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1 Overview

Typically, statistical inference uses the following structure:
We observe a realization of random variables on a sample space X,

X(s) = (X1(s), -+, Xn(s))

where each of the X; has the same distribution. The random variable may be independent in the case of
sampling with replacement or more generally exchangeable as in the case of sampling without replacement
from a finite population. The aim of the inference is to say something about which distribution it is.

We usually restrict the allowable distributions to be from some class P. If these distributions can be
indexed by a set Q C R, then P is called a parametric family. We generally set up this indexing so that the
parameterization is identifiable. i.e., the mapping from ) to P is one to one.

For a parameter choice 6 € (2, we denote the distribution of the observations by Py and the expectation
by Ejy.

Often, the distributions of X are absolutely continuous with respect to some reference measure v on X
for each value of the parameter. Thus, X has a density fx|e(z|f) and

PoX € B) = [ Fjolalt) v(da).
The most typical choices for (X, v) are
1. X is a subset of R* and v is Lebesgue measure. Thus, [, fx|e(#|0) v(dz) = [ fx|e(x]0) dz.
2. X is a subset of Z* and v is counting measure. Thus, [, fx|e(z|0) v(dz) =3, 5 fxjo(z|8).

For an observation X(s) = x, we can consider the density as a function, L, of 0. L(f) = fx|e(x|0) is
called the likelihood function.

1.1 Classical Statistics

Suppose we are interested in deciding if the parameter O lies in one portion Q of the parameter space. We

can then set a hypothesis
H:0 € Qy,

versus the alternative hypothesis,

A simple test of this hypothesis would be to choose a rejection region R, and a decision function d and
reject H if d(z) € R. The power function

B(0) = Po{d(X) € R}
gives, for each value of the parameter 6, the probabilty that the hyothesis is rejected.

Example. Suppose that, under the probability Py, X consists of n independent N (6, 1) random variables.

The usual two-sided « test of
H:0=90, versus A: 0O #£0b



is to reject H if X € R,
1 « 1 «
R=(0— —=2 =),00+—=2 (1 - 2))".

® is the cumulative distribution function of a standard normal random variable.

An estimator ¢ of g(0) is unbiased if
Ep[¢(X)] = 9(9) forall 6¢€ Q.
An estimator ¢ of 0 is a mazimum likelihood estimator (MLE) if

sup L(0) = L(¢(x)) forall zeX.
0eQ

An estimator ¢ of g(0) is a mazimum likelihood estimator if 1 = g o ¢, where ¢ is defined above.

Exercise. T is both an unbiased and a maximum likelihood estimate of the parameter for independent
N(0,1) random variables.

1.2 Bayesian Statistics

In Bayesian statistics, (X, ©) is a random variable with state space X x Q. The distribution, p of © on Q is
called the prior distribution. Thus, the prior distribution and {Py : € Q} determine the joint distribution
of (X,0).

Pr{(x.0) € B} = [ [ 1n(e.0)nxjo (dslo)no(d0).

Here, pxjo(-|0) is the distribution of X under Py.
Consider the case in which pg has density fe and ux|e(-|0) has density fxjo with respect to Lebesgue
measure, then

Pr{(X,0®) € B} = //IB(LH)]‘X‘@(:UW)]‘@(H) dx df.

After observing X = x, one constructs the conditional density of © given X = x using Bayes’ theorem.

_ Ixje(x]0) fe(0)
Joixle) = - @ fo®) dt

This is called the posterior distribution.

Example. Suppose that given © = 6, X consists of n conditionally independent N (6, 1) random vari-
ables. In addition, suppose that © is N(6p,1/)). The likelihood function is

Z(xi —0)?)

= (em) e (- 50— -5 > (ai—2)?).

N |

Ixje(x]0) = (277)_”/2 exp ( -



and the prior density is

Fo0) = [ exp(= 20— 00

The numerator for posterior density has the form

n—+ A

() exp(—5 (n(8 — )% + X0~ 60)2) = k() exp(~" 5 (6 — 01(x))?).

where 6, (z) = (Mo +nZ)/(A+n). Thus, the posterior distribution is N(61(x),1/(A+n)). If n is small, then
601(z) is near 6y and if n is large, 61 (x) is near 7.

Inference is based on the posterior distribution. In the example above,

/Gf(@|X)(9|fU) df = 0, (x)

is an estimate for ©.



2 Probability Theory

2.1 o-fields and Measures

We begin with a definition.
Definition. A nonempty collection A of subsets of a set S is called a field if
1. Se A
2. A e Aimplies A° € A.

3. A1, Ay € Aimplies A; U Ay € A.
If, in addition,

4. {A,:n=1,2,---} C Aimplies US>, A, € A,
then A is called a o-field.
The pair (5, .A) is called a measurable space.
Exercise. An arbitrary intersection of o-fields is a o-field. The power set of S is a o-field.

Let C be any collection of subsets. Then, o(C) will denote the smallest sigma field containing C. By the
exercise above, this is the (non-empty) intersection of all o-fields containing C.

Examples.
1. For a single set A, o(A) = {0, A, A, S}
2. If C is a o-field, then o(C) =C

3. If S € R?, or, more generally, S is a topological space, and C is the set of the open sets in S, then o(C)
is called the Borel o-field and denoted B(.S)

Because we often look at sequences of random variables, we will often consider the product space,

S=1] s

AEA

If, for each A, A, is a o-field on S, then the product o-field is the smallest o-field that contains all sets
of the form ], ., Ax, where Ay € A, for all A and Ay = S, for all but finitely many A .

Proposition. The Borel o-field B(R?) of R? is the same as the product o-field of k copies of B(R').
Definition. Let (S,.4) be a measurable space. A function p: A — [0, 00] is called a measure if

1. p(@) =o0.

2. (Additivity) If AN B = then u(AU B) = u(A) + nw(B).

3. (Continuity) If A; C Ay C -+, and A = U2 A, then p(A) = lim, o0 p(45).
If in addition,



4. (Normalization) u(S) =1, p is called a probability.
The triple (S, A, ) is called a measure space or a probability space in the case that p is a probability. In
this situation, an element in S is called an outcome or realization and a member of A is called an event.

A measure p is called o-finite if can we can find {A,;n > 1} € A, so that S = U2 A, and u(A4,) < oo
for each n.

Examples.

1. (Counting measure, v) For A € A, v(A) is the number of elements in A. Thus, v(4) = oo if A has
infinitely many elements.

2. (Lebesgue measure m on (R, B(R')) For the open interval (a, b), set m(a,b) = b—a. Lebesgue measure
generalizes the notion of length. There is a maximum o-field which is smaller than the power set in
which this measure can be defined.

3. (Product measure) Let {(S;,A;,v;:);1 <14 < k} be k o-finite measure spaces. Then the product measure
V1 X -+ X v is the unique measure on o(A4; x --- x A,) such that

v X oo X (A X oo x Ag) = v1(Ay) - v(Ag) forall A; € Ai=1,.. k.
Lebesgue measure on R* is the product measure of k copies of Lebesgue measure on R!.

We say A occurs almost everywhere (A a.e.) if u(A°¢) = 0. If p is a probability, we say A occurs almost
surely (A a.s.). If f =g a.e., then we say that g is a version of f.

2.2 Measurable Functions and Integration

Let f: (S, A) — (T,B) be a function between two measurable spaces. We say that f is measureable if

fi(B)eA for every B eB.

If the measure on (S,.4) is a probability, f is called a random wvariable. We typically use capital letters
near the end of the alphabet for random variables.

Exercise. The collection

{/7(B): BeB}
is a o-field, denoted o(f). Thus, f is measurable if and only if o(f) C A.
If u is a measure on (S,.A), then f induces a measure v on (T, B) by v(B) = u(f~!(B)) for B € B.
Examples.

1. Let A be a measurable set. The indicator function for A, I4(s) equals 1if s € A, and 0is s & A.

2. A simple function e take on a finite number of distinct values, e(x) = Y1 | a;la,(z), A1, -+, A, € A,
and ay,---,a, € S. Call this class of functions £.



3. A and B are Borel o-fields and f is a continuous function.

For a simple function e define the integral of e with respect to the measure p as
n
/e dp = Zai,u(Ai).
i=1

You can check that the value of [e du does not depend on the choice for the representation of e. By
convention 0 X oo = 0.

For f a non-negative measurable function, define the integral of f with respect to the measure u as

/Sf<s>u(ds)=/fdu=sup{/edu:ees,esﬁ.

Again, you can check that the integral of a simple function is the same under either definition.

For general functions, denote the positive part of f, f(s) = max{f(s),0} and the negative part of f by
f7(s) = —min{f(s),0}. Thus, f=f*—f~ and |f|= "+ f".

If f is a real valued measurable function, then define the integral of f with respect to the measure p as

[ #6) utas) = [ £45) utds) = [ £(s) ).

provided at least one of the integrals on the right is finite. If [|f| du < oo, then we say that f is integrable.
We typically write [, f(s) pu(ds) = [Ta(s)f(s) p(ds).

If the underlying measure is a probability, then we typically call the integral, the expectation or the
expected value and write,

EX:/Xd,u.

Exercise. If f = g a.e., then [ f du= [g du.
Examples.
1. If p is counting measure on S, then [ f du =" ¢ f(s).

2. If p is Lebesgue measure and f is Riemann integrable, then [ fdu = [ f dz, the Riemann integral.

The integral is a positive linear functional, i.e.
1. [ f du > 0 whenever f is non-negative and measurable.

2. [(af +bg) du=a [ fdu+ [gdp for real numbers a,b and integrable functions f, g.



Exercise. Any non-negative real valued measurable function is the increasing limit of measurable func-
tions, e.g.
i1
fuls) = Z T I{t_l<f§2%}(s) +nlipsny

PI
=1

Exercise. If {f, : n > 1} is a sequence of measurable functions, then f(s) = liminf, . fn(s) is
measurable.

Theorem. (Fatou’s Lemma) Let {f, : n > 1} be a sequence of non-negative measurable functions.
Then

/lim inf f,,(s) p(ds) <liminf [ f,.(s) p(ds).

n—oo n—oo

Theorem. (Monotone Convergence) Let {f, : n > 1} be an increasing sequence of non-negative
measurable functions. Then

lim fo(s) p(ds) = Tim [ fn(s) p(ds).

n—0oo n—oo

Example. Let X be a non-negative random variable with cumulative distribution function Fx(x) =

Pr{X < uz}. Set X, (s) = Z?j: 7;2_7,}]{11—1<X<L}(S). Then by the monotone convergence theorem and the
<o

o
definition of the Riemann-Stieltjes integral

EX = lim EX,

n— o0
n2™ .

. Zz—l
- nh—>ngo 1 n P?‘{
1=

7

1 i
X< -
gn <4 Som
ol ; i—1
= nlggoz o (Fx (57) = Fx (=5-))
=1

/oox AFy (z)

0

This can be generalized.

Theorem. Let f: (S1,41) — (So2,.A2). For a measure uy on Si, define the induced measure ps(A) =
pi(f~1(A)). Then, if g: Sy — R,

[ 96s2) natds) = [ atss0)) maso)

To prove this, use the “standard machine”.



1. Show that the identity holds for indicator functions.
2. Show, by the linearity of the integral, that the identity holds for simple functions.
3. Show, by the monotone convergence theorem, that the identity holds for non-negative functions.

4. Show, by decomposing a function into its positive and negative parts, that it holds for integrable
functions.

To compute integrals based on product measures, we use Fubini’s theorem.

Theorem. Let (S;, A;,u;),2 = 1,2 be two o-finite measures. If f : Sy x So — R is integrable with
respect to gy X pg, then

[ 1,520 s x palin x ds2) = [ Floisa) atasnlatdse) = [([ For,52) pa(dsa)ln(dsn)

Use the “standard machine” to prove this. Begin with indicators of sets of the form A; x Ay. (This
requires knowing arbitrary measurable sets can be approximated by a finite union of rectangles.) The identity
for non-negative functions is known as Tonelli’s theorem.

Exercises.

1. Let {fx : k > 1} be a sequence of non-negative measurable functions. Then

32 ) ntdn) =Y [ ) i
k=1 k=1

2. Let f be a non-negative measurable function, then

=AN@MM

is a measure.

Note that
w(A)=0 implies v(A) =0.

Whenever this holds for any two measures defined on the same measure space, we say that v is absolutely
continuous with respect to pu. This is denoted by

v << U

This exercise above has as its converse the following theorem.

10



Theorem. (Radon-Nikodym) Let u;,i = 1,2, be two measures on (S,.A) such that us << pi, and
w1 is o-finite. Then there exists an extended real valued function f : S — [0, 00| such that for any A € A,

s (4) = /A £(s) ua(ds).

The function f, called the Radon-Nikodym derivative of ps with respect to w1, is unique a.e. This

derivative is sometimes denoted

dpiz

T(S)'
M1

We also have the following calculus identities.
1. (Substitution) [ g dps = fgj—ﬁf dp.
2. If A\;, i = 1,2, are measures, \; << p1, then A\; + Ao << pp and

A+ o) _ dAr , dhy

= — - a.e.
dpin dpr — duy =

3. (Chain Rule) If u3 is a measure, us is o-finite, and pz << g, then

d dus d
SHs _ CH3lh2 e
d/,Ll d,u2 d/.n
In particular, if py << po, then
dpn  dpg
dia = d/ﬂ) a.e. 41 Or Us.

4. Let v;, i = 1,2, be two measures on (T, B) such that vy << v, and vq is o-finite. Then
o X Vg << pg X 1,
and

dlpa X v2) _ dpiz dvy
d(lLLl X 1/1) d,u1 dVl '

In the study of sufficient statistics, we will need the following theorem.

Theorem. (Halmos and Savage) Let u be a o-finite measure on (5,.4). Let N be a collection of
nontrivial measures on (S, .4) such that v << pu for all v € A/. Then, there exists a sequence of non-negative
numbers {¢; : 4> 1}, Y72 ¢; = 1 and a sequence of elements {v; : i > 1} C A such that

oo
v << Zciui for every veN.
=1

11



Proof. For p finite, set A = p.
For  infinite, pick a countable partition, {S; : i > 1} of S such that 0 < u(S;) < co. Set

B
Z'u DS for B e A.

Thus, A is a finite measure and v << X for all v € M. Define

Q= {Zalm Zaz—l a; > 0,v; € N'}.

=1

If B € Q, then § << A. Now set

D={CeA: Mz eC:dQ/d\(x) =0} =0,and Q(C) > 0, for some @Q € Q}.

Claim 1. D # 0.
Set C = {z : dv/d\(z) > 0}
)

and Q = v.
Then, {x € C : dv/d\(z) =0} =

0, and Q(C) = v(C) = v(S) > 0. Thus, C € D. Note that
sup A(C) = ¢ < A(S) < o0.
Thus, choose a sequence {C; : 7 > 1} C D so that ¢ = lim;_, o, A(C}).
Because C; € D, we can find ); so that
Mz € C;:dQ;/dM\(z) =0} =0, and Q;(C;) > 0.
Define Cp = U2, C; and Qo = >0, 27°Q; € Q. Then, Qo(Co) > 0, dQo/d\ = > 7=, 274dQ;/d) and

d dQ;
oy =0y cuzifeeci: Wiy =0y,

{JTECQ

Thus, Cy € D and A\(Cp) = c.
Claim 2. v << Qg for all v € N.
We show that for v € N, Qo(A) = 0 implies v(A4) = 0.
Define C = {x : dv/dA\(z) > 0} and write

V(A) = V(AN Cy) + V(AN CSNC) + (AN CENO).

Now, Qo(ANCy) = 0 and dQy/dX > 0 on Cy imples that A(ANCy) = 0 and because v << A, v(ANCy) = 0.
Because dv/dA =0 on C°, v(ANC§NC°) =0.

Finally, for D = ANC§ N C, suppose v(D) > 0. Because v << A, A(D) > 0.

D c C implies dv/dA(z) > 0 on D, and

Mz € D :dv/d\(z) =0} = A\(0) = 0.
Thus, D € D and hence C U D € D However, Co N D = ), thus A(Co U D) > A(Cy), contradicting the
definition of ¢. Thus, v(D) = 0.

12



2.3 Conditional Expectation.

We will begin with a general definition of conditional expectation and show that this agrees with more
elementary definitions.

Definition. Let Y be an integrable random variable on (S, A, 1) and let C be a sub-o-field of A. The
conditional expectation of Y given C, denoted E[Y|C] is the a.s. unique random variable satisfying the
following two conditions.

1. E[Y|C] is C-measurable.
2. E[E[Y|C]I4] = E[Y14] for any A € C.

Thus, E[Y|C] is essentially the only random variable that uses the information provided by C and gives
the same averages as Y on events that are in C. The uniqueness is provided by the Radon-Nikodym theorem.
For Y positive, define the measure

v(C) = E[YI¢] for CecC.

Then v is absolutely continuous with respect to the underlying probability restricted to C. Set E[Y|C] equal
to the Radon-Nikodym derivative dv/dP|c.
For B € A, the conditional probability of B given C is defined to be P(B|C) = E[Ig|C].

Exercises. Let C € A, then P(B|o(C)) = P(B|C)Ic + P(B|C°)Ic-.
If C = o{Cy,---,Cy}, the o-field generated by a finite partition, then

P(AIC) =Y P(A|C)Ic, .

i=1

Theorem. (Bayes Formula) Let C € C, then

E[P(AIC)Ic]

M= eptaier

Proof. E[P(A|C)Ic] = E[lalc] = P(ANC) and E[P(A|C)] = P(A).

Exercise. Show the Bayes formula for a finite partition {C1,---,Cy} is

_ P(A|G))P(Cy)
P(C|A) = Sy P(A[Ci)P(Ci)

If C = 0(X), then we usually write E[Y|C] = E[Y|X]. For these circumstances, we have the following
theorem which can be proved using the standard machine.

Theorem. Let X be a random variable and let Z is a measurable function on (S, (X)) if and only if
there exists a measurable function h on the range of X so that Z = h(X).

13



Thus, E[g(Y)|X] = h(X). If X is discrete, taking on the values x1, o, - -, then by property 2,
Elg(Y)x=sy] = E[E[gY)X][[{x=s;]

Thus,
_ BV Lix—sy]

hz;) = ————-.
@) = PIX =2}
If, in addition, Y is discrete and the pair (X,Y’) has joint mass function f(x,y)(z,y). Then,

E[g(Y)I{X:z,;}} = Z g(yj)f(X,Y)(xi» yj)~

Typically, we write h(z) = E[g(Y)|X = z], and for fx(z) = P{X = z}, we have

Elg(Y)|X =] = Z g(yj)f}i(?)(x, Y

We now look to extend the definition of E[g(X,Y)|X = z]. Let v and A be o-finite measures and
consider the case in which (X,Y’) has a density f(x y) with respect to v x A\. Then the marginal density
fx(@) = [ fix,v)(z,y) A(dy) and the conditional density

) = Zg(yj)fY|X(yj|x)'

Frixtole) = 20,

if fx(x)>0and 0if fx(z) =0. Set
hz) = / o, ) fy x () A(dy).

Claim. If E|g(X,Y)| < oo, then E[g(X,Y)|X] = h(X)

By the theorem above, h(X) is o(X) measurable.
A typical element of o(X) is {X € B} for some Borel set B. We must show that

E[h(X)Ip(X)] = Elg(X,Y)Ip(X)].
Thus,

Eh(X)Is(X)] = / In(2)h() fx (@) v(dz)
_ / In(z)( / o2, 9) frix (v12) Ady)) fx(z) v(dz)

- / / 92, 9)I5 (@) foxy) (@, y) Mdy)v(dz)
= Elg(X,Y)Ip(X)].

14



Theorem. (Bayes) Suppose that X has a parametric family of distributions Py of distributions with
parameter space (2. Suppose that Py << v for all 6 € Q, and let fx|o(z|f) be the conditional density of
X with respect to v given that © = f. Let ue be the prior distribution of © and let pg|x(-|z) denote the
conditional distribution of © given X = .

1. Then pe x(-|z) << pe, a.s. with respect to the marginal of X with Radon-Nikodym derivative

Ixie(z]0)
Jo fxje(zlt)pe(dt)

dpe|x
dpe

(Olz) =

for those x for which the denominator is neither 0 nor infinite.

2. If ue << A for some o-finite measure A, and dug/d\ = fo, then

fxje(z|0) fo(0)
~ o Ixie(@lt) fo(H)A(d)

dpe|x
dA\

(0lz)

Proof. Statement 2 follows from statement 1 by the chain rule.
To show 1, write m(z) = [, fx|e(z[t) pe(dt). Then

[ mie) vide) = | [ reiolalt) no(at) vide) = [ | friatelt) vtdnne(ar) -

Thus, m < 0o a.e. v.
Choose = € X with m(z) < co and define

P(Blx) / fxie(zlt) pe(dt)
for B in the o-field on Q. Note that P(:|x) is a probability on  a.e. v. Thus, it remains to show that

P(Bl|z) = pe|x(B|x).

By Fubini’s theorem, P(B|-) is a measurable function of z. If y is the joint distribution of (X, ©), then
for any measurable subset A of X.

ElI5(0)I4(X)] = /A Ip(0) lde x db) = / / Fxio(16) po(d8) v(dz)

[ 2ol paan [ sotele) natan)] vt
///fx|@ (]0) 1o (d0)] fx o (z|t) v(dr)pe(dt)

_ /A  P(Bla) p(dr x db) = EIP(BIX)14(X)]

15



We now summarize the properties of conditional expectation.

Theorem. Let Y, Y7, Y5, - - - have finite absolute mean on (S, A, i) and let a1, as € R. In addition, let B
and C be o-algebras contained in A. Then

(a) If Z is any version of E[Y|C], then EZ = EY. (E[E[Y|C]] = EY).

(b) If Y is C measurable, then E[Y|C] =Y, as.

(c¢) (Linearity) Ela1Y1 + a2Y2|C] = a1 E[Y1|C] 4+ a2 E[Y2|C], a.s.

(d) (Positivity) If Y > 0, then E[Y|C] > 0.

(e) (cMON) If Y,, 1Y, then E[Y,|C] T E[Y]C], a.s.

(f) (cFATOU) If Y,, > 0, then E[liminf, . Y,|C] < liminf, . E[Y,|C].

(g) (cDOM) If lim,, 00 Y (s) = Y (s), a.s., if [V, (s)] < V(s) for all n, and if EV < oo, then

lim E[Y,|C] = E[Y|C],

n—oo

almost surely.
(h) (cJENSEN) If ¢ : R — R is convex, and E|c(Y)| < oo, then

Ele(Y)|C] = «(EY[C]),

almost surely. In particular,
(i) (Contraction) ||E[Y|C]||, < ||Y]|, for p > 1.
(j) (Tower Property) If B C C, then

E[E[Y[C]|B] = E[Y|B],

almost surely.
(k) (cCONSTANTS) If Z is C-measurable, then

E|ZY]|C] = ZE[Y|C)

holds almost surely whenever any one of the following conditions hold:
(i) Z is bounded.
(ii) E|Y|P < oo and E|Z]7 < 0. %+ % =1,p>1
(i) Y, Z > 0, EY < o0, and E[Y Z] < cc.
(1) (Role of Independence) If B is independent of o(o(Y),C), then

E[Y|o(C,B)] = E[YC],

almost surely. In particular,
(m) if Y is independent of B, then E[Y|B] =

Exercise. Let C be a sub-o-field and let EY? < oo, then

Var(Y) = E[Var(Y|C)] + Var(E[Y[C]).
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Definition. On a probability space (5, A, Pr), let C1,Cs, B be sub-o-fields of A. Then the o-fields C;
and Cy are conditionally independent given B if

Pr(A; N As|B) = Pr(A,|B)Pr(As|B),

for A; € Ci, . =1,2.

Proposition. Let B,C and D be o-fields. Then

(a) If B and C are conditionally independent given D, then B and o(C, D) are conditionally independent
given D.

(b) Let By and C; be sub-o-fields of B and C, respectively. Suppose that B and C are independent. Then
B and C are conditionally independent given o (B, Cy)

(c) Let B ¢ C. Then C and D are conditionally independent given B if and only if, for every D € D,
Pr(D|B) = Pr(D|C).

2.4 Modes of Convergence

Let X, X1, X5, - be a sequence of random variables taking values in a metric space X with metric d.
1. We say that X,, converges to X almost surely (X,, =% X) if

lim X, =X a.s..

n—oo

2. We say that X,, converges to X in probability (X, —T X) if, for every € > 0,

lim Pr{d(X,,X) > e} =0.

n—oo

3. We say that X,, converges to X in distribution (X, —T X) if, for every bounded continuous f : X — R.

lim Ef(X,)=Ef(X).

n—oo

4. We say that X,, converges to X in LP, p >0, (X, — L7 X) if,

lim E[d(X,, X)?] = 0.

n—oo
Note that X,, —»%* X or X,, =" X implies X,, —* X which in turn implies X,, =2 X. If X,, =P ¢,
then X, —F ¢

Exercise. Let X,, — X under one of the first three modes of convergence given above and let g be a
continuous, then g(X,,) converges to g(X) under that same mode of convergence.

The converse of these statements requires an additional concept.

Definition. A collection of real-valued random variables {X : v € I'} is uniformly integrable if

1. sup, E|X,| < oo, and
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2. for every € > 0, there exists a § > 0 such that for every ~,

P(A) <4 implies |E[X,14]] <e.

Theorem. The following are equivalent:

1. {X, :~v €T} is uniformly integrable.

2. limy, oo sup, e E[| X5 | I{x,|5n}] = 0.

3. limy, o sup, e E[| X, | — min{n, | X,[}] = 0.

4. There exists an increasing convex function ¢ : [0,00) — R such that lim, . ¢(x)/z = oo, and

sup Ble(| X, )] < .
yel’

Theorem. If X,, —P X and {X,,;n > 1} is uniformly integrable, then lim,, ... EX,, = EX.
Conversely, if the X,, are integrable, X,, —P X and lim, ., E|X,| = E|X]|, then {X,;n > 1} is
uniformly integrable.

The following will be useful in establishing the “delta method”.

Theorem. (Slutsky) Let X, Xy, Xo,---,Y1,Ys, -+ be random variables and let ¢ € R. Suppose that
X,, =P X and Y,, =% ¢. Then

1L X,+Y,->P X +ec
2. Y, X, -7 cX.
3. X,,/Y,, =P X/c provided ¢ # 0.

Convergence in distribution depends only on the laws P, of X,,. Thus, we can write

lim fdPn:/f dP,

n—oo

where P is the law for X. Under these circumstances, we say P, converges weakly to P and write P, —" P.

Theorem. (Portmanteau) The following statements are equivalent for a sequence {P, : n > 1} of
probability measures on a metric space.

1. P, =W P

2. lim, oo [ f dPy = [ f dP.

3. limsup,,_, ., P.(F) < P(F) for all closed sets F.
4. liminf, o P,(G) > P(G) for all open sets G.
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5. lim, o, P,(A) = P(A) for all P-continuity sets, i.e. sets A so that P(0A) = 0.

Suppose P, and P are absolutely continuous with respect to some measure v and write f, = dP,/dv,
f=dP/dv. If f,, — f a.e. v, then by Fatou’s lemma,

liminf P, (G) = liminf/ fn dv > / f dv = P(G).
G G

n—oo n—oo
Thus, convergence of the densities implies convergence of the distributions.

On a separable metric space, weak convergence is a metric convergence based on the Prohorov metric,
defined by
p(P,Q) =inf{e > 0: P(F) < Q(F¢) + ¢ for all closed sets F'}.

Here F¢ = {z : d(z,y) < € for some y € F'}. The statements on weak convergence are equivalent to
lim p(P,, P) =0.

n—oo

For probability distributions on R?, we can associate to P, and P its cumulative distribution functions
F, and F, and characteristic functions ¢,,(s) = [ €% dP, and ¢(s) = [€¥*® dP. Then the statements
above are equivalent to

1. lim,— o Fy(x) = F(z) for all continuity points x of F.

2. (Lévy-Cramér continuity theorem) lim,, o ¢n(s) = ¢(s) for all s.

3. (Cramér-Wold device) (¢, X,,) —P (c, X) for all c € R?

In R4, the Prohorov metric is equivalent to the Lévy metric,

pr(F,G)=inf{e >0: F(z —¢) —e < G(z) < F(x + €) + €},
for cumulative distribution functions F’ and G.
2.5 Limit Theorems
Theorem. Let X, Xo,--- and Y be R? random variables satisfying
an(X, —c) =P,

where {a, :n > 1} C R,c C R? with lim,, .o a, = co. Let g : RY — R. Then,
(i) If g is differentiable at ¢, then

an(9(Xy) — g(c)) =P Vg(e)YT.
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(ii) If g € C™ in a neighborhood of ¢, with all k-th order derivatives vanishing at ¢, 1 < k < m. Then,

m o
ay'(g(Xn) —g(e) =7 > ﬁ(c)yil Y,

s

Proof. (i). By Slutsky’s theorem, X,, — ¢ —P 0 and hence X,, — ¢ —% 0.
Let
Zn = an(9(Xn) — g(c)) — anVg(c)(Xn — C)T'

If we show that Z,, — 0, then the hypothesis, and Slutsky’s theorem imply the theorem.
Because g is differentiable at ¢, given n > 0, we can find §,, > 0 so that

l9(2) = g(c) = Vg(e)(@ = )| < o — ¢
whenever |z — ¢| < §,. Fix €, and note that

Pr{Zal 26} < Pr{|Zu| > |Xu— ¢l 2 6,} + Pr{|Zu| > .| X, — o] < 6}

<
< Pr{|X, —c| > d,} + Pr{a,| X, —c| > ¢/n}.

