysis and forecasting. The purpose is to have a detailed examination of the e!ects of certain important
neural network modeling factors on nonlinear time-series modeling and forecasting. ( 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Since the invention of backpropagation algorithm [1] to train feedforward multi-layered neural
networks a decade ago, arti"cial neural networks (ANNs) have been widely used for many types of
problems in business, industry and science [2]. One major use of ANNs is for time-series
forecasting. Many successful applications suggest that ANNs can be a promising alternative tool
for both forecasting researchers and practitioners. Recently, Zhang et al. [3] presented a review of
the current status in applications of neural networks for forecasting.

The popularity of ANNs is derived from the fact that they are generalized nonlinear forecasting
models. Forecasting has been dominated by linear statistical methods for several decades. Al-
though linear models possess many advantages in implementation and interpretation, they have
serious limitations in that they cannot capture nonlinear relationships in the data which are
common in many complex real world problems [4]. Approximation of linear models to complic-
ated nonlinear forecasting problems is often not satisfactory. In the early 1980s, Makridakis [5]
organized a large-scale forecasting competition (M-competition) in which the majority of com-
monly used linear forecasting methods were tested using 1001 real-time-series data. The results
showed that no single forecasting method is globally the best. In our view, one of the major reasons
for this conclusion is that there is a varying degree of nonlinearity in the data which cannot be
handled properly by linear statistical methods.

During the past two decades, a number of nonlinear time-series models such as the bilinear
model [6], the threshold autoregressive (TAR) model [7], the smoothing transition autoregressive
(STAR) model [8], and the autoregressive conditional heteroscedastic (ARCH) model [9] have
been developed (see De Grooijer and Kumar [10] and Tjostheim [11] for reviews of this "eld).
While these models can be useful for a particular problem and data, they do not have a
general appeal for other applications. The pre-speci"cation of the model form restricts
the usefulness of these parametric nonlinear models since there are too many possible
nonlinear patterns. In fact, the formulation of an appropriate nonlinear model to a particular
data set is a very di$cult task compared to linear model building because `there
are more possibilities, many more parameters and thus more mistakes can be madea ([12, p. 233].
Furthermore, one particular nonlinear speci"cation may not be general enough to capture all
nonlinearities in the data. As Diebold and Nason [13, p. 318] pointed out, `the overwhelming
variety of plausible candidate nonlinear models makes determination of a good approximation to
the true data-generating process (DGP) a di$cult task and the seemingly large variety of
parametric nonlinear models is in fact a very small subset of the class of plausible nonlinear
DGPsa.

As opposed to the model-based nonlinear methods, ANNs are nonparametric data driven
approaches which can capture nonlinear data structures without prior assumption about the
underlying relationship in a particular problem. ANNs are more general and #exible modeling and
analysis tools for forecasting applications in that not only can they "nd nonlinear structures, they
also can model linear processes. In fact, linear autoregressive (AR) models are special cases of
ANNs without hidden nodes. In a recent forecasting competition [14], most participants have
considered using neural networks and almost all of the best predictions for each data set are made
with ANN models. This is not surprising given that all of the six time series used in that
competition are quite nonlinear in nature [15].
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Interest in using ANNs for forecasting has led to a tremendous surge in research activities in the
past decade. Yet, researchers to date are still not certain about the e!ects of key modeling factors on
ANNs' forecasting performance. The questions of whether, why, and under what conditions they
are better than the established conventional forecasting methods still remain [3]. Most results or
conclusions of neural network forecasting are obtained from limited empirical studies. The
shot-gun methodology for speci"c problems is typically used by most researchers. Hence, the
experimental designs in these studies are limited and results from these studies often cannot be
extended to general applications. The lack of systematic investigations in ANN model building and
forecasting is probably the primary cause of inconsistencies in reported "ndings. As Zhang et al.
[3] pointed out that `given too many factors could a!ect the performance of the ANN method,
limited empirical study alone may not be su$cient to address all the key issuesa.

