
Low Overhead Concurrency Control for Partitioned Main
Memory Databases

Evan P. C. Jones
MIT CSAIL

Cambridge, MA, USA
evanj@csail.mit.edu

Daniel J. Abadi
Yale University

New Haven, CT, USA
dna@cs.yale.edu

Samuel Madden
MIT CSAIL

Cambridge, MA, USA
madden@csail.mit.edu

ABSTRACT
Database partitioning is a technique for improving the per-
formance of distributed OLTP databases, since “single par-
tition” transactions that access data on one partition do not
need coordination with other partitions. For workloads that
are amenable to partitioning, some argue that transactions
should be executed serially on each partition without any
concurrency at all. This strategy makes sense for a main
memory database where there are no disk or user stalls,
since the CPU can be fully utilized and the overhead of tra-
ditional concurrency control, such as two-phase locking, can
be avoided. Unfortunately, many OLTP applications have
some transactions which access multiple partitions. This in-
troduces network stalls in order to coordinate distributed
transactions, which will limit the performance of a database
that does not allow concurrency.

In this paper, we compare two low overhead concurrency
control schemes that allow partitions to work on other trans-
actions during network stalls, yet have little cost in the
common case when concurrency is not needed. The first
is a light-weight locking scheme, and the second is an even
lighter-weight type of speculative concurrency control that
avoids the overhead of tracking reads and writes, but some-
times performs work that eventually must be undone. We
quantify the range of workloads over which each technique
is beneficial, showing that speculative concurrency control
generally outperforms locking as long as there are few aborts
or few distributed transactions that involve multiple rounds
of communication. On a modified TPC-C benchmark, spec-
ulative concurrency control can improve throughput relative
to the other schemes by up to a factor of two.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
Databases rely on concurrency control to provide the illu-

sion of sequential execution of transactions, while actually
executing multiple transactions simultaneously. However,
several research papers suggest that for some specialized
databases, concurrency control may not be necessary [11, 12,
27, 26]. In particular, if the data fits in main memory and
the workload consists of transactions that can be executed
without user stalls, then there is no need to execute trans-
actions concurrently to fully utilize a single CPU. Instead,
each transaction can be completely executed before servicing
the next. Previous work studying the Shore database sys-
tem [14] measured the overhead imposed by locks, latches,
and undo buffer maintenance required by multi-threaded
concurrency control to be 42% of the CPU instructions ex-
ecuted on part of the TPC-C benchmark [1]. This suggests
that removing concurrency control could lead to a significant
performance improvement.

Databases also use concurrency to utilize multiple CPUs,
by assigning transactions to different threads. However, re-
cent work by Pandis et al. [20] shows that this approach
does not scale to large numbers of processing cores; instead
they propose a data-oriented approach, where each thread
“owns” a partition of the data and transactions are passed to
different threads depending on what data they access. Simi-
larly, H-Store [26] also has one thread per data partition. In
these systems, there is only one thread that can access a data
item, and traditional concurrency control is not necessary.

Data partitioning is also used for shared-nothing systems.
Data is divided across n database servers, and transactions
are routed to the partitions that contain the data they need
to access. This approach is often used to improve database
performance. Some applications are “perfectly partition-
able,” such that every transaction can be executed in its
entirety at a single partition. In such a case, if the data is
stored in main memory, each transaction can run without
concurrency control, running to completion at the corre-
sponding partition. However, many applications have some
transactions that span multiple partitions. For these trans-
actions, some form of concurrency control is needed. since
Network stalls are necessary to coordinate the execution of
these multi-partition transactions, and each processor must
wait if there is no concurrency control.

This paper focuses on these “imperfectly partitionable”
applications. For these workloads, there are some multi-
partition transactions that impose network stalls, and some
single-partition transactions that can run to completion with-
out disk, user, or network stalls. The goal is to use a concur-

rency control scheme that allows a processor to do something
useful during a network stall, while not significantly hurting
the performance of single-partition transactions.

We study two such schemes. The first is a speculative
approach which works as follows: when a multi-partition
transaction t has completed on one partition, but is wait-
ing for other participating partitions to complete, additional
speculative transactions are executed. However, they are not
committed until t commits. Speculation does not hold locks
or keep track of read/write sets—instead, it assumes that a
speculative transaction conflicts with any transaction t with
which it ran concurrently. For this reason, if t aborts, any
speculative transactions must be re-executed.

The second scheme is based on two-phase locking. When
there are no active multi-partition transactions, single par-
tition transactions are efficiently executed without acquir-
ing locks. However, any active multi-partition transactions
cause all transactions to lock and unlock data upon access,
as with standard two-phase locking.

We compare the strengths and limitations of these two
concurrency control schemes for main-memory partitioned
databases, as well as a simple blocking scheme, where only
one transaction runs at a time. Our results show that the
simple blocking technique only works well if there are very
few multi-partition transactions. Speculative execution per-
forms best for workloads composed of single partition trans-
actions and multi-partition transactions that perform one
unit of work at each participant. In particular, our experi-
mental results show that speculation can double throughput
on a modified TPC-C workload. However, for abort-heavy
workloads, speculation performs poorly, because it cascades
aborts of concurrent transactions. Locking performs best
on workloads where there are many multi-partition transac-
tions, especially if participants must perform multiple rounds
of work, with network communication between them. How-
ever, locking performs worse with increasing data conflicts,
and especially suffers from distributed deadlock.

2. ASSUMPTIONS ON SYSTEM DESIGN
Our concurrency control schemes are designed for a par-

titioned main-memory database system similar to H-Store
[26]. This section gives an overview of the relevant aspects
of the H-Store design.

Traditional concurrency control comprises nearly half the
CPU instructions executed by a database engine [14]. This
suggests that avoiding concurrency control can improve
throughput substantially. H-Store was therefore designed
explicitly to avoid this overhead.

2.1 Transactions as Stored Procedures
H-Store only supports executing transactions that have

been pre-declared as stored procedures. Each stored proce-
dure invocation is a single transaction that must either abort
or commit before returning results to the client. Eliminating
ad-hoc transactions removes client stalls, reducing the need
for concurrency.

2.2 No Disk
Today, relatively low-end 1U servers can have up to 128

GB of RAM, which gives a data center rack of 40 servers
an aggregate RAM capacity of over 5 TB. Thus, a mod-
est amount of hardware can hold all but the largest OLTP
databases in memory, eliminating the need for disk access

during normal operation. This eliminates disk stalls, which
further reduces the need for concurrent transactions.

Traditional databases rely on disk to provide durability.
However, mission critical OLTP applications need high avail-
ability which means they use replicated systems. H-Store
takes advantage of replication for durability, as well as high
availability. A transaction is committed when it has been
received by k > 1 replicas, where k is a tuning parameter.