The first term goes to zero as n — oo. By the Portmanteau Theorem,

limsup Pr{|Z,| > €} <limsup Pr{a,|X, —c| > ¢/n} < Pr{|Y| > ¢/n}.

n—0oo n—oo
Because 7 is arbitrary, the theorem is complete.
Part (ii) is similar and is left as an exercise.

Corollary. (Delta method) Assume the conditions of the theorem above. If Y has a N(0,X) distri-
bution, then
an(g(Xn) = g(c)) =7 W.

W is N(0,Vg(c)2Vg(c)T).
Examples. If /n(X, —c) =P Z, Z is a standard normal, then for ¢ # 0
V(X2 - ) =P w.
W is N(0,4c?). For ¢ = 0,
VnX; =P X,
a chi-square random variable with one degree of freedom.
The most general central limit theorem for independent random variables is due to Lindeberg.

Theorem. Let {X,; : j = 1,---,k,} be independent mean zero random variables with k, — oo as
n— oo and 0 < g, = Var(ijll Xp;) < 00, and
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If, for any € > 0,
k

S TN
RILH;O 072 Z E[anl{\anDEUn}] =0,

then
kn

1
oo 2 X
o =
converges in distribution to a standard normal random variable.

Exercises.

1. Show that the Liapounov condition below implies the Lindeberg condition.

k
. R 246
i o2ts ZE[|an| =0,

n—oo
j=1

for some ¢ > 0.

2. Let {X; : i > 1} be Bernoulli random variables. EX; = p;. If 02 = Y7 | p;(1 — p;) — 00 as n — oo,
then

1 n
— Z(Xi -pi) =" Z
Un .
i=1
as n — oo with Z a standard normal random variable.

3. Let {X; :i> 1} be ii.d R%valued random variables with mean y and variance ¥ = Var(X;), then

1 &
\/ﬁ i=1

with W a N(0,X) random variable.

4. In Exercise 2, let d = 1, X,, and S,,_1, be respectively, the sample mean and standard deviation of the
first n observations, then -
X
Sn_1/v/n

as n — oo with Z a standard normal random variable.

Dz

2.6 Exponential and Location-Scale families

Defnition. A parametric family of distributions {Py : 8 € Q} dominated by a o-finite measure v on (X, B)
is called an exponential family if

k
Frio (i) = S2(8) = c(0)h(r) expld_ mi(B)t(w)} = c(B)h(a)emOHHE.
=1
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In particular, there exists a dominating measure (e.g. d\ = h dv) such that fxg(z|0) > 0 for all
(z,0) € supp(A) x Q. We can use this, for example, to show that the choice of Py, a U(0, #)-random variable,
does not give an exponential family.

This choice for the representation is not unique. The transformation 7(6) = 7(8) D and £(x) = t(z)(DT)~!
for a nonsingular matrix D gives another representation. Also, if 7 << v then we can use 7 as the dominating
measure.

Note that

o(0) = ( /X h(@)e™@HE) gy (z))~1

For j = 1,2, let X; be independent exponential families with parameter set {2;, and dominating measure
vj, then the pair (X1, X>) is an an exponential family with parameter set (€21, 2) and dominating measure
V1 X Vg.

Consider the reparameterization m = m(6), then

Fxm(alr) = é(m)h(z)el™H),

We call the vector I = 7(0) the natural parameter and
I'={reR": / h(x)e ™ )y (da) < oo}
x

is called the natural parameter space.
Examples.

1. Let {Py: 0 € (0,1)} be Bin(n,0) and let v be counting measure on {0,1,---,n}, then

eiateld) = (1= 0" (1) expletog ).

Thus,
0

”) ta) =, (6) =log T—.

() =(1-0)", hz)= <$

The natural parameter is m = log %. We can recover 0 via § = e /(1 + e™).

2. Let {Py: 0= (u,0) € R x R} be the distribution of X = (X1,---,X,,), an i.i.d sequence of N (i, c?)
random variables. Let v be n-dimensional Lebesgue measure. Then,

1 1
fxje(z|0) = W eXP{—ﬁ Z(xi - /~L)2}
i=1
1 —-n n,uQ 1 . 2 [
= WO’ exp{ﬁ}exp{—ﬁ ;zi + ;nm}
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Thus,
2 1 n

c(f)=0"" exp{%h h(x) = (2m)n/2’ Ha) = (n2,Y_a?), w(e) = (5 _2%2)'

; o2’
i=1

An exponential family of distributions is called degenerate if the image of the natural parameterization
is almost surely contained in a lower dimensional hyperplane of R¥. In other words, there is a vector o and
a scalar r so that Pp{(,aX) =r} =1 for all 6.

For X distributed Multy(6,---,0;),Q = {0 € R¥ : 6; > 0, Zle 0; = 1}. Then,

c(0) = 1, h(x)z( " ) tHz) =

Ty, T

The natural parameter is 7(6) = (log(61), - -,log(0)).

This family is degenerate because Pr{(l, X) = n}. We can choose the reparameterization

7(0) = (log(01/0k), - -, 1og(Ok—1/0k))
with .
t(x):(xlv"‘vxk—l)v 5(9):92
This gives a nondegenerate exponential family.

Formulas for exponential families often require this non-degeneracy. Thus, we will often make a linear
transformation to remove this degeneracy.

Definition. (Location-scale families.) Let Pr be a probability measure on (R%, B(R%)) and let My
be the collection of all d x d symmetric positive definite matrices. Set

Pr(, s (B)=Pr((B- X "%,  BeBRY.

Then, the collection
{PT(IMZ)(B) YRS Rd, Y e Md}
is called a location-scale family.

A location family is obtained by restricting the choice of matrices to the identity matrix. A scale family is
obtained by restricting the choice of vectors to p = 0. The normal distributions on R? form a location-scale
family. The uniform distributions on (0, 6) form a location family.
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3 Sufficiency

We begin with some notation.

Denote the underlying probability space by (S, A, i). We will often write Pr(A) for u(A).

We refer to a measurable mapping X : (S, A) — (X, B) as the data. X is called the sample sapce.

We begin with a parametric family of distributions Py of X. The parameter © is a mapping from the
parameter space (§2,7) to Py. Preferably, this mapping will have good continuity properties.

The distribution of X under the image of 8 is denoted by

P{X € BY=Pr{X € B®=0} = P4(B), BeB.

Thus, if © has distribution pe,

Pr{X € B,©cD} = /D Py(B) pe(do).

For example, let 8 = (o, 8),« > 0,8 > 0. Under the distribution determined by 8, X is a sequence of n
independent Beta(a, 3)-random variables. Pick B € B([0,1]™). Then

[T L@+h) a-1q_ 361 4,

Let C be a sigma field on 7 that contains singletons, then T : (X, B) — (7,C) is a statistic and T(X) is
called a random quantity. We write

Pyr(C) = P){T(X) € C} = P){T € C}.

3.1 Basic Notions

Definition. Let Py be a parametric family of distributions on (X, B). Let (£2,7) be the parameter space
and let © : Q — Py be the parameter. Let T : X — 7 be a statistic.

1. T is sufficient in the classical sense if the conditional distribution of X given T'(X) does not depend
on 6.

2. T is sufficient in the Bayesian sense if, for every prior ue, there exists versions of the posteriors pe|x
and pe|r such that for every B € 7,

pe|x (Blx) = per(B|T(x)) a.s. tx,

where px is the marginal distribution of X.

If T is sufficient in the classical sense, then there exists a function r : B x 7 — [0, 1] such that
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1. r(-|t) is a probability on X for every t € 7.
2. r(B|) is measurable on 7 for every B € B.
3. For every 6 € Q and every B € B,
Py{B|T =t} =r(BJt) a.e. Py .
Thus, given T' = t, one can generate the conditional ditribution of X without any knowledge of the

parameter 6.
Example. Let X be n independent Ber(f) random variables and set T'(z) = >°." ; ;. Then

n— ~1
PUX = 2T(X) =1} = ({))te(tl(l— _")e)nt_t _ (?) .

Thus, T is sufficient in the classical sense and r(-|t) has a uniform distribution.

By Bayes’ formula, the Radon-Nikodym derivative,

B 92y @i (1— 9)"—2?;1 i

TR ) R e (dy)

dpe|x
|0
due( )

Given © =60, T(X) is Bin(n, ), thus
(alt) = o DIO_O
J (=)= pe(dy)

t

dpe|r
dpe

Thus, T is sufficient in the Bayesian sense.
Checking the two basic properties of conditional expectation, we have the following lemma.

Lemma. A statistic T is sufficient in the Bayesian sense if and only if, for every prior pg, there exists
a version of the posterior distribution given X, pug|x such that for all B € 7, ugx (B|-) is o(T)-measurable,
i.e. po x(Blr) is a function of T

Exercise. If X = (X, --,X,,) are exchangeable, then the order statistics (X(1),, X()) are sufficient.
The two notions of sufficiency are quite similar as the following theorem demonstrates.

Theorem.
1. If T is sufficient in the classical sense, then T is sufficient in the Bayesian sense.

2. Let T be sufficient in the Bayesian sense. If Py << v for all # and some o finite measure v, then T is

sufficient in the classical sense.
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Proof. Let r be as desribed above and let ug be a prior for ©. Then,
px|r(B|T =t) = /Q Py(B|T =t) per(dot) = / r(Blt) peir(db|t) = r(Blt) = px|re (BT =1t,0 = 0),
Q

where jig|r is the posterior distribution of © given T'. Thus, the conditional distribution of X given (0©,T)
is the conditional distribution of X given T'. Consequently, X and © are conditionally independent given T’
and

He|T,x = He|T-

Because T is a function of X, we always have

He|T,x = He|x

and T is sufficient in the Bayesian sense.
Part 2 requires the following lemma.

Lemma. let v be a o-finite measure dominating Py for each 6§ € Q. If T is sufficient in the Bayesian
sense, then there exists a probability measure v* such that Py << v* << v for all § and

dPy
dv*

fxje(z]0) = (z) = h(0,T(z))

for some measurable function h: Q@ x 7 — R.
Proof. We can choose Q, = {6, : i > 1} and {¢; : i > 1} so that ¢; > 0, ;2 ¢; = 1 and for every 6 € Q,

o0
Py << v = Zcipgi.

i=1

For § € Q\Q, specify the prior distribution

Pr{®© =10} = % Pr{O® =6;} = %
Then,
Pr{®=0X =12} = Pr{X =;|2; f}g{@ =0}
- fxe(x0)
Fxje(x]0) + 3252, cifxjo(20;)
— (14 Yooy cifxje(x]6;) =

Ixje(x]0)

Because T is sufficient in the Bayesian sense, Pr{® = 0|X = x} is, for each 6, a function of T'(z). Thus,
we write

[xie(@l6) Py v 4Py
Z;’il CifX|@(-T|9i) - du ( )/ dV( )_ dl/( )

(0, T(x)) =
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If 0 € Q,, use the prior Pr{© = 0;} = ¢; and repeat the steps above.
Proof. (Part 2 of the theorem) Write 7(B|t) = v*(X € B|T =t) and set v}.(C) = v*{T € C}. Then

V(T~YC)NB) = / Io(T(2)I5(x) v*(dz) = / F(BIt) v (dt).

C

Thus by the standard machine, for every integrable g : 7 — R,

/g(T(x))IB(x) vi(de) = /g(t)f(Blt) vr(dt).

Claim. For all 0, #(B|t) = Po{X € B|T =t}
Note that Py{X € B|T =t} is characterized by satisfying

1. Tt is a function m : 7T — [0, 1].
2. Ey[Ip(X)1c(T(X))] = Eolm(T (X)) Ic(T(X))].
Clearly, 7(B|t) satisfies 1. By the lemma,

dPyr .

(Pe,%}(lB) = Py{T(X) € B} = [Ip(T(x))h(0,T(x)) v*(dx) = [Ip(t)h(0,t) vi(dt))
/C F(BIt) Por(dt) = [ Io(®)F(BlO, 1) vi(dt) — / I5(2) [o(T(2))h(0, T(2)) v*(dz)
= [Ip(x)Ic(T(x)) Po(dx) = ElIp(X)Ic(T(X))].

This gives the claim.

3.2 Fisher-Neyman Factorization Theorem

If all the conditional distributions are absolutely continuous with respect to a single o-finite measure, then
the two senses of sufficiency agree. In this circumstance, the Fisher-Neyman factorization theorem gives a
simple characterization of sufficiency.

Theorem. Let {Py : 0 € Q} be a parametric family such that Py << v for all §. Write

dPy

d—y(x) :fX\@(x\e)'

Then T is sufficient if and only if there exists functions m; and ms such that

fx|e($|9) = my(x)ma(T(x),0).
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Proof. By the theorem above, it suffices to prove this theorem for sufficiency in the Bayesian sense.
Write fx|g(x|0) = mi(z)ma(T(x),0) and let e be a prior for ©. Bayes’ theorem states that the posterior
distribution of © is absolutely continuous with respect to the prior with Radon-Nikodym derivative

dpe|x my (z)meo(T(x),0) _ ma (T (x),0)

dio ) = T @ma(T (), 0) na(@d) Ty ma(T(@),0) pe(d)’

This is a function of T'(z). Thus, T is sufficient.

Now, assume that T is sufficient. Then there exists a measure v* such that
1. Py << v* for all 6.

2. dPy/dv*(xz) = h(0,T(z)) for some measurable h.

3. v << .

Therefore, P i i
Ixjo(elf) = 22 (@) T (2) = h(6, T(2)) 7~ ().

T dvt

Now set my = dv*/dv and msy = h.
Example. (truncation families) Let ¢ be a non-negative Borel function on (R, B(R)) such that for any

a and 3, we have ff #(x) dr < oo . Use the parameter 0 = (o, 8), @ = {(o, ) € R? : a < B}, and set the
densities with respect to Lebesgue measure

fxie(@|0) = c(0)p(x)1(a,6)(x)

with ¢(0) = (7 ¢(z) dz)~L.
The joint density function of n independent identically distributed random variables from this truncation

family is

n n

H fxie(il0) = cO)" ] Liap (@) [] o).

i=1 i=1
n

= e(0)" I(a,00) (@) T(—o0,3) (@) [ [ &)

i=1
Write this as my (z)ma(T'(2),0) with mq (z) = []i_; ¢(2:). and ma(T(x),0) = ¢(0)"I(a,00) (1)) (—00,8)(Z (1)),
T(x) = (2(1), Z(ny). Thus, the minimum and maximum are sufficient statistics.

Lemma. Assume the conditions of the factorization theorem and assume that T : X — 7 is sufficient.
Then there exists a measure vy on (7,C) such that Py r << v7 and dPy r/dvr = ma(t, ).

Proof. Define v* are before, then Py << v* for each 6§ and

dPy (z) = fxie(x|0) __ ma(T(x),0)
dv* Yooy cifxjexlls) Y02, cima(T(x),60;)
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Therefore,

Fyr(B) = / o 1y v (de)

T-1(B) dV*

_ / my(T(x), 0)
7-1(B) Yoiey Cima(T(2),0;)

mg t 9
d *
/ El L cima(t, 6;) vr(z)

with v (B) = v*{T € B}. Now, set dv, /dv;(t) = (3o, cima(t,0;)) " to complete the proof.

v*(dz)

Example. (exponential families) By the factorization theorem, for densities

dPy

— o0 ((6),t(x))
E2 @) = c(O)h(w)e ,

fxje(x]0) =
we have that ¢ is a sufficient statistic, sometimes called the natural sufficient statistic.
Note that ¢(X) is an exponential family. We will sometimes work in the sufficient statistic space. In
this case, the parameter is the natural parameter which we now write as §). The reference measure is v
described in the lemma above. The density is

frie(tlo) =

3.3 Regularity Properties of Exponential Families
Theorem. The natural parameter space €2 of an exponential family is convex and 1/¢() is convex.

Proof. Working with the sufficient statistics space, write

ﬁ = /ew’t)m—(dt).

Choose 601,05 € Q and « € (0,1). Then, by the convexity of the exponential, we have that

1
c(ab; + (1 — a)b)

- /e<(a91+(1_“)‘92)’t>u7(dt)

= /(ozewl’f’> + (1 = a)el®D)ur(dt)
o} n 1-a
c(6)  c(b2)

< 0.

Moreover, if [ |p(t) By (dt) < oo for 6 in the interior of the natural parameter space for ¢ : 7 — R,

then
- /¢(t)e<t72>y7(dt)
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is an analytic function of z in the region for which the real part of z is in the interior of the natural parameter

space. Consequently,

0
52 1() = [ tol)eOvr(a
Taking ¢(0) = 1, we have
1 7]
More generally, if £ =1 + - -+ + £,
k
o 1
B[ 1) = c() —— " ——.
[E ] )ae‘fl - 00, c(9)
For example,
2
Cov(T;,T;) = log ¢(6).

96,00, 00,
Examples.

1. The family Exp(+) has densities fx|g(2[t) =

e ¥ with respect to Lebesgue measure. Thus, the

natural parameter, § = — € (—00,0) , ¢(d) = —1/0, a convex function.

0 1 02
EQT = 69 log( 0) j@’ Var(T) = W

2. For the sum of n-independent N (u,0?) random variables, the natural parameter § = (u/o?,

and the natural sufficient statistic T'(z) = (nZ, Y. ;, 27). Thus,

2

n n 05
log ¢(0) = 5 log(—26,) + 16,
- ) n 6 "y )
) = 5o e(0) =~ =, Bl X0 = i tosel9) =
" 0 0 nb
xS xy =2 9, __2nrn
Cov(nX, 2 X5) =~ 50, g, °6<®) = ~ 55,25, =

1
log(—6) = 7

—1/202),
n nH% 9 9
“29, Tdez n(o” + p7),
n91 2

Definition. Let Py be a family of distributions on X. A second family of distributions P* is called a
conjugate family provided that any choice of prior ug € P* implies that the posterior ug|x € P*.

Exercise. Let X = (Xq,---
Then the beta family of distributions forms a natural conjugate pair.
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This fact, in the case of integer parameters, is a consequence of the following theorem.

Theorem. Suppose, for any choice n of sample size, there exists a natural number k and a sufficient
statistic T,, whose range in contained in R* , functions m; ,, and mg ,, such that

le,-~~,Xn|@(x|9) = ml,n(xl? e ,xn)m27n(Tn($17 e axn)a 9)

In addition, assume that for all n and all t € 7,
0<c(t,n) = / ma.n(t,0) A(dO) < oo.
Q

Then the family
mao n(t7 )
Pr={———"=:teT,n=12,---
{ c(t,n }
is a conjugate family.
We can apply the computational ideas above to computing posterior distributions.

Theorem.Let X = (Xy,---,X,) be i.i.d. given © = 6 € R* with density c(0)exp({6,T(x))). Choose
a >0 and b € R¥ so that the prior for © is proportional to c¢(f)® exp({(6,b)). Write the predictive density of
X, fx(x) = g(t1,-- -, t), where t; = 337 Ty(x;). Set £ = {1 + -+ L}, then

a@

Fx(@) ot o’

k
E[H@fip{:ﬂ?]: (t1, - th).
i=1

3.4 Minimal and Complete Sufficiency

The entire data is always a sufficient statistic. Here we look for a sufficient statistics T that minimizes o(T).

Definition. A sufficient statistic T : X — 7 is called minimal sufficient if for every sufficient statistic
U: X — U, there is a measurable function g : Y — 7 such that T'= g(U), a.s. Py for all 0.

Theorem. let v be o-finite and suppose that there exist versions of dPy/dv = fx|e(-|0) for every § and
a measurable function T': X — 7 that is constant on the sets

D(z) ={y € X: fxje(W|f) = fx|jo(x|0)h(z,y) for all # and some h(zx,y) > 0},
then T is a minimal sufficient statistic.

Proof. Note that the sets D(x) partition X. To show that T is sufficient, choose a prior ug. The density
of the posterior using Bayes’ theorem.

fxje(x|0)
[ fxje(zlY) pe(dy)
h(z,y)fxe(z]0)
J b(x,y) fxie(x|) pe(di)
dpe|x

= e (0]y)

dpe|x
dpe

(Olz) =
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provided y € D(x). Hence, the posterior is a function of T'(x) and T is sufficient.

To prove that T is minimal, choose a sufficient statistic U. We will show that U(y) = U(x) implies that
y € D(x) and hence that T is a function of U. Use the Fisher-Neyman factorization theorem to write

fX\@(ﬂe) = my(x)ma(U(x),0).

Because, for each 6, m; > 0 with Py-probability 1, we can choose a version of my that is positive for all z.
If U(z) = U(y), then
my(y)

fxje(z]0) = fx|e(y|9)m2<x

~—

for all 8. Thus, we can choose h(z,y) = mi(y)/ma(x) to place y € D(z).

Examples.

1. Let X4, -+, X, be independent Ber(#) random variables. Then

n

Fxjo(@lf) = 021= (1 — o)r i,

So, the ratio
fX|(~)(y|9) 0 Zn yqy—zn T;

Ixje(z]0) 1- 9)
Thus, h(z,y) =1 and D(z) = {y € {0,1}": Y7 y; = >, x;}. This gives that T'(z) =Y. | z; is a

minimal sufficient statistic.

2. Let X1, -+, X, be independent U(0,6) random variables. Then
Fxie(]0) = 07" Ijp g (max z;).
Now suppose that, for all 6

9_"1[0,0] (miax l‘i) = h(a:, y)e_nf[o,e] (m?X yi)'

Then max; x; = max; y; and h(z,y) = 1 and D(z) = {y € R} : max; r; = max;y;}. Consequently,
T'(x) = max; z; is a minimal sufficient statistic.

Definition. A statistic T is (boundedly) complete if, for every (bounded) measurable function g,

Eylg(T)] =0 for all 8 € Q implies g(T') =0, a.s. Py for all 6.

Examples.

32



1. Let X1, -+, X, be independent Ber(f) and let T' denote the sum. Choose g so that Ey[g(T)] = 0 for
all 6. Then

0= Eylg(T)]

I
Q
—
~.
S~—"
/N
. 3
N——
>
=.
—~
—_
|
>
N—
1

= -0 o)) )

This polynomial in 6/(1 — ) must have each of its coeflicients equal to zero. Thus, g(i) = 0 for all ¢
in the range of T. Hence, T is complete.

2. Let X1, -, X, be independent U (0, §) and let T" denote the maximum. Choose g so that Ey[g(T)] =0
for all 8. Then

6
0 = Ey[g(T)] :/0 g(t)nt" 1™ dt.

Thus, the integrand and hence g(t) = 0 a.e. and T is complete.

Theorem. If the natural parameter space 2 of an exponential family contains an open set in R*, then
the natural sufficient statistic is complete.

Proof. Let T(X) have density c(6) exp(f, t) with respect to a measure vy. Let g be a function such that

0= Eylg(T)] = / 9(t)e(8) expl6, £) vz (dt).
Thus, for each 6
/ g+ (t) exp(6,1) v (de) = / g~ (t) exp(6,1) v (dt).

Fix 6y in the interior of the natural parameter space and let Z(6y) be the common value of the integrals
above. Define two probability measures

P+(A) = Z(lao)/ng(t)exp(G,t} vr(dt)
P = g [ o Oeno.0 vr)

Now the equality above can be written

/exp<(e — 0),t) P*(dt) = /exp<(e ~ 0y),1) P~ (dt).

Thus, the Laplace transforms of P™ and P~ agree on an open set, and hence P™ = P~. Consequently,
gt =g~ as. vr and Py{g(T) =0} = 1.
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Thus, the sufficient statistics from normal, exponential, Poisson, Beta, and binomial distributions are
complete.

Theorem. (Bahadur) If U is a finite dimensional boundedly complete and sufficient statistic, then it
is minimal sufficient.

Proof. Let T be another sufficient statistic. Write U = (Uy, - --,Uy) and set V;(u) = (1 + exp(u;))~ L.
Thus, V is a bounded, one-to-one function of u. Define

H,(t) = EglViU)IT = 1), Li(u) = Bg[H(D)|U = ul.

Because U and T are sufficient, these conditional means do not depend on . Because V is bounded, so are
H and L. Note that by the tower property,

Eg[Vi(U)] = Eo[Eo[Vi(U)|T]| = Eg[Hi(T)] = Eo[Ee[Hi(T)|U]| = Ep[Li(U)].

Thus, Ep[V;(U) — L;(U)] = 0 for all 6. Use the fact that U is boundedly complete to see that Py{V;(U) =
L;(U)} =1 for all 0.
Now, use the conditional variance formula.

Varg(L;(U)) = Ep[Vare(Li(U))|T] + Varg(H;(T)),  Varg(H;(T)) = Eg[Vare(H;(T))|U] 4 Vare(L;(U)).
Add these equations and simplify to obtain
0 = Ey[Varg(L;(U))|T] + Eg[Vare(H;(U))|T].

Because conditional variances are non-negative, we have that 0 = Varg(L;(U)|T) = Vary(V;(U)|T), a.s. Ps.
Thus, V;(U) = Ea[V;(U)|T] = Hy(T) or U; = V; *(H;(T)), a.s. Pp, and U is a function of T. Consequently,
U is minimal sufficient.
3.5 Ancillarity
Definition. A statistic U is called ancillary if the conditional distribution of U is independent of ©.
Examples.
1. Let X1, X2 be independent N (0, 1), then Xo — X is N(0,2).
2. Let Xy,---, X, be independent observations from a location family, then X(,) — X(;) is ancillary.
3. Let X1, -+, X, be independent observations from a scale family, then any function of the random

variables X1/X,,, -+, Xn—1/X, is ancillary.

Sometimes a minimal sufficient statistic contains a coordinate that is ancillary. For example, for n i.i.d.
observations Xy, -+, X,, from a location family take T" = (T1,T5) = (max; X;, max; X; — min; X;). Then
T is minimal sufficient and 75 is ancillary. In these types of situations, 77 is called conditionally sufficient
given Ts.
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Theorem. (Basu) Suppose that T is a boundedly complete sufficient statistic and U is ancillary. Then
U and T are independent given ® = # and are marginally independent irrespective of the prior used.

Proof. Let A be a measurable subset of the range of U. Because U is ancillary, P;{U € A} is constant.
Because T is sufficient, Pj{U € A|T'} is a function of T independent of §. Note that

Ey[Pj{U € A|T} — Py{U € A}] =0.
Use the fact that T is boundedly complete to conclude that
Py{U € AT} = P){U € A} as Py.

Now, let B be a measurable subset of the range of T, then

P{T € BU € A} = Ey[Ey[Ip(T(X))Ia(U(X))|T(X)]]
Eo[Ip(T(X))Ep[Ia(U(X))|T(X)]]
Eo[Ip(T(X))Ee[1a(U(X))|T(X)]]

Ey[Ip(T(X)) Py{U € A}]
= Py{T € B}Py{U € A}

Let pue be a prior for O, then
Pr{U(X) c A,T(X) € B} — /Q /B PrUX) € AIT(X) = t} Por(dt)ue(d0)
_ /Q Pr{U(X) € A} Por(B)uo(d) = Pr{U(X) € AYPr{T(X) € B}

Examples.

1. Let X1, -+, X, be independent N(6,1). Then X is complete and S = >" | (X; — X)?/(n — 1) is
ancillary. Thus, they are independent.

2. Let X1,---, X, be independent N(u,o?) Then, (X,S) is a complete sufficient statistic. Let

X —-X X, —X )
N s 8 '

Then U is ancillary and independent of (X, S). The distribution of U is uniform on a sphere of radius
1 in an n — 1 dimensional hyperplane.

3. Conditionin on an ancillary statistic can sometimes give a more precise estimate. The following example
is due to Basu.

N known) and select labels iy,---,4, at random with replacement from

Let © = . (
X (X1,-,Xn) = (04, --,0;,). Thus for all compatible values of =,

(©1,
1,---,N, n g N,
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fx|9(x]#) = 1/N™. Let M be the number of distinct labels drawn. Then, M is ancillary. Let
(X3, -+, X5,) be the distinct values.

One possible estimate of the population average is X* = Zf\il X;/M. For this, we have conditional

variance
N—m

Var(X*|© =0, M =m) = N1 %,

where 0% = " (6; — 0)%/N.
This is a better measure of the variance of X* than the marginal variance for the case n = 3. In this

case, the distribution of M is

fau(m) = form=1,2,3,

and 0 otherwise. Because E[X*|© = 0, M = m] = 0 for all §, we have that

- N — M o2 2 N —2)(N — 2 N2 _3N
Var(X*|G):0):E[N71%6:9]:%(1+(N—2)+u o NTZSN+S
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4 Information

4.1 Fisher Information

Let © be a k dimensional parameter and let X have density fx|e(x|f) with respect to v. The following will
be called the Fisher Information (FI) reqularity conditions.

1. 0 = 0fxje(x]0)/00 exists for all 0, v a.e.

2. Foreachi=1,--- k,
9 0
6791-/fx\®($|9) v(dr) = /afeifxle(fw) v(dz).

3. The set C' = {z : fxjo(x|f) > 0} is the same for all 6.

Definition Assume the FI regularity conditions above. Then the matrix Zx (0) with elements

0 0
Ix.i;(0) = Cove(@ log fx|e(x]0), 20, log fx|e(z]0))
T J

is called the Fisher information matriz about © based on X.

The random vector with coordinates Ve log fx|e(X|0) is called the score function.

For a statistic 7', the conditional score function Ve log fx|r.e(X|t,0).

Ixr(0|t), the conditional Fisher information given T' = t, is the conditional covariance matrix of the
conditional score function.