The overall objective of this paper is to have a systematic investigation of ANNs for time-series
analysis and forecasting. Speci"cally, the e!ects of three important factors on the neural network
forecasting ability are examined by conducting an experimental study. The factors investigated
include the number of input nodes, the number of hidden nodes, and the training sample size. Eight
simulated nonlinear time series each with 30 replications are used and undergo detailed examina-
tions. Using simulated time series for model selection [16], model evaluation [17], model compari-
son [18}20], and others [8,20,21] is quite common in the forecasting literature. Results from the
simulation study are useful in general applications of ANNs and in providing guidelines for
nonlinear time-series forecasting.

The paper is organized as follows. The next section reviews key issues in time-series forecasting
with ANNs. Then we present the research design which is followed by the discussions of results.
The "nal section provides concluding remarks.

2. Issues in ANNS for time-series forecasting

In this study, we focus on the feedforward multilayer networks, also known as the multilayer
perceptrons (MLPs). This is the most popular type of ANNs used for forecasting purposes [3,22].
An MLP is typically composed of several layers of input, hidden and output nodes. For a univari-
ate time-series forecasting problem, the inputs of the network are the past, lagged observations and
the output is the predicted value. Each input pattern is composed of a moving window of "xed
length along the series. A single output MLP actually performs the following mapping from the
inputs to the output:

y
t
"f (y

t~1
, y

t~2
,2, y

t~p
), (1)

where y
t
is the observation at time t, p is the dimension of the input vector or the number of past

observations used to predict the future, and f in general is a nonlinear function determined by the
MLP structure and the data. From Eq. (1), the feedforward network can be viewed as a general
nonlinear autoregressive model.

In neural network forecasting applications, total available data are usually divided into a train-
ing set (in-sample data) and a test set (out-of-sample or hold-out sample). The training set is used
for the construction of the neural network while the test set is used for measuring the predictive
ability of the model. The construction process of the network is called network training. Training is
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the process of determining the function f in Eq. (1) which is uniquely determined by the linking arc
weights of the network. Suppose we have N time-lagged observations y

1
, y

2
,2, y

N
in the training

set and we need the one-step-ahead forecasts, then using a network with p input nodes and one
output node, we have N!p training patterns. The "rst training pattern is composed of
y
1
, y

2
,2, y

p
as the inputs and y

p`1
as the target output. The second training pattern contains

y
2
, y

3
,2, y

p`1
for the inputs and y

p`2
for the desired output. Finally, the last training pattern is

y
N~p

, y
N~p`1

,2, y
N~1

for the inputs and y
N

for the target.
It is often not an easy task to build an MLP for time-series analysis and forecasting because of

the large number of factors related to the model selection process. Although there are many rules of
thumb proposed, none of them can be universally applied. Guidelines are either heuristic or
obtained from limited empirical studies. This often causes inconsistent reports in the literature.

The most di$cult problem is how to develop a network of appropriate size for capturing the
underlying patterns in the training data. More importantly for a network model to be useful, it
must have generalization or forecasting capability. Although several di!erent methods such as the
pruning algorithm [23,24], the polynomial time algorithm [25], the canonical decomposition
technique [26], and the network information criterion [27] have been proposed for building the
optimal architecture of an ANN, none of these methods can guarantee the best solution for all
forecasting situations.

The size of an MLP largely depends on the number of input nodes and the number of hidden
nodes. Theoretical results [28,29] prescribe that an MLP with one hidden layer is capable of
approximating any continuous function. The number of input nodes is perhaps the most important
parameter since it corresponds to the number of lagged observations used to discover the
underlying patterns and/or autocorrelation structures in a time series. There are no systematic
reports on the e!ect of input nodes. Lachtermacher and Fuller [22] observed both undesirable
e!ects of more input nodes for one-step-ahead forecasting and good e!ects for multi-step predic-
tion. They also found that correct identi"cation of the number of input nodes is more important
than the selection of the number of hidden nodes. Obviously, too few or too many input nodes can
have signi"cant impact on the learning and prediction ability of the network since the former will
result in under-learning and the latter over-speci"cation.