2.3 Partitioning
Without client and disk stalls, H-Store simply executes

transactions from beginning to completion in a single thread.
To take advantage of multiple physical machines and mul-
tiple CPUs, the data must be divided into separate parti-
tions. Each partition executes transactions independently.
The challenge becomes dividing the application’s data so
that each transaction only accesses one partition. For many
OLTP applications, partitioning the application manually
is straightforward. For example, the TPC-C OLTP bench-
mark can be partitioned by warehouse so an average of 89%
of the transactions access a single partition [26]. There is
evidence that developers already do this to scale their ap-
plications [22, 23, 25], and academic research provides some
approaches for automatically selecting a good partitioning
key [4, 21, 28]. However, unless the partitioning scheme is
100% effective in making all transactions only access a sin-
gle partition, then coordination across multiple partitions
for multi-partition transactions cause network stalls and ex-
ecuting a transaction to completion without stalls is not pos-
sible. In this paper, we focus on what the system should do
in this case.

3. EXECUTING TRANSACTIONS
In this section, we describe how our prototype executes

transactions. We begin by describing the components of our
system and the execution model. We then discuss how single
partition and multi-partition transactions are executed.

3.1 System Components
The system is composed of three types of processes, shown

in Figure 1. First, the data is stored in partitions, a single
process that stores a portion of the data in memory, and ex-
ecutes stored procedures using a single thread. For each par-
tition, there is a primary process and k−1 backup processes,
which ensures that data survives k − 1 failures. Second, a
single process called the central coordinator is used to co-
ordinate all distributed transactions. This ensures that dis-
tributed transactions are globally ordered, and is described
in Section 3.3. Finally, the client processes are end-user ap-
plications that issue transactions to the system in the form of
stored procedure invocations. When the client library con-
nects to the database, it downloads the part of the system
catalog describing the available stored procedures, network
addresses for the partitions, and how data is distributed.
This permits the client library to direct transactions to the
appropriate processes.

Transactions are written as stored procedures, composed
of deterministic code interleaved database operations. The
client invokes transactions by sending a stored procedure
invocation to the system. The system distributes the work
across the partitions. In our prototype, the mapping of work
to partitions is done manually, but we are working on a query
planner to do this automatically.

Clients

H-Store

Central
Coordinator

Multi
Partition

Node 1

Data
Partition 1

Data
Partition 2

Node 2

Data
Partition 3

Data
Partition 4

Node 3

Data
Partition 1

Data
Partition 4

Node 4

Data
Partition 3

Data
Partition 2

Single
Partition Fragment

Fragment

Client Library Client Library Client Library

Replication Messages
PrimaryPrimary PrimaryPrimary

BackupBackup BackupBackup

Figure 1: System Architecture

Each transaction is divided into fragments. A fragment is
a unit of work that can be executed at exactly one partition.
It can be some mixture of user code and database operations.
A single partition transaction, for example, is composed of
one fragment containing the entire transaction. A multi-
partition transaction is composed of multiple fragments with
data dependencies between them.

3.2 Single Partition Transactions
When a client determines that a request is a single par-

tition transaction, it forwards it to the primary partition
responsible for the data. The primary uses a typical pri-
mary/backup replication protocol to ensure durability. In
the failure free case, the primary reads the request from the
network and sends a copy to the backups. While waiting
for acknowledgments, the primary executes the transaction.
Since it is a single partition transaction, it does not block.
When all acknowledgments from the backups are received,
the result of the transaction is sent to the client. This pro-
tocol ensures the transaction is durable, as long as at least
one replica survives a failure.

No concurrency control is needed to execute single parti-
tion transactions. In most cases, the system executes these
transactions without recording undo information, resulting
in very low overhead. This is possible because transactions
are annotated to indicate if a user abort may occur. For
transactions that have no possibility of a user abort, con-
currency control schemes that guarantee that deadlock will
not occur (see below) do not keep an undo log. Otherwise,
the system maintains an in-memory undo buffer that is dis-
carded when the transaction commits.

3.3 Multi-Partition Transactions
In general, multi-partition transaction can have arbitrary

data dependencies between transaction fragments. For ex-
ample, a transaction may need to read a value stored at
partition P1, in order to update a value at partition P2.

To ensure multi-partition transactions execute in a seri-
alizable order without deadlocks, we forward them through
the central coordinator, which assigns them a global order.
Although this is a straightforward approach, the central co-
ordinator limits the rate of multi-partition transactions. To

handle more multi-partition transactions, multiple coordi-
nators must be used. Previous work has investigated how
to globally order transactions with multiple coordinators,
for example by using loosely synchronized clocks [2]. We
leave selecting the best alternative to future work, and only
evaluate a single coordinator system in this paper.

The central coordinator divides the transaction into frag-
ments and sends them to the partitions. When responses are
received, the coordinator executes application code to de-
termine how to continue the transaction, which may require
sending more fragments. Each partition executes fragments
for a given transaction sequentially.

Multi-partition transactions are executed using an undo
buffer, and use two-phase commit (2PC) to decide the out-
come. This allows each partition of the database to fail inde-
pendently. If the transaction causes one partition to crash or
the network splits during execution, other participants are
able to recover and continue processing transactions that
do not depend on the failed partition. Without undo infor-
mation, the system would need to block until the failure is
repaired.

The coordinator piggybacks the 2PC “prepare” message
with the last fragment of a transaction. When the primary
receives the final fragment, it sends all the fragments of the
transaction to the backups and waits for acknowledgments
before sending the final results to the coordinator. This is
equivalent to forcing the participant’s 2PC vote to disk. Fi-
nally, when the coordinator has all the votes from the partic-
ipants, it completes the transaction by sending a “commit”
message to the partitions and returning the final result to
the application.

When executing multi-partition transactions, network stalls
can occur while waiting for data from other partitions. This
idle time can introduce a performance bottleneck, even if
multi-partition transactions only comprise a small fraction
of the workload. On our experimental systems, described
in Section 5, the minimum network round-trip time be-
tween two machines connected to the same gigabit Ether-
net switch was measured using ping to be approximately 40
µs. The average CPU time for a TPC-C transaction in our
system is 26 µs. Thus, while waiting for a network acknowl-
edgment, the partition could execute at least two single-
partition transactions. Some form of concurrency control is
needed to permit the engine to do useful work while other-
wise idle. The challenge is to not reduce the efficiency of
simple single partition transactions. The next section de-
scribes two concurrency control schemes we have developed
to address this issue.

4. CONCURRENCY CONTROL SCHEMES

4.1 Blocking
The simplest scheme for handling multi-partition trans-

actions is to block until they complete. When the partition
receives the first fragment of a multi-partition transaction, it
is executed and the results are returned. All other transac-
tions are queued. When subsequent fragments of the active
transaction are received, they are processed in order. After
the transaction is committed or aborted, the queued trans-
actions are processed. In effect, this system assumes that
all transactions conflict, and thus can only execute one at
a time. Pseudocode describing this approach is shown in
Figure 2.