Under the FI regularity conditions, the mean of the score function is zero. To see this, note that

E[a%fx\e(xla)] = /(a%logfxwe(ﬂ"))f)fl@(x'o) v(dz)

_ /a%fxle(xw) u(dz) = 0.

If differentiation is permitted twice under the integral sign, then

. aw.07, /x10(X10)
0= /aaiaejfx@(ﬂ@) v(dz) = Bp[ 202020

fxje(X]0)
Because
o2 (557 f10(10)) fx |0 (2160) — (55 Fx10(2160)) 59- Fx o (x]6))
59,06, 108 fx1e(X10) = fxje(X10)? ’
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we have that

2

07 0

0
0. log fx|e(X10)) = —Ix.i;(0).

" 06,

(X10)

In the case of exponential families using the natural parameter,

fxje(z|f) = c(6)e TN,

Thus,
2 2

0

In the case that Xi,---, X, are i.i.d given © = 0, then

log fx|e(X|0) = Zlogfx o(Xil0).

Consequently,
IX(G) = nZXl (6)

Examples.

1. Let @ = (u,0), and let X be N(u,0?). Then,

1 1
log fx(e(e16) =~ log(2m) — log s — = (& - )

20 2
and
9 T H 9 o? 1
%IngX\@(xw) T g2 Varg(5; log fxje(X|0)) = 22 = 55
0 1 x — )2
5 108 fxje(xlf) = —— + (073”) Varg (2 log fx|o(X]0)) = 2

o 0 T —
%%bgfm@(l“m = -2 e COV@(%log fxje(X10), Z log fxje(X]0)) =0

This give the information matrix

N
—
>
N—
Il
7N
O%‘»—‘

qm‘m o
N———
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2. The T'(«, ) family is an exponential family whose density with respect to Lebesgue measure is

/Ba a—1 7B:r7 ﬁa 1

fxa,B(zla,B) = F(a)x e = () pu exp(alogz — fx).

Thus, T'(z) = (logz, x) is a natural sufficient statistic. § = (61,62) = (a, —f3) is the natural parameter.

To compute the information matrix, note that

log ¢(0) = 601 1og(—02) — logT'(61),

) B 9 9 o
90, log ¢(#) = log(—0-) a—ellog L'(61), 90, log ¢(f) = 0,
82 2 2 82 91
879% logc(ﬂ) = —a—eflogf(el), m IOgC(Q) = —?2, 876% IOgC(G) = %

Thus the information matrix Zx («, 3) is

Theorem. Let Y = ¢(X) and suppose that Py << vx for all . Then Zx(6) — Zy(6) is positive
semidefinite. This difference of matrices is the 0 matrix if and only if Y is sufficient.

Proof. Define Qy(C) = Pp{(X,Y) € C} and v(C) = vx{z : (z,9(s)) € C'}. Note that

[ 1) videx dy) = [ ha.gla) v (e).

Thus,
Q(C) = [ Iew.g(a)) fxio al6) vx(de) = [ To(a,y) xio(alt) vids x dy),

and, consequently, Qy << v with Radon-Nikodym derivative fx y|o(z,y|0) = fx|o(x|f). Because,

. Ixyie(z,yl0)
fX\Y,@(aijae) - fY|®(y|0)
we have
Ixyie(®,yl0) = fxje(zl0) = fyie(Wl0) fxv,e(zly,0).
or

0 0

0, log fx|v,e(zly,0).

a.s. Qg for all 4.

Claim The two terms on the right are uncorrelated.
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0
Covy( IngY\G(YW)v%IngX\Y,G(XD/?a))
J

9

00;
0 1o}

= Ee[w log fY|(—)(Y|9)% log fx|v,e (XY, 0)]
[ J

= BulEslg Yoz rie(Y16) -l e (XIV.0)Y]

_ [a‘z (w)Ee[ai log fxjv.6(XIY, )Y

(Y'16)(0)] = 0.

T

Thus, by the conditional variance formula
Ix(e) = Ix(e) + Eezxyy(ﬂY).

Thus, Zx () —Zx(0) is positive semidefinite. The last term is zero if and only if the conditional score function
is zero a.s. QQp. This happens if and only if fx|y,e(z|y,0) is constant in 6, i.e. Y is sufficient.

Let H = h(O) be a one-to-one reparameterization, and let 7% be the Fisher information matrix with
respect to this new parameterization. Then, by the chain rule,

Ix(n) = A(m)ZIx (b~ () AT,

where A(n) is a matrix with éj-th entry 8hj_1(77)/877i.

4.2 Kullback-Leibler Information

Definition. Let P and @) be probability measures on the same space. Let p and ¢ be their respective
densities with respect to some measure v. The Kullback-Leibler information in X is defined as

p(z)
q(x)

In the case of parametric families, let 0,1 € 0 The Kullback-Leibler information is then

Iy (P:Q) = / tog 2% () w(d).

Ix10(X10)
fX|®(X|¢)

For a statistic 7', let p; and ¢; denote the conditional densities for P and @ given T' = ¢ with respect to some

Ix(0;1) = Epl[log ].

measure v;. Then the conditional Kullback-Leibler information is

Dt (x)
& 4 (@)

Ten(Pi@) = [ o™ Dpi(a) wlde).

Examples.
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1. If X is N(6,1), then

le@(xW)_l I — )2 — (& — 2y _ 1 _ r—h—
log PO = 5 =0 = (@ = 0)%) = §(0 = )2~ —0).

Thus Zx (6;¢) = Zx (4;0) = (0 — ).
2. If X is Ber(f), then

fxje(x|0) 0 10
log 222" — zlog — —z)l .
8 Fpolalp) ~ T8yt le T
Thus,
IX(G;qp):Glog%Jr(l—H)logll:Z.

Here, Tx(0;¢)) # Ix (¢;0).

Some properties of Kullback-Leibler information are readily verifiable.

1. From Jensen’s inequality, Zx (P; Q) > 0 and equals 0 if and only if P = Q.

2. Ixr(P;Q) >0 a.s. Pr and equals 0 if and only if p; = ¢; a.s. P.

3. If X and Y are conditionally indepedent given ©, then ZTx vy (6;v¢) = Zx(6;%) + Iy (0;¢)

We have the following theorem in analogy to Fisher information.
Theorem. Let Y = g(X), then Zx(0;) > Iy (6;¢) with equality if and only if ¥ is sufficient.

Proof. Using the same setup as before, we have

Te(0) — Ee[logm]
o Fe10), L fave(X1Y0)
= Bollos 5 Ty B X))

= Iy(0;v) + Eg[Ix)y (0;¢]Y)] > Ly (6;9).

To obtain equality, we use Jensen’s inequality to conclude that

Fxyveo(X[Y,0) = fxjye(X[Y,¥), as. Py

Using the same ideas, we have the following.

Theorem. Both Fisher and Kullback-Leibler information is the mean of the conditional information
given an ancillary statistic U.
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Proof. Let Py have density fxjo with respect to a measure v. For u = U(x), we can write

fxje(210) = fu(u) fxjve(z|u,0)
because U does not depend on O.
If the FI regularity conditions hold,

0

0
aT)ifm@(xW) = afgifxw,@(ﬂu, 6).

Because the mean of the conditional score function is 0 a.s.,

Ix(0) = EeZxu(0|U).

Similarly, for the Kullback-Leibler information,

Ixje(@l) _ fxwelzlu0)
Ifxje(@lY)  fxjvelzlu,v)

and
Ix(0;4) = EZxu(0;9|U).

Some advantages of the Kullback-Leibler information are
1. It is not affected by the parameterization.
2. It has no smoothness conditions.

We have the following connection under the appropriate regularity conditions.

0? Ix1e(X16o)

32
mfx(%,@ﬂe:eo = m /log mfxle(XWO) v(dz)|o=0,

32
= /aaiaejlog fxje(X|0o) fxje(X0o) v(dr) =Ix, ;

Examples.

1. For X a Ber(6) random variable, and § > 0.

0? 0 1-46 1

@Ix(e;w)k):ﬁ; = (ﬁ + m”@:w T o(1-0)
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2. Let X be U(0,0), then

(4
Ix(0,0+0) = / log(w)1 dleog(l—ké)
; Ty 9
0 0 1 0+6

In words, from observations of a U(0, 8) distribution, we have some information to distinguish it from
a U(0,6 + 0) distribution. On the other hand, any observation of X > 6 eliminates the U(0,0)
distribution. This is infinite information in the Kullback-Leibler sense.

Example. This example shows how the Kullback-Leibler information appears in the theory of large

deviations.
Let X1, -+, X, be independent Ber (i) random variables. Choose 0 < 9 < 6 < 1. Then, by Chebyshev’s

inequality, we have for a > 0,

1 & Ele® 211X a4 (1= )
Pw{ﬁ ZXi >0} < l cand } = (Ye 10(“19 ¥)) .
=1

or

1 1
p long{ﬁ ;nXi > 0} <log(e” + (1 —)) —ab

The right side has a minimum value when « satisfies

e
e +(1—v¢)

PR, o, =0

= ——7+— Or

(1 —0) CTE -0

Thus, this minimum value is

1og(% +(1—1)) —Glogm = 1og((11:1§)) —Glogm
= —(910g%+(1—9)10g%)
= —Ix(¥:90)

In summary,
1 n
P{E EXi > 0} < exp(—nZx(¥;0)).
=
In words, The probability that a ¢ coin can perform better than a 6 coin is exponential small with power in
the exponent equal to negative the number of coin tosses times the Kullback-Leibler information.
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5 Statistical Decision Theory

5.1 Framework

A statistical decision is an action that we take after we make an observation X : S — X from Py € P. Call
A the set of allowable actions or the action space. Assume that A is a measurable space with o-field F.

A randomized decision rule is a mapping from the sample space to probability measures on the action
space 0 : X — P(A,F) so that §(-)(B) is measurable for every B € F. In other words, § is a regular
conditional distribution on A given X. A nonrandomized decision rule is one in which ¢ is a point mass.
Denote this mapping by 6 : X — A.

Let V : S — V be measurable. The criterion for assessing a nonrandomized decision rule is a loss function
L:V x A— R. For a randomized decision rule, we use

L(v,(x)) :/AL(v,a) d(x)(da).

Example. Let n be an even integer and let X;,---, X,, be independent Ber () random variables. Let
the parameter space 2 = {1/3,2/3} and the action space A = {ag,a1}. Set V = © and take the loss function

0 if(v=1%anda=ap)or (v=2anda=a),

L(v,a) :{ 1 otherwise.
and randomized decision rule

probability 1 on ag if Yo, 2 <
0(z) = ¢ probability 1 on aq if Y, x>
probability 3 on each if Y, ;z; =

[SIRINIEINT

5.2 Classical Decision Theory

Define the risk function as the mean of the loss function.
R(0.6) = ElL(V.50X)) = [ [ L0,6()) Pay(do)Po(do)
X JY

where Pg,v(D) = P@{V S D}

The most common choices for V' is ©. In this case,

R(6,5) = /X L(0,6(x)) Py(dz).

This suggests that we define
L(0,a) = / L(v,a) Py (dv).
%
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Then, the formula for R holds for all choices of V.

Exercise. Here is a decision theoretic basic for the standard measures of center. Let § be a non-
randomized decision function with finite range.

1. If L(0,0) = I{s5(z)2¢0(0)}> take do(f) to be the mode of 6(X) to minimize risk.
2. If L(6,6) = |0(z) — $1(0)], take ¢1(0) to be the median of §(X) to minimize risk.
5

3. If L(0,9)
)

= (6(x) — ¢2(0))?%, take ¢2(f) to be the mean to minimize risk. This minimum risk is
Var(§(X)).

A decision rule with small loss is preferred. If a decision rule ¢, in a class of allowable decision rules D
minimzes risk for any choice of 6§ € ), then we say that ¢, is D-optimal.

Sufficient statistics play an important role in classical decision theory.

Theorem. Let §; be a randomized decision rule and let T be a sufficient statistic. Then, there exists a
rule 6; that is a function of the sufficient statistic and has the same risk function.

Proof. For C € F, define
61(t)(C) = Eg[d0(X)(O)T(X) =t].

Because T is sufficient, the expectation does not depend on €. By the standard machine, for any integrable
h:A— R,

Bl [ h(a) &) (da)iT = = [ h(@) 6:(6)do).
Taking h(a) = L(0, a), we have

R(0,00) = Ep[L(8,00(X))]
= Ep[Ey[L(0,00(X))|T(X)]]
= Ey[L(0,6,(T(X)))] = R(6,61)

Note that even if dg is nonrandomized, then §; will be randomized if T is not one-to-one.

Theorem. Suppose that A C R™ is convex and that for all § € Q, L(6,a) is a convex function of a. Let
0 be a randomized rule and set

F:{xeX:/A|a\ 5(x)(da) < oo}

Consider the nonrandomized decision rule

dole) = [ @ bla)(da),

for x € F. Then L(0,d0(x)) < L(0,(z)) for all z € F and 6 € .
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Proof. Because A is convex, dg(z) € A for all x € F. By Jensen’s inequality,

L(0,00(x)) = L(G,/

A

a 6(x)(da)) < / L(6,a) 6(x)(da) = L(0,6(x)).

A

Thus, if F' = X, the nonrandomized rule obtain from averaging the randomized rule cannot have larger
loss.

Theorem. (Rao-Blackwell) Suppose that A C R™ is convex and that for all 8 € Q, L(0, a) is a convex
function of a. Suppose that T us sufficient and Jy is a nonrandomized decision rule with Ey[||do(X)]|] < .
Define

61(t) = Eg[do(X)|T = 1],

Then, for all 6,
R(6,61) < R(6,d0).

Proof. Using the conditional form of Jensen’s inequality, we have

R(0,60) = Ey[L(0,60(X))] = Eo[Ep[L(8,00(X))|T(X)]]
> Eg[L(0, Ep[00(X)|T(X)])] = E[L(0,61(X))] = R(0,61)

Example. Let X = (X3, -, X,,) be independent N (6, 1) random variables. Set A = [0,1] and fix ¢ € R.
For loss function
L(0,a) = (a — ®(c — 0))?,

a nalve decision rule is

1 n
5O(X) = E ZI(—OO,C](XZ)
i=1

However, T'(X) = X is sufficient and & is not a function of T(X).
As the Rao-Blackwell theorem suggests, we compute

c—T(X)

Ey[00(X)[T(X)] = %ZEe[I(foo,c](Xi)lT(X)} = Pp{Xy <2[T(X)} = @(W

because X given T'(X) =t is N(¢t,(n —1)/n)

5.3 Bayesian Decision Theory

In the Bayesian paradigm, we might begin by computing the posterior risk

r(]z) = /v L(v,5(z)) pyx (do]z).

A rule, dg, is called a formal Bayes rule if,
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1. for every z, the risk r(dp|x) is finite, and
2. r(do|z) < r(d|x) for every rule 6.
Example. Let A = Q and L(,a) = (0 — a)?. Then
/QL(Q, a)pe|x(df)z) = a* + 2aE[0|X = z] + E[0* X = z].
If © has finite variance, then dg(z) = F[©|X = x] minimizes the expression above and thus is a formal Bayes
rule.

If no decision rule exists that minimizes risk for all 8, one alternative is to choose a probability measure
1 on ) and minimize the Bayes risk,

r(n,d) = /QR(H,(S) n(do).

Each § that minimizes r(n,d) is called a Bayes rule. If the measure n has infinite mass, then a rule that
minimizes the integral above is called a generalized Bayes rule and 7 is called an improper prior.

If the loss is nonnegative and if Py << v for all , with density fx|g, then by Tonelli’s theorem,

7(n,9)

/QR(Q,(?) n(df)

[ ] 2.5 xio(alt) vidom(ao
QJXx

[ [ 16,6 fxieel6) ntao)vas)

- / r(8]2) px (d),
X

where yix(B) = [, Po(B) n(df) the the marginal for X. In this circumstance, Bayes rules and formal Bayes
rules are the same a.s. px.

5.4 Admissibility

The previous results give us circumstances in which one decision rule is at least as good as another. This
leads to the following definition.

Definition. A decision rule ¢ is inadmissible if there exits a decision rule dy such that R(6,dp) < R(0,J)
with strict inequality for at least one value of . The decision Jy is said to dominate 6.

If no rule dominates 9, we say that § is admissible.

Let A be a measure on (£2,7) and let § be a decision rule. If

R(0,60) < R(6,0) a.e. A implies R(6,00) = R(0,0) a.e. \.
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Then § is A-admissible.

Theorem. Suppose that A is a probability and that § is a Bayes rule with respect to A. Then ¢ is
A-admissible.

Proof. Let ¢ be a Bayes rule with respect to A and let dy be a decision rule. Then
/(R(H,(S) — R(60,00)) A(df) < 0.
Q

If R(0,60) < R(6,0) a.s. A, then the integrand is nonnegative a.s. A. Because the integral is nonpositive,
the integrand is 0 a.s. A and J is A-admissible.

A variety of results apply restrictions on A so that A-admissibility implies admissibility.

Theorem. Let Q be discrete. If a probability A has A{8} > 0 for all § € Q, and if § is a Bayes rule with
respect to A, then ¢ is admissible.

Proof. Suppose that dy dominates 6. Then, R(,dp) < R(6, ) for all § with strict inequality for at least
one value of §. Consequently,

r(A60) = > MOIR(0,00) < Y MOYR(0,8) = r(),9),
0 6

and ¢ is not a Bayes rule.

The following are examples of sufficient conditions for admissibility.

1. Every Bayes rule with respect to a prior A has the same risk function. In particular, a unique Bayes
rule is admissible.

2. The parameter set  C R* is contained in the closure of its interior, A is absolutely continuous with
respect to Lebesgue measure. For all § having finite risk, R(6,¢) is continuous in . §g is A-admissible
with finite risk.

3. Ais a convex subset of R™, {Py : 6 € Q} are mutually absolutely continuous, L(6,a) is strictly convex
in a for all §, and dq is A-admissible.

Examples.

1. Let X1,---, X, be independent U(0,0) and set ¥ = max{Xy,---, X, }. Choose loss function L(f,a) =
(6 — a)?. Then

0 0 %
n e 2n e n n_
Ro.6) = 5 [0 —swpry dy= 02— 22 [t dy+ g [ s a

Choose a rule § with finite risk function. Then R(-,d) is continuous. Let A € P(0,00) have strictly
positive density ¢(6) with respect to Lebesgue measure. Then the formal Bayes rule with respect to A
is admissible.
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2. Let Xy,---, X, be independent Ber(f). The action space A = [0,1]. The lost is L(6,a) = (6 —
a)?/(0(1 —0)). Define Y = 3" | X; and select Lebesgue measure to be the prior on [0,1]. Then the
posterior, given X = z is Beta(y + 1,n —y + 1) where y = > | z;. Then

I'(n+2)
MNy+H'(n—y+1

E[L(©,a)|X = 1] = ) /O (0 — a)2071(1 — )"v-1 do.

This has a minimum at a = y/n, for all z and all n. Consequently, §(z) = Y .| x;/n is a Bayes rule
with respect to Lebesgue measure and hence is admissible.

3. Let X have an exponential family of distributions with natural parameter Q@ C R. Let A = Q and
L(a,0) = (6 — a)?. Note that all Py are mutually absolutely continuous. Take the prior A to be point
mass at 0y € Q. Then dg,(c) = 6y is the formal Bayes rule with respect to A and so is A-admissible.
By the theorem above, it is also admissible.

4. Returning to Example 1, note that the Py are not mutually absolutely continuous and that dg,(c) = 6
is not admissible. To verify this last statement, take dy = max{y,fp}. Then

R(0,09,) < R(0,0p,) for all 6 > 6y and R(0,dg,) = R(0,dp,) for all § < .

We also have some results that allow us to use admissibility in one circumstance to imply admissibility
in other circumstances.

Theorem. Suppose that © = (01,02). For each choice of 05 for O5, define Qéz = {(01,02) : 6 = 52}
Assume, for each 65, § is admissible on Qéz’ then it is admissible on €.

Proof. Suppose that § is inadmissible on €2. Then there exist dy such that
R(0,50) < R(6,6) for all § € Q and R(0,8,) < R(6,6) for some 6 € Q.
Writing 6 = (51, ég) yields a contradiction to the admissibility of § on €2, .

Theorem. Let 2 C R* be open and assume that ¢(f) > 0 for all § and d is a real vauled function of 6.
Then § is admissible with loss L(6,a) if and only if § is admissible with loss ¢(0)L(6, a) 4 d(0).

Example. Returning to the example above for Bernoulli random variables, the theorem above tells us
that §(z) = >_1" | #;/n is admissible for a quadratic loss function.

Theorem. Let § be a decision rule. Let {\, : n > 1} be a sequence of measures on {2 such that a
generalized Bayes rule §,, with respect to A, exists for every n with

7(An, On) / R(0,6,) An(df), lm r(A,,0) —1(Ap,0n) =
Furthermore, assume that one of the following conditions hold.
1. {Py : 6 € Q} are mutually absolutely continuous; A is convex; L(6,-) is strictly convex for all 6, and
there exits a constant ¢, a measurable set C, and a measure A so that

Ap << A, 0) > ¢ for 6 € C with A(C) > 0.

d/\(
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2. Q is contained in the closure of its interior, for every open set G C (2, there exists ¢ > 0 such that
An(G) > ¢ for all n, and the risk function is continuous in 6 for every decision rule.

Then ¢ is admissible.

Proof. We will show that ¢ inadmissible implies that the limit condition above fails to hold.
With this in mind, choose dg so that R(6,d0) < R(6,4) with strict inequality for .
Using the first condition, set 6 = (§ + dp)/2. Then

L(8,8(x)) < (L(8,6(x)) + L(8, & ())) /2.

for all 6 and all x with §(z) # do(z). Because PéU{S(X) =6(X)} < 1 and {P : 0 € Q} are mutually

absolutely continuous, we have Pj{6(X) = §(X)} < 1 for all §. Consequently, R(6,5) < R(6,4) for all 6.
For each n

(A, 0) — 7(An,y 0p)

v

r0n8) =70 8) = [ (RO0.5) = RO.5) A,(d0)

vV

c / (R(0,8) — R(6,6)) A(d) > 0.
C

This contradicts the hypothesis.
Using the second condition, there exists ¢ > 0 and an open set G C € such that R(0,d0) < R(6,0) — ¢
for all 8 € G. Note that for each n,

7(Any 0) — r( Ay 0n) > (A, 0) — 7(An, do) > / (R(0,8) — R(0,00)) An(dB) > eXn(G) > ec,
G
again contradicting the hypothesis.

Example. Let § = (u,0) and suppose that Xi,---,X, be independent N(u,o?). Choose the loss

function L(6,a) = (p — a)?.

Claim. 6(x) = T is admissible
R(6,6) = o2. For each value o, we will show that § is admissible for the parameter space Qo = {(u, 09) :
u € R}. Let \,, be the measure equal to /n times N(0,02n). Check that

1. The generalized Bayes rule with respect to A, is §,(z) = nz/(n + 1).
2. 7(An,0n) = 03202 /(n + 1)

3. r(An,0) = nt/20?

4. lim,, oo (n'/?02 — 103262 /(n + 1)) = lim,, oo n'/?0%/(n +1) = 0.

5. The densities of \,, with respect to Lebesgue measure increase for each value of u. Thus, A, (G) > A\ (G)
for any nonempty open G C R, and d\,,/d\ (u) > 1.

Thus, the theorem above applies using condition 1 and d(x) = Z is admissible.
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5.5 James-Stein Estimators

Theorem. Consider X = (X3,---,X,), n independent random variables with X; having a N(u;, 1) distri-
bution. Let A =Q = R™ = {(p1,- -+, un) : pti € R} and let the loss function be L(p,a) = D1 | (1 — a;)*.
Then §(z) = z is inadmissible with dominating rule

n—2

- =]

To motivate this estimator, suppose that M has distribution N,,(ug,7I). Then, the Bayes estimate for
M is )
-
The marginal distribution of X is Ny, (uo, (1+72)I). Thus, we could estimate 1472 by Y7 (X; — o j)*/c
for some choice of c. Consequently, a choice for estimating
72 _ 1
RS S E

po + (X — po)

is

c
1— — .
Zj:l(Xj = Ho,5)?

Giving an estimate 1 () in the case p = 0 using the choice c =n — 2.
The proof requires some lemmas.
Lemma. (Stein) Let g € C'(R, R) and let X have a N(u,1) distribution. Assume that E[|g’(X)|] < co.
Then E[¢'(X)] = Cov(X, g(X)).
Proof. Let ¢ be the standard normal density function. Because ¢'(z) = z¢(z), we have
do-w= [ Gomsl-wdi=— [ - wolz—n =
Therefore,

[e%s) 0 o)
Pl = [ o) o= [ g@ole—mdot [ g@ota—p) do

— 00 — 00

- -/ : 9@ [ ot dednt [ @) [T ot ) deda

0 o)
= [ Gmwot=m [ g@ dedz+ [ =itz —w [ (@) dod:



Lemma. Let g € C'(R™, R") and let X have a N,,(u,I) distribution. For each 4, define
hl(y) = Eﬂ[gi(le e 7Xi—17ani+1 e aXTL)]

and assume that

d
h;(y) = E,U‘[igi(Xh e 7Xi—17y7Xi+1 e 7Xn)]

dy
and that E,[h/(X;)|] < co. Then

Bu||X +g(X) = pl* = n + E,[llg(X)|* +2V - g(X)].

Proof.

Bu[|X + g(X) — pl|? Eu[|X = pll* + Eplllg(X )H2] +2E,((X = ), 9(X))

n+ Eull|g(X)|] +2EMZ — 11)9i(X))-

Note that, by the previous lemma

Eu[(Xi — 1) 9i(X)] = Eu[(Xi — pa)hi(Xs)] = Covy(Xy, hi(Xy)) = Bu[hi(Xi)] = Eul5—

Proof. (Jones-Stein estimator) Set

To see that the lemma above applies, note that, for z # 0, 9?g/dz7 is bounded in a neighborhood of z.
Moreover,

r: —2x
BAR) < w2 [ B2

(ZJ 11}])
S =) [ s Pl do = (=27 =30
Thus, the risk function
Ru,81) = n+ Bulllg(X)||+2¥ - g(x)]
= n n— Zz 1)(2 _ Z?:leZ
= e IR e i )
= n—(n- 2>2Eu[2?_11x?1 <n = R(u,bo)
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remark. The Jones-Stein estimator is also not admissible. It is dominated by
n—2
(i1 73)?

5T (x) = 2(1 — min{1, 1.
5.6 Minimax Procedures

Definition A rule dq is called minimax if,

sup R(0, 6o) = inf sup R(6,0)
0eQ 5 peq

Proposition. If § has constant risk and is admissible, then it is minimax.

Theorem. Let dy be the Bayes rule for A. If A(€p) = 1, where

Q0 = {0 : R(Qvéo) = sup R(T/J#SO)} = ]-7
PeN

then dp is minimax.
Proof. Let 6 be any other rule, then

sup R(v,d0) = / R(0,00)Iq, \(dO) < / R(6,0)Iq, A\(dO) < sup R(%,9).
YEQ Q Q PEQ

Note that if §y is the unique Bayes rule, then the second inequality in the line above should be replaced
by strict inequality and, therefore, dy is the unique minimax rule.

Example.

1. For X a N(u,0?) random variable, d(z) is admissible with loss L(6,a) = (1 — a)? and hence loss
L(0,a) = (1 — a)?/o?. The risk function for L is constant R(#,d) = 1 and J is minimax.

2. For X1,---, X, are independent Ber(#). The Bayes rule with respect to a Beta(a, 3) is

a+ Z?:l i

o(x) = Py

)

with risk

~ nf(1—0) + (o — af — 36)?
N (a+ 8+ n)?
Check that R(6,9) is constant if and only if & = 8 = \/n/2 which leads to the unique minimax

estimator .
_ V24300
Vn+n '

R(6,9)

do()

The risk R(0,00) = 1/(4(1 + v/n)?).
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Theorem. Let {), : n > 1} be a sequence of probability measures on 2 and let §,, be the Bayes rule
with respect to A,. Suppose that lim,, . 7(An,0,) = ¢ < 0o. If a rule dy satisfies R(6,dp) < ¢ for all §, then
dp is minimax.

Proof. Assume that dg is not minimax. Then we can find a rule § and a number € > 0 such that

sup R(v,6) < sup R(¢,dp) —e < c—e.
P PEN
Choose Ny so that 7(A,,d,) > ¢ —€/2 for all n > Ny. Then, for such n,

r(n, 8) = /R(a,a) n(df) < (c— e)//\n(dﬁ) <c—e/2< (0, 60)

and thus J,, is not a Bayes rule with respect to A,,.

Example. Let the independent observations X; be N(p;,1), i =1,---,m. Set 6(x) =z, A = R™, and
L(p,a) =30 (1 — a;)? 6,(z) = na/(n+1) is a Bayes rule for \,, the law of a N,,,(0,nI) with Bayes risk
(A, 0n) = mn/(n +1). Thus,

nh_)rr;o r(An, 0n) = m = R(u,9).

Thus, ¢, which is not admissible, is minimax.

A prior distribution Ay for © is called least favorable if

inf r(Ag, 0) = supinf (X, d).
5 A 6

Theorem. If §y is a Bayes rule with respect to A\g and R(6,dg) < r(Xg,dp) for all 8, then §y is minimax
and g is least favoriable.