Hidden nodes are used to capture the nonlinear structures in a time-series. Determination of
how many hidden nodes to use is another di$cult issue in ANN model construction process. Since
no theoretical basis exists to guide the selection, in practice the number of hidden nodes is often
chosen through experimentation or by trial-and-error. Although ANN theory suggests that more
hidden nodes typically lead to improved accuracy in approximating a functional relationship, they
also cause the problem of over"tting, that is, the network "ts the training data very well (learning
everything including spurious features and noises) but generalizes or forecasts very poorly in
out-of-samples. The over"tting problem is more likely to occur in neural network models than in
other statistical models due to the typical large parameter set to be estimated. Universally accepted
e!ective and systematic approaches to dealing with over"tting do not exist although several ways
have been proposed. For example, di!erent weight elimination and node pruning methods have
been proposed by Weigend et al. [30}32], Cottrell et al. [33], and Schitienkopf et al. [34].
Regardless of the method used to overcome over"tting, the central idea is to "nd a parsimonious
model that "ts the data well. Generally, a parsimonious model not only gives adequate representa-
tion of the data, but also has the more important generalization capability. The principle of
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parsimony should be emphasized [35] and can be a guiding rule in selection of the number of
hidden nodes. Another way to tackle the over"tting problem is to divide the time series into three
sets of training, testing and validation parts [36]. The "rst two parts are used for model building
with the last part used for validation or evaluation of the model. The best neural network
model is the one which gives the best results in the test set. This approach, however, requires a
large amount of data and may not be applicable in situations where data is limited. Tang
and Fishwick [37] have studied the e!ect of hidden nodes on forecasting but no clear patterns
were found.

The determination of other parameters of an MLP is relatively straightforward and less
controversial. For example, the number of output nodes is often one for both one-step-ahead and
multi-step-ahead forecasting. Of course, more output nodes can be included for direct multi-step
forecasts [37,38].

Another closely related issue in ANN model building is how large the training and/or test sample
sizes should use. Furthermore, given a data set, what is the best way to split up the data? In the
ANN literature, large sample size for training is often suggested for su$cient learning and to ease
the over"tting e!ect in training a neural network. However, Kang [39] found that neural network
models do not necessarily require large data sets to perform well. ANN models forecast pretty well
even with sample size less than 50 while the Box}Jenkins models typically require at least 50
observations to forecast successfully. The literature o!ers little guidance in selecting the training
and test samples as well as their sizes. Granger [12], however, suggested that at least `20 percent of
any sample should be held back for a post-sample, forecasting evaluation.a It should be noted that
the selection of data for training and test may a!ect both in-sample "tting and out-of-sample
forecasting performance due to model uncertainty [40,41].

3. Experimental design

In order to clear some cloud in ANN forecasting applications outlined in the previous section,
we have performed a simulation experiment. Our major purpose is to systematically study the
e!ects of several key factors on the neural network forecasting performance. The number of input
nodes, the number of hidden nodes, and the training sample size are selected as the experimental
factors. The one-step-ahead forecasts are the focus of this study.

3.1. Data

Eight nonlinear univariate time series are generated from a variety of nonlinear models com-
monly used in the forecasting literature. Each type of time series is replicated 30 times using
di!erent initial random seeds for the error term. These nonlinear time series are listed below. In
each case, e

t
is assumed to be i.i.d. N(0, 1).

Series 1. Sign autoregressive (SAR) model

y
t
"sign(y

t~1
)#e

t
,
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where

sign(x) "1 if x'0,

"0 if x"0,

"!1 if x(0.

Series 2. Bilinear model 1 (BL1)
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Series 3. Bilinear model 2 (BL2)
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Series 4. Threshold autoregressive (TAR) model
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Series 5. Nonlinear autoregressive (NAR) model
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Series 6. Nonlinear moving average (NMA) model
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Series 7. Smooth transition autoregressive (STAR1) model
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Series 8. Smooth transition autoregressive (STAR2) model
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These eight time-series models are chosen to represent a variety of problems which have di!erent
characteristics in time-series. For example, some of the series have pure autoregressive (AR) or pure
moving average (MA) correlation structures while others have mixed AR and MA components.
Theoretical background and applications of some of these series can be found in [4,6,7,58,59].