Transaction Fragment Arrives
if no active transactions:

if single partition:
execute fragment without undo buffer
commit

else:
execute fragment with undo buffer

else if fragment continues active multi-partition transaction:
continue transaction with fragment

else:
queue fragment

Commit/Abort Decision Arrives
if abort:

undo aborted transaction
execute queued transactions

Figure 2: Blocking Pseudocode

4.2 Speculative Execution
This concurrency control scheme speculatively executes

queued transactions when the blocking scheme would oth-
erwise be idle. More precisely, when the last fragment of a
multi-partition transaction has been executed, the partition
must wait to learn if the transaction commits or aborts. In
the majority of cases, it will commit. Thus, we can execute
queued transactions while waiting for 2PC to finish. The
results of these speculatively executed transactions cannot
be sent outside the database, since if the first transaction
aborts, the results of the speculatively executed transac-
tions may be incorrect. Undo information must be recorded
for speculative transactions, so they can be rolled back if
needed. If the first transaction commits, all speculatively
executed transactions are immediately committed. Thus,
speculation hides the latency of 2PC by performing useful
work instead of blocking.

Speculation produces serializable execution schedules be-
cause once a transaction t has finished all of its reads and
writes and is simply waiting to learn if t commits or aborts,
we can be guaranteed that any transaction t∗ which makes
use of t’s results on a partition p will be serialized after t
on p. However, t∗ may have read data that t wrote, such
that we will have to abort t∗ to avoid exposing t’s dirty
(rolled-back) data in the event that t aborts.

The simplest form of speculation is when the speculatively
executed transactions are single partition transactions, so we
consider that case first.

4.2.1 Speculating Single Partition Transactions
Each partition maintains a queue of unexecuted transac-

tions and a queue of uncommitted transactions. The head of
the uncommitted transaction queue is always a non-speculat-
ive transaction. After a partition has executed the last
fragment of a multi-partition transaction, it executes addi-
tional transactions speculatively from the unexecuted queue,
adding them to the end of the uncommitted transaction
queue. An undo buffer is recorded for each transaction. If
the non-speculative transaction aborts, each transaction is
removed from the tail of the uncommitted transaction queue,
undone, then pushed onto the head of the unexecuted trans-
action queue to be re-executed. If it commits, transactions
are dequeued from the head of the queue and results are

sent. When the uncommitted queue is empty, the system
resumes executing transactions non-speculatively (for trans-
actions that cannot abort, execution can proceed without
the extra overhead of recording undo information).

As an example of how this works, consider a two-partition
database (P1 and P2) with two integer records, x on P1

and y on P2. Initially, x = 5 and y = 17. Suppose the
system executes three transactions, A, B1, and B2, in order.
Transaction A is a multi-partition transaction that swaps
the value of x and y. Transactions B1 and B2 are single
partition transactions on P1 that increment x and return its
value.

Both partitions begin by executing the first fragments of
transaction A, which read x and y. P1 and P2 execute the
fragments and return the values to the coordinator. Since A
is not finished, speculation of B1 and B2 cannot begin. If it
did, the result for transaction B1 would be x = 6, which is
incorrect. The coordinator sends the final fragments, which
write x = 17 on partition P1, and y = 5 on partition P2. Af-
ter finishing these fragments, the partitions send their“ready
to commit”acknowledgment to the coordinator, and wait for
the decision. Because A is finished, speculation can begin.
Transactions B1 and B2 are executed with undo buffers and
the results are queued. If transaction A were to abort at this
point, both B2 and B1 would be undone and re-executed.
When P1 is informed that transaction A has committed, it
sends the results for B1 and B2 to the clients and discards
their undo buffers.

This describes purely local speculation, where speculative
results are buffered inside a partition and not exposed until
they are known to be correct. Only the first fragment of
a multi-partition transaction can be speculated in this way,
since the results cannot be exposed in case they must be
undone. However, we can speculate many multi-partition
transactions if the coordinator is aware of the speculation,
as described in the next section.

4.2.2 Speculating Multi-Partition Transactions
Consider the same example, except now the system exe-

cutes A, B1, then a new multi-partition transaction C, which
increments both x and y, then finally B2. The system ex-
ecutes transaction A as before, and partition P1 speculates
B1. Partition P2 can speculate its fragment of C, computing
y = 6. With local speculation described above, it must wait
for A to commit before returning this result to the coordina-
tor, since if A aborts, the result will be incorrect. However,
because A and C have the same coordinator, partition P2

can return the result for its fragment of C, with an indica-
tion that it depends on transaction A. Similarly, partition
P1 can speculate its fragment of C, computing and returning
x = 17, along with an indication that this depends on A. It
also speculates B2, computing x = 18. However, it cannot
send this result, as it would go directly to a client that is
not aware of the previous transactions, because single parti-
tion transactions do not go through the central coordinator.
Once the multi-partition transactions have committed and
the uncommitted transaction queue is empty, the partitions
can resume non-speculative execution.

After the coordinator commits A, it examines the results
for C. Since C depends on A, and A committed, the spec-
ulative results are correct and C can commit. If A had
aborted, the coordinator would send an abort message for
A to P1 and P2, then discard the incorrect results it received

for C. As before, the abort message would cause the parti-
tions to undo the transactions on the uncommitted transac-
tion queues. Transaction A would be aborted, but the other
transactions would be placed back on the unexecuted queue
and re-executed in the same order. The partitions would
then resend results for C. The resent results would not de-
pend on previous transactions, so the coordinator could han-
dle it normally. The pseudocode for this scheme is shown in
Figure 3.

This scheme allows a sequence of multi-partition transac-
tions, each composed of a single fragment at each partition
to be executed without blocking, assuming they all com-
mit. We call such transactions simple multi-partition trans-
actions. Transactions of this form are quite common. For
example, if there is a table that is mostly used for reads, it
may be beneficial to replicate it across all partitions. Reads
can then be performed locally, as part of a single partition
transaction. Occasional updates of this table execute as a
simple multi- partition transaction across all partitions. An-
other example is if a table is partitioned on column x, and
records are accessed based on the value of column y. This
can be executed by attempting the access on all partitions of
the table, which is also a simple multi-partition transaction.
As a third example, all distributed transactions in TPC-C
are simple multi-partition transactions [26]. Thus, this opti-
mization extends the types of workloads where speculation
is beneficial.

There are a few limitations to speculation. First, since
speculation can only be used after executing the last frag-
ment of a transaction, it is less effective for transactions that
require multiple fragments at one partition.

Second, multi-partition speculation can only be used when
the multi-partition transactions come from the same coor-
dinator. This is necessary so the coordinator is aware of the
outcome of the earlier transactions and can cascade aborts
as required. However, a single coordinator can become a
bottleneck, as discussed in Section 3.3. Thus, when us-
ing multiple coordinators, each coordinator must dispatch
transactions in batches to take advantage of this optimiza-
tion. This requires delaying transactions, and tuning the
number of coordinators to match the workload.

Speculation has the advantage that it does not require
locks or read/write set tracking, and thus requires less over-
head than traditional concurrency control. A disadvantage
is that it assumes that all transactions conflict, and therefore
occasionally unnecessarily aborts transactions.

4.3 Locking
In the locking scheme, transactions acquire read and write

locks on data items while executing, and are suspended if
they make a conflicting lock request. Transactions must
record undo information in order to rollback in case of dead-
lock. Locking permits a single partition to execute and
commit non-conflicting transactions during network stalls
for multi-partition transactions. The locks ensure that the
results are equivalent to transaction execution in some serial
order. The disadvantage is that transactions are executed
with the additional overhead of acquiring locks and detect-
ing deadlock.