Proof. For any rule § and prior A, infsr(X,8) < r(X,8) < supy r(A,d). Thus,
irélfsgp R(0,5) < Sl;p R(6,d0) < 7(Ao,d0) = i%fr()\o,é)

< Sl)l\p ir(slfr()\, 0) < i%f Slip r(A,0) < ilgf SI;.p R(0,9).

Thus, the inequalities above are all equalities.

Example. For X, ---, X, are independent Ber(f) and quadratic loss function, we saw that the minimax
rule was a Bayes rule with respect to Beta(y/n/2,+/n/2) with constant risk function. Thus, this prior
distribution is least favorable.

Definition. Suppose that Q = {6, --,0;}. Then the risk set
R={z¢€ R": 2 = R(0;,0) for some decision rule § and i = 1,---,k}.
The lower boundary of a set C C R* is

OrL(C)={z€C:z; <z for all i and z; < z; for some i implies = ¢ C}.
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The set C' is closed from below if 91, (C) C C.
Note that the risk set is convex. Interior points correspond to randomized decision rules.

Theorem. (Minimax Theorem) Suppose that the loss function is bounded below and that €2 is finite.
Then
supinf r(, §) = inf sup R(6, ).
X 9 5 0

In addition, there exists a least favorable distribution Ag. If the risk set is closed from below, then there is
a minimax rule that is a Bayes rule with respect to Ag.
We will use the following lemmas in the proof.

Lemma. For ( finite, the loss function is bounded below if and only if the risk function is bounded
below.

Proof. If the loss function is bounded below, then its expectation is also bounded below.
Because 2 is finite, if the loss function is unbounded below, then there exist 8y € 2 and a sequence of
actions a, so that L(fy,a,) < —n. Now take d,,(z) = a, to see that the risk set is unbounded below.

Lemma. If C C R* is bounded below, them 9z,(C) # 0.

Proof. Clearly 0.(C) = 0.(C). Set
¢ =inf{z : 2 € C},
and
cj=inf{z;: 2z = ¢;i=1,---,j — 1}
Then (¢1,---,¢x) € I (C).

Lemma. If their exists a minimax rule for a loss function that is bounded below, then there is a point
on 91, (R) whose maximum coordinate value is the same as the minimax risk.

Proof. Let z € RF be the risk function for a minimax rule and set
s=max{z1, ", 2k}

be the minimax risk. Define
C:Rﬂ{xERk:xigsforaHi}.

Because the loss function is bounded below, so is R and hence C. Therefore, 9y, (C) # 0. Clearly, 9, (C) C
Or(R) and each point in C' is the risk function of a minimax rule.

Proof. (Minimax Theorem) For each real s define the closed convex set Cs = (—o00,s]* and set so =
inf{s: Cs N R # 0}.

Claim. There is a least favorable decision.
Note that
50 = i%lf sup R(0, 6).
0
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Because the interior of C, is convex and does not intersect R, the separating hyperplane theorem guarantees
a vector v and a constant ¢ such that

(v,z) >cforall z€ Rand (v,z) <cforall z € int(Cs,).

It is easy to see that each coordinate of v is non-negative. Normalize v so that its sum is 1. Define a
probability Ag on Q = {6 ---, 6, } with with respective masses

/\0(01) = V;.

Use the fact that {sg,-+,s0} is in the closure of the interior of Cs, to obtain

n
c > S E Vj = 80.
j=1

Therefore,
infr(Xo,d) = inf (v, 2) > ¢ > so = infsup R(0,J) > inf r(Ag, J),
5 2€R 5 ¢ 5

and Ao is a least favorable distribution.

Note that for s > s9, RN Cj is closed, bounded and non-empty. Let {s,, : n > 1} decrease to so. Then by
the finite interection property, R N Cy, # (). The elements in this set are risks functions for minimax rules.
By a lemma above, (RN Cy) # (). Because R is closed from below, (RN C,) C R, we have a point in R
that is the risk function for a minimax rule.

Finally, note that R(6,d) < so for all § implies that r(}, ) < sg = infs (A, d).

5.7 Complete Classes

Definition. A class of decision rules C is complete if for every § & C, there exists dy € C that dominates §.
A minimal complete class contains no proper complete class.

Certainly, a complete class contains all admissible rules. If a minimal complete class exists, then it consits
of exactly the admissible rules.

Theorem. (Neyman-Pearson fundamental lemma) Let Q = A = {0,1}. The loss function

L(0,0) =0, L(0,1) = ko > 0,
L(1,0) =k, >0, L(1,1)=0.

Set v = Py + P, and f; = dP;/dv and let § be a decision rule. Define the test function ¢(z) = d(x){1}
corresponding to §. Let C denote the class of all rules with test functions of the following forms:
For each k > 0 and each function v : X — [0, 1],

1 o if fi(@) > kfo(x),
ry(x) = (@) & if fi(z) =kfolz),
0 »if fl({E) < kfo(:l?)
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For k =0,

1 i fi(x) >0,
%@—{o it fa(x) = 0.
For k = oo,
1 s i fo(z) =0,
¢°°(f”)_{0 : iffg(x)>0.

Then C is a minimal complete class.

The Neyman-Pearson lemma uses the ¢y~ to construct a likelihood ratio test

fi(z)
fo(z)

and a test level k. If the probability of hitting the level k is positive, then the function v is a randomization
rule needed to resolve ties.

The proof proceeds in choosing a level a for R(0, ), the probability of a type 1 error, and finds a test
function from the list above that yields a decision rule 0* that matches the type one error and has a lower
type two error, R(1,46%).

Proof. Append to C all rules having test functions of the form ¢q . Call this new collection C’.

Claim. The rules in C’'\C are inadmissible.
Choose arule § € C'\C. Then § has test function ¢q ~ for some ~ such that Po{v(X) > 0, f1(X) = 0} > 0.
Let &y be the rule whose test function is ¢q. Note that fi(z) = 0 whenever ¢¢ () # ¢o(x),

R(LS) = EyL(LO(X))] = L(L0)E:[5(X){0}]
= BB 60,(0) = ka(L~ [ 00, ()i(0) v(d)
— (1= [ 0(a)fi(a) vlde) = B(L )
Also,
R(0.6) = Ey[L(0.6(X))] = L(0, )E:[5(X){1}]

= koEolpo~(X)] = ko(Eo[v(X) (s, (x)=0y] + Eoll{y, (x)>0y])
= kOEO['Y(X)I{fl(X):O}] + R(O, 50) > R(0750).

Thus, §y dominates § and § is not admissible.

To show that C’ is a complete class, choose a rule § ¢ C' and let ¢ be the corresponding test function.
Set

o = R(0,8) = / ko) fo(w) v(dz).

We find a rule 6* € C’ such R(0,0*) = « and R(1,6*) < R(1,6). We do this by selecting an appropriate
choice for k* and v* for the §* test function ¢« «.
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To this end, set

a(k) = koPo{f1(X) > kfo(X)} = /{ g Fofo@) ()

Note that
1. g is a decreasing function.
2. limy o g(k) =0.
3. g(0) = ko > a.
4. By the monotone convergence theorem, g is left continuous.

5. By the dominated convergence theorem, g has right limit
g(k+) = koPo{ f1(X) > kfo(X)}.

6. If v(x) =1 for all z, then g(k) = R(0,d*).
7. If v(x) = 0 for all z, then g(k+) = R(0,0).

Set k* = inf{k : g(k) < a}. Because g decreases to zero, if & > 0, then k* < oo. To choose v*, we
consider three cases and check that R(0,d) = R(0,0").

Case 1. a =0, k* < 0o. Choose v* = 0. Then

R(0,8%) = hoEoli- - (X)] = g(k*+) = 0 = a

Case 2. a =0, k* = o0.

R(0,6%) = ko Eoldo (X)] = / Koo () fol) v(dz) = 0 = a

Case 8. a >0, k* < 0.
Note that
koPo{f1(X) = k" fo(X)} = g(k*) — g(k"+).
For those x which satisfy fi(x) = k* fo(x), define

* _ o — g(k*+)
T G gt
Then,

RO0,6) = ko / Gk e (2) fol) v(dz) = g(k*+) + o / o —9("H) 1) v(de)

(Fr(@)=k* fo(ay 9(k*) — g(k*+)
_a—gk™t) e Y
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We now verify that R(1,6*) < R(1,d) in two cases.
Casel. k* < >
Define
hz) = (¢re 5+ (2) = ¢(2))(f1(2) = k" fo(2)).
Here, we have
1. 1= ¢px 4+ (x) > ¢(x) for all x satisfying fi(z) — k* fo(x)) > 0.
2. 0= ¢pr 4+ (x) < @(x) for all = satisfying fi(z) — k* fo(z) < 0.

Because ¢ is not one of the ¢y, -, there exists a set B such that v(B) > 0 and h > 0 on B.
0 h d h d
< [ n@) vtdo) < [ bia) vida
[ @) = 60N 11(0) v(de) — [ (6101 (5) = D) o) ()

/ (1= 6(2)) — (1 = g e (2))) 1 () w(da) + Z—:m —a)
L (r1,6) = R(1,6%)).
k1

Case2. k* = oo

In this case, 0 = o« = R(0,9) and hence ¢(x) = 0 for almost all = for which fo(z) > 0. Because ¢ and
¢ differ on a set of v positive measure,

/ (6o0(x) — D)) 1 () vldz) = / (1 - 6()) f1(x) v(dz) > 0.
{fo=0} {fo=0}

Consequently,

This gives that C’ is complete. Check that no element of C dominates any other element of C, thus C is
minimal complete.

All of the rules above are Bayes rules which assign positive probability to both parameter values.

Example.

1. Let 6; > 6y and let f; have a N(0;,1) density. Then, for any k,

fl (l‘) . . 01+ 6y log k
> k if and only if z > .
fo(x) Y 2 "0 -6
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2. Let 1 > 61 > 6y > 0 and let f; have a Bin(n,6;) density. Then, for any k,

nlog(i=02) + log k
A e and only if 2 > Bli=p,) + log

01(1—6
folw) log(§-G=44)

3. Let v be Lebesgue measure on [0, n] plus counting measure on {0, 1,---,n}. Consider the distributions
Bin(n,p) and U(0,n) with respective densities fo and f;. Note that

"1
fil@) =) —li-10/(@).
=1

Then
f1(x) 00 : if 0 < x < n,x not an integer,
= ifx=0,1,---,n.
fo(@) undefined : otherwise

The only admissible rule is to take the binomial distribution if and only if x is an integer.
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6 Hypothesis Testing

We begin with a function
V:§5—-V.

In classical statistics, the choices for V' are functions of the parameter ©.
Consider {Vi,Va}, a partition of V. We can write a hypothesis and a corresponding alternative by

H:VeVyg versus A:V €Vy.

A decision problem is called hypothesis testing if
1. The action space A = {0,1}.
2. The loss function L satisfies

L(v,1) > L(v,0) forve Vy
L(v,1) < L(v,0) for v € V4

The action a = 1 is called rejecting the hypothesis. Rejecting the hypothesis when it is true is called a
type I error.

The action a = 0 is called failing to reject the hypothesis. Failing to reject the hypothesis when it is false
is called a type II error.

We can take L(v,0) = 0, L(v,1) = ¢ for v € Vg and L(v,0) = 1, L(v,1) = 0 for v € V4 and keep the
ranking of the risk function. Call this a 0 — 1 — ¢ loss function

A randomized decision rule in this setting can be described by a test function ¢ : X — [0, 1] by

¢(x) = o(z){1}.

Suppose V = ©. Then,

1. The power function of a test 54(0) = Eg[p(X)].
2. The operating characteric curve py = 1 — By.
3. The size of ¢ is supgeq,, B (0).

4. A test is called level a if its size is at most a.
5. The base of ¢ is infgeq, Gy(6).

6. A test is called floor «y if its base is at most ~.

7. A hypothesis (alternative) is simple if Qg (Q4) is a singleton set. Otherwise, it is called composite.

This sets up the following duality between the hypothesis and its alternative.
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hypothesis ‘ alternative
test function ¢ | test function v =1 — ¢

power operating characteristic
level base
size « floor ~y

To further highlight this duality, note that for a 0 — 1 — ¢ loss function,

[ eBs6)  if6eQ
R(“)—{ 1 5,(0) 00y

If we let Q) = Q4 and ', = Qg and set the test function to be ¢ = 1—¢. Then, for ¢ timesa0—1—1/c¢

loss function and &' =1 —§
, N ﬂqy (9) if 6 € Q}{
R(0,0) = { (1 - By (0) if0e,

and R(6,0) = R'(0,¢")
Definition. A level « test ¢ is uniformly most powerful (UMP) level « if for every level « test
By (0) < By(0) for all 6 € Q4.

A floor v test ¢ is uniformly most cautious (UMC) level v if for every floor v test v

By () > B4(0) for all 0 € Q.

Note that if T is a sufficient statistic, then
Ey|p(X)|T(X)]
has the same power function as ¢. Thus, in choosing UMP and UMC tests, we can confine ourselves to

functions of sufficient statistics.

6.1 Simple Hypotheses and Alternatives
Throughout this section, = {0, 61}, we consider the hypothesis

H:©=0y versus A:0 =0,

and write type I error ag = B5(0p) and type II error oy = 1 — B4(61). The risk set is a subset of [0, 1]2
that is closed, convex, symmetric about the point (1/2,1/2) (Use the decision rule 1 — ¢.), and contains the
portion of the line a; = 1 — g lying in the unit square. (Use a completely randomized decision rule without
reference to the data.)

In terms of hypothesis testing, the Neyman-Pearson lemma states that all of the decisions rules in C lead
to most powerful and most cautious tests of their respective levels and floors.
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Note that
B (B0) = By [Poe (X)] = Poo{fo(X) =0} = 0.
The test ¢, size 0 and never rejects H. On the other hand, ¢y has the largest possible size
By (60) = Po,{ f1(X) > 0}.

for an admissible test.

Lemma. Assume for ¢ = 0,1 that Py, << v has density f; with respect to v. Set
B =A{z: fi(zx) = kfo(z)}.
and suppose that Py, (By) = 0 for all k € [0,00] and ¢ =0, 1. Let ¢ be a test of the form

¢ =Isi>kf0)-
If ¢ is any test satisfying Gy (00) = 55(6o), then, either

Y=¢as P, i=0,1 or By(01)> By(6h).
In this circumstance, most powerful tests are essentially unique.
Lemma. If ¢ is a MP level « test, then either 54(01) =1 or 84(6p) = .
Proof. To prove the contrapositive, assume that 5,(61) < 1 and (4(0y) < c. Define, for ¢ > 0,

g(c, iL’) = min{ca 1- d)(l')}v

and
hi(c) = Eg,[g(c, X)].

Note that g is bounded. Because g is continuous and non-decreasing in ¢, so is h;. Check that ho(0) = 0 and
ho(1) =1 — B4(00). Thus, by the intermediate value theorem, there exists ¢ > 0 so that ho(¢) = a — B4(00).
Define a new test function ¢'(z) = ¢(x) + g(¢, x). Consequently, By (00) = By(6o) + a — B4 (00) = v

Note that

Py {o(X) <1} =1- Py {o(X) =1} > 1 — Ep, [¢(X)] = 1 — B4(61) > 0.
On the set ¢ < 1, ¢’ > ¢. Thus,
By (01) > By (61)

and ¢ is not most powerful.

In other words, a test that is MP level a must have size a unless all tests with size a are inadmissible.

Remarks.

1. If a test ¢ corresponds to the point (cg, a1) € (0,1)2, then ¢ is MC floor 1 — «; if and only if it is MP
level ag.

2. If ¢ is MP level «, then 1 — ¢ has the smallest power at #; among all tests with size at least 1 — a.

3. If ¢ is a level oy test of the form of the Neyman-Pearson lemma and if ¢5 is a level as test of that
form with oy < a9, then Bd’l (91) < ﬁ¢2 (91)
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6.2 One-sided Tests

We now examine hypotheses of the form
H:0<0p versus A:0 >0,

or
H:0>0; versus A:0 <.

Definition. Suppose that 2 C R and that

W (2) = Fxjolald)

for some measure v. Then the parametric family is said to have a monotone likelihood ratio (MLR) in T, a
real valued statistic, if whenever 6, < 6,, the ratio

fxje(z]01)

is a monotone function of T'(z) a.e. Py, + Py,. We use increasing MLR and decreasing MLR according to
the properties of the ratio above. If T'(x) = z, we will drop its designation.

Examples.

1. If X is Cau(0, 1), then
fxje(@lf2) w1+ (x—61)?)

fxie(xlth) w1+ (z—62)%)

This is not monotone in x.

2. For X a U(0,0) random variable,

undefined if x <0,

Ixje(@lb2) ) & if0 <z <6,
fx|e(x]01) B 00 if0; <z <06y

undefined if x > 0.
This is MLR. The undefined regions have Py, + Py, measure 0.
3. If X has a one parameter exponential with natural parameter 6, then

|6 ¢
ﬁgﬁxaﬂ - CEZ?; exp((62 — 61)T(z))

is increasing in T'(x) for all 61 < 65.

4. Uniform family, U(6,60 + 1).
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5. Hypergeometric family, Hyp(N, 6, k).

Lemma. Suppose that Q C R and that the parametric family {Py : 6 € Q} is increasing MLR in T'. If
1) is nondecreasing as a function of T, then

9(0) = Eg[p(T(X))]
is nondecreasing as a function of 6.

Proof. Let 6, < 65,

A={z: Ixje(2ltr) > fxje(zlf2)}, o = supy(T'()),

B={z: fxje(z|01) < fxjo(z|2)}, b= ming?/f(T(if))-

Then, on A, the likelihood ratio is less than 1. On B, the likelihood ratio is greater than 1. Thus, b > a.

62 =0 = [ W(T@)(Fxi0(al6a) - Frxioel6r)(do)
> [ alfxiolalts) - fxiolalon)v(de) + [ Wfxio(el6) - Friolelpr)vide)
A B
- @—@/umwwa—h@mamwm>a
B

because v(B) > 0.

Theorem. Suppose that {Py : 6 € Q} is a parametric family with increasing MLR in T, and consider

tests of the form
0 if T(x) < to,

bla)={ v UT() =ty
1 if T(m) > tg

Then,
1. ¢ has a nondecreasing power function.

2. Each such test for each 6y is UMP of its size for testing

H:0<0 versus A:0 >0,

3. For o € [0,1] and each 6y € 2, there exits ty € [—o0,4+00] and 7 € [0,1] such that the test ¢ is UMP
level a.

Proof. The first statement follows from the previous lemma.
Let 6y < 61 and consider the simple hypothesis

H:0=0, versus A:0 =6,
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Because {Py : 6 € Q} has increasing MLR in T', the UMP test in the Neyman-Pearson lemma is the same as
the test given above as long as v and ¢ satisfy 84(6p) = .

Also, the same test is used for each of the simple hypotheses, and thus it is UMP for testing H against
A.

Note that for exponential families, if the natural parameter 7 is an increasing function of 6, then the
theorem above holds.

Fix 6y, and choose ¢, of the form above so that G4, (¢o) = c. If the {Py : § € Q} are mutually absolutely
continuous, then G4 (¢1) is continuous in a. To see this, pick a level a.. If Py{to} > 0 and v € (0,1), then
small changes in « will result in small changes in v and hence small changes in 3¢, (¢1). Po{to} = 0, then
small changes in « will result in small changes in ¢y and hence small changes in f,_(¢1). The remaining
cases are similar.

By reversing inequalities throughout, we obtain UMP tests for
H:0>0p versus A:0 <0

Examples.
1. Let X4,---, X, be independent N (y, 08). Assume that 08 is known, and consider the hypothesis
H:M<pg versus A: M > pug.
Take T'(z) = Z, then X is N(u,08/n) and a UMP test is ¢(z) = I(z, 0)(X) where
To = 00® (1 —a)/vn + po.
In other words, let <
— Ho

2= ol

and reject H if Z > z, where z, = ®71(1 — a). The power function

00Za

Bo(n) = Pu{X > Jn + po}

X—up o — p

= P, > Za +
l{Uo/\/ﬁ @ Jo/\/ﬁ}
= 1-P(24+

HO*H)
oo/Vn

2. Let Xi,--+, X, be independent Ber(f) random variables. Then T'(x) = >, X; is the natural suf-
ficient statistic and 7w (0) = log(6/(1 — 0)), the natural parameter, is an increasing function. Thus, a
UMP test of

H:0<60) versus A:0 >0,

has the form above.
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3. Let X1,---,X,, be independent Pois(f) random variables. Then T'(z) = Y ., X; is the natural
sufficient statistic and 7(0) = log 6, the natural parameter, is an increasing function.

4. Let Xi,--+, X, be independent U(0,0) random variables. Then T'(z) = maxj<;<, x; is a sufficient
statistic. T(X) has density
fT‘@(t|9> = ne_"t”_lf(o’g) (t)

with respect to Lebesgue measure. The UMP test of
H:0<0p versus A:0 >0,

is nonrandomized with ¢ty determined by

oo = 1 [ d
a = Dy 027/ " dt=1— =,
00 to 90

or tg = Ay(1 — a)'/™. The power function

0
n _ th 05 (1 —a)
0) = — rldt=1-2 =129+~
500 = g [ 5 -
A second UMP test is
w1 T >0
= o i T(X) < 6.
6.3 Two-sided Tests

Let 6; < 05. The following situations are called two-sided hypotheses.
H:0<0,0or©® >0y versus A:0, <O <0,
H:0, <0 <60, versus A:0 <60 or © > 0,
H:0=0) versus A:0 #6,.
The first case has a two sided hypothesis. The second and third has a two sided alternative.

We will focus on the case of a one parameter exponential family.

Theorem. (Lagrange multipliers) Let f, g1, -, gn be real valued functions and let A,---, A, be real
numbers. If £y minimizes
n
FEO+D - Nigi(9)
i=1
and satisfies ¢;(§o) = ¢;, i@ = 1,---,n, then { minimizes f subject to g;(&) < ¢; for each A; > 0 and

gi(&) > ¢; for each \; < 0.

Proof. Suppose that there exists € such that f(€) < f(&) with g; satisfying the conditions above at €.
Then & does not minimize f(£) + Y i Xigi(€)-
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Lemma. Let pg,---p, € L'(v) have positive norm and let

1 ifpoz) > X0 kipi(w),
y(x) if po(x) = Y0y kipi(),
0 if po(x) < Do) kipi(x),

where 0 < vy(x) <1 and the k; are real numbers. Then ¢y minimizes

po(z) =

= otanpe) vid)
subject to the range of ¢ in [0, 1],
/ é(2)p;(z) v(dz) < / o(2)p; () v(dz) whenever k; > 0,
/ é(2)p; (z) v(dz) > / 0(2)p;(x) v(dz) whenever k; < 0.

Proof. Choose ¢ with range in [0,1] satisfying the inequality constraints above. Clearly,

o(x) < ¢o(x) whenever pg(x) — Zklpz(x) > 0,
i=1

n

¢(z) > ¢o(x) whenever po(z) — Z ki(x) < 0.

Thus,
[(6) = én@) i) — Y- ki) vide) < 0.
= an@lp(o) vida) + 3" [ énlwipita)) vide)
< [ (= sleDmia) vide) + - ks [ otapi(a) vido).
Let £ be a measurable function from X to [0, 1], and let
1) = [(1= €@No(o) vido). 5:6) = [ E@pila) vido)

fori=1,---,n. we see that ¢y minimizes

FEO+> kigi(€).
=1
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Thus, ¢ minimizes f(£) subject to the constraints.

Lemma. Assume {Fp : 0 € Q} has an increasing monotone likelihood ratio in 7. Pick 6; < 62 and for a
test ¢, define a;; = B4(0;), ¢ = 1,2. Then, there exists a test of the form

1 ift; <T(z) < tag,
v(x)=q v HT(x)=t,
0 ift;>T(x)orts < T(z),

with tl S tg such that ﬁw(gl) = Oy, 1= 1,2
Proof. Let ¢, be the UMP a-level test of
H:0<60; versus A:0 > 0.

For each & € [0,1 — o], set R
$a(z) = Ga,+a(x) — Pal).

Note that for all z, ¢o(x) € [0,1], i.e., ¢4 is a test. Because the form of test ¢, ¢pa has the form of the test
above (with ¢; or to possibly infinite.) In addition,

B, (01) = (1 + &) —a = .
QNSO = ¢, is the MP and ¢Z1,a1 =1— ¢1_4, is the least powerful level a; test of
H:0=0, versus A:0 =0,.
¢ is also a level oy test of H versus ;1, we have that
By, (02) < az < B3 (02).

Now use the continuity of & — ¢, (62), to find & so that 5 _(62) = as.

Theorem. Let {P : 0 € 2} be an exponential family in its natural parameter. If Qp = (—o0,6;] U
[f2,+00) and Q4 = (61,02), 81 < 02, then a test of the form

1 ifty <T(z) < ta,
do(x)=4¢ v fT(z)=t,
0 ift; >T(z)or te < T(x),

with ¢ < ¢t minimizes (,4(0) for all § < 6; and for all # > 6, and it maximizes §4(6) for all 6; < 6 < 6
subject to 84(6;) = o = By, (0;) for i = 1,2. Moreover, if t1, 2,71, 72 are chosen so that oy = as = «, then
¢ is UMP level a.

Proof. Given a1, as, choose t1,t3,71,72 as determined above. Choose v so that frs(t|0) = c(6) exp(6t).
Pick 0y € Q and define

pi(t) = c(6;) exp(6;t),
fori=0,1,2.
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Set b; = 0; — 6y, i = 1,2, and consider the function

d(t) = a1 exp(bit) + ag exp(bat).

Case 1. 61 < 0y < 64
Solve for a; and as in the pair of linear equations

dty) =1, d(ts) =1

and note that the solutions a; and ao are both positive.

To verify this, check that d is monotone if a;as < 0 and negative if both a; < 0 and as < 0.

Apply the lemma with k; = a;¢(0y)/c(6;). Note that minimizing [(1 — ¢(z))po(x) v(dz) is the same as
maximizing (4(6y) and that the constraints are

By (0:) < B, (0:)
The test that achieves this maximum has
d(x) =1 if ¢(fy)exp(Bot) > k1c(601) exp(b1t) + kac(02) exp(bat)

or
d(x) =1 if 1> agexp(bit)+ asexp(bat).
Because a; and as are both positive, the inequality holds if t; < ¢t < t3, and thus ¢ = ¢g.

Case II. 0y < 04
To minimize (4(0y), we modify the lemma, reversing the roles of 0 and 1 and replacing minimum with
mazimum. Now the function d(t) is strictly monotone if a; and ag have the same sign. If a; < 0 < ag, then

lim d(¢t) =0, lim d(t) =00

t——00 t—o0
and equals 1 for a single value of ¢. Thus, we have a; > 0 > as in the solution to
d(ty) =1, d(t2) =1.

As before, set k; = a;c(0y)/c(6;) and the argument continues as above. A similar argument works for the
case 61 > 0s.

Choose t1,ta,71, and 2 in ¢ so that @3 = as = « and consider the trivial test ¢,(z) = « for all .
Then by the optimality properties of ¢y,

By, (0) < a for every 6 € Qp.

Consequently, ¢ has level o and maximizes the power for each 6§ € Q4 subject to the constraints 34(6;) < «
for i = 1,2, and thus is UMP.

Examples.
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1. Let Xy, -+, X, be independent N(6,1). The UMP test of
H:0<0,0or©®>60y versus A:0, <O <l
is
¢0(z) = I(z,,2,)(T)-

The values of Z; and Ty are determined by
(Vn(z2 — 61)) — 2(Vn(z1 — 1)) = a and &(Vn(z2 — 02)) — (Vn(z1 — 02)) = o

2. Let Y be Exzp(f) and let X = =Y. Thus, 6 is the natural parameter. Set Qy = (0,1] U [2,00) and
Q4 =(1,2). If @ =0.1, then we must solve the equations

e? —eft =0.1 and e*2 — 2 =0.1

Setting @ = e’2 and b = €', we see that these equations become a — b = 0.1 and a® — b% = 0.1. We
have solutions t; = log 0.45 and t; = log 0.55. Thus, we reject H if

—1log0.55 <Y < —log0.45.
3. Suppose X is Bin(n,p) and consider the hypothesis

H:P<-or P> versus A:- <0<

4

> w

RNy
oo

Then 6 = log(p/(1 — p)) is the natural parameter and Qy = (—o0, —1lo
the UMP « = 0.1 test has t; = 4,ts = 6 with v; = 5 = 0.2565.

3] U [log 3, 00). For n = 10,

o

4. Let Xy, --,X,, be independent N(6,1). Consider the test
H:0=0) versus A:0 #6,.

For a test level o and a parameter value 6, < f, the test ¢; that rejects H if X < —z,//n + 0o
is the unique test that has the highest power at #;. On the other hand, the test ¢ that rejects H
if X > z,/v/n+ 6 is also an « level test that has the highest power for 5 > 6y. Using the z-score

Z = (X -0)/(c/\/n), we see
Be, (01) > P{Z < =z} = P{Z > 2o} > B, (01).

¢1 test has higher power at 6; than ¢5 and thus ¢, is not UMP. Reverse the roles to see that the first
test, and thus no test, is UMP.
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6.4 Unbiased Tests

The following criterion will add an additional restriction on tests so that we can have optimal tests within
a certain class of tests.

Definition. A test ¢ is said to be unbiased if for some level «,
Bs(0) <, 0 €y and [(4(0) > a, § € Q4.
A test of size « is call a uniformly most powerful unbiased (UMPU) test if it is UMP within the class of
unbiased test of level a.