3.2. Design of experiments

In this research, the number of input nodes, the number of hidden nodes, and the training sample
size are the experimental factors. Five levels of input nodes from 1 to 5 are selected for experimenta-
tion. The selection of these levels of the input nodes is based on (1) the time-series models we
selected all have lags of no more than 2; and (2) a majority of the real-time-series forecasting
problems have AR terms in the order of 1 or 2 and very few are of order 3 or higher for nonseasonal
time series [35,42]. Since feedforward neural networks per se are generalized nonlinear AR models,
the upper limit of 5 for the number of input nodes seems reasonable. There is no upper limit on the
possible number of hidden nodes in theory. However, from the literature, it is rare that the number

386 G.P. Zhang et al. / Computers & Operations Research 28 (2001) 381}396



of hidden nodes is more than double the number of input nodes. Hence, the number of hidden
nodes in this study varies from 1 to 10.

Three levels of training sample size will be used for simulated series. They are 100, 200, and 400
respectively. For simplicity in illustration, training sample size will refer to the number of
observations in a time series, not the number of training patterns which is often de"ned as the
training sample size in the literature. However, these two are related through the number of input
nodes. Let ¸ be the training sample size (the length of a time-series data in a training set), N be the
number of input nodes, then the number of training patterns will be ¸!N. The test sample for
each case is composed of the last 80 data points. Three forecast horizons of 20, 40 and 80 are used to
study the e!ect of forecasting horizon.

A factorial design is used to investigate the e!ects of these three factors on the performance of
ANNs. Each of the eight time-series types is replicated 30 times using di!erent initial random seeds
for the error terms, yielding a total of 240 di!erent time-series. Four hundred and eighty data
points are generated for each individual series with the last 80 points used for testing purposes.
Depending on the sample size, the most recent 100, 200, and 400 points are used as training
samples. A 5]10 factorial layout with the number of input nodes (from 1 to 5) and the number of
hidden nodes (from 1 to 10) is then applied to each of the total 720 simulated series with di!erent
sample sizes.

Since there is no consensus on the appropriate error measures for a forecasting situation
[5,43}46], we elect to use the mean squared error (MSE) and the median absolute percentage error
(MdAPE) as performance measures. The former is an absolute measure of forecasting accuracy and
is appropriate for comparing di!erent methods on the same data. The latter is a relative accuracy
measure and is useful for comparison of methods on data with di!erent scales. Both measures were
recommended by Gardner [47] who discussed the reasons why these two measures are the most
appropriate ones for forecasting comparisons.

For comparison purposes, the Box}Jenkins ARIMA [35] models are also used in each time-
series. ARIMA is one of the most popular models in traditional time-series forecasting and is often
used as a benchmark model for comparison with neural networks [3,37,39]. ARIMA modeling and
forecasting is implemented by SCA statistical software [48]. In particular, we use the SCA-
EXPERT function to automate the ARIMA model building. Results from neural networks are
compared to those of Box}Jenkins models through paired t-tests.

3.3. Neural networks

The fully connected feedforward neural networks are used in this study. Only one hidden-layer
MLPs are considered. The number of input nodes and the number of hidden nodes are used as
major experimental factors. Since the one-step-ahead forecasting is exclusively examined, only one
output node is employed. That is, we use actual rather than predicted values to forecast the future
values.

The logistic function is used for all hidden nodes as the activation function. The linear activation
function is employed for the output node. There is a bias term associated with the output node and
each hidden node. The initial values for all arc weights and biases are uniformly distributed in the
range of !5}5.
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A GRG2-based system is used for training neural networks [49,50]. GRG2 [51] is a widely used
optimization software which solves nonlinear optimization problems, such as those in neural
network training, using the generalized reduced gradient method. As shown in a number of
previous studies [50,52,53], the GRG2 training algorithm has many advantages over the popular
backpropagation-based training systems. A number of parameters need to be speci"ed for using
GRG2, and most of them can be set at their default values. The stopping criteria is to terminate the
program if the error function is not reduced by at least 10~5 for four consecutive iterations. The
bounds on weights are set at 100.