We avoid this overhead where possible. When our locking
system has no active transactions and receives a single par-
tition transaction, the transaction can be executed without
locks and undo information, in the same way as the blocking

Transaction Fragment Arrives
if no active transaction:

if single partition:
execute fragment without undo buffer
commit

else:
execute fragment with undo buffer

else if fragment continues active multi-partition transaction:
continue transaction by executing fragment
if transaction is finished locally:

speculate queued transactions
else if tail transaction in uncommitted queue is finished locally:

execute fragment with undo buffer
same coordinator ← false
if all txns in uncommitted queue have same coordinator:

same coordinator ← true
if transaction is multi-partition and same coordinator:

record dependency on previous multi-partition transaction
send speculative results

else:
queue fragment

Commit/Abort Decision Arrives
if abort:

undo and re-queue all speculative transactions
undo aborted transaction

else:
while next speculative transaction is not multi-partition:

commit speculative transaction
send results

execute/speculate queued transactions

Figure 3: Speculation Pseudocode

and speculation schemes. This works because there are no
active transactions that could cause conflicts, and the trans-
action is guaranteed to execute to completion before the par-
tition executes any other transaction. Thus, locks are only
acquired when there are active multi-partition transactions.

Our locking scheme follows the strict two phase locking
protocol. Since this is guaranteed to produce a serializable
transaction order, clients send multi-partition transactions
directly to the partitions, without going through the central
coordinator. This is more efficient when there are no lock
conflicts, as it reduces network latency and eliminates an
extra process from the system. However, it introduces the
possibility of distributed deadlock. Our implementation uses
cycle detection to handle local deadlocks, and timeout to
handle distributed deadlock. If a cycle is found, it will prefer
to kill single partition transactions to break the cycle, as that
will result in less wasted work.

Since our system is motivated by systems like H-Store
[26] and DORA [20], each partition runs in single-threaded
mode. Therefore, our locking scheme has much lower over-
head than traditional locking schemes that have to latch a
centralized lock manager before manipulating the lock data
structures. Our system can simply lock a data item without
having to worry about another thread trying to concurrently
lock the same item. The only type of concurrency we are
trying to enable is logical concurrency where a new transac-
tion can make progress only when the previous transaction

is blocked waiting for a network stall — physical concurrency
cannot occur.

When a transaction is finished and ready to commit, the
fragments of the transaction are sent to the backups. This
includes any data received from other partitions, so the back-
ups do not participate in distributed transactions. The back-
ups execute the transactions in the sequential order received
from the primary. This will produce the same result, as we
assume transactions are deterministic. Locks are not ac-
quired while executing the fragments at the backups, since
they are not needed. Unlike typical statement-based replica-
tion, applying transactions sequentially is not a performance
bottleneck because the primary is also single threaded. As
with the previous schemes, once the primary has received
acknowledgments from all backups, it considers the transac-
tion to be durable and can return results to the client.

5. EXPERIMENTAL EVALUATION
In this section we explore the trade-offs between the above

concurrency control schemes by comparing their performance
on some microbenchmarks and a benchmark based on TPC-
C. The microbenchmarks are designed to discover the impor-
tant differences between the approaches, and are not neces-
sarily presented as being representative of any particular ap-
plication. Our TPC-C benchmark is intended to represent
the performance of a more complete and realistic OLTP ap-
plication.

Our prototype is written in C++ and runs on Linux. We
used six servers with two Xeon 3.20 GHz CPUs and 2 GB of
RAM. The machines are connected to a single gigabit Eth-
ernet switch. The clients run as multiple threads on a single
machine. For each test, we use 15 seconds of warm-up, fol-
lowed by 60 seconds of measurement (longer tests did not
yield different results). We measure the number of transac-
tions that are completed by all clients within the measure-
ment period. Each measurement is repeated three times.
We show only the averages, as the confidence intervals are
within a few percent and needlessly clutter the figures.

For the microbenchmarks, the execution engine is a simple
key/value store, where keys and values are arbitrary byte
strings. One transaction is supported, which reads a set of
values then updates them. We use small 3 byte keys and 4
byte values to avoid complications caused by data transfer
time.

For the TPC-C benchmarks, we use a custom written ex-
ecution engine that executes transactions directly on data
in memory. Each table is represented as either a B-Tree, a
binary tree, or hash table, as appropriate.

On each benchmark we compare the three concurrency
control schemes described in Section 4.

5.1 Microbenchmark
Our microbenchmark implements a simple mix of single

partition and multi-partition transactions, in order to under-
stand the impact of distributed transactions on throughput.
We create a database composed of two partitions, each of
which resides on a separate machine. The partitions each
store half the keys. Each client issues a read/write trans-
action which reads and writes the value associated with 12
keys. For this test, there is no sharing (i.e., potential conflict
across clients): each client writes its own set of keys. We ex-
periment with shared data in the next section. To create a
single partition transaction, a clients selects a partition at

random, then accesses 12 keys on that partition. To create
a multi-partition transaction, the keys are divided evenly by
accessing 6 keys on each partition. To fully utilize the CPU
on both partitions, we use 40 simultaneous clients. Each
client issues one request, waits for the response, then issues
another request.

We vary the fraction of multi-partition transactions and
measure the transaction throughput. The results are shown
in Figure 4. From the application’s perspective, the multi-
partition and single partition transactions do the same
amount of work, so ideally the throughput should stay con-
stant. However, concurrency control overhead means this is
not the case. The performance for locking is linear in the
range between 16% and 100% multi-partition transactions.
The reason is that none of these transactions conflict, so
they can all be executed simultaneously. The slight down-
ward slope is due to the fact that multi-partition transac-
tions have additional communication overhead, and thus the
performance degrades slightly as their fraction of the work-
load increases.

The most interesting part of the locking results is between
0% and 16% multi-partition transactions. As expected, the
performance of locking is very close to the other schemes
at 0% multi-partition transactions, due to our optimization
where we do not set locks when there are no multi-partition
transactions running. The throughput matches speculation
and blocking at 0%, then decreases rapidly until 16% multi-
partition transactions, when there is usually at least one
multi-partition transaction in progress, and therefore nearly
all transactions are executed with locks.

The performance of blocking in this microbenchmark de-
grades steeply, so that it never outperforms locking on this
low-contention workload. The reason is that the advantage
of executing transactions without acquiring locks is out-
weighed by the idle time caused by waiting for two-phase
commit to complete. Our locking implementation executes
many transactions without locks when there are few multi-
partition transactions, so there is no advantage to blocking.
If we force locks to always be acquired, blocking does out-
perform locking from 0% to 6% multi-partition transactions.