We can also define the dual concept of unbiased floor a and uniformly most cautious unbiased (UMCU)
tests. Note that this restriction rules out many admissible tests.
We will call a test ¢ a-similar on G if

Bp(@) =« forallf e
and simply a-similar if G = Qg N Q4.

Lemma. Suppose that 34 is continuous for every ¢. If ¢y is UMP among all a-similar tests and has
level o, then ¢ is UMPU level a.

Proof. Note that in this case an unbiased test is similar.
Because the test ¥(0) = « for all 6 is a-similar, B4,(0) > « for 6 € Q4. Because ¢y has level «, it is
unbiased and consequently UMPU.

Definition. Let G C  be a subparameter space corresponding to a subfamily Qyp C Py and let
U: Qy— G. If T is a sufficient statistic for ¥, then a test ¢ has Neyman structure with respect to G and
T if

Eplop(X)|T(X) =1
is constant a.s. Py, 0 € G.

If Qo ={Py:0€QunQa}, ¢ has Neyman structure, and
Eglop(X)|T(X)] = a,
then ¢ is a-similar. This always holds if ¢(X) and T'(X) are independent.

Example. (t-test) Suppose that Xi,---, X, are independent N(u,0?) random variables. The usual
a-level two-sided t-test of
H:M=py versus A: M # ug

is

1 if Zoml 5y
) = s/Vn n—1,a/2»
$o(2) { 0 otherwise.

Here,

1 n
2 _ N2
s —n_ligﬂ(xz Z)%,
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and t,,_1 4/ is determined by P{T,,_1 > t,_1 q/2} = /2, the right tail of a ¢, 1(0,1) distribution, and
QuNQa = ={(1,0): pp = po}-
To check that ¢ is a-similar, note that the distribution of

X—Mo
T:

is t,—1(0, 1) for all 0. Hence, for all 8 € Qp.

85(0) = P72 > by = o

A sufficient statistic for the subparameter Qg is

n

UX) = (X;—pmo)® = (n—1)8% + n(X — uo)*.
i=1

Write

UX) ay/n—1)/T2+1

Thus, W is a one-to-one function of T and ¢(X) is a function of W(X). Because the distribution of
(X1 — po, -+, Xn — po) is spherically symmetric, the distribution of

X1 — po Xn — o
( )

Ux) JUX)

is uniform on the unit sphere and thus is independent of U(X). Consequently, W(X) is independent of
U(X) for all 8 € Qg and thus ¢ has the Neyman structure relative to Qg and U(X).

Lemma. Let T be a sufficient statistic for the subparameter space GG. Then a necessary and sufficient
condition for all tests similar on G to have the Neyman structure with respect to T is that T is boundedly
complete.

Proof. First suppose that T is boundedly complete and let ¢ be an « similar test, then
Ey[Eg[¢p(X)|T(X)] —a]=0 forallfeG.
Because T is boundedly complete on G,
Ey[o(X)|T(X)] = a a.s. Py for all § € G.

If T is not boundedly complete, there exists a non zero function h, ||h|| < 1, such that Ey[h(T(X))] =0
for all § € G. Define
P(x) = o+ ch(T(x)),
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where ¢ = min{a, 1 — a}. Then ¢ is an « similar test. Because E[¢(X)|T(X)] = ¢(X) psi does not have
Neyman structure with respect to 7.

We will now look at the case of multiparameter exponential families X = (X,---, X)) with natural
parameter © = (01,---,0,). The hypothesis will consider the first parameter only. Thus, write U =
(Xa, -+, Xp) and ¥ = (Og,---,0,,). Because the values of ¥ do not appear in the hypothesis tests, they
are commonly called nuisance parameters.

Theorem. Using the notation above, suppose that (X1, U) is a multiparameter exponential family.

1. For the hypothesis
H:0;<6) versus A:0; >0

a conditional UMP and a UMPU level « test is

1 if 1 > d(u),
¢o(z1lu) = ¢ y(u) if 21 = d(u),
0 if 1 < d(u).

where d and v are determined by

E9[¢0(X1‘U)|U:U}:Oé, 01:9?

2. For the hypothesis
H:@lgﬁi or@lzﬂf versus A:0%<@1<9f,

a conditional UMP and a UMPU level « test is

1 if dl(u) <z < dg(’u),
do(zi|u) =< vi(uw) if zqg =d;(u), i=1,2.
0 if x1 < dy(u) or x > do(u).

where d and «; are determined by

Eolgo(X1|U)|U =u] =, 61 =6], i=1,2.
3. For the hypothesis
H:0} <0, <60 versus A:0; <0 or 0 > 0}
a conditional UMP and a UMPU level « test is

1 if 21 < di(u) or x > da(u),
go(w1lu) = ¢ yi(u) if 2y =di(u), i =1,2
0 if di(u) < z1 < da(u).

where d; and ; are determined by

Eglgo(X1|U)IU =u] =a, 61 =067, i=1,2.
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4. For testing the hypothesis
H:0, =0 versus A:0; #6Y,

a UMPU test of size « is has the form in part 3 with d; and ~;, ¢ = 1,2 determined by

Eyloo(X1|U)|U = u] = a, and Eg[X¢o(X1|U)] — aEG[X], 61 = 6Y.

Proof. Because (X1, U) is sufficient for 6, we need only consider tests that are functions of (X, U). For
each of the hypotheses in 1-4,

QHHQA:{Gerﬁlzﬁ[l)} or QHQQA:{HGQ:%:G%,Z':IJ}.

In all of these cucumstances U is boundedly complete and thus all test similar on Qg N Q4 have Neyman
structure. The power of any test function is analytic, thus,the lemma above states that proving ¢ is UMP
among all similar tests establishes that it is UMPU.

The power function of any test ¢,

By(0) = Eg[Ep[s(X:1|U)|UT]].
Thus, for each fixed u and €, we need only show that ¢y maximizes
Eo[o(X:1|U)|U = u]

subject to the appropriate conditions. By the sufficiency of U, this expectation depends only on the first
coordinate of 6.

Because the conditional law of X given U = w is a one parameter exponential family, parts 1-3 follows
from the previous results on UMP tests.

For part 4, any unbiased test ¢ must satisfy

9 _ _
B0V =u] =@, and - Ey[6(Xa|U)] = 0, 6 € Oy 1 Q.

Differentiation under the integral sign yields

o-5ul0) = /@unmg%@wmmwmq+ww»uw@

/gi)(xﬂu)(xlc(ﬁ) + i6(0)) exp(f1x + ¢ - u) v(dx)

001
mmmmmm+m@&ﬂgﬁ

= Eyp[X19(X|U)] — By (0)Eo[X1].

Use the fact that U is boundedly complete, 93,4(0)/06; = 0, and that 8,(0) = o on Qy N Q4 to see that
for every u B
EQ[X1¢(X1|U)|UZU]ZQEQ[X1|UZU], 0eQygnNQay.
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Note that this condition on ¢ is equivalent to the condition on the derivative of the power function.
Now, consider the one parameter exponential family determined by conditioning with respect to U = u.
We can write the density as
c1(01,u) exp(bhx1).

Choose 01 # 69 and return to the Lagrange multiplier lemma with
po(z1) = c1(0],uw) exp(Bizy), pi(z1) = 1 (0%, u) exp(@%z1), pi(z1) = z1c1(09,u) exp(Yz:)
to see that the test ¢ with the largest power at 6} has ¢(x;) = 1 when
exp(01x1) > kyexp(0Yw1) + koxy exp()x),

or
exp((H% — 9?)951) > k1 + koxy.

Solutions to this have ¢(z1) = 1 either in a semi-infinite interval or outside a bounded interval. The first
option optimizes the power function only one side of the hypothesis. Thus, we need to take ¢y according
to the second option. Note that the same test optimizes the power function for all values of #1, and thus is
UMPU.

Examples.

1. (t—te§t) As before, suppose that Xi, -+, X, are independent N(u,o?) random variables. The density
of (X, S?) with respect to Lebesgue measure is

. VAl 1 SR
P o) = YT o (<o (= o)~ (o)) (0= 1)
= ¢(01,02)h(v,u) exp(B1v + Ou)
where
6, M;ﬂo’ 0y — _%7

v=n(T— ), u=n(T— )+ (n—1)s
The theorem states that the UMPU test of

H:0,=0 versus A:0;#0
has the form of part 4. Thus ¢q is 1 in a bounded interval. From the requirement that
Ep[oo(V|U)|U] = aEy[V|U] = 0 for 6, =0,

we have that this interval is symmetric about zero. Taking d;(u) = —cyv/u and da(u) = ¢y/u gives the
classical 2-sided t-test. Because it satisfies the criteria in part 4, it is UMPU.
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2. (Contrasts) In an n parameter exponential family with natural parameter ©, let ©; = Sor €O, with
C1 # 0. Let Yl = Xl/Cl. For ¢ = 2,' e, n, set

~ X —c: X
@i:®i> and Y;:ziczl

C1
With the parameter space  and observations Y, we proceed as before.
3. Let Y; be independent Pois()\;), @ = 1,2. To consider the hypothesis
H:Ai=Ay versus A: A <A,
write the probability density function of Y = (¥7,Y3)

exp (—(A1 + A2))
y1'yo!

exp (y2 log(A2/A1) + (y1 + y2) log A2)

with respect to counting measure in Z2. If we set ; = log(A2/)1) then the hypothesis becomes
H:0;=1 versus A:0;<1.
The theorem above applies taking

92:10g>\2, X1:Y2, U:}/l+}/2

Use the fact that U is Pois(A; + A2) to see that the conditional distribution of Xy given U = u is
Bin(p,u) where

. Ao . e

B A1+ Ao o 14eb1"

p

4. Let X be Bin(n,p) and 6 = log(p/(1 — p)). Thus, the density

n —n T
Friateld) ()14 ey,
For the hypothesis
H:0=0) versus A:0 #6,

the UMPU level « test is
1 ifz<dorz>ds,

0 ifd <z<ds.

where d; and ~; are determined by

Egy[¢0(X)] = o, and Eg,[X ¢o(X)] — aEg,[X], 61 =6].
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Once d; and ds have been determined, solving for v; and 2 comes from a linear system. For pg = 1/4,
we have 0y = —log 3. With n = 10 and o = 0.05, we obtain

di =0, do=5, =~ =0.52084, -~ =0.00918.
An equal tailed-test, having
di =0, do=5 ~ =0.44394, 79 = 0.00928.
is not UMPU. The probability for rejecting will be less than 0.05 for 6 in some interval below 6.
. Let Y; be independent Bin(p;,n;), i = 1,2. To consider the hypothesis
H:P =P, versus A: P # Py

The probability density function with respect to counting measure is

(”1> (”1) (1 —p1)" (1= p2)" exp (952 log e (14 2 log 7 ) '

x1 ) \ &2 p1(1—p2)

If we set 1 = log(p2(1 — p1)/p1(1 — p2)) then the hypothesis becomes
H:0;=0 versus A:0; #0.

The theorem above applies taking

D1
1—m

2 = log , Xi=Yy, U=Y+Ys

Then, for u=0,1,---,n1 + ng,

uUu—x x

Py{X1 =z|U = u} :Ku(0)< " ><n2)691, x=0,1---,min(u,ng), > u—ny.

—1
nl—’:ng) )

If 6 = 0, this is a hypergeometric distribution and K, (0) = (

. (2 x 2 contingency tables) Let A and B be two events and consider n independent trials whose data
are summarized in the following table

A A¢ | Total
B Yii Yo ni
B¢ Yo Yoo ni

Total | m;  mo n

The distribution of the table entries is Multi(n, p11, P12, P21, P22) giving a probability density function
with respect to counting measure is

n P11 P12 Pb21
( )pgz exp (yn log — + y12 log —= + yo1 log ) .
Y11, Y12, Y21, Y22 D22 D22 P22
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We can use the theorem to derive UMPU tests for any parameter of the form

6, = 11 log bu c12 log Pz c21 log b1,
D22 P22 D22

Check that a test for independence of A and B follows from the hypothesis
H:0,=0 versus A:(:)lsé().

with the choices ¢11 = —1, and ¢19 = ¢o1 = 1, take X7 = Y77 and U = (Y11 + Y12, Y11 + Y21). Compute

n m ,
PX, =x1|U=(n1,m2)}=Km2<el)( 1)( 2 )e“mr“),

Yy mgy — 1

x=0,1, -, min(ny, ms), mox < na.

The choice 6; = 0 gives the hypergeometric distribution. This case is called Fisher’s ezact test.

. (two-sample problems, inference for variance) Let X1, -, Xyn,, ¢ = 1,2 be independent N (u;,0?).
Then the joint density takes the form

uz

g _ )

2
1
C(:ula,u250%70-§) exXp | — E (20_2 x?j + 0_2 Ty
; % i

)

i=1 j=1

where Z; is the sample mean of the i-th sample.
Consider the hypothesis
H:Y2/%2 <68 versus A:X3/%% > 4.

For the theorem, take
1 1 1 niw n2M2)
26002 2037 2027 o2 7 o3 7

no ni 1 na B _
Y1:ZX22J" U:(Zij+%ZX22j,X17X2).
j=1 j=1 j=1

Consider the statistic

(n2 — 1)S3/do _ (M —meU3)/d
(n1—1)5’12+(n2—1)55/(50 Ul—nlUg—ngU??/éo'

V=

S? is the sample variance based on the i-th sample.

If 03 = §go?, i.e. 61 = 0, then V is ancillary and, by Basu’s theorem, V and U are independent. Note
that V is increasing in Y7 for each U. Thus, the UMPU a-level test of

H:0, <0 versus A:0;>0.

rejects H whenever
V>d0, Po{V>d0}=Oé.

79



Note that

_1F 2
(2 ~1) with P = 22/%
(n1 — ].) + (TLQ - ].)F Sl
Thus, V is an increasing function of F, which has the F,,_; ,,_i-distribution. Consequently, the
classical F' test is UMPU.

V =

8. (two-sample problem, inference for means) Consider the hypothesis
H:M; =M, versus A:M; # Ms.
or
H: M, > M, versus A:M; < M,.

The situaion o? # o2 is called the Fisher-Behrens problem. To utilize the theorem above, we consider

the case 07 = 03 = o2

The joint density function is

Uz

2
1 n n
2 2 1M1 202 _
c(p, p2, 0°) €xp ;;zjlm” + T+ P
i=1 j=

o2

For the theorem take,
fo — 1 Ny + Nafl2 1 )

(1/n1 + 1/n2)0?’ (ny +no)o?’ 202

2 Kz
Vi =X, — Xy, U=(mX;+nsXa,y Y X7).

i=1j=1

(XQ — Xl)/\/ 1/TL1 + 1/712
V(i = 18T + (2 = 1)83) /(1 +na — 2)
Again, by Basu’s theorem, when 6§ = 0, T and U are independent. Also, T, a function of (Y1,U) is

increasing in Y7 for each value of U. Thus, the exist values ¢; and t5 so that the test takes the form of
part 4 of the theorem.

Consider the statistic

Upon division of the numerator and denominator of 7" by o2, the numberator is a standard normal
random variable. The denominator is x?2 L+n,_1- Because the numerator and denominator are inde-
pendent, T" has the ¢,,, 4n,_2-distribution.

6.5 Equivariance

Definition. Let Py be a parametric family with parameter space 2 and sample space (X,B). Let G be a
group of transformations on X. We say that G leaves X invariant if for each g € G and each 6 € €, there
exists g* € G such that

Py(B) = Py« (gB) for every B € B.

80



If the parameterization is identifiable, then the choice of 8* is unique. We indicate this by writing 8* = g#.
Note that
Pi{gX € B} = Pj{X € g"'B} = Ply{X € gg"'B} = Pl,{X € B}.

We can easily see that if G leaves Py invariant, then the transformation g : 2 — 2 is one-to-one and onto.
Moreover, the mapping

gr—yg
is a group isomorphism from G to G.

We call a loss function L invariant under G if for each a € A, there exists a unique a* € A such that
L(gb,a*) = L(0,a).

Denote a* by ga. Then, the transformation g : A — A is one-to-one and onto. The mapping

g—9g
is a group homomorphism.

Example. Pick b € R" and ¢ > 0 and consider the transformation g, ) on X = R" defined by
Y(b,e)(x) = b+ ca.

This forms a transformation group with g, c;) © G(by,co) = G(crbotbr,crcs)- Thus, the group is not abelian.
The identity is g(g,1)- The inverse of g ) S g(—p/c,1/c)-
Suppose that X7, ---, X,, are independent N (u,0?). Then
p—>b o

g(b,c)(uaa) = ( c C).

To check this,
Po(9,0)B) = /B+b(0127r)nexp <—%i22(zi—u)2> dz
1 1 &
= —————exp | —— i — (u—0)%)] d
L v p< 72 20 >>> y
1 I 1 )
= /JBWLGXP <_2(J/C)2 Z(l‘i—c(b—u)> dePg(b7c)9(B)

Definition. A decision problem is invariant under G is Py and the loss function L is invariant. In such
a case a randomized decision rule § is equivariant if

0(gx)(gB) = 6(x)(B) for all measurable B and for all z € X.
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For a non-randomized rule, this becomes

d(gx) = gé(x) forall g € G for all z € X.

Definition.

1. The test
H:0e€Qyg versus A:0 €y

is invariant under G if both Qp and Q4 are invariant under G.

2. A statistic T is invariant under G if T is constant on orbits, i.e.,

T(gz) =T(x) forall z € X and g € G.

3. A test of size « is called uniformly most powerful invariant (UMPI) if it is UMP with the class of «
level tests that are invariant under G.

4. A statistic M is mazimal invariant under G if it is invarian N(t and

M(xq) = M(z2) implies 21 = g(x2) for some g € G.

Thus, a statistic T is invariant if and only if there is a function h such that T'= h o M.

Proposition. Let H be a hypothesis test invariant under a transformation group G. If there exists a
UMPIT test of size «, then it is unbiased. If there also exists a UMPU test of size a that is invariant under
G, then the two tests have the same power function. If either the UMPI test or the UMPU test is unique,
then the two tests are equal.

Proof. We only need to prove that UMPI tests of size a are unbiased. This follows from the fact that
the test
o(x) =« forallz e X

is invariant under G.

In the past, we have reduced tests to functions of a sufficient statistic U. If a test ¢(U) is UMP among
all invariant tests depending on U, then we can not necessarily conclude that ¢ (U) is UMPI. The following
results provides a condition under which it is sufficient to consider tests that are function of U.

Proposition. Let (G,G, ), a measure space with a o-finite A, be a group of transformations on (X, B).
Consider a hypothesis that is invariant under G.
Suppose that for any set B € B,

{(z,9) : g(z) € B} € a(B x G).

Further, assume that
AD)=0 imples AMhog:heD}=0forall ged.
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Suppose that there exists sufficient statistic U with the property that U is constant on the orbits of G, i.e.,
U(z1) =U(zz) implies U(gz1) = U(gxza) for all g € G.
Consequently, G induces a group Gy of transformations on the range of U via

gu(U(x)) = U(gx).

Then, for any test ¢ invariant under G, there exist a test that is a function of U invariant under G (and Gy)
that has the same power function as ¢.

Exercise. Let Xi,---, X, be independent N(u,o?). The test
H:%?>0} versus A:Y¥* <o}

is invariant under G = {g.. : ¢ € R}, g.¥ = = + ¢. The sufficient statistic (X, S?) satisfy the conditions above
Gy = {he: c € R} and h.(u1,uz) = (u1 + ¢, us). The maximal invariant under Gy is S2.

Use the fact that (n — 1)S?/02 has a x2_-distribution when £? = 02 and the proposition above to see
that a UMPI test is the x? test. Note that this test coincides with the UMPU test.

Consider the following general linear model
Y; = X,8" + e, i=1,---,n,
where
e Y is the i-th observation, often called response.

e (3 is a p-vector of unknown parameters, p < n, the number of parameters is less that the number of
observations.

e X, is the i-th value of the p-vector of explanatory variables, often called the covariates, and
® ¢, -, €, are random errors.

Thus, the data are
(Y17X1)7 Y (Y’IHX’IL)

Because the X; are considered to be nonrandom, the analysis is conditioned on X;. The ¢; is viewed as
random measurement errors in measuring the (unknown) mean of Y;. The interest is in the parameter [.
For normal models, let ¢; be independent N(0,02), 02 unknown. Thus Y is N, (8X7,0%1,), X is a fixed
n X p matrix of rank r < p < n.
Consider the hypothesis
H:BLT =0 versus A:pLT #0.

Here, L is an s X p matrix, rank(L) = s < r and all rows of L are in the range of X.
Pick an orthogonal matrix I" such that

(7,0) = BXTT,
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where 7 is an r-vector and 0 is the n — r-vector of zeros and the hypothesis becomes
H:v;=0,foralli=1,---;s versus A:v; #0,forsomei=1,---,s.

If Y = YT, then Y is N((v,0),021,). Write y = (y1,42) and 31 = (y11,y12) where y; is an r-vector and
y11 is an s-vector. Consider the group

G={gapc:bER°,c>0,A€0(s,R)}.
with
Inbe(y) = c(yiild, yiz + b, y2).
Then, the hypothesis is invariant under G.
By the proposition, we can restrict our attention to the sufficient statistic (Y3, |D~/2||)
Claim. The statistic M (Y) = ||Y11]]/||Y2]| is maximal invariant.

Clearly, M (Y') is invariant. Choose u; € R*\{0}, and ¢; > 0, ¢ = 1,2. If ||uy||/t1 = ||uz]||/t2, then t; = cty
with ¢ = |Ju1||/||uz]||. Because uy/||u1|] and ug/||us|| are unit vectors, there exists an orthogonal matrix A
such that uy /||u1|] = ue/||uz||A, and therefore u; = cusA

Thus, if M(y') = M(y?) for y',y? € R™, then

yh = cy%lA and ||y%|| = c||y§|| for some ¢ > 0, A € O(s, R).

Therefore,
y' = gane(y?), with b=c"yly —uis.

Exercise. W = M(Y)?(n —r)/s has the noncentral F-distribution NCF(s,n — r,6) with § = ||]|?/o2.
Write fyye(w|f) for the density of W with respect to Lebesgue measure. Then the ratio

fwie(wl|6)/ fwe(w]0)
is an increasing function of w for any given 6 # 0 Therefore, a UMPI a-level test of
H:©0=0 versus A:0 =0,.

rejects H at critical values of the Fj ,,_, distribution. Because this test is the same for each value of 6y, it
is also a UMPI test for
H:©=0 versus A:0 #0.

An alternative to finding I' directly proceeds as follows. Because Y = YT, we have

EY]=E[Y]T and |[[Vi -+l +[Yall = []Y - 8X7T|P%.

Therefore ~ .
min |[Vy —5[* + [|¥2][* = min|[y — 2XT|P%,
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or y R
1Ya]|? = [IY = BX7T|?,
where ﬁ is the least square estimator, i.e., any solution to 3X7X = Y X. If the inverse matrix exists, then
B=vX(XTx)".
Similarly, B
1Yl + |I¥2][? = min ||y — BXT|?,
B:BLT=0

Denote by ﬁAH the value of 8 that leads to this minimum. Then

(Y = Bu X1 — Y = BXT|]?)/s

W=y XTI n)

Examples.

1. (One-way analysis of variance (ANOVA)). Let Y;;, j = 1,---,n;, ¢ = 1,---,m, be independent
N(u;,0%) random variables. Consider the hypothesis test

H:p;, ==y, versus A:u; # ui for some i # k.

Note that (Y., Y,,.) is the least squares estimate of (u1,-- -, im) Where Y;. = E;“:l Y;;/ni. The
least squares estimate under H for the grand mean is

_ 1 m ng m
Y =- i = i
- Z Z Yij, n 2
=1 j=1 i=1
The sum of squares of the residuals
SSR=|[Y = pXT||P = > (Vi —Yi)%,
i=1 j=1
The total sum of squares
SST = ||Y = BuX|P =)D (Y - ¥)?,
i=1 j=1

A little algebra shows that
SSA=SST - SSR="> n;(Y;. - Y)".
i=1
Thus,
_ SSA/(m—1)

W= SSR/(n—m)’
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2. (Two-way balanced analysis of variance) Let Y, i =1,---,a, j=1,---,b, k=1,---,¢, be indepen-
dent N(p;j,0?) random variables where

a b a b
pij = p+ o6 + B + i, Zai :Zﬂj :Z%‘j :Z%j = 0.
j=1 i=1 j=1

i=1
Typically we consider the following hypotheses:
H:oa;=0foralli versus A:«; # 0 for some 3.

H:pBj=0foralli versus A:f; # 0 for some j.
H:~v=0foralij versus A:~;; # 0 for some i, j.

In applications,
e «;’s are the effects of factor A,

e (3;’s are the effects of factor B,

e 7;;’s are the effects of the interaction of factors A and B.

Using dot to indicate averaging over the indicated subscript, we have the following least squares
estimates: -
G =Y. =Y., [i=Y; =Y. A=, -Y.)—-(Y,;.-Y.).

Let

a b c

a b a b
SSR=Y 3" "(Vix — Vi), SSA=bc) 47, SSB=ac) [}, SSC=c) Y 3

i=1 j=1 k=1 i=1 j=1 i=1 j=1
Then the UMPI tests for the respective hypotheses above are

SSA/(a—1) SSB/(b—1)  S88C/((a—1)(b-1))
SSR/((c— 1)ab)’” SSR/((c—1)ab)’  SSR/((c— L)ab)

6.6 The Bayesian Approach

The Bayesian solution to a hypothesis-testing problem with a 0 — 1 — ¢ loss function is straightfoward. The
posterior risk from choosing the action a =1 is

cP{v e Vy|X =z},

and posterior risk from choosing the action a = 0 is
P{v e Va|X =z}

Thus, the optimal decision is to choose a = 1 if

cP{v e Vy|X =z} < P{v € V4|X =z},
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or

P X = .
{v € Vy] .13}<1+c

In classical hypothesis testing with 0 — 1 — ¢ loss function, we have

L(v,0(x)) = cly,(v)p@)+ Iy, (v)(1 - ¢(x))
L(0,6(z)) = cPov(Vu)o)+ (1= Pov(Vu)(1 - é(z)))
= ¢()((c+ )Pe vVe) = 1) +1-Pyv(Vn)
R(0,9) = Bp@)((c+1)Pov(Vu)—1)+1—Pyv(Vn)

Now define 1
QHZ{Q:P@\/'(VH) > m}, QAZQ%,
1— Py (V) if0eQy,
e(d) = { _p(,,vg(gzﬂ)H if 6 € QZ
d0) = [(c+1)Ppv (V) —1|.

The risk function above is exactly equal to e(#) plus d(#) time the risk function from a 0 — 1 loss for the
hypothesis
H:©cQy versus A:0 € Qyu.

If the power function is continuous at that 6 such that

1
1+¢’

Pyyv(Vy) =

In replacing a test concerning an abservable V' with a test concerning a distribution of V' given O, the
predictive test function problem has been converted into a classical hypotheis testing problem.

Example. If X is N(6,1) and © = {0}, then conjugate priors for © of the from N(fy,1/)\o) assign
both prior and posterior probabilities to Q.
Thus, in considering the hypothesis

H:0=0) versus A:0 # 6,

we must choose a prior that assigns a positive probability pg to {6p}. Let A be a prior distribution on Q\{6p}
for the conditional prior given © # 6. Assume that Py << v for all 0, then the joint density with respect
to v x (dg, + A) is
pofxie(x]0) if 0 = 0o,
,0) = .
oot = { GO0 Gy 076,

The marginal density of the data is

Fx(@) = pofxio(xl6o) + (1 - po) /Q fxjo(z19) A(d6).
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The posterior distribution of © has density with respect to the sum of A + dg, is

if 6 = 6y,

p1
foix(Olz) = { 1 — ) dxie@l®) ¢
=P e a@ 107 o

Here,
_ Ixje(z]9)
fx (@)
the posterior probability of © = 8. To obtain the second term, note that
1= py = (1 —po) Jqo [xje(x]0) A(dO) or L—po _ 1—p1
fx (@) fa(@) [ Fxje(@]0) A(dO)
Thus,
P1 Po fX|e(517|9)

L—pi 1—po [o [xje(x]f) A(d)
In words, we say that the posterior odds equals the prior odds times the Bayes factor.
Example. If X is N(0,1) and Qg = {0p}, then the Bayes factor is
e—05/2

T, en0-00-07/2) X(df)

If A(—00,6p) > 0, and A(fy,o0) > 0, then the denominator in the Bayes factor is a convex function of x and
has limit co as  — Foo. Thus, we will reject H if x falls outside some bounded interval.

The global lower bound on the Bayes factor,

fxje(z]0)
SUPg-£g, fX|e($|9)7

is closely related to the likelihood ratio test statistic.

In the example above, the distribution that minimizes the Bayes factor is A = d,,, giving the lower bound
exp(—(z — 60)?/2).

In the case that x = 6y + 2g.925 the Bayes factor is 0.1465. Thus, rejection in the classical setting at o = 0.05
corresponds to reducing the odds against the hypothesis by a factor of 7.
The Bayes factor for \, a N (6o, 72), is

VIt exp <_<z - W”) .

2(1+72)
The smallest Bayes factor occurs with value

_f (x—6p)*—1 if|z—6| >1,
Yo otherwise.
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with value 1 if |z — 6p| < 1, and
|z — 6| exp (—(z — 69)* +1)/2) ,

if |t — 6p] > 1. At © = 0y + 20.025, this minimizing factor is 0.4734.