Data normalization is not used since neural networks are believed to be able to adjust the
weights automatically and adaptively [3]. Furthermore, because of the adoption of the linear
output activation function, it is not necessary to normalize the output values. Previous studies [54]
indicate that data normalization is not critical for the performance of neural networks.

4. Results

We perform SAS ANOVA with the Duncan option [57] for each of the eight time series to
examine the e!ects of the number of input and hidden nodes along with three di!erent sample sizes.
Since three test sets of 20, 40 and 80 data points are used to represent di!erent forecasting horizons,
we have three sets of performance measures for each time horizon. The MSE used for these three
horizons are denoted as MSE1, MSE2, and MSE3. The MdAPE is indexed as MdAPE1, MdAPE2,
and MdAPE3, respectively. Because of the similarity in the results in all the time-series studied, we
only report the detailed results for one series of the smooth transition autoregressive (STAR2)
model. The overall results will also be discussed.

Table 1 gives the overall ANOVA result for the e!ects of input and hidden nodes as well as
sample sizes on both training and test performance of neural networks. Notice that there are no
interaction e!ects for all cases. The signi"cant impact of input nodes on MSE and MdAPE is
clearly seen for both training and test sets across di!erent sample sizes. While the number of hidden
nodes is signi"cant on training MSE, it is not signi"cant judging from training and test MdAPE.
Hidden nodes have signi"cant e!ects on test MSE only when the sample size is 100. As the sample
size increases, the number of hidden nodes has lesser impact on both in-sample and out-of-sample
performance of ANNs. When the sample size is 200 and 400, there is no signi"cant hidden node
e!ect on the test results. This "nding seems to agree with our expectation that the number of input
nodes is a more important factor for ANNs to identify the patterns in time-series.

Duncan's multiple range test [57] is employed to examine the speci"c e!ect of the input as well
as hidden nodes on the training and testing performance. Because of the similarity in results across
di!erent sample sizes, only the results with sample size of 100 are used for illustrations. Figs. 1 and 2
display the results of input node e!ect on MSE and MdAPE, respectively. From Fig. 1, it is quite
clear that as the number of input nodes increases, the training MSE decreases consistently. The test
sample MSEs, however, exhibit a di!erent pattern. Across the three test periods, MSE is the highest
with one input node, achieves its minimum at two input nodes, and then monotonically increases
after two input nodes. This is a common over"tting phenomenon in many ANN applications. As
the model becomes more complex, the in-sample "t generally improves while out-of-sample
performance gets worse. This observation also suggests that the in-sample MSE is not a good
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Table 1
ANOVA results by sample size (F and P-values)

Sample
size

Factor Training Test

MSE MdAPE MSE1 MdAPE1 MSE2 MdAPE2 MSE3 MdAPE3

100 Input 878.47 87.81 60.25 8.93 116.77 11.37 230.13 15.17
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Hidden 9.75 1.29 2.40 0.38 3.87 0.47 80.13 0.85
(0.0001) (0.2373) (0.0106) (0.9468) (0.001) (0.8945) (0.0001) 0.5674)

Input] 0.13 0.23 0.32 0.20 0.35 0.11 0.43 0.13
hidden (1.0000) (1.0000) (1.0000) (1.0000) (0.9999) (1.0000) (0.9987) (1.0000)

200 Input 1121.11 154.65 76.53 16.88 193.36 11.43 414.74 16.05
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Hidden 2.64 1.35 0.32 0.13 0.55 0.09 0.98 0.13
(0.0049) (0.2070) (0.9693) (0.9988) (0.8353) (0.9997) (0.4538) (0.9990)

Input] 0.05 0.24 0.07 0.05 0.06 0.04 0.11 0.07
hidden (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