With fewer than 50% multi-partition transactions, the
throughput of speculation parallels locking, except with ap-
proximately 10% higher throughput. Since this workload
is composed of single-partition and simple multi-partition
transactions, the single coordinator can speculate all of them.
This results in concurrent execution, like locking, but with-
out the overhead of tracking locks. Past 50%, speculation’s
performance begins to drop. This is the point where the
central coordinator uses 100% of the CPU and cannot han-
dle more messages. To scale past this point, we would need
to implement distributed transaction ordering, as described
in Section 4.2.2.

For this particular experiment, blocking is always worse
than speculation and locking. Speculation outperforms lock-
ing by up to 13%, before the central coordinator becomes a
bottleneck. With the bottleneck of the central coordinator,
locking outperforms speculation by 45%.

5.2 Conflicts
The performance of locking depends on conflicts between

transactions. When there are no conflicts, transactions exe-
cute concurrently. However, when there are conflicts, there
is additional overhead to suspend and resume execution. To

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

Tr
an

sa
ct

io
ns

/s
ec

on
d

Multi-Partition Transactions

Speculation

Locking

Blocking

Figure 4: Microbenchmark Without Conflicts

investigate the impact of conflicts, we change the pattern
of keys that clients access. When issuing single partition
transactions, the first client only issues transactions to the
first partition, and the second client only issues transactions
to the second partition, rather than selecting the destina-
tion partition at random. This means the first two clients’
keys on their respective partitions are nearly always being
written. To cause conflicts, the other clients write one of
these “conflict” keys with probability p, or write their own
private keys with probability 1 − p. Such transactions will
have a very high probability of attempting to update the
key at a same time as the first two clients. Increasing p re-
sults in more conflicts. Deadlocks are not possible in this
workload, allowing us to avoid the performance impact of
implementation dependent deadlock resolution policies.

The results in Figure 5 show a single line for speculation
and blocking, as their throughput does not change with the
conflict probability. This is because they assume that all
transactions conflict. The performance of locking, on the
other hand, degrades as conflict rate increases. Rather than
the nearly straight line as before, with conflicts the through-
put falls off steeply as the percentage of multi-partition trans-
actions increases. This is because as the conflict rate in-
creases, locking behaves more like blocking. Locking still
outperforms blocking when there are many multi-partition
transactions because in this workload, each transaction only
conflicts at one of the partitions, so it still performs some
work concurrently. However, these results do suggest that if
conflicts between transactions are common, the advantage of
avoiding concurrency control is larger. In this experiment,
speculation is up to 2.5 times faster than locking.

5.3 Aborts
Speculation assumes that transactions will commit. When

a transaction is aborted, the speculatively executed transac-
tions must be undone and re-executed, wasting CPU time.
To understand the effects of re-execution, we select trans-
actions to be aborted at random with probability p. When
a multi-partition transaction is selected, only one partition
will abort locally. The other partition will be aborted dur-
ing two-phase commit. Aborted transactions are somewhat
cheaper to execute than normal transactions, since the abort

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

ns
ac

tio
ns

/s
ec

on
d

Multi-Partition Transactions

Locking 0% conflict
Locking 20% conflict
Locking 60% conflict

Locking 100% conflict
Speculation

Blocking

Figure 5: Microbenchmark With Conflicts

happens at the beginning of execution. They are identical
in all other respects, (e.g., network message length).

The results for this experiment are shown in Figure 6.
The cost of an abort is variable, depending on how many
speculatively executed transactions need to be re-executed.
Thus, the 95% confidence intervals are wider for this exper-
iment, but they are still within 5%, so we omit them for
clarity. Since blocking and locking do not have cascading
aborts, the abort rate does not have a significant impact, so
we only show the 10% abort probability results. This has
slightly higher throughput than the 0% case, since abort
transactions require less CPU time.

As expected, aborts decrease the throughput of specula-
tive execution, due to the cost of re-executing transactions.
They also increase the number of messages that the central
coordinator handles, causing it to saturate sooner. However,
speculation still outperforms locking for up to 5% aborts,
ignoring the limits of the central coordinator. With 10%
aborts, speculation is nearly as bad as blocking, since some
transactions are executed many times. These results sug-
gest that if a transaction has a very high abort probability,
it may be better to limit to the amount of speculation to
avoid wasted work.

5.4 General Multi-Partition Transactions
When executing a multi-partition transaction that

involves multiple rounds of communication, speculation can
only begin when the transaction is known to have completed
all its work at a given partition. This means that there
must be a stall between the individual fragments of trans-
action. To examine the performance impact of these multi-
round transactions, we changed our microbenchmark to is-
sue a multi-partition transaction that requires two rounds of
communication, instead of the simple multi-partition trans-
action in the original benchmark. The first round of each
transaction performs the reads and returns the results to
the coordinator, which then issues the writes as a second
round. This performs the same amount of work as the orig-
inal benchmark, but has twice as many messages.

The results are shown in Figure 7. The blocking through-
put follows the same trend as before, only lower because the
two round transactions take nearly twice as much time as

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

ns
ac

tio
ns

/s
ec

on
d

Multi-Partition Transactions

Speculation 0% aborts
Speculation 3% aborts
Speculation 5% aborts

Speculation 10% aborts
Blocking 10% aborts
Locking 10% aborts

Figure 6: Microbenchmark With Aborts

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%

T
ra

ns
ac

tio
ns

/s
ec

on
d

Multi-Partition Transactions

Speculation
Blocking
Locking

Figure 7: General Transaction Microbenchmark

the multi-partition transactions in the original benchmark.
Speculation performs only slightly better, since it can only
speculate the first fragment of the next multi-partition trans-
action once the previous one has finished. Locking is rela-
tively unaffected by the additional round of network com-
munication. Even though locking is generally superior for
this workload, speculation does still outperform locking as
long as fewer than 4% of the workload is composed of general
multi-partition transactions.

5.5 TPC-C
The TPC-C benchmark models the OLTP workload of

an order processing system. It is comprised of a mix of five
transactions with different properties. The data size is scaled
by adding warehouses, which adds a set of related records to
the other tables. We partition the TPC-C database by ware-
house, as described by Stonebraker et al. [26]. We replicate
the items table, which is read-only, to all partitions. We ver-
tically partition the stock table, and replicate the read-only
columns across all partitions, leaving the columns that are
updated in a single partition. This partitioning means 89%

of the transactions access a single partition, and the others
are simple multi-partition transactions.

Our implementation tries to be faithful to the specifica-
tion, but there are three differences. First, we reorder the
operations in the new order transaction to avoid needing an
undo buffer to handle user aborts. Second, our clients have
no pause time. Instead, they generate another transaction
immediately after receiving the result from the previous one.
This permits us to generate a high transaction rate with a
small number of warehouses. Finally, we change how clients
generate requests. The TPC-C specification assigns clients
to a specific (warehouse, district) pair. Thus, as you add
more warehouses, you add more clients. We use a fixed
number of clients while changing the number of warehouses,
in order to change only one variable at a time. To accom-
modate this, our clients generate requests for an assigned
warehouse but a random district.