Example. Consider a 0 — 1 — ¢ loss function and let X be Pois(8) and let © have a I'(a,b) prior.
Then the posterior, given X = z is I'(a + x,b+ 1). For fixed second parameter, the I distributions increase
stochastically in the first parameter. For the hypothesis,

H:06<1 versus A:0>1.

1
P{O < X — -

if and only if x > xg for some xg.
For the improper prior with @ = 0 and b = 0 (corresponding to the density df/f) and with ¢ = 19, the
value of xq is 4. This is the same as the UMP level a = 0.05 test except for the randomization at x = 3.

Example. Consider a 0 — 1 — ¢ loss function and let Y be Exzp(#). Let X = —Y so that 6 is the natural
parameter. For the hypothesis

H:0<lor®>2 versus A:1<0 <2,

use the improper prior having density 1/6 with respect to Lebesgue measure. Then, given Y = y, the
posterior distribution of © is Fxp(y). To find the formal Bayes rule, note that the posterior probability that
H is true is

l—e ¥ +4e 2,

Setting this equal to 1/(1 + ¢) we may obtain zero, one, or two solutions. In the cases of 0 or 1 solution, the
formal Bayes always accepts H. For the case of 2 solutions, ¢; and c3,

1

loe @ qe 20 =] @2 fe22=___
1+¢’

or

—C1 —C2 7261 72(;2

e — € =€ — €

This equates the power function at § = 1 with the power function at § = 2. If « is the common value, then
the test is UMP level a.

Example. Let X be N(u,1) and consider two different hypotheses:
Hi:M< —-050rM>0.5 wversus A;:—-05<M <0.5,

and
Hy : M < —0.70r M >051 versus As:—-0.7< M <0.51.

A UMP level a = 0.05 test of Hy rejects Hy if

—0.071 < X < 0.071.
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A UMP level a = 0.05 test of Hy rejects Ho if
—0.167 < X < —0.017.

Because 0y, C Qp,, then one may argue that rejection of H; should a fortiori imply the rejection of Hs.
However, if
—0.017 < X < 0.071,

then we would reject Hy at the a = 0,05 level but accept Hy at the same level.

This lack of coherence cannot happen in the Bayesian approach using levels for posterior probabilities.
For example, suppose that we use a improper Lebesgue prior for M, then the posterior probability for M is
N(z,1). The a = 0.05 test for H; rejects if the posterior probability of H; is less than 0.618. The posterior
probability of Hj is less than 0.618 whenver = € (—0.72,0.535). Note that this contains the rejection region
of HQ.

Example. Let X be N(6,1) and consider the hypothesis
H:|©—0p <6 versus A:|0—60y| >0
Suppose that the prior is N(6p,72). Then the posterior distribution of © given X = x is

72 O + z72

N ) =T

If we use a 0 — 1 — ¢ loss function, the Bayes rule is to reject H if the posterior probability

boto 14 1/r2 1 1 fo=0rt0 1 4 172 1 1
/ Tﬁexp (—(1—1—2)(9—91)2) d@z/ T exp(—=( +7)92) de
00—0 T 2 T 00—01—5 s 2 T

is low. This integral is a decreasing function of

0o + 72 72
0o — 01| = |6y — = 0o — x|.
80 = 01] = 160 1+7‘2| 1+T2|0 7l
Thus, the Bayes rule is to reject H if
‘90—$‘>d

for some d. This has the same form as the UMPU test.
Alternatively, suppose that
P{© = 0o} =po >0,

and, conditioned on © = 6, © is N(6p,72). Then the Bayes factor is

Vit 2exp (_@ - %W) .

2(1+72)

Again, the Bayes rule has the same form as the UMPU test.
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If, instead we choose the conditional prior © is N (é, 72) whenever © # fy. This gives rise to a test that
rejects H whenever ~
(1 =736 — 0) /7% — 2| > d.

This test is admissible, but it is not UMPU if 6 # 6,. Consequently, the class of UMPU tests is not complete.

Example. Let X be Bin(n,p). Then 6 = log(p/(1 — p)) is the natural parameter. If we choose the
conditional prior for P to be Beta(a, 3), then the Bayes factor for Qg = {po} is

P§(L—po)" "Il g (a+B+i)
[Izo (e + D) I= (B +4)
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7 Estimation

7.1 Point Estimation

Definition. Let Q be a parameter space and let g : Q — G be a measurable function. A measurable function
p: X -G Gcd,

is called a (point) estimator of g(6). An estimator is called unbiased if

If G’ is a vector space, then the bias

by (0) = Eo[p(X)] — 9(0).

Example.

1. For X4, -+, X,, independent N (u, o) random varibles,

n
>ox,
=1

X:

S

is an unbiased estimator of u.

2. Let X be an Fzp(f) random variable. For ¢ to be an unbiased estimator of 6, then

0 = Eylp(X)] = / " p(a)8e" d,

for all . Dividing by 6 and differentiating the Riemann integral with respect to 6 yields
o 1
0= / xé(2)0e™" dr = 5 PalX (X)),
0

Because X is a complete sufficient statistic
d(X) =0 a.s. Py for all 0.

This contradicts the assumption that ¢ is unbiased and consequently 6 has no unbiased estimators.

Using a quadratic loss function, and assuming that G’ is a subset of R, the risk function of an estimator
¢ is
R(6,¢) = Eg|(g(0) — ¢(X))?] = by(6)? + Vargp(X).

This suggests the following criterion for unbiased estimators.
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Definition. An unbiased estimator ¢ is uniformly minimum variance unbiased estimator (UMVUE) if
¢(X) has finite variance for all § and, for every unbiased estimator 1,

Vargp(X) < Vargy(X) for all 6.

Theorem. (Lehmann-Scheffé) Let T be a complete sufficient statistic. Then all unbiased estimators
of g(#) that are functions of T alone are equal a.s. Py for all § € Q.
If an unbiased estimator is a function of a complete sufficient statistic, then it is UMVUE.

Proof. Let ¢1(T) and ¢2(T) be two unbiased estimators of g(6), then
Ep[p1(T) — ¢2(T)] =0 for all 6.

Because T is complete,
d1(T) = ¢2(T), a.s. Py.

If $(X) is an unbiased estimator with finite variance then so is ¢(T) = Ey[p(X)|T]. The conditional
variance formula states that

Varg(¢(T)) < Varg(¢(X)).
and ¢(T) is UMVUE.
Example. Let Xi,---,X, be independent N(u,c?) random variables. Then (X,S?) is a complete

sufficent statistic. The components are unbiased estimators of y and o2 respectively. Thus, they are UMV UE.

Define
U={U: EpU(X)] =0, for all 0}.

If o is an unbiased estimator of g(6), then every unbiased estimator of g(#) has the form éy + U, for
some U € U.

Theorem. An estimator 6 is UMVUE of Ey[§(X)] if and only if, for every U € U, Covy(§(X),U(X)) = 0.
Proof. (sufficiency) Let 6;(X) be an unbiased estimator of Ep[d(X)]. Then, there exists U € U so that
91 =0 + U. Because Covy(d(X),U(X)) =0,
Varg(01(X)) = Varg(6(X)) + Varg(U(X)) > Varg(6(X)),
and 6(X) is UMVUE.

(necessity) For A € R define the unbiased estimator
0y =0+ \U.
Then
Varg(5(X)) < Varg(0x(X)) = Varg(§(X)) 4+ 2ACovq (5(X), U(X)) + A*Vary (U (X)),
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" M Varg (U (X)) > —2XCovy(6(X), U(X)).

This holds for all A and @ if and only if Covy(§(X),U(X)) = 0.
Example. Let Y7,Y5,- - be independent Ber(6) random variables. Set

y=I41 ify, =1
" | number of trials before 2nd failure otherwise.

Suppose that we observe X. Then

0 ife=1
Ixie(@]0) = { 0r2(1-60) ifx=23, .

(Note that the failures occur on the first and last trial.)

Define the estimator
So(x) = 1 ifz=1
)=V 0 ifr=23,--.

Then, §p is an unbiased estimator of ©. To try to find an UMVUE estimator, set

0 = E[U(X)]

U(1)0 + i 67 72(1 — 0)°U(x)
=2

U(2) + i O (U(k) — 2U (k4 1) + U(k + 2))
k=1

Then U(2) =0 and U(k) = (2 —k)U(1) for all k£ > 3. Thus, we can characterize U according to its value
at t = —U(1). Thus,
U={U;:Uzx) = (x—2)t, for all z}.

Consequently, the unbiased estimators of © are
§(z) = do(x) + (z — 2)t.

The choice that is UMVUE must have 0 covariance with every Us; € U. Thus, for all s and 6,

0= Z fxi0(x]0)d:(x)Us(x) = 0(—s)(1 —t) + Z 0772(1 — 0)2ts(x — 2)°.

- x—2 2 9 _ -
;tsé' (z —2) _S(l_t)(l—H)Q —s(l—t)’;k;g’f.

These two power series must be equal term by term. Thus,

s(1—t)k =tsk* or 1—t=tk.
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Thus, there is no UMVUE.
Given 6, there is a locally minimum variance unbiased estimator.

Theorem. (Cramér-Rao lower bound) Suppose that the three FI regularity conditions hold and let
Zx(0) be the Fisher information. Suppose that Zx(0) > 0, for all 8. Let ¢(X) be a real valued statistic
satisfying E|¢(X)| < oc. for all # and [ ¢(z)fx|e(x]0) v(dx) can be differentiated under the integral sign.
Then,

(4 Bad(X))

Varg(9(X)) > H

Proof. Define

dfxje(z]0)
00

Then v(B) = 0 and C' is independent of 8. Let D = C'N B¢, then, for all 4,

B={x: fails to exist for some 0} and C = {x: fxje(z|f) > 0}.

1=FRD) = [ 6la)fxiolalt) vido).
D
Taking the derivative, we obtain

[ 9fxje(x|0)/00 _ 9
0= /D Wf)q@(ﬂ@) v(dz) = Ea[@ log fx|e(X|0)].
Using this fact, we also have
d 0
GEO = [ o) xie(elo) v(an)

= B[6(X) 55 o8 Fxjo(X16)] = Bo[(6(X) ~ Balo(X)]) 55 log Fxjo(X]6)]

By the Cauchy-Schwartz inequality,
d 2
(g Eoto0)]) < Vera(o(X))Zx (0.
Now, divide by Zx ().

9 Bolo(X)] = 1.

For an unbiased estimator, 45

Equality in the Cauchy-Schwartz occurs if and only if the estimator ¢(X) and the score function
dlog fx|e(X10)/00 are linearly related.

% log fx|e(z]0) = a(@)é(x) + d(0) a.s. Pp.
or
Ixie(x]0) = c(0)h(x) exp (m(x)d(x)) ,
the density of an exponential family with sufficient statistic ¢.

Examples.
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1. For X a N(6,02) random variable and ¢(x) = z,

Ix(0) =1/63
and the Cramér-Rao bound is met.

. For X an Exp()\) random variable, set # = 1/\. Then
10gfx|@($|9) +

fX|@($|9) x/el(Ooo)( )7 2 R

Thus ¢ must be a linear functlon to achieve the Cramér-Rao bound. The choice ¢(z) = x is unbiased
and the bound is achieved.

1 x

. tq(#, 1)-family of distributions has density

I((d+1)/2) 1 L) Atz
——— 1+ =(z—-0)
I(d/2)Vdn d

with respect to Lebesgue measure. In order for the variance to exist, we must have that d > 3. Check
that

Ixe(z]f) =

o2 d41 1—(x—0)%/d
Wlogfme(ﬂ@)—_ d (1+(z—0)2/d)*

Then

Ix(0) = —E‘g[% log fx|e(X|0)] = L'((d+1)/2)d+1 / 1—(x—0)*/d e

I(d/2)Vdr d (14 (x — 0)?/d)(d+5)/2
Make the change of variables

to obtain

I((d+1)/2)d+1 1—2%/(d+4)
L= S \/: / (A5 2/@+ e

Multiplication of the integral by

I'((d+5)/2)
L((d+4)/2)\/(d+4)r
gives
E{l_ T3+4} L d+4 _d+1
d+4 d+4d+2 d+2
Therefore,

O T((d+1)/2)d+1 [ d T(d+4)/2)/d+Hrd+1
Lx(6) = rd/2)Vdr d Vd+ T'((d+5)/2) d+2
T((d+1)/2) d+1d+]1

T((d+4)/2)
D(d/2)riigs 4 d+2

(d+2)/2d/2 d+1d+1 d+1
(d+3)/2(d+1)/2 d d+2 d+3
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Theorem. (Chapman-Robbins lower bound). Let

m(0) = Eg[6(X)], S5(0) = suppfxje(-0)-

Assume for each 6 € Q there exists 8’ # 6 such that S(0') C S(6). Then

(m(8) —m(6"))?
Varg(9(X)) 2 (050 es@) <E9[(fx|@(X|9')/fX@(X|9) - 1)2]> .

Proof. Define Freio(X10)
_ JXx|e _
e NG <

Then Ep[U(X)] =1—1=0. Choose 0" so that S(¢’) C S(6), then

V/ Varg(¢(X))y/Varg(U(X)) > |Cove(U(X),d(X))|
= | / (3(x) fxjo(@|0) — d(x) fxj0(x]0)) v(dz)| = [m(0) — m(6')].
S(6)

Examples.
1. Let X1,---, X, be independent with density function
Ixje(x]0) = exp(0 — x)1(9 o)
with respect to Lebesgue measure. Thus, S(6’) C S(0) whenever 6’ > 6.

U(X) = exp(n(0 — 0))1 (9 ,00)( min X;) — 1,

1<i<n
and
ElU(X)] = (exp(@n(®’ —6)) — 2exp(n(®’ — 6))Py{ min X, >0} +1.
Because
Pg{lrgig X; >0} = Py{X; > 0'}" = exp(—n(0 —0)),
we have

Bp[U(X)?] = exp(n(¢' — 9)) — 1.

Thus, the Chapman-Robbins lower bound for an unbiased estimator is

Varg($(X)) 2 sup <exp<7§?e'—agj> - 1> = i <t—1) |
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2. For X a U(0,0) random variable, S(8') C S(6) whenever ' < 6.

0 Loy (X) 6
(0,61
X)=——"""—L—-1=—Ipe)(X)—1
U( ) 9_11(0’0)()() 0’ (0,0)( ) s
and
2 0o 0 , 0
Ep[U(X)"] = ((5)° = 25)Po{X <0} +1= 0 — 1.

Thus, the Chapman-Robbins lower bound for an unbiased estimator is

-0\ , N 02
Varg(¢(X)) > s <<9/9,)_1> == GS/uS};G (00 =7

Lemma. Let ¢(X) be an unbiased estimator of g(#) and let ¢(z,0), i = 1,---, k be functions that are
not linearly related. Set

Yi = Covp((X), ¥i(X,0)), Cij = Cove(vi(X,0),;(X,0)).
Then Vargp(X) > 4TC~1y.
Proof. The covariance matrix of (¢(X), 1 (X), -, ¥e(X)) is
Vargp(X) "
5y C

Use the vector (1,a”) to see that

Vargd(X) +a’v++Ta+aTCa > 0.

Now the inequality follows by taking a = —C 1y

Corollary (Bhattacharyya system of lower bounds). In addition to the hypotheses for the Cramér-
Rao lower bound, assume that k partial derivatives can be performed under the integral sign. Define

31(6) = ZEEDX). Ti(6) = Covaluu(X.0105(X,0). i(w.0) = —

fxje(x]0).

Assume that J(6) is a nonsingular matrix, then

Varg(¢(X)) = 7(0)" J(0)"'(0).

Proof. Note that by continuing to differentiate, we obtain

dz’

BB ()] = Covgl6(X), o fxi(X10)).
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Now, apply the lemma.

Example. Let X be an Fxp(\) random variable. Set 8 = 1/A. Then, with respect to Lebesgue measure
on (0,00), X has density

1 —x
fxielalt) = 5e7/".

Thus,

0 1 9?2 2 4 2
%f)q@(w\é) = <—9 + ;) fxie(x]0), wf)qe(xm = (92 - 0*55 + ;) fxje(x]0).

With, ¢(z) = 22,
Eg[p(X)] =207 and Varg(o(X)) = 206

Because

Ty(0) = ~ and %EQ[(/)(X)]:M.

0

the Cramér-Rao lower bound on the variance of ¢(X) is 160*. However,

w4 4) w0=(4)

¥(0)T I ()7 (6) = 200"

and the Bhattacharayya lower bound is achieved.

o

Thus,

Corollary (Multiparameter Cramér-Rao lower bound.) Assume the FI regularity conditions
and let Zx(0) be a positive definite Fisher information matrix. Suppose that Fy|¢(X)| < oo and that
J o(x) fxjo(x]0) v(dr) can be differentiated twice under the integral sign with respect to the coordinates of
0. Set

Then
Varg(¢(X)) > ~(0)" Zx(0) " (6).

Proof. Apply the lemma, noting that

0

%EGWX)] = Covy((X), a% log fx|o(X]0)).

Example. Let X be N(p,0?). Then

Ix

I
—
oY
Yo
~



If $(X) = X2 then Ep[p(X)] = p? + 0. Then
Y 0) = (2p,20)  Y(0) Tx(0)"'7(0) = 4p0® + 20™.

This equals Varg(¢(X)) and so the Cramér-Rao bound is met.

Definition. Let X be a sample from P, 6 € Q and assume that Py has density fx|e(-|0) with respect
to a o-finite measure v.

1. If X = x is observed, then the function

L(0) = fxje(z|0)
is called the likelihood function.

2. 0 in the closure of Q is called the mazimum likelihood estimate of 0 if

L(0) = max fx o (z/6).
0eQ

Viewed as a function of 2, L(f) is called the mazimum likelihood estimator of 6.
Theorem. Let g : 2 — G be measurable. Suppose that there exists a space U and a function g* so that
(9,9") : Q—>GxU
is a one-to-one measurable function. If § is a maximum likelihood estimator of §, then g(f) is a maximum
likelihood estimator of g(0).
Proof. For 1 in the range of (g, ¢*), set the likelihood

Fxpw(zl) = fxje(@l(g, 9" ().

Fix x and let fx|o(2[0) assume its maximum at 0. Define ¢ = (g,9*)(A). Then, the maximum occurs at

(9,9%) 7 (¥).

If the maximum of fy|w(z[1)) occurs at 1) = vy, then

Fxio(@l(g,9%) 7 (%)) = Fxjw(@vo) > fxu(@ld) = fxje(xld).

Because the last term is at least as large as the first, we have that ’(/AJ provides a maximum.

Consequently, (g, ¢*)(f) is a maximum likelihood estimate of 1 and so g(f) is the MLE of g(6), the first
coordinate of 1.

Example. Let X;---, X, be independent N(u,o?), then the maximum likelihood estimates of (u,o)
are

X and EZ(XZ - X)2
i=1

For g(m) = m?, define g*(m, o) = (sign(u), o), to see that X? is a maximum likelihood estimator of m?.
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For the maximum, we have that L(é) > 0. Thus, we can look to maximize log L(#). In an exponential
family, using the natural parameter,

log L(#) = log c(0) + (z,0).

Thus, if 9L(6)/06; = 0,

€Ty =

0
96, log c(6) = Eyp[Xy],

and 6; is chosen so that x; = Fj [Xi].

Example. Let X;---, X, be independent N(u,c?), then the natural parameter for this family is

7 1
(01,62) = (ﬁ’_ﬁ)'

The natural sufficient statistic is

(X, XP)
=1

Also,
02
logc(f) = glog(—%g) + n@
Thus,
—1 0)=— —1 0)=——n—5.
a0, 1050 =550 g los0) =5~

Setting these equal to the negative of the coordinates of the sufficient statistic and solving for (6;,65) gives

' 2?:1()(1‘ - X)Q’ ? 22?:1()(1‘ - X)y
and .
. 0, o 1 1 & o
:—f:X, g = ——F5 = — XZ—X .
a 205 205 n;( )

Given a loss function, the Bayesian method of estimation uses some fact about the posterior distribution.
For example, if € is one dimensional, and we take a quadratic loss function, the the Bayes estimator is the
posterior mean.

For the loss function L(6,a) = | — a| the rule is a special case of the following theorem.

Theorem. Suppose that © has finite posterior mean. For the loss function

| cla—0) if a > 6,
L((),a)—{ (1-c)—a) ifa<¥,

then a formal Bayes rule is any 1 — ¢ quantile of the posterior distribution of ©.
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Proof. Let a be a 1 — ¢ quantile of the posterior distribution of ©. Then

PO<iaX=z2}>1-¢, P{O>alX=2}>c

If a > a, then
c(a—a) ifa>a,
L(0,a) — L(B,a) =< cla—a)—(0—a) ifa>0>a,
(1-c¢)(a—a) if 0 > a,
or
0 ifa > 0,
L(6,a) — L(B,a) =cla—a)+< (a—0) ifa>6>a,
(a—a) if0>a,

Thus, the difference in posterior risk is

r(alz) — T(Tx) = c¢la—a)+ / (@—0)fox(0lz) AN(dx) + (@ —a)P{© > a|X = x}

a,al

> c¢la—a)+(@—a)P{® >a|lX =z} =(a—a)(c— P{® >a|X =z})>0.

Similarly, if a < a, then

0 ifa>0,
L(8,a) — L(B,a) =cla—a)+ < (0—a) ifa>0>a,
(@—a) if>a,

and
r(a|lz) —r(lz) > (@ — a)(P{© > a|X =2} —¢) > 0.
Consequently, a provides the minimum posterior risk.

Note that if ¢ = 1/2, then the Bayes is to take the median

7.2 Nonparametric Estimation

Let Py be a collection of distributions on a Borel space (X, B) and let
T:Py— R*

be a functional. If we collect data X1, -, X,, then we may estimate P € Py by its empirical distribution
P,. In this circumstance, the natural estimator of T'(P) is T'(F;,).
For example, if

T(P) = /X (x) P(dz),

then

n

T(P,) = [ (o) Paldn) = = 3" 0(X,).

i=1
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Methods of moments techniques are examples of this type of estimator with ¢ (z) = ™.

If X C R, then we can look at the p-th quantile of P.
T(P) = inf{x : Plx,00) > p}

Then T'(P,,) is the pth sample quantile.

Definition. Let £ be a linear topological vector space and let
T:L— RF
be a functional on L.

1. T is Gateaux differentiable at @ € L if there is a linear functional L(Q;-) on £ such that for A € L,
1
lim —(T(Q +tA) = T(Q)) = L(Q; A).

2. If £ is a metric space with metric p, T is Fréchet differentiable at P € L if there is a linear functional
L(P;-) on L such that for {P};j > 0} converging to P,

. 1 e _
jlin;om(T(Pj) — T(P) — L(P; P; — P)) = 0.

3. If £ is a Banach space with norm || - ||, T is Hadamard differentiable at @ € L if there is a linear
functional L(Q;-) on £ such that for for any sequence of numbers {¢;;j > 0} converging to 0, and
{Aj;j > 0} converging in norm to A,

lim ~(T(Q + ;) — T(Q)) - L(Q; A;) = 0.

The functional L(Q;-) is call the differential of T at Q and is sometimes written DT(Q;-)
One approach to robust estimation begins with the following definition.

Definition. Let Py be a collection of distributions on a Borel space (X, B) and let
T:Py— R*

be a functional. Let £ be the linear span of the distributions in Py The influence function of T at P is the
Gateaux derivative
IF(x;T,P) = DT(P;é, — P)

for those z for which the limit exists.

Examples.
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1. Let T(P) be the mean functional, then
T(P+t(d, — P))=(1-t)T(P)+ tx,

and the influence function
IF(z;T,P)=a —T(P).

2. Let F be the cumulative distribution function for P, and let T' be the median. Then,

FL(A22hy if g < FY (M

T(P+t(6, —P))={ = it P M) <2 < P (gty)
F_l(ﬁ) ifoF_1<2(117t)).
If F" has a derivative f at the median, then
1 1
IF(2;T,P) = —=————si - FY2).
@ T.P) = gy~ P (E)

Definition. The gross error sensitivity is

~*(T, P) = sup |IF(x; T, P)|.
reX

Example.
1. If T is the mean and the distributions have unbounded support, then

(T, P) = oo.

2. If T is the median, then
1

2f(F~1(1/2))

This is one way of arguing that the median is more robust with respect to gross errors than the mean.

'7*(T7P) =

We will now discuss some classes of statistical functionals based on independent and identically distributed
observations X1, -+, X,. Denote its empirical distribution

P, = %25&--
=1

If T is Gateaux differentiable at P and P, is an empirical distribution from an i.i.d. sum, then setting
t=n"'2 and A = \/n(P, — P).

V(T (P,) = T(F)) = DT(P;vn(P, —P))+r,
= % Z;DT(P; ox, — P) + 1,

1 n
= — ) IF(X;T,P)+m,
ﬁ; ( )+
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We can use the central limit theorem on the first part provided that
E[IF(Xy;T,P)]=0 and o% = Var(IF(Xy;T,P)) < oc.
Thus, by Slutsky theorem, as n — oo
Va(T(Py) = T(P)) = Xo

where X, is N(0,0%) provided that
rn —P 0.

Typically, Gateaux differentiability is too weak to be useful in establishing the necessary convergence in
probability.

Definition. Let P be a distribution on R with cumulative distribution function F' and let J be a function
on [0,1]. An L-functional is defined as

T(P) = / 2J(F(z)) dF(z).

T(P,) is called an L-estimator of T'(P).

Examples.
1. If J =1, then T(P,) = X.
2. If J(t) = 4t — 2, then T(P,,) is the U-statistic called Gini’s mean difference

2
U, = ——— |X; — X,
n(n —1) 1§;§n J

3. If J = (b—a) 'I(4)(t) for some constants a < b, then T'(P,) is called the trimmed sample mean.

Theorem. Let T be an L-functional, and assume that
suppJ C [a,b], 0<a<b<l1.

and that the set
D = {z : J is discontinuous at F(z)}

has Legesgue measure zero. Then T is Fréchet differentiable at P with influence function

IF(@:T,P) = —J(F(x)) + / F(y)J(F(y)) dy.

Definition. Let P be a probability measure on R? with cumulative distribution function F and let

r:R'xR— R
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be a Borel function. An M-functional T(P) is defined to be a solution of

/r(x,T(P)) P(dz) = min/r(x,t) P(dx).

teG

If P, is the empirical distribution of i.i.d. observations X1, -, X,,, then T(P,) is called an M-estimator
of T(P).

Assume that p(t) = Or(z,t)/0t exists a.e. and

Ap(t) = /w(x,t) P(dx) = %/r(m,t) P(dx).

Note that Ap(T(P)) = 0.

Examples.

L If r(x,t) = (z —t)P/p, 1 < p < 2, then T(P,) is call the minimum LP distance estimator. For p = 2,
T(P) = [z P(dz) is the mean functional and T'(P,) = X, the sample mean. For p =1, T(P,) is the
sample median.

2. If Py is a paramteric family {Pp : § € Q}, with densities {fxeo : # € Q}. Set
r(z,t) = —log fx|e(x]0).
Then, T(P,) is a maximum likelihood estimator.

3. The choice 1
r(z,t) = min{E(m e
and the corresponding T'(P,,) gives a trimmed sample mean.
4. The choice Lo gy w1 <C
r(@t) = { Cle—t] -1 |o—t]>C
yields an estimtor T'(P,) that is a type of Winsorized sample mean.

Theorem. Let T be an M-functional and assume that ¢ is bounded and continuous and that Ap is
differentiable at T'(P) with Xp(T'(P)) # 0. Then T is Hadamard differentiable at P with influence function

Y(z, T(P))

IF(z;T,P) = S T(ET
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7.3 Set Estimation

Definition. Let
g: Q-G

and let G be the collection of all subsets of G. The function
R:X—¢G
is a coefficient v confidence set for g(6) if for every 6 € Q2
1. {z:g(0) € R(x)} is measurable, and
2. P{g(0) € R(X)} = 7.
The confidence set R is ezact if Pj{g(0) € R(X)} =~ for each § € Q. If

inf Pi{g(6) € RO} > 7,

the confidence set is called conservative.
Related confidence sets to nonrandomized tests gives us the following.
Proposition. Let g: Q — G.
1. For each y € G, let ¢, be a level o nonrandomized test of
H:g9(©)=y versus A:g(0©)#y.

Then R is a coefficient 1 — « confidence set for g(6). The confidence set R is exact if and only if ¢, is
« similar for all y.

2. Let R be a coeffieicnet 1 — « set for (). For each y € G, define

[ 0 ifyeR(x),
() { 1 otherwise.

Then, for each y, ¢, has level a for the hypothesis given above. The test ¢, is a-similar for all y if
and only if R is exact.

Example. Let X1,---, X, be independent N(u,0?). The usual UMP level « test of
H:M=puy versus A:M # pug

is B

L — Ho
s/\/n
where T, (1 — a/2) and T;,_; is the cumulative distribution function of the ¢, _1(0,1) distribution. This
translates into the confidence interval

*

>t

buo(2) =1 if

(@ —t"—— 4+ 1"—).
NG NG
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This form of a confidence uses a pivotal quantity. A pivotal is a function
h:XxQ—R

whose distribution does not depend on the parameter. The general method of forming a confidence set from
a pivotal is to set
R(z) = {6 : h(z,0) < F, (1)}

where
Fy(c) = Po{h(X,0) < ¢}

does not depend on 6.
We can similarly define randomized confidence sets

R : X xG—[0,1]

and extend the relationship of similar tests and exact confidence sets to this setting.
Note that a nonrandomized confidence set R can be considered as th trivial randomized confidence set
given by

The concept of a uniformly most powerful test leads us to the following definition.