400 Input 1915.92 220.87 142.18 29.05 281.05 13.75 604.82 23.43
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Hidden 1.84 1.26 0.05 0.07 0.09 0.05 0.13 0.06
(0.0573) (0.2526) (1.0000) (0.9999) (0.9998) (1.0000) (0.9989) (0.9999)

Input] 0.04 0.10 0.04 0.03 0.02 0.02 0.03 0.03
hidden (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

criterion for model selection. Judging from the test sample results, the best number of input nodes
for this series is two, although there is no signi"cant di!erence between using two and three input
nodes. The result is consistent for di!erent sample sizes across di!erent forecasting horizons. This
indicates the ability of neural networks to correctly identify the number of lagged observations
used to predict future values since in this STAR series the future value should be related to the past
two observations. Note that using only one input node yields the worst performance for both
training and test samples, indicating the network is not able to learn su$ciently from one past
observation alone * an under-learning situation.

Using MdAPE as the performance measure, Fig. 2 shows very similar pattern as in Fig. 1. Again,
we do not "nd any signi"cant di!erences in using 2}5 input nodes for almost all situations. If the
principle of parsimony is applied, then two input nodes should be the best choice to model this
series.
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Fig. 1. The e!ect of input nodes on MSE.

Fig. 2. The e!ect of input nodes on MdAPE.

The hidden node e!ects on MSE and MdAPE are illustrated in Figs. 3 and 4. The overall
patterns of MSE and MdAPE are similar to those observed in Figs. 1 and 2. As more hidden nodes
are used, in-sample MSEs and MdAPEs consistently decrease while test MSEs and MdAPEs
decrease from one hidden node to two hidden nodes and then gradually increase. This over"tting
e!ect, however, is found relatively small when larger sample sizes of 200 and 400 are used. That is,
larger sample sizes may reduce the e!ects of over"tting. In general, there is no signi"cant di!erence
among di!erent levels of hidden nodes although one or two hidden nodes are found to have the
lowest test sample MSE and MdAPE.

Another general observation from Figs. 1}4 is that test set results are worse than those in the
training sample no matter what performance measure is used. This supports the "ndings of other
empirical studies, for example, Chat"eld [55] and Fildes and Makridakis [56].
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Fig. 3. The e!ect of hidden nodes on MSE.

Fig. 4. The e!ect of hidden nodes on MdAPE.

In Table 2, paired-t tests are performed comparing the forecasting performance of neural
networks with that of the Box}Jenkins model. The test statistic used is t"JndM /s

d
, where n is the

sample size, dM is the average of individual performance di!erences (d) between ANNs and ARIMA
models, and s

d
is the standard deviation of variable d. As mentioned earlier, the Box}Jenkins model

is implemented with the SCA statistical system, using SCA-EXPERT capabilities. The SCA-
EXPERT function employs the expert system technology to facilitate automatic ARIMA
modeling. Through the iterative process of model identi"cation, parameter estimation, and diag-
nostic checking, Box}Jenkins method is assumed to produce the best linear model "tted to the
data. It is an accepted statistical paradigm that the correctly speci"ed ARIMA model for the
historical data would also be the optimum model for the forecasting purpose [56].
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Table 2
Paired comparisons of forecasting performance: ANNs vs. BJ models

Sample size Statistics MSE1 MdAPEP1 MSE2 MdAPE2 MSE3 MdAPE3

100 Di!erence! !0.3245 !13.6439 !0.2874 !11.3222 !0.1905 !11.2879
P-value 0.0001 0.0001 0.0005 0.0003 0.0002 0.0001

200 Di!erence !0.2967 !11.8821 !0.2361 !9.6224 !0.1541 !9.6507
P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

400 Di!erence !0.2432 !11.4219 !0.2049 !8.8767 !0.1497 !8.9048
P-value 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001

!Di!erence " ANNs * BJ Models.
Negative values indicate preference to ANNs.