We ran TPC-C with the warehouses divided evenly across
two partitions. In this workload, the fraction of
multi-partition transactions ranges from 5.7% with 20 ware-
houses to 10.7% with 2 warehouses. The throughput for
varying numbers of warehouses are shown in Figure 8. With
this workload, blocking and speculation have relatively con-
stant performance as the number of warehouses is increased.
The performance is lowest with 2 partitions because the
probability of a multi-partition transaction is highest (10.7%,
versus 7.2% for 4 warehouses, and 5.7% for 20 warehouses),
due to the way TPC-C new order transaction requests are
generated. After 4 warehouses, the performance for block-
ing and speculation decrease slightly. This is due to the
larger working set size and the corresponding increase in
CPU cache and TLB misses. The performance for locking
increases as the number of warehouses is increased because
the number of conflicting transactions decreases. This is
because there are fewer clients per TPC-C warehouse, and
nearly every transaction modifies the warehouse and district
records. This workload also has deadlocks, which leads to
overhead due to deadlock detection and distributed deadlock
timeouts, decreasing the performance for locking. Specu-
lation performs the best of the three schemes because the
workload’s fraction of multi-partition transactions is within
the region where it is the best choice. With 20 warehouses,
speculation provides 9.7% higher throughput than blocking,
and 63% higher throughput than locking.

5.6 TPC-C Multi-Partition Scaling
In order to examine the impact that multi-partition trans-

actions have on a more complex workload, we scale the frac-
tion of TPC-C transactions that span multiple partitions.
We execute a workload that is composed of 100% new order
transactions on 6 warehouses. We then adjust the probabil-
ity that an item in the order comes from a “remote” ware-
house, which is a multi-partition transaction. With TPC-C’s
default parameters, this probability is 0.01 (1%), which pro-
duces a multi-partition transaction 9.5% of the time. We
adjust this parameter and compute the probability that a
transaction is a multi-partition transaction. The through-
put with this workload is shown in Figure 9.

The results for blocking and speculation are very similar
to the results for the microbenchmark in Figure 4. In this ex-
periment, the performance for locking degrades very rapidly.
At 0% multi-partition transactions, it runs efficiently with-
out acquiring locks, but with multi-partition transactions it

0

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

on
d

Warehouses

Speculation
Blocking
Locking

Figure 8: TPC-C Throughput Varying Warehouses

0

5000

10000

15000

20000

25000

30000

35000

0% 20% 40% 60% 80% 100%

T
ra

ns
ac

tio
ns

/s
ec

on
d

Multi-Partition Transactions

Speculation
Blocking
Locking

Figure 9: TPC-C 100% New Order

must acquire locks. The locking overhead is higher for TPC-
C than our microbenchmark for three reasons: more locks
are acquired for each transaction, the lock manager is more
complex, and there are many conflicts. In particular, this
workload exhibits local and distributed deadlocks, hurting
throughput significantly. Again, this shows that conflicts
make traditional concurrency control more expensive, in-
creasing the benefits of simpler schemes.

Examining the output of a sampling profiler while run-
ning with a 10% multi-partition probability shows that 34%
of the execution time is spent in the lock implementation.
Approximately 12% of the time is spent managing the lock
table, 14% is spent acquiring locks, and 6% is spent releasing
locks. While our locking implementation certainly has room
for optimization, this is similar to what was previously mea-
sured for Shore, where 16% of the CPU instructions could
be attributed to locking [14].

5.7 Summary
Our results show that the properties of the workload de-

termine the best concurrency control mechanism. Specula-
tion performs substantially better than locking or blocking

Few
Conflicts

Many
Conflicts Few Conflicts Many

Conflicts
Many multi-
partition
xactions

Speculation Speculation Locking Locking or
Speculation

Few multi-
partition
xactions

Speculation Speculation Blocking or
Locking Blocking

Many multi-
round
xactions

Locking Locking Locking Locking

Few multi-
round
xactions

Few Aborts Many Aborts

Table 1: Summary of best concurrency control
scheme for different situations. Speculation is pre-
ferred when there are few multi-round (general)
transactions and few aborts.

for multi-partition transactions that require only a single
round of communication and when a low percentage of trans-
actions abort. Our low overhead locking technique is best
when there are many transactions with multiple rounds of
communication. Table 1 shows which scheme is best, de-
pending on the workload; we imagine that a query executor
might record statistics at runtime and use a model like that
presented in Section 6 below to make the best choice.

Optimistic concurrency control (OCC) is another “stan-
dard” concurrency control algorithm. It requires tracking
each item that is read and written, and aborts transactions
during a validation phase if there were conflicts. Intuitively,
we expect the performance for OCC to be similar to that
of locking. This is because, unlike traditional locking im-
plementations that need complex lock managers and careful
latching to avoid problems inherent in physical concurrency,
our locking scheme can be much lighter-weight, since each
partition runs single-threaded (i.e., we only have to worry
about the logical concurrency). Hence, our locking imple-
mentation involves little more than keeping track of the
read/write sets of a transaction — which OCC also must
do. Consequently, OCC’s primary advantage over locking is
eliminated. We have run some initial results that verify this
hypothesis, and plan to explore the trade-offs between OCC
and other concurrency control methods and our speculation
schemes as future work.

6. ANALYTICAL MODEL
To improve our understanding of the concurrency control

schemes, we analyze the expected performance for the multi-
partition scaling experiment from Section 5.1. This model
predicts the performance of the three schemes in terms of
just a few parameters (which would be useful in a query
planner, for example), and allows us to explore the sensitiv-
ity to workload characteristics (such as the CPU cost per
transaction or the network latency). To simplify the analy-
sis, we ignore replication.

Consider a database divided into two partitions, P1 and
P2. The workload consists of two transactions. The first is a
single partition transaction that accesses only P1 or P2, cho-
sen uniformly at random. The second is a multi-partition
transaction that accesses both partitions. There are no data
dependencies, and therefore only a single round of commu-
nication is required. In other words, the coordinator sim-
ply sends two fragments out, one to each partition, waits

for the response, then sends the commit or abort decision.
Each multi-partition transaction accesses half as much data
in each partition, but the total amount of data accessed is
equal to one single partition transaction. To provide the
best case performance for locking, none of the transactions
conflict. We are interested in the throughput as the frac-
tion of multi-partition transactions, f , in the workload is
increased.

6.1 Blocking
We begin by analyzing the blocking scheme. Here, a single

partition transaction executes for tsp seconds on one parti-
tion. A multi-partition transaction executes for tmp on both
partitions, including the time to complete the two-phase
commit. If there are N transactions to execute, then there
are Nf multi-partition transactions and 1

2
N(1 − f) single

partition transactions to execute at each partition. The fac-
tor of 1

2
arises because the single partition transactions are

distributed evenly between the two partitions. Therefore
the time it takes to execute the transactions and the system
throughput are given by the following equations:

time = Nftmp +
N(1− f)

2
tsp

throughput =
N

time
=

2

2ftmp + (1− f)tsp

Effectively, the time to execute N transactions is a
weighted average between the times for a pure single par-
tition workload and a pure multi-partition workload. As
f increases, the throughput will decrease from 2

tsp
to 1

tmp
.

Since tmp > tsp, the throughput will decrease rapidly with
even a small fraction of multi-partition transactions.