Definition. Let R be a coefficient v confidence set for g(#) and let G be the collection of all subsets of
the range G of g. Let
B:G—¢§g

be a function such that y ¢ B(y). Then R is uniformly most accurate (UMA) coefficient v against B if for
each 6 € Q, each y € B(g(0)) and each v confidence set R for g(6),

Pi{y € R(X)} < Py{y € R(X)}.

If R* is a coefficient v randomized confidence set for g(#), then R* is UMA coefficient v randomized
against B if for every coefficient v randomized confidence set R*, for each 6 € Q, each y € B(g(0)),

Theorem. For g(f) = 6 and B : G — G. Suppose that
B7Y0)={0":0c B#)} #0
for every 6. Let ¢y be a test and define

R*(2,0) = 1 = ¢g().
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Then ¢y is UMP level « for the test
H:0=0 versus A:0 € B ()

for all @ if and only if R* is UMA coeflicient 1 — o randomized against B.

Proof. For each 6 € Q let ¢y be UMP for the test above and let R* be a coefficient 1 — a randomized
confidence set. Define a test ~ ~
d(x)=1— R*(x,0).

Then by the proposition, ¢ has level o for {#’} = Q. Note that ¢ € B(f) implies § € B~*(#’) and therefore
1= Eg[R*(X,0')] = Eg[(X)] = B5(0) < By, (0) = Eglde (X)] = 1 — Eg[R*(X,6")],
and the result follows.

Conversely, suppose that R* is a UMA coefficient 1 — o randomized condifence set against B. For each
0 € Q and Qp = {0}, let ¢p be a level a test. Define

R*(X,0) =1 — ¢y(X).
Then, R* is a coefficient 1 — o randomized confidence set. Let
Q={(0,0):0cQ,0cBO)}={6,0):0cQ,0cB0)}.
This uses B~1(6) # 0 for all . Thus, for § € B~(6),
By (0) = 1 — E5[R*(X,0)] > 1 — E3[R*(X, )] > 55, (6)
and therefore ¢g is UMP level « for the test

Example. Let X7,---,X,, be independent N(u, 1) random variables. Let

R(X) = (—00, X + %z*]

where 2* = ®~!(1 — ). Note that
/
P{pe R(X)} =1-aq,

and R is an exact 1 — « confidence set. Now, consider the test
(]5(1’) = I(—OO,}L-"-Z*/\/E)(E)'

Then
R(x) ={p: ¢u(z) = 0}
and ¢, is the UMP level « test of

H:M=u versus A: M < pu.
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Here,

B () = (00,p) = {i: € B}, B() = (1, 00)
and R us UMA coefficient 1 — v against B, i.e. if i < p, then R has a smaller chance of covering [i than any
other coefficient 1 — a confidence set.

Example. (Pratt). Let X3, ---, X, be independent U(#—1/2,0+1/2) random variables. The minimum
sufficient statistic T = (T1,T2) = (min; X;, max; X;) has density

_ 1 1
S et ta]0) = n(n — 1)(ty —t2)" 72, 06— St <<+

with respect to Lebesgue measure.
Let’s look to find the UMA coefficient 1 — o confidence set against B(6) = (—oo,6). Thus, for each 6, we
look to find the UMP level « test for

H:0<60 versus A:0 >0
to construct the confidence set. Pick 6 > 6 and considering the inequality
le,T2|®(t17t2|é) > kfr, 10t t2]0)
from the Neyman-Pearson lemma.

1. For k <1 and 6 < 6 < 6 + 1, this inequality holds if
~ 1 . 1
t1>97§ or if t2>0+5

2. For k =1, then the densities are equal on the intersections of their supports.

3. If § > 0 + 1, then the inequality holds if for

~ 1
t1 >0+ —.

[N)

For a size « test, we take

1 ift2>9+%ort1>9+%fa1/”
0 ift2§9+%andt1>9+%—a1/”.

P(t1,12) = {

To check that it is most powerful for each 6 > 6,
1. take k=1if  —1/2 <0 +1/2 —a'/™ and
2. take k=0if 0 —1/2 <0 +1/2 — /",

Set
T* = max{Ty —1/2 + o'/™, Ty —1/2},

then the UMA coefficient 1 — a confidence set against B is [T, 00). Note that
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1. ©>T5 —1/2, and

2. T* < Ty —1/2 whenever T} —1/2+a'/™ or Ty — T} > o'/™ Thus, we are 100% confident that © > T™*
rather than 100(1 — «)%.

For two-sided or multiparameter confidence sets, we need to extend the concept of unbiasedness.

Definition. Let R be a coefficient 7 confidence set for g(6). Let G be the power set of G and let
B : G — G be a function so that y ¢ B(y). Then R is unbiased against B if, for each 6 € Q,

Pi{y € RIX)} <~ forall y € B(g(0)),

R is a uniformly most accurate unbiased (UMAU) coefficient -y confidence set for g(6) against B if its UMA
against B among unbiased coefficient ~y confidence sets.

Proposition. For each 0 € €, let B(#) be a subset of Q such that 6 ¢ B(6), and let ¢9 be a nonran-
domized level « test of
H:©=0 versus A:0 ¢ B 0).

Set
R(z) = {0 : ¢o(x) = 0}.
Then R is a UMAU coefficient 1 — « confidence set against B if ¢y is UMPU level « for the hypothesis above.

In the Bayesian framework, we want to choose a set C' such that
Pr{VeC|X =z} =7.
Some of the approaches in choosing C' are:
1. If V has posterior density fy|x(-|z), choose d so that
C={v: fyx(v|z) > d}.

This choice, called the highest posterior density (HPD) region, is sensitive to the choice of reference
measure. Indeed, C' may be disconnected if fy|x(:|z) is multi-modal.

2. If V is real valued, choose c_ and c4 so that

1-— 1
Pr{iV<ce |X=z}= T’y and Pr{V>ci|X =z}= %

3. For a given loss function, choose C' with the smallest posterior expected loss.

To exhibit the use of the loss function in choosing the confidence set, consider a one-dimenstional param-
eter set 2. To obtain a bounded connected confidence interval, choose the action space

A= {(a—’a-i-)’a— < a+}
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and the loss function

c_(a_—0) ifb<a_,
Lb,a_,ay)=ar—a_+4¢ 0 ifa_ <0<ay,
C+<9 — a+) if ay <0.

Theorem. Suppose that the posterior mean of © is finite and the loss is as above with ¢_ and ¢y at
least 1. Then the formal Bayes rule is the interval between the 1/c_ and 1 —1/c; quantiles of the posterior
distribution of ©.

Proof. Write the loss function above by L_ + L where

(e =D(a_ —0) if a0,

L_(0,a-)= { 0 —a_) if a<#.

and ( 0) if ap > 6
L+(9,a+){ (01_1)(9_a+) ifaizﬁf

Because each of these loss functions depends only on one action, the posterior means can be minimized
separately. Recall, in this case that the posterior mean of L_(©,a_)/c_ is minimized at a_ equal to the
1/c_ quantile of the posterior. Similarly, the posterior mean of L (0, a,)/cs is minimized at a4 equal to
the (¢4 — 1)1/c4 quantile of the posterior.

7.4 The Bootstrap

The strategy of the bootstap is to say that one can use a calculation performed by using a cumulative
distribution function F}, obtained from an observed sample as an estimate of the calculation one would like
to perform using F'.

Let X = (X1, -+, X,,) be an i.i.d. sample.

1. If the empirical distriubtion function

n

i=1
is used, then the method is the nonparametric bootstrap.

2. If én is an estimate of © and

F(z) = FX1|®($‘én)

is used, then the method is the parametric bootstrap.

Let F be an appropriate space of cumulative distribution functions and let

R:XxF—R
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be some function of interest, e.g., the difference between the sample median of X and the median of F'. Then

the bootstrap replaces R
R(X,F) by R(X*, F,)

where X* is an i.i.d. sample of size n from F,.

The bootstrap was originally designed as a tool for estimating bias and standard error of a statistic.

Examples.
1. Assume that the sample is real values having CDF F satisfying [ 2? dF(z) < co. Let

nexr = (33n) - (fear)”

RX*E,) = (:L Zx;) (@),
=1

where z,, is the observed sample average. Use

then

(w; — fn)2
1

n
2 _
S, =

K2

as an estimate of the variance. Now
1 - 1
E[R(X,F) = —0* and E[R(X*,F,)|X =] = —s2.
n n
2. (Bickel and Freedman) Suppose that X1, -, X, are independent U(0, #) random variables. Take
n

R(X,F) = FT(D(F*IQ) — max X;).

The distribution of max; X;/F~1(1) is Beta(n,1). This has cumulative distribution function ¢*. Thus,

PUR(X,F) <t} =1—(1— Ly m1—et,
n

For the nonparametric bootstrap,

R(X*, F,) = (max X; — max X)
7

max; X; = 4

and )
Py{R(X*,F,) =0|F,} =1—(1— Sl e ! ~0.6321.

For any parametric bootstrap, we compute

Py{R(X", ) < 1|F} = Po{Fy)o(1]0) < m?xXZ‘|FX1‘@(.|(:))}.
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To construct a bootstrap confidence interval, we proceed as follows. Let
h:F — R.
Then the confidence interval for h(Fy) may take the form
(=00, h(F,) +Y] or [h(E,)—Y_,h(F,)+Y,]
where, for a coefficient vy confidence interval
Py{h(F,) +Y > h(Fy)} =~ or  Py{h(F,) =Y. <h(F) <h(F,) + Yy} =7.

The goal is to find Y, Y_ and Y,.
In the case that there is an available formula for the variance of F', o2(F), then we can write, for example,

Y =o(F,)Y.

The acknowledges that Y may depend less on the underlying distribution than Y. Thus, we want Y to
satisfy

pa{w < }7} =1.

0<Fn)

This lead to the percentile-t bootstrap confidence interval for h(F'),

(=00, h(E,) + o(E,)Y].

To determine Y, note that

R(XvF)—h(F)(;)(F’L) and R(X*,m):T

Let Fr- be the empirical cumulative distribution function of R(X*, F},), then

oy -1
(=00, 0(Fy) Fpe (7)]
will serve to give the bootstrap confidence interval.

One can use a similar procedure to detect bias. If
Ey[o(X)] = h(Fy)

choose
R(X,F) = ¢(X) — h(F)

and find Fr-.
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8 Large Sample Theory

Large sample theory relies on the limit theorems of probability theory. We begin the study of large with
empirical distribution functions.

8.1 Empirical Distribution Functions
Definition. Suppose that X, ---, X,, are independent and identically distributed and let

be the order statistics.
Define the empirical cumulative distribution function F, by

1 n
=1

For any distribution define the p-th quantile to be

F~Y(p) = inf{z: F(z) > p}.

If X7, ---,X, and independent real valued random variables hypothesized to follow some continuous
probability distribution function, F', then we might plot

k
X F!
(k) Vversus (n n 1)
or equivalently
k
F(X —_—
(X)) versus i1

By the probability integral transform, Y; = F(X;) has a uniform distribution on [0, 1]. In addition,
Yy = F(X(x))-

This transform allows us to reduce our study to the uniform distribution. The fact that Y(;) and k/(n+1)
are close is the subject of the following law of large numbers stheorem.

Theorem. (Glivenko-Cantelli)

lim sup|F,(z) — F(z)|=0 as.

n—oo g
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Proof. (F continuous.) Fix x.

Thus by the strong law of large numbers

lim F,(z) = F(z) as.

n—oo

If a sequence of nondecreasing functions converges pointwise to a bounded continuous function, then the
convergence is uniform.

We can use the delta method to obtain results for quantiles and order statistics. The Glivenko-Cantelli
theorem holds for general cumulative distribution functions F'. One must also look at the limits of F),(z—).

We know look for the central limit behavior that accompanies this. If we look at the limiting distribution
at a finite number of values x, we expect to find a mutivariate normal random variable.

Definition. Let 7 be an index set. An R%valued stochastic process {Z(t) : t € T} is called a Gaussian
process if each of its finite dimensional distributions

Z(tl)a T Z(tn)
is a multivariate normal random variable. Consequently, the distribution of Z is determined by its

mean function pz(t) = E[Z(t)], and its covariance function I'z(s,t) = Cov(Z(s).Z(t)).

Note that the covariance of a Gaussian process is a positive definite function. Conversely, any positive
semidefinite function is the covariance function of a Gaussian process.

Definition.

1. A real valued Gaussion process {W(t) : t > 0} is called a Brownian motion if t — W (t) is continuous
a.s.,
uw(t) =0 and Tw(s,t) =min{s,t}.

2. A real valued Gaussion process {B(t) : 0 < t < 1} is called a Brownian bridge if t — B(t) is continuous

a.s.,
up(t)=0 and Tpg(s,t) =min{s,t} — st.

Given the existence of Brownian motion, we can deduce the properties of the Brownian bridge by setting
B(t) = W(t) —tW(1).
Because B is the sum of two Gaussian processes, it is also a Gaussian process.

na(t) = EW(8)] — tBW(1)] =0,
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and for s <t

Pp(s,t) = E[(W(s) = sW(L))(W(t) —tW(1))]
E[W ()W (t)] — tE[W (s)W (1)] — sE[W ()W ()] + stE[W (1)?]

= s—ts—st+st=s(l—1).

oo

Theorem. Let Y7, Y5, - - be independent U(0,1) and define

then for 1 < --- < 1y,
(Bn(tl)v ] Bn(tk)) —P (B(tl)ﬂ T B(tk))

as n — oo where B is the Brownian bridge.

Proof. The number of observations among Y7, --,Y, below ¢ is
U, (t) = nF,(t).
Set tg = 0 and assume that ¢, = 1. Note that the random variables
D, (i) = Un(t;) — Un(ti—1)
are Multi(n,t; —to, -+, tr — tx—1). By the central limit theorem

D(Z) = (Un(tl) — Un(ti_1) — n(ti — ti—l)), 1= 1, ceey, k

4-

converges to a multivariate normal random variable D with mean zero and covariance matrix

FD(ivj) = (t; — ti—l)((sij - (tj - tj—l))-

Now,

S D) = 3. = Ualts) = Unltica) = nlt; — ti1)) =

= (U(t;) — nt;) = Bn(t;).
=1 =1

si-

Thus, R
B, (t;) = D, A

where the matrix A has entries A(i, j) = I{;<;1. Consequently set,
B(tj) = DA.

Because B(t;) has mean zero, we need only check that these random variables have the covariance
structure of the Brownian bridge.
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To check this, let i < j
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We would like to extend this result to say that the the entire path converges in distribution. First, we
take the empirical distribution F,, and create a continuous version F, of this by linear interpolation. Then
the difference between F,, and F,, is at most 1 /n. This will allows us to discuss convergence on the separable
Banach space C([0, 1], R) under the supremum norm. Here is the desired result.

Theorem. Let Y7, Y5, - - be independent U(0,1) and define
B, (t) = Vn(E,(t) — t),

then
B, —->PB

as n — oo where B is the Brownian bridge.

The plan is to show that the distribution of the processes {B,;n > 1} forms a relatively compact set
in the space of probability measures on C([0,1], R). If this holds, then we know that the distributios of
{Bp;n > 1} have limit points. We have shown that all of these limit points have the same finite dimensional
distributions. Because this characterizes the process, we have only one limit point, the Brownian bridge.

The strategy is due to Prohorov and begins with the following definition:

Definition. A set M of probability measures on a metric space S is said to be tight if for every € > 0,

there exists a compact set K so that

inf P(K)>1-—e.
PeM

Theorem. (Prohorov)
1. If M is tight, then it is relatively compact.

2. If S is complete and separable, and if M is relatively compact, then it is tight.
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Thus, we need a characterization of compact sets in C([0,1], R). This is provided by the following:
Definition. Let 2 € C([0,1], R). Then the modulus of continuity of x is defined by

wa(0) = sup |a(s) — (1)
|s—t|<d

Note that
|wa (6) — wy (0)] < 2[|z —yl|,

and therefore, for fixed ¢, w,(9) is continuous in . Because z is uniformly continuous,

lim w,(d) = 0.

6—0

Theorem. (Arzela-Ascoli) A subset A € C([0,1], R) has compact closure if and only if

sup [2(0)] < o0, and lim sup w,(d§) = 0.
€A 6—0zeA

In brief terms, any collection of uniformly bounded and equicontinuous functions has compact closure.
This leads to the following theorem.

Theorem. The sequence {P, : n > 1} of probability measures on C([0, 1], R) is tight if and only if:

1. For each positive 7, there exist M so that

limsup P, {x : |z(0)| > M} <n.

n—oo
2. For each postive € and 7, there exists § such that

limsup P, {z : w.(6) > €} < n.

n—oo

We can apply this criterion with P,, being the distribution of B,, to obtain the convergence in distribution
to the Brownian bridge.

Because B, (0) = 0, the first property is easily satisfied.

For the second criterion, we estimate

P{ sup [Bn(s) = Bn(t)| 2 €} = P{sup|By(t)| > €}
s<t<t+5 t<s

= Plw V| Fy(t) —t] > €}

1 n
= P{supvn|— 1 Y;) —t| > €}
{tggf\n; 0,9(Y) —t| > ¢}
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and use this to show that given n > 0 and e > 0, the exists § > 0 so that

1 1<
lim sup P{wp, () > €} < limsup SP{EEE) \/ﬁlﬁ ZI[O_,t] (Y;) —t| > €} <n.

n—o0o n— oo :
i=1

Write the Brownian bridge B(t) = W (t) — tW (1), where W is Brownian motion. Now let {P, : ¢ > 0}

be a family of probability measures defined by

P.(A) = P{W € AlW(1) € [0, €]}

Proposition. P. =P P, where P, is the distribution of the Brownian bridge.

Proof. Let F be a closed subset of C([0, 1], R). We show that

limsup P{W € F|W(1) € [0,¢]} < P{B € F}.

e—0

Fix t; < --- < t; note that the correlation of W (1) with each component of (B(t1),
and thus W (1) independent of B. Therefore

P{B e A[W(1) € [0,]} = P{B € A}.

Note that
|B(t) — W ()| =t{W(1)]

and therefore
I|B—W]||=[W(1)|

Choose 1 < €, then
P{W € FIW(1) € [0,¢]} < P{B € F"|W(1) € [0,¢]} = P{B € F"}.
Because F' is closed,

lin% P{Be€F"} =P{BeF}
n—

We will use this to compute the Kolmogorov-Smirnov test.

Theorem. For ¢ > 0,

lim P{ sup |Bn(t)| < c} =14+ 22(—1)k€_2k262_
n—oo  0<t<1 P

120

-+, B(ty)) is zero



To begin, let X7, X5, -+ be an i.i.d. sequence of mean zero, finite variance, and let Sy, S1, 59, - - be the
sequence of partial sums. Set

my, = minogign Sz Mn = maXp<i;<n Sl

m = minogtgl W(t) M = maXp<t<i W(t)

Because the mapping
x (ogltigl x(t), [Max x(t), z(1))
from C([0,1], R) to R? is continuous, we have
Theorem.

1
= ’I’L7Mn7S’I’L _)D 7M7W1 .
—=(m ) = (m. M, W (1))

For a simple random walk, we find an explicit formula for

pn(a,b,v) = Pla <m, < M, <b,S, =v}.

Claim. If ¢, (j) = P{Sy, = j}, then for integer a <0< b, a <v <b,a<b,

oo oo

pala,b,v) = Y gu(v+2k(b—a)) = > qn(2b—v+2k(b— a)).

k=—o0 k=—o0

Note that the sum above is finite if a < b. To prove by induction, check that pg(a,b,0) = 1, and
po(a,b,v) # 0 for v # 0.
Now assume that the formula above holds for p, 1.

Case 1. a =0
Because So = 0, p,(0,b,v) = 0. Because ¢,,(j) = gn(—7), the two sums in the formula are equal.

Case 2. b =0 is similar.
Case 8. a<0<b, a<v<h.
Because a +1 <0 and b — 1 > 0, we have the formula for
pn-1(a—1,b—1,v—1) and p,_1(a+1,0+1,0+1)
Use )
Qn(J) = §(Qn71(j - 1) + anl(j + 1))
and

1
pnla,b,v) = i(pn_l(a— L,b—1Lv—1)4+pp_1(a+1,b+1,v+1))
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to obtain

Z %(Qn—l(v -1+ Qk(b — a)) + Qn—l(’U +1 + Qk(b — CL)))

k=—oc0

=3 @20 1)~ (0= 1)+ k(o — ) + g 120+ 1) — (04 1) + 2605~ a)))

k=—o0

1
= i(pn_l(af 1L,b—1lv—1)+pp_1(a+1,0+1,v+1)).

Therefore,
Pla<m, <M, <bu<S, <v}

= i Plu+2k(b—a) < Sp < v+2k(b—a)} — i P{2b— v +2k(b—a) < S, < 2b—u+2k(b—a)}.

k=—o00 k=—o00

By the continuity of the normal distribution, a termwise passage to the limit as n — oo yields

Pla<m< M <bu<W(l)<v}

= i Plu+2k(b—a) < W(1) < v+2k(b—a)} — i P{2b—v+2k(b—a) < W(1) < 2b—u+2k(b—a)}.

k=—o0 k=—o00

Let —a=b=c, u =0, and v = ¢, then

P{sup [W(t)| <ec,0<W(1) <e}

0<t<1

= > P{dke <W(1) < e+4ke} — > P{2c—e+4ke < W(1) < 2c + 4kc}.

k=—o00 k=—o00

Use
—z2/2 )

1
1iH(1) —P{lr <W(l)<z+e} = e
e—0 €

1
V21
to obtain N N N

P{| sup |B(t)| <c} = e—Z(kc)z _ e—2(c+kc)2 =142 e_kacz
{l 0<Kll O <ct= > > 3

k=—o00 k=—o00 k=—o00

We can convert this limit theorem on empirical cumulative distribution function to sample quantiles using
the following lemma.

Lemma. Let Y7,Y3,- - be independent U(0,1). Fix t € [0, 1] then for each z € R there exists a sequence
A,, such that, for every e > 0,
lim P{|A,| > V/ne} = 0.
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and

Proof. Set

~ z - z 1 z z
Ay = Fp(t+ —=) = Fo(t) — == = —(Un(t +
v = Fult+ 22) = Fult) = 2= = LU
where 6,, < 2/n and U,(t) is the number of observations below ¢t. Check, using, for example characteristic
functions, that A, has the desired property. To complete the lemma, consider the following equivalent
inequalities.

N
—~
S
AN
—
=
N~—
|
-
N~—
IN
N

Aol < t+%
t=F,(F(t) < ﬁz(w%)
t < An+ﬁ‘n(t)+%

B
=
\
éijz
N
IN
w
+
5
&

then

as n — 0o, where B is the Brownian bridge.
Use the delta method to obtain the following.

Corollary. Let 0 < t; < --- <t < 1 and let X7, X5, -+ be independent with cumulative distribution
function F. Let x; = F~1(¢) and assume that F' has derivative f in a neighborhood of each xy,. i =1,---,k,
0 < f(axt,) < co. Then } .

\/H(szl(tl) = Lty ’Frjl(tk) - xtk) —P W7

where W is a mean zero normal random vector with covariance matrix
min{ti, tj} - titj
f(t:)f(t5)
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Examples. For the first and third quartiles, @; and @3, and the median we have the following covariance
matrix.

31 1 1 1 1
16 f(z1/4)? 8 f(w1ya)f(x1/2) 16 f(z1/4) f(®3/4)
o — 1 1 100 1 i
w = 2ff(301/4){(901/2) . 4f(I11/2)2 ng$1/2){($3/4)
16 f(w1/0)f(@3/a) 8 f(z1/2)F(@s/4) 16 f(z3/4)?

1. For the Cauchy distribution, the density is

1 1

1) = T et

Therefore,
Ti/a = p— 0, $1/2:M,1 553/4:#"‘?7
f($1/4) = ﬁ f(%/z) = o f($3/4) = Zom

2. For the normal distribution, the density is

Therefore,

$1/4 = u— 067450’7 £C1/2 = U, 5173/4 = u + 067450’,
2
f(@1/4) = 5= exp (—70'62452) f(xr2) = ==, flw3/4) = 57 xp (—70'6245 )

For the extreme statistics, we have:

Theorem. For z_,z, € R, a_,ay > 0, and assume

lim (z—2z_)F(z)=c_ >0, and lim (x—2z4)F(z)=cy >0.

Tz + Tz —
Let X1, X5, - be i.i.d. observations with cumulative distribution function F,
my, =min{Xy,---, X,,} and M, =max{X;, ---,X,}.
then

lim P{n"=(m, —a_) <t_,n'/* (x4 — M,) <t;}=(1—exp(—c_t*"))(1 — exp(—c4t7)).

n—oo
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8.2 Estimation

The sense that an estimator ought to arrive eventually at the parameter as the data increases is captured
by the following definition.

Definition. Let {Fy : § € Q} be a parametric family of distributions on a sequence space X*°. Let G
be a metric space with the Borel o-field. Let

g: Q-G
and
Y, : X* -G

be a measurable function that depends on the first n coordinates of X*°. We say that Y,, is consistent for

g(0) if
Y, —F g(a), Py

Suppose that  is k-dimensional and suppose that the FI regularity conditions hold and that Zx, (6) is
the Fisher information matrix for a single observation. Assume, in addition,

Vn(6, —0) =P z

where Z is N (0, Vy).
If g is differentiable, then, by the delta method

Vn(g(On) — 9(0)) =P (Vg(6), 2).
In particluar, g(©) is a consistent estimator of g(6).

The variance of (Vg(0), Z) is
Vg(0)" VoVg(0).

We know that the smallest possible variance for an unbiased estimator of g(0) is
Vg(0)" Ix, ()" Vg (0).

The ratio of these two variance is a measure of the quality of a consistent estimator.

Definition. For each n, let G,, be and estimator of g(f) satisfying
VA(G) - 9(0)) =P W

where W is N(0,vg). Then the ratio
Vg(0)" Ix, (0)"'Vg(0)
vy

is called the asymptotic efficiency of {G,, : n > 1}. If this ratio is one then the sequence of estimators is
asymptotically efficient.
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To compare estimating sequences, we have

Definition. Let {G,, : n > 1} and {G), : n > 1} and let C, be a criterion for an estimator. Fix e and let
n(e) and n'(e)
be the first value for which the respective estimator satisfies C.. Assume

limn(e) =cc and limn'(€) = oco.

e—0 e—

Then ,
r = lim m'(e)
2 ()

is called the asymptotically relative efficiency (ARE) of {G,, : n > 1} and {G], : n > 1}.

Examples.

1. Let X1, Xo,--- be independent N (u,0?) random variables. Let g(u,0) = pu. Let G, be the sample
mean and G!, be the sample median. Then,

V(G — ) —-PsZ and V(G — p) D \/ZUZ’

where Z is a standard normal. Assume that C. is that the estimator have variance below e¢. Then the
asymptotic relative efficiency is 1/2/7 & 0.79788.

2. Let X1, X5, -+ be independent U(0,#) random variables. The maximum likelihood estimator of 8 is

0 = max Xj;.
1<i<n

A second estimator is -
2X,.
Set C. to be having the stimator have variance below §2¢. We have
92

and Var(2X,,) = 3

0°n

Var(®n) = T

Therefore,
(n(€) +1)*(n(e) +2)
n(e) ’

n'(e) =
and the ARE of ©,, to 2X,, is oo.

3. Let X3, X5, be independent N(u,1) random variables. Then Zx, (f) = 1 and

\/E(Xn - 9) _>D Z7
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a standard normal. Fix 6y and for 0 < a < 1 define a new estimator of ©

o — X, if | X, — 6| >n~1/%,
" 00+(L(X—00) if |Xn—90‘ <7L71/4.
This is like using a posterior mean of © when X, is close to fy. To calculate the effieiency of G,
consider:
Case 1. 0 # 0.

Vil X, — Gyl = V(1 - a)| X, — Gn|I[0,n*1/4}(|Xn = Ghl)-

Hence, for € > 0,

Py{v/n|X, — b0l > €} < Po{|Xy — 60| >n~"/*}
= Pi{(0 — 0)vn—n~* < /n(X, = 0) < (6 — 0)v/n +n 1/,

Because /n(X,, — ) is a standard normal and the endpoints both tend to either +o0o or —oco, this last
quantity has zero limit as n — oo. Therefore

lim Pj{v/n|G, — X,| > €} =0.
n—oo

Case 2. 0 = 0.
Vil(Xp = 00) + (00 — Gu)| = V(1 — a)| X — 00| 174 o) (| X — o)
Hence, for € > 0,
Py {Vnl(Xy = 00) + (60 — G)| > e} < P {|(Xn — 00)| > n™"/*} = Py {v/n|(X, = 60)] > n'/*}
Again, this last quantity has zero limit as n — oo. Therefore
Jim Po{v/n|(Grn = b0) + a(X,, — 60)| > ¢} = 0.

Therefore,

Vn(Gn —0) —-Pw

where W is N(0,vy) where vg = 1 except at §y where vg, = a®. Thus, the effieiency at g is 1/a? > 1.
This phenomenon is called superefficiency. LeCam proved that under conditions slightly stronger that
the FI regularity conditions, superefficiency can occur only on sets of Lebsegue measure 0.
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8.3 Maximum Likelihood Estimators

Theorem. Assume that X7, X5, --- are independent with density

fX1|@(x|9)

with respect to some o-finite measure v. Then for each 8y and for each 6 # 6,

nan;O PéU{H Ix.10(Xil0o) > HfX1|@(Xi|9)} =1

i=1 i=1

Proof. The event above is equivalent to

1 fxie(®ilf)
R(z) = - glog 0@l <0.