Table 3
The best ANN structure for nonlinear time series

Time series
model

AR terms MA
terms

Mixed
terms

Discontinuity Number of
input nodes

Number of
hidden nodes

1. SAR AR(1) * * Yes 1 1 or 2
2. BL1 * * Yes * 1 1
3. BL2 AR(2) * Yes * 2 1 or 2
4. TAR AR(1) * * Yes 2 or 3 1 or 2
5. NAR AR(1) * * Yes 1 1
6. NMA * MA(2) Yes * 1 or 2 1
7. STAR1 AR(1) * Yes * 1 1 or 2
8. STAR2 AR(2) * Yes * 2 1 or 2

Table 2 clearly shows the superiority of neural network models over Box}Jenkins models. The
di!erence in the table represents the performance measure of ANNs minus that of Box}Jenkins.
Hence, negative values indicate preference for ANNs. All the di!erences are signi"cant at the 0.0005
level, indicating that ANNs are able to produce signi"cantly better forecasting for di!erent time
horizons and sample sizes. This may not be surprising since Box}Jenkins models are linear. They
cannot capture nonlinear structures and hence predict poorly in nonlinear time-series.

Results from other series are very similar to those obtained above. The similarity in the patterns
of input and hidden node e!ect as well as sample size e!ect is obvious. The major di!erence among
di!erent series is in the selected number of input nodes and/or hidden nodes required for model
building and forecasting. Table 3 gives the overall result in terms of the selected network structure
for each time-series. It also lists the major characteristic components of the eight nonlinear series.
We classify nonlinear time-series based on their components of autoregressive (AR) terms, moving
average (MA) terms, mixed AR and MA terms, and if the series present any discontinuities. It is
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seen from the table that for most series ANNs can identify the optimal number of input nodes,
which is the number of AR lags. Discontinuity and mixed AR/MA terms seem to have no
signi"cant impact on the selection of an ANN model. For the nonlinear moving average (NMA)
series, we "nd either 1 or 2 input nodes can give the best forecasting performance. One special case
is in the threshold autoregressive (TAR) model with 1 AR lag where the optimal number of input
nodes is 2 or 3. Because of the limit cycle property of a TAR model [7], a simple TAR model can
have a very complicated structure. On the other hand, one or at most two hidden nodes usually
give the best forecasts, suggesting simple ANN structure is often desirable for forecasting purposes.

5. Conclusions

We presented an experimental study on the application of neural networks for nonlinear
time-series forecasting. Speci"cally, the e!ects of input nodes, hidden nodes and sample size on
ANN modeling and forecasting behavior have been investigated. We considered eight time-series
models with di!erent characteristics. The conclusions from this study are summarized below:

(1) Both the number of input nodes and the number of hidden nodes have signi"cant e!ects on
ANN model building and predictive ability. Generally, the number of input nodes has much
stronger e!ects than the number of hidden nodes in both in-sample "t and out-of-sample
forecasting. This suggests that users should pay more attention to selecting the number of input
nodes.

(2) Neural networks are able to identify the appropriate number of lagged observations for
forecasting future values. Hence, neural networks can be a useful tool in analyzing the
characteristics of time series such as the autocorrelation structure.

(3) Simple or parsimonious neural networks are e!ective in forecasting. For most time-series
investigated, neural networks with one or two hidden nodes typically give the best forecasting
performance in terms of MSE and MdAPE.

(4) ANNs are shown to be more competent than Box}Jenkins models in forecasting nonlinear
time series. This seems to be quite obvious given the limitations of linear models.

(5) The number of observations (training sample size) used for training a neural network has
limited e!ects on performance. In most cases, there is no signi"cant di!erence in forecasting
capability for the three sample sizes investigated. However, more data is found helpful for
overcoming over"tting problems.

Neural networks in this study show much promise for nonlinear time-series forecasting. The ANN
model is demonstrated to have nonlinear pattern recognition capability which is valuable for
modeling and forecasting complex nonlinear problems in practice. It should be noted, however,
that the "ndings reported in this study are subject to the constraint imposed by the design of
experiment. Future research should focus on the development of ANN model selection criteria or
model building methodology with a special emphasis on the theoretical aspect of the nonlinear
structure of time-series.
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