6.2 Speculation
We first consider the local speculation scheme described in

Section 4.2.1. For speculation, we need to know the amount
of time that each partition is idle during a multi-partition
transaction. If the CPU time consumed by a multi-partition
transaction at one partition is tmpC , then the network stall
time is tmpN = tmp − tmpC . Since we can overlap the
execution of the next multi-partition transaction with the
stall, the limiting time when executing a pure multi-partition
transaction workload is tmpL = max (tmpN , tmpC), and the
time that the CPU is idle is tmpI = max (tmpN , tmpC)−tmpC .

Assume that the time to speculatively execute a single
partition transaction is tspS . During a multi-partition trans-
action’s idle time, each partition can execute a maximum of
tmpI

tspS
single partition transactions. When the system ex-

ecutes Nf multi-partition transactions, each partition exe-

cutes N(1−f)
2

single partition transactions. Thus, on average

each multi-partition transaction is separated by (1−f)
2f

single
partition transactions. Therefore, for each multi-partition
transaction, the number of single partition transactions that
each partition can speculate is given by:

Nhidden = min

„
1− f

2f
,
tmpI

tspS

«
Therefore, the time to execute N transactions and the

resulting throughput are:

time = NftmpL + (N(1− f)− 2NfNhidden)
tsp

2

throughput =
2

2ftmpL + ((1− f)− 2fNhidden)tsp

In our specific scenario and system, tmpN > tmpC , so we
can simplify the equations:

Nhidden = min

„
1− f

2f
,
tmp − 2tmpC

tspS

«
throughput =

2

2f(tmp − tmpC) + ((1− f)− 2fNhidden)tsp

The minimum function produces two different behaviors.

If 1−f
2f
≥ tmpI

tspS
, then the idle time can be completely utilized.

Otherwise, the system does not have enough single partition
transactions to completely hide the network stall, and the

throughput will drop rapidly as f increases past
tspS

2tmpI+tspS
.

6.2.1 Speculating Multi-Partition Transactions
This model can be extended to include speculating

multi-partition transactions, as described in Section 4.2.2.
The previous derivation for execution time assumes that one
multi-partition transaction completes every tmpL seconds,
which includes the network stall time. When multi-partition
transactions can be speculated, this restriction is removed.
Instead, we must compute the CPU time to execute multi-
partition transactions, and speculative and non-speculative
single partition transactions. The previous model computed
the number of speculative single partition transactions per
multi-partition transaction, Nhidden. We can compute the
time for multi-partition transactions and speculative sin-
gle partition transactions as tperiod = tmpC + NhiddentspS .
This time replaces tmpL in the previous model, and thus the
throughput becomes:

throughput =
2

2ftperiod + ((1− f)− 2fNhidden)tsp

6.3 Locking
Since the workload is composed of non-conflicting transac-

tions, locking has no stall time. However, we must account
for the overhead of tracking locks. We define l to be the
fraction of additional time that a transaction takes to exe-
cute when locking is enabled. Since locking always requires
undo buffers, we use tspS to account for the single partition
execution time. Furthermore, the overhead of two-phase
commit must be added, so for multi-partition transactions
we use tmpC . The time to execute N transactions, and the
resulting throughput are given by:

time = NfltmpC +
N(1− f)

2
ltspS

throughput =
N

time
=

2

2fltmpC + (1− f)ltspS

6.4 Experimental Validation
We measured the model parameters for our implementa-

tion. The values are shown in Table 2. Figure 10 shows
the analytical model using these parameters, along with the

0

5000

10000

15000

20000

25000

30000

35000

0% 20% 40% 60% 80% 100%

Tr
an

sa
ct

io
ns

/s
ec

on
d

Multi-Partition Transactions

Model Spec.

Model Local Spec.

Model Blocking

Measured Blocking

Model Locking

Measured Locking

Measured Local Spec.

Figure 10: Model Throughput

measured throughput for our system without replication. As
can be observed, the two are a relatively close match. This
suggests that the model is a reasonable approximation for
the behavior of the real system. These results also show that
speculating multi-partition transactions leads to a substan-
tial improvement when they comprise a large fraction of the
workload.

Variable Measured Description
tsp 64 µs Time to execute a single partition

transaction non-speculatively.
tspS 73 µs Time to execute a single partition

transaction speculatively.
tmp 211 µs Time to execute a multi-partition

transaction, including resolving
the two-phase commit.

tmpC 55 µs CPU time used to execute a
multi-partition transaction.

tmpN 40 µs Network stall time while execut-
ing a multi-partition transaction.

l 13.2% Locking overhead. Fraction of ad-
ditional execution time.

Table 2: Analytical Model Variables

7. RELATED WORK
Most distributed database systems (e.g., [9, 6, 19]) use

some form of two-phase locking for processing concurrent
queries, which our results show is best for low contention
workloads. Other schemes, such as timestamp ordering [5],
can avoid deadlocks but still allow multiple transactions to
execute concurrently, and so they require read/write sets,
latching, and must support rollback.

The first proposal that large main memory capacity could
be used to eliminate concurrency control appears to have
been made by Garcia-Molina, Lipton and Valdes [11, 12].
Some early main memory databases used this technique [16].
Shasha et al. [27] presented a database execution engine with
a similar design as ours. They also observe that a scheme

similar to our blocking approach can offer significant per-
formance gains on transaction processing workloads. How-
ever, their work was done in the context of disk-based sys-
tems that still involved logging, and they did not investigate
speculation and single-threaded locking schemes as we do.
Instead, they provide a system for the user to specify which
transactions conflict. The Sprint middleware system parti-
tions data across multiple commercial in-memory database
instances [7]. It also relies on transactions being classified
in advance as single-partition or multi-partition in advance.
Unlike our scheme, it writes transaction logs to disk and
uses the traditional concurrency control provided by the in-
memory databases.

One variant of two-phase commit that is similar to our
work is OPT [13], where transactions are permitted to “bor-
row”dirty data while a transaction is in the prepared phase.
While their work assumes locks, it is very similar to our “lo-
cal speculation” scheme. However, OPT only speculates one
transaction, while speculative concurrency control will spec-
ulate many, and can overlap the two-phase commit for multi-
partition transactions from the same coordinator. Reddy
and Kitsuregawa proposed speculative locking, where a trans-
action processes both the “before” and “after” version for
modified data items [15]. At commit, the correct execution
is selected and applied by tracking data dependencies be-
tween transactions. This approach assumes that there are
ample computational resources. In our environment, CPU
cycles are limited, and thus our speculative concurrency con-
trol always acts on the “after” version, and does not track
dependencies at a fine-granularity.

Some work has noted that locking does not work well in
high-contention situations [3], and has recommended opti-
mistic concurrency control for these cases. Our observation
is similar, although our preliminary results for OCC suggests
that it does not help in our setting because tracking read and
write sets is expensive; instead, in high-contention settings,
we find partitioning with speculation to be effective.

Data partitioning is a well-studied problem in database
systems (e.g., [18, 24, 8, 17, 10], amongst others). Past
work has noted that partitioning can effectively increase the
scalability of database systems, by parallelizing I/O [17] or
by assigning each partition to separate workers in a clus-
ter [18]. Unlike this past work, our focus is on partitioning
for eliminating the need for concurrency control.

H-Store [26] presents a framework for a system that uses
data partitioning and single-threaded execution to simplify
concurrency control. We extend this work by proposing sev-
eral schemes for concurrency control in partitioned, main-
memory databases, concluding that the combination of block-
ing and OCC proposed in the H-Store paper are often out-
performed by speculation.

Previous work on measuring overheads of locking, latch-
ing, multi-threading, and concurrency control in Shore [14]
showed that the overhead of all of these subsystems in sig-
nificant. This paper extends this previous work by showing
that some form of concurrency control can be beneficial in
highly contended workloads, and that in some cases even
locking and multi-threading can prove to be beneficial.

8. CONCLUSIONS
In this paper, we studied the effects of low overhead con-

currency control schemes on the performance of main mem-
ory partitioned databases. We found that speculative con-

currency control, which overlaps the commit phase of an
earlier transaction with the execution of later transactions,
works well provided that the workload is composed of sin-
gle partition transactions, abort rate is low, and only a
few transactions involve multiple rounds of communication.
Otherwise lightweight locking schemes which allow greater
degrees of concurrency are preferable. On a (slightly-altered)
TPC-C benchmark, speculative concurrency control was the
clear winner, in some cases increasing throughput by a fac-
tor of two relative to locking. Our results are particularly
relevant to systems that rely on partitioning to achieve par-
allelism because they show that a workload that does not
partition perfectly can be executed without the overheads of
locking-based concurrency control.

9. ACKNOWLEDGMENTS
This work was sponsored by the NSF under grants IIS-

0845643 and IIS-0704424, and by the Natural Sciences and
Engineering Research Council of Canada. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation (NSF).

10. REFERENCES
[1] TPC benchmark C. Technical report, Transaction

Processing Performance Council, February 2009.
Revision 5.10.1.

[2] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari.
Efficient optimistic concurrency control using loosely
synchronized clocks. In Proc. ACM SIGMOD, 1995.

[3] R. Agrawal, M. J. Carey, and M. Livny. Concurrency
control performance modeling: Alternatives and
implications. ACM Trans. Database Syst.,
12(4):609–654, 1987.

[4] S. Agrawal, V. Narasayya, and B. Yang. Integrating
vertical and horizontal partitioning into automated
physical database design. In Proc. ACM SIGMOD,
2004.

[5] P. A. Bernstein and N. Goodman. Timestamp-based
algorithms for concurrency control in distributed
database systems. In Proc. VLDB, 1980.

[6] H. Boral, W. Alexander, L. Clay, G. Copeland,
S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping bubba, a highly parallel
database system. IEEE Trans. on Knowl. and Data
Eng., 2(1):4–24, 1990.

[7] L. Camargos, F. Pedone, and M. Wieloch. Sprint: a
middleware for high-performance transaction
processing. SIGOPS Oper. Syst. Rev., 41(3):385–398,
June 2007.

[8] S. Ceri, S. Navathe, and G. Wiederhold. Distribution
design of logical database schemas. IEEE Trans.
Softw. Eng., 9(4):487–504, 1983.

[9] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H. I. Hsiao, and R. Rasmussen. The
gamma database machine project. IEEE Trans. on
Knowl. and Data Eng., 2(1):44–62, 1990.

[10] G. Eadon, E. I. Chong, S. Shankar, A. Raghavan,
J. Srinivasan, and S. Das. Supporting table
partitioning by reference in oracle. In Proc. ACM
SIGMOD, 2008.

[11] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A
massive memory machine. Computers, IEEE
Transactions on, C-33(5):391–399, 1984.

[12] H. Garcia-Molina and K. Salem. Main memory
database systems: An overview. IEEE Trans. on
Knowl. and Data Eng., 4(6):509–516, 1992.

[13] R. Gupta, J. Haritsa, and K. Ramamritham.
Revisiting commit processing in distributed database
systems. In Proc. ACM SIGMOD, pages 486–497, New
York, NY, USA, 1997. ACM.

[14] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and
what we found there. In Proc. ACM SIGMOD, pages
981–992, 2008.

[15] P. Krishna Reddy and M. Kitsuregawa. Speculative
locking protocols to improve performance for
distributed database systems. Knowledge and Data
Engineering, IEEE Transactions on, 16(2):154–169,
March 2004.

[16] K. Li and J. F. Naughton. Multiprocessor main
memory transaction processing. In Proc. Databases in
Parallel and Distributed Systems (DPDS), 1988.

[17] M. Livny, S. Khoshafian, and H. Boral. Multi-disk
management algorithms. SIGMETRICS Perform.
Eval. Rev., 15(1):69–77, 1987.

[18] M. Mehta and D. J. DeWitt. Data placement in
shared-nothing parallel database systems. The VLDB
Journal, 6(1):53–72, 1997.

[19] C. Mohan, B. Lindsay, and R. Obermarck.
Transaction management in the R* distributed
database management system. ACM Trans. Database
Syst., 11(4):378–396, 1986.

[20] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-oriented transaction execution. In
PVLDB, 2010.

[21] S. Papadomanolakis and A. Ailamaki. Autopart:
Automating schema design for large scientific
databases using data partitioning. In Proc. Scientific
and Statistical Database Management, 2004.

[22] D. V. Pattishall. Friendster: Scaling for 1 billion
queries per day. In MySQL Users Conference, April
2005.

[23] D. V. Pattishall. Federation at Flickr (doing billions of
queries per day). In MySQL Conference, April 2007.

[24] D. Sacca and G. Wiederhold. Database partitioning in
a cluster of processors. ACM Transactions on
Database Systems, 10(1):29–56, 1985.

[25] R. Shoup and D. Pritchett. The eBay architecture. In
SD Forum, November 2006.

[26] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In Proc. VLDB, 2007.

[27] A. Whitney, D. Shasha, and S. Apter. High volume
transaction processing without concurrency control,
two phase commit, SQL or C++. In Int. Workshop on
High Performance Transaction Systems, 1997.

[28] D. C. Zilio. Physical Database Design Decision
Algorithms and Concurrent Reorganization for
Parallel Database Systems. PhD thesis, University of
Toronto, 1998.

	Introduction
	Assumptions on System Design
	Transactions as Stored Procedures
	No Disk
	Partitioning

	Executing Transactions
	System Components
	Single Partition Transactions
	Multi-Partition Transactions

	Concurrency Control Schemes
	Blocking
	Speculative Execution
	Speculating Single Partition Transactions
	Speculating Multi-Partition Transactions

	Locking

	Experimental Evaluation
	Microbenchmark
	Conflicts
	Aborts
	General Multi-Partition Transactions
	TPC-C
	TPC-C Multi-Partition Scaling
	Summary

	Analytical Model
	Blocking
	Speculation
	Speculating Multi-Partition Transactions

	Locking
	Experimental Validation

	Related Work
	Conclusions
	Acknowledgments
	References