By the law of large numbers

Ixje(Xil0)
fx110(Xil0o)

the Kullback-Leibler information, which is negative whenever 0 # 6.

R(X) — Ep,[log | =—Zx,(00;0), as. Py,

Consistency follows from the following.

Theorem. (Wald) Assume that X7, X5, - are independent with density
le [S] (:L‘|9)

with respect to some o-finite measure v. Fix 6y € €2, and define, for each M C 2 and =z € X.

Assume,

1. for each 6 # 6y, the is an open neighborhood Ny of 6 such that Eg, [Z(Ng, X1)] > 0. and

2. for 2 not compact, there exists a compact set K containing 6y such that Fy [Z(K¢, X1)] = ¢ > 0.
Then, then maximum likelihood estimator

@n — 90 a.s. PQU.

Proof. For Q compact, take K = Q. Let ¢ > 0 and let Gy be the open € ball about 6. Because K\Gq
is compact, we can find a finite open cover Gy, -+, Gp—1 C {Np : 0 # 0p}. Thus, writing G,, = K¢,

QO=GyUuGLU---UG,,, and E@O[Z(Gj,Xl)]:Cj > 0.
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Let B; C X satisfy

1 n
lim — Z(Gj,x;) = cy.
i, 5 2 2(Gra) =¢;
Similarly define the set By for K°. Then, by the strong law of large numbers

PQO(B]):l j:0,~~,m
Then,

{z : limsup Hén@b e

n—oo

yZn) — ol > €} C UL {z: On(x1, -, 2,) € Gy 0.}

" f:L’lI@ xz|90) .
- Um z: inf — log < 0 i.o.
sl of S Z e o @lD) J

c U {z:= ZZ(GJ.,I,») <0io.} CUL, B
i
This last event has probability zero and thus we have the theorem.

Examples.

1. Let X3, Xo,- - be independent U(0, ) random variables. Then

log & if o < min{fy, ¥}
log 2Xa10(@l80) _ ] oo if 1 < < 6
fxie(zl) —o0 if g <z <

undefined otherwise.
We need not consider the final two case which have Py, probability 0. Choose

Ny = (9+9° o0) for 6> 6y, Z(Np,x)= 10g(9+‘9°) >0
Ny = (g, 9+90) for 0 < 0y, Z(Ng,z) =00
For the compact set K consider [6y/a, abp], a > 1. Then,

fx,10(x|00) log & ifzx <
inf log ————= = o a
0K fX1|@(x|9) loga if6g>x> 2

1 90/(1 T 9()
— / log—dx—&—/ loga dx | .
o \ Jo bo 0

o/a
As a — oo, the first integral has limit 0, the second has limit co. Choose a such that the mean is positive

This has Py, mean

The conditions on the theorem above can be weakened if f Xl‘@(x\-) is upper semicontinuous. Note that

the sum of two upper semicontinuous functions is upper semicontinuous and that an upper semicontinuous
function takes its maximum on a compact set.

Theorem. Replace the first condition of the previous theorem with
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1. E@D[Z(Ng,Xi)] > —0Q.

Further, assume that fx,|e(z|-) is upper semicontinuous in ¢ for every = a.s. Pp,. Then

lim © =6y, as. Py,

n—oo

Proof. For Q compact, take K = 2. For each 6 # 6y, let Ny be a closed ball centered at ¢, having
radius at most 1/k and satisfying
Ny 11 C Ny C No.

Then by the finite intersection property,
Mez1Nok = {6}

Note that Z(Ng,i, =) increases with k and that log (fx,|e(#]00)/fx,je(x(1)) is is upper semicontinuous in ¢
for every = a.s. Py,. Consequently, for each k, there exists 05 (x) € Ny such that

fxl|e($|9o)>

Z(Noyy, =) = log <fX o(z|0k)

and therefore

0
Z(Ng,z) > klim Z(Ng g, z) > log <fX1@(300)) ,

fxi10(z(0)
If Z(Ny,z) = oo, then Z(Nyg y,x) = oo for all k. If Z(Ny,z) < oo, then an application of Fatou’s lemma to
{Z(Np j,x) — Z(Ng,x)} implies

lim inngO [Z(N97k,Xi)] Z Ego [hkm inf Z(NQJQ,XZ')] Z IXl (00,0) > 0

k—o0
Now choose k* so that Fg,[Z(Ng =, X;)] > 0 and apply the previous theorem.

Theorem. Suppose that X7, X, - - - and independent random variables from a nondegenerate exponential
family of distributions whose density with respect to a measure v is

Ix,10(X0) = c(0) exp(0, z).

Suppose that the natural parameter space € is an open subset of R* and let ©,, be the maximum likelihood
estimate of # based on X1, ---, X, if it exists. Then

1. lim,— o Pg{é)nexists} =1,

2. and under Py .
Vn(©, —0) =P Z,

where Z is N(0,Zx,(0)~!) and Zx, (0) is the Fisher information matrix.
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Proof. Fix 6.
Vlog fxje(z]0) = nZ, +nVlogc(0).

Thus if the MLE exists, it must be a solution to
—Vlogc(f) = z.
The Hessian matrix is the Fisher information matrix,
32

06:0,

ZX(G)M = — IOg c(&)

Because the family is nondegenerate, this matrix is is positive definite and therefore —logc(f) is strictly
convex. By the implicit function theorem, v has a continuously differentiable inverse h in a neighborhood of
6. If X,, is in the domain of h, then the MLE is h(X,,).

By the weak law of large numbers,

X, =P Ey[X] = —Vlogc(d) Py.

Therefore, X,, will be be in the domain of h with probability approaching 1. This proves 1.
By the central limit theorem, -
Vi(X, +Ve(0) =P Z

as n — oo where Z is N(0,Zx(6)). Thus, by the delta method,

Vn(6, —0) =P AZ
where the matrix A has (i, ) entry 0h(t)/0t; evaluated at t = v(f), i.e., A = Zx(0)~'. Therefore AZ has
covariance matrix Zy (6) 1.

Corollary. Under the conditions of the theorem above, the maximum likelihood estimate of 6 is consis-
tent.

Corollary. Under the conditions of the theorem above, and suppose that g € C1(2, R), then g(én) is
an asymptotically efficient estimator of g(9).

Proof. Using the delta method

V(g(©n) = 9(0)) = Vg(O)W
where W is N(0,Zx(6)7!). Therefore, the estimator is asymtotically efficient.

We can obtain inconsistent maximum likelihood estimators. This is easy in cases in which the mapping
0 — Py

does not have good continuity properties.
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Example. Let (X1,Y7),(X2,Y2),-- be independent random variales, X;,Y; are N (u;,02) The log like-
lihood function

log L(0) = —nlog(2r) = 2nlogo + o—5 > ((wi — i) + (i — p1)°)

Zn: (xl ;ryl - /M) %Zn:(ffz - yi)2>

=1 =1

1
= —nlog(2m) — 2nlogo + 292 <2

Thus the maximum likelihood estimators are

~ X;+Y; &9 1 2
Min= =5, Em:%Z(X,;—Yi).

Because X; —Y; is N(0,20?) and thus

[\

- o
Ei n _>P Y P9~

’ 2
Thus, the estimator is not consistent.

To obtain general sufficient conditions for the asymptotically normality of maximum likelihood estimators,
we have.

Theorem. For the parameter space (2 € RP, let X1, Xo,--- have density fx|e be C? in 0 and that this
differentiation can be passed under the integral sign. Assume

1. the Fisher information matrix Zx, (0) is finite and non-singular,
2. for each 0, the MLE 0, —F 0, Py, as n — oo, and
3. there exists H, such that for each 6y € int(£2),

2

0
sup log fx,je(x[00) — 96,06, log fx,je(x]0)] < H,(z,0),

- 0?
16—60|<r 00x00;
with lim,_,g Fg,[H-(X1,6p)] = 0. Then, under Py,
Vn(©, —0) =P W

as n — oo where W is N(0,Z (90))

Proof. For 0y € int(9), 6, =% 6, Pp,. Thus, with Py, probability 1, there exists N such that

I'nt(Q)c(én) =0 for all n > N. Thus, for every sequence of random variables {Z,, : n > 1} and € > 0,

i
Jim Py {Z,1 Ilt(Q)L( n) > eyn}t =0.
Set

£0|x) = Zlogfxl‘@ (x;]6).
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For ©,, € int(Q), R
Vol(©,]X) =0.

Thus, A . R
Vol(On|X) = v9€(9n|X)Iint(Q)c (©n),

and R
lim Py, {Vgl(©,|X) > ey/n} = 0.

By Taylor’s theorem,

iz(é |X)—ie(9 |X)+zp:iie(e* 1X)(Onr — Ook)
ag; " a0 £ 90), 00; R T IORD

where 0} . is between 6y ; and ©,, 1.

Because én —P 6y, we have that 0y —P 6. Set B,, to be the matrix above. Then,
Jim_ Pp{[Vel(6|X) + B,(©y — o) > ey/n} = 0.
Passing the derivative with respect to § under the integral sign yields
E,[Vol(60]X)] = 0.

Pass a second derivative with respect to 8 under the integral sign to obtain the covariance matrix Zx, (6o)
for Vl(6p|X). By the multivariate central limit theorem,

VnVy(0o|X) =P W

as n — oo where W is N(0,Zx, (6o)).
Consequently, for € > 0, there exists ¢ so that

lim sup Py, {v/1Bn (6, — p) > ¢} < €.

Write
e~ 0 0
B,k,j) ==Y ——1 X;10) + A,,.
(k,7) ”;:1 20y, 90; og [x,10(X;|0) +

Then, by hypothesis,
1 n
Al <~ H.(X;,0
20l < 5D (X0

whenever |0y — 607|| < 7. The law of large numbers gives

1
ZHT‘(Xi790) —F Eﬁo [HT(XMGO)] P90'

n -
=1
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Let € > 0 and choose r so that

€
Eoy[H(X1,00)] < 3

BN , '
Pp{lAnl > e} < Po{= Ho(Xi,00) > e} + Py, {llfo — 0]l <7}
i=1
/ 1 . € / *
< Bl D Hy(Xi, 00) — Ba[H (X1, 00)]| > 5} + Po,{Il60 — 03] < 7}

i=1

Therefore,
A, =70, P, and B, - ~Ix,(6y), Ps

Write B, = —Zx, (6p) + C,,, then for any € > 0,
lim P90{|\/ﬁCn((:)n — 90)| > 6} =0.

o*

Consequently, R
VI(Vol(0o]X) +Ix,(00)(On — 00)) =70, Pp,.
By Slutsky’s theorem, R
~Ix,(00)vn(©,, — ) =P Z, Py,.
By the continuity of matrix multiplication,
Vn(©, —b0o)) =T —Ix,(60) 7' Z, Py,,
which is the desired distribution.

Example. Suppose that

1
Fxie(@lf) = 1+ (x—0)2)
Then, 2 :
5 B 1—(z—10)
ﬁlogfxl\@(fc\‘g) = 72m.

This is a differentiable function with finite mean. Thus, H, exists in the theorem above.

Because 6y is not known, a candidate for Zx, (6p) must be chosen. The choice

IXI (@n)

is called theexpected Fisher information.
A second choice is the matrix with (4, j) entry

L0 fo(X[6,)
n@@ﬂj o8 X118 "

is called the observed Fisher information.
The reason given by Efron and Hinkley for this choice is that the inverse of the observed information is
closer to the conditional variance of the maximum likelihood estimator given an ancillary.
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8.4 Bayesian Approaches

Theorem. Let (S, A, i) be a probability space, (X, B) a Borel space, and € be a finite dimensional parameter
space endowed with a Borel o-field. Let

©:5—-0Q and X,:S5—-Xn=12---,
be measurable. Suppose that there exists a sequence of functions
hp: X" —Q

such that
hn(Xla co aXn) — 0.

Given (X1,---,Xp) = (21, -+, 2y), let
,LL@|X17...7X"(~|£E1, e, Ty)

denote the posterior probability distribution on 2. Then for each Borel set B € €,

Jim pex, - x, (Bl 20) = I5(0) as. .

Proof. By hypothesis O is measurable with respect to the completion of 0{X,, : n > 1}. Therefore, with
1 probability 1, by Doob’s theorem on uniformly integrable martingales,

IB(@) = lim E[IB(@)|X1, 7Xn] = nlLH;Ou@|X1,,Xn(B‘X177Xn)

n—oo

Theorem. Assume the conditions on Wald’s consistency theorem for maximum likelihood estimators.
For € > 0, assume that the prior distribution ug satisfies

M@(Ce) > 07
where C. = {0 : Tx, (60;0) < €}. Then, for any € > 0 and open set Gy containing C¢, the posterior satisfies

nh—{go He Xy, X, (G0|X1, s ,Xn) =1 as. Pgo.

Proof. For each sequence z € X*°, define

— 1 « fX1|@(a:i|90)
Du0r) =1 3 Jog e - gy

i=1
Write the posterior odds of Gy as

tox, . x, (Golrr, - xn)  Jo, Ilicy fxie(il0) pe(dd) [, exp(—nDy(0,2)) pe(do)
Ho|Xy - xn (GElT1, - 2p) fgg [T fx,je(xil0) pe(df) fgg exp(—nDy (8, x)) pe(dd)
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To show that the posterior odds go to oo, we find a lower bound for the numerator and an upper bound
for the denominator.
As in the proof of Wald’s theorem, we construct sets Gy, - -, G, so that

N=GyUG1U---UGy, and Ey[Z(Gj,X1)]=c¢; >0.
For M € Q,

171
inf D, (0,2) > = Z(M,x;).
D00 > 25 2012

Thus the denominator is at most

Z/ TP e (df) < Z sup e P (07) 16(G) < Emj ( ZZ(GJ"“)> 1o (Gj)-

1 0€G;

Set ¢ = min{cy, -, ¢y}, then for all z in a set of Py, probability 1, we have, by the strong law of large
numbers, a number N(z) so that for n > N(z),

i Z(Gj,l'z) >
i=1

and, thus, we have a bound on the denominator of exp(—nc/2).
For the numerator, let 0 < § < min{e, ¢/2}/4. For each x € X*° or 0 € Q, define
Wi(z) ={0: De(0,2) < Ix,(00;60)+ 6, for all £ > n},

and
Vo(0) = {x: De(0,2) <Ix,(00;0)+ 4, for all £ > n}.

Clearly
x € V,(0) if and only if § € W, (z).

Note that the strong law says that
D, (0,z) — Ix,(00;0) a.s. Py,.

Thus, V,,(0) is a nested sequence of events whose Py, probability converges to 1.

po(Cs) =t fo P (@) o) = i [ [y @) Py (do)ne(as)

n—oo

— 1y co [y fo, (o) (6) 10(d0)Pag(d) = lim [ pe(Cs 0 W, (2)) Py, (de)

n—oo [y

Therefore,
HILH;O po(Cs N Wy (z)) = pe(Cs) a.s. Py,.
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For z in the set in which this limit exists, there exists N(z) such that

pe(Cs N Wy, () > %M@(Cé)

whenever n > N(m) Use the fact that Zx, (6p;0) < ¢ for 8 € Cs to see that the numerator is at least

nc

1 Yo (Cs).

1 1
/ exp(—n(Tx, (00:6) + 8)) pio(dh) > + exp(~2n6)ue(Cs) >  exp(—
CsMWi () 2 2

Therefore, for z in a set having Pj, probability 1 and n > max{N(z), N(x)}, the posterior odds are at

least
ne

1
§M9(06) eXP(z)
which goes to infinity with n.
Example. For X;, X5, - independent U (0, §) random variables, the Kullback-leibler information is
log % if 6 > 6,

Lx1(00: ) :{ 00 if 0 < 6,

The set
Ce = [0, 6690).

Thus, for some § > 0,
(90 — 6, 6690) C Gp.

Consequently is the prior distribution assigns positive mass to every open interval, then the posterior prob-
ability of any open interval containing 6y will tend to 1 a.s. Py, as n — oo.

To determine the asymptotic normality for posterior distributions, we adopt the following general notation
and regularity conditions.

1. Xpp: S — A&, forn=1,2,---
2. The parameter space Q C RF for some k.

0y € int(Q).

- W

The conditional distribution has density f, e (X,|0) with respect to some o-finite measure v.

n(0) = log fx,j0(Xn|0).
HL,,(8) is the Hessian of £,,(6).

©,, is the maximum likelihood estimator of © if it exists.

® o o

5N —an(én)_l if the inverse and ©,, exist,
" I otherwise.
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9. The prior distribution of ©® has a density with respect to Lebesgue measure that is positive and
continuous at 6.

10. The largest eigenvalue of ¥,, goes to zero as n — 0.

11. Let A, be the smallest eigenvalue of 3,. If the open ball B(fy,d) C €, then there exists K(J) such
that
lim Py { sup A,(£n(0) —€n(bp)) < —K(9)} = 1.
oo 6¢B(00,0)
12. For each € > 0, there exists § > 0 such that

lim P, { sup 11 +~TSY2He,(0)2 2| < e} = 1.
e 0€B(00,9),l|v]|=1

Theorem. Under the regularity conditions given above, set
v, =x120-06,).
Then, for each compact set K € R*¥ and cach € > 0,

lim Py {sup |fu, x, (1Xn) = ()] > €} = 0.
n—oo ’l/JEK

where ¢ is the N(0, I;) density.

Proof. Note the regularity conditions guarantee that ©,, is consistent. By Taylor’s theorem,

xg0(Xal0) = fx,16(Xa|On) exp(£(0) — £(On))
= oK@ exp (<50~ BTSN - RO K)EMHO -6+ 4,).
where

A = (0= 0,) VO Lipg ) (On), and Ry (6, Xy) = I, + T3/ *He, (6;,)5)/,
with 07 between 6 and én Note that 6y € int(2) and the consistency of é)n imply that
Jim. Py {A, =0, for all 0} = 1.
By Bayes’ theorem, we can write the posterior density of © as

an|®(Xn‘0)

f@|Xn (9|Xn) = f@(@) fX (Xn)

The posterior density

det(£,)12 fo (5020 + 6,,) fx. 10 (Xa S 29 + 6,))

_ det(T0) 2 fx, 10(Xn|On) fo (520 + 0,) fx,j0(XalZi/* +6,)
N an (Xn) fX,,LIG(Xn|én) .
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To consider the first factor, choose 0 < € < 1. Let 7 satisfy

1+7n
1+62m.

Because the prior is continuous and nonnegative at 6y, and by the regularity conditions there exists § > 0
such that

—-n
l—e< —— 1
e

|0 —6o|| <0 implies |fo(f) — fo(fo)| < nfe(bo)

and
lim P {  sup  [14+~TS2HE,(0)5)/] <0} = 1.
n=20" " 6e B(9y,5),lIn]|=1
Clearly
fr ) =+ d= [ fa@fxe(l0) @+ [ fa(®)fx,e(X.l6) db.
B(60.) B(00.0)°
Claim 1.

N

P (9n)k/2 '
dEt(E)1/2an|®(Xn|én) (2 ) fe(GO)

Jl = an|®(Xn|én)/ f@(e) exp <_;(9 - Gn)TZr_Ll/Q(Ik - Rn(eaXn))E;1/2(9 - én) + An) do

B(60,9)

and therefore
J1

—n)dJ: _
O < o) Fxo (XalBm)

< (1 + U)Jg

where )
Jy = / exp (—2(9 —0,)TS V21, — Ra(0, X,))5, Y20 — 6,,) + An> de.
B(60,9)

Consider the events with limiting probability 1,
1 N
{A, =0}n{ exp (—(9 -0,)Ts 10— @n)) do
B(00,9)

1— ~ ~
<Jy< / exp (—”(9 — 6,710 - @n)> do}.
B(60,9) 2

These two integrals equal
(2m)*/2(1 £ ) ~F/2det(2,) 20 (CE).

where ®(CF) is the probability that a Ny (0, I;,) random variable takes values in

Cn={2:0,+(1+n)7%25/2, ¢ B(6y,9)}.
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By the condition on the largest eignevalue, we have for all z,
»12; 5P 0 and hence ®(CF) -7 1

as n — oo. Consequently,

) det(x)/2 det(x)1/2
k/2 k/2 _
or J
lim P {(27)"/?det(2)V2(1 — €) < ———— < (2m)"2det() 2 (1 + )} = 1.
n—0o0 Jo(00) fx,10(Xn|On)
Claim I1.
Jo j
—= —
det(z)l/QfXﬂ@(Xn‘@n)
Write

J2 = fX,,\@(XnK:)n) exp(gn(90> - gn(én)) /;(9 5 f@(e) eXp(£n<9) - fn(tg())) do.

Because )\, < det(X,)"/*, we have by the regularity conditions
0n(0) — £,(60) < —det(%,)"VEK ().
Use this to bound the integral above by
exp(—det(Z,)"VFK (8)) fo(0) db < exp(—det(Z,)"*K(5)),
B(00,6)

with probability tending to 1.
Because ©,, is a maximum likelihood estimator,

exp(£n(0o) — €n(0n)) < 1.
The condition on the largest eigenvalue guarantees us

exp(—det(%,)"V*K(5))

P
0
det(2,)1/2 -

giving the claim.
Combining the claims gives

fx,(Xn)

P k/2 _
det(2)1/2 fx, 10 (Xn|On) () e )

Because (:)n is consistent and the prior is continuous at 6y, we have that

f@(21/2w + én) —F f@(o)
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uniformly for ¢ in a compact set.
Combine this with the results of the claims to obtain

det(%)"/2 fx,j0(Xn|On) fo (520 + On) _ p

T —k/2
an(Xn) (2 )

uniformly on compact sets.
To complete the proof, we need to show that the second fraction in the posterior density converges in
probability to exp(—|[#||?/2) uniformly on compact sets. Referring to the Taylor expansion,

Fx.10(Xn| S8 20+ 6,) (
= = exp
Fx.10(Xn]0,)

Let n,¢ > 0 and let K C B(0,k) be compact. Then by the regularity conditions. Choose ¢ and M so
that n > M implies

—%(W(Ik = Ra(S,/20 + 0, X))o + An)) :

€

Bl sup Ly EPHGO)D ] < > 1 - 2

0€B(60,6),[|v||=1
Now choose N > M so that n > N implies
Py {SY%) 4+ 6, € B(6y,9), forall € K} > 1 — %
Consequently, if n > N,
Py A" (I — Ra(SY2¢ + 00, X)) — |[@| < nforallp € K} >1—e
Because
lim Py {A, =0, forall ¢} =1

the second fraction in the representation of the posterior distribution for ¥,, is between

exp(—n) exp(—|[¢[|*/2) and exp(n) exp(—||¢|[*/2)

with probability tending to 1, uniformly on compact sets.
Examples.

1. Let Y7,Y5, -+ be conditionally IID given © and set X,, = (Y7,---,Y},). In addition, suppose that the
Fisher information Zx, (6p).
e Because nY,, —F Tx, (6p)~!, the largest eigenvalue of 3,, goes to 0 in probability as n — oc.
e Using the notation from Wald’s theorem on consistency, we have
3 0,(0) —£,(0 = — inf (£,(6p) — (0
S (0 b)) =, (0a(00) = (a(6)

< _ . . B
> j:r{}m,m{ Glencgj (n(00) — £,(0))}

< — min {ZZ(GJ',YU}
—1

j=1,--;m "4
K3
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Note that
1 n
=3 2(Gi. i) =" Bo,[2(Gy, Vo).
i=1
If these means are all postive, and if A is the smallest eigenvalue of Zy, (6p), then take

K(0) < 5y, min{Ey,[2(G;, Y]}

1
22X
e Recalling the conditions on the asymptotically normality of maximum likelihood estimators, let

€ > 0 and choose ¢ fo that .

H;(Y,
Eg,[Hs(Y3,0)] < Tt

where p is the largest eigenvalue of Zy, (6p). Let i, be the largest eigenvalue of 3,, and 8 € B(fy, 9).

sup |14 VTZ:/QH&L(H)E}/Qﬂ

[lv=1l|

= s WSS + HE (0)2E )] < pn s V(2T + HEL(0))]
vll= ¥ll=

<p <sup (S0t + M, (600))y] + Sup v E (ML (80) — Hﬁn(ﬁo))ﬂ)
v||=1 v||=1

If 6, € B(6y, ) and |p — nuy,| < €, then the expression above is bounded above by
(e + )2 ; Hs(Y;,0
1% € E; 5( 2l 0)

which converges in probability to a value no greater than e.

2. Let @ = (—1,1) and let Z1, Zs, - - - be independent standard normal random variables. Define the first
order autoregressive process
Y,=0Y, 1+Z2,, n=1,2---.

Let X,, = (Y1, --,Y,). Then

n—1 n
1
G(0) =k — (V2 +(1+6%) D Y2 =20 ViYia).
=1 =1

O — Z?:l YiYia
n n—1+y,9
i1 Yi
e Several of the regularity conditions can be satisfied by taking a prior having a positve continuous

density.
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(o - -3 vz,
i=1
does not depend on 6.

292k

Covg(Y2, Y2 ,) = 0°FVarg (Y2 ) < -2

and therefore

n—oo

1 n
lim Varg(— Y Y2,)=0.
im arg(n Zz:; 1)

Consequently,
nY, converges in probability and ¥, — 0.

e Under Py,

1 n
- ZYiYi—l - 0,.
ni=

0a(0) — £a(00) = —° ’290 ((a 100> i =1Y2 - Qimm_1> .

i=1

3. Let Y31,Ys, - be conditionally IID given ©® = 0 with Y; a N(#,1/i) random variable. Set X,, =
(Y1,---,Y,). Then, for some constant K,

which does not depend on 6.
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0—0) — l(y.,“"o)
1 9 .

An(gn(o) - gn(eo)) - m : i

and
> 7/Z% is N(0o,1/> %).
i=1

i+1 i=1
Thus,
1
A (én(e) - én(eo)) — —5(9 — 90)2.

e If the prior is continuous, the the remaining conditions are satisfied

Note that ©,, is not \/n consistent, but the posterior distribution is asymptotically normal.

8.5 Classical Chi-square Tests

Definition. Let Q C RP and let
QH :{0: (017"'70p):0i :ci71 SZS k}

Then the likelihood ratio criterion
SuPgeay, fxje(@l0)  fxjo(@|Onn)

fX|@(‘T|én)

suppeq fxjo(zlf)

where

C:)n,H is the MLE of 6 on Qg and

©,, is the (unrestricted) MLE.
Theorem. Assume the conditions in the theorem for the asymptotic normality of maximum likelihood

estimators and let L,, be the likelihood ratio criterion for
A:0;#c¢ foralli=1,--- k.

H:0;,=c foralli=1,---,k versus

Then, under H
—2log L, =P x3

as n — OQ.

For the case p =k =1,
—210g Ly, = =20, (¢) 4 20,,(0,) = 2(c — 0,)0,(0,) + (¢ — 6,)207 (6%)
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for some 6 between ¢ and ©,,. Note that ¢, (6,,) = 0 and under P,

L(0) " T (@), Ve~ 0,) =P Z/Tx, (o),
where Z is a standard normal random variable. Therefore,
—2log L,, —P 72
which is x3.

Proof. Let 1y be a p — k-dimensional vector and set

(&)

If the conditions of the theorem hold for €2, then they also hold for Qy. Write

. c A ¢
@n,H = ( \i]n,H ) @n,H = ( \i/n ) .

Then for some 6* between én and én,Hv

s

DO =

In addition, for some én between 6y and én and some én H between 6 and én H,

0= Voln(0n) + Holn(0,) (0, — )

and R - .
0=Vyln(Onr)+ Hypln(0n m) (¥ — 6).
Write . .
n Bn _ 1 n P _ AO BO
and

Dy = %ngn(énﬂ) —% Dy.

Taking the last p — k coordinates form the first expansion and equating it to the second yields
Dyt = (Wnm — o) = B (¢ — ¢) + Du(¥y, — o).

From the asymptotic normality of the MLE we have that
V(Do(Wn,im — o) — (By (&= ¢) + Do(Wy — 1))

or equivalently that

\/ﬁ((\yn,H - \i/n) - D()_lBg(é - C))
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is bounded in probability. Therefore,

T
. A n c—¢ Ay Bg c—¢ P
fn(@n,H)—g(g)_§ < Dngg(é*C) ) ( Bg Dy ) ( DalBg(é*C) ) - 0

This last term simplifies to

g(c —&)(Ao — BoDg ' BT )(c — o).

The matrix Ay — BoDy ' B{ is the upper left k x k corner of —Zx, (fy)~", the asymptotic covariance of c.
Therefore independent of the choice of )y,

—2log L, =P C?,

a X% random variable

Theorem. Let I' C R* be a parameter space with parameter ¥ and let Ry, - - , R, be a partition of X.
Fori=1,---,p, let

n
Y;=> Ig,(Xk)
j=1
be the number of observations in R; (called the reduced data). Define

ai(¥) = Py(R;)

and

q(@) = (@1 (¥), -, qr(¥)).

Assume that ¢ € C%(I) is one-to-one. Let W,, be the maximum likelihood estimate based on the reduced
data and let Zx, (¢) be the Fisher information matrix. Assume that

\/ﬁ(\i]n - w) _>D w
where W is a N (0, Zx, (¥)~!) random vector. Define

in,n = qi(\ijn)

and ,
(}/z - ani n)
Cn = ~ ’
; qi,n
Then,
c, =P cC

where C'is a X127_ x—1 random variable.
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9 Hierarchical Models

Definition. A sequence Xi, X5, -+ of random variables is called exchangeable if the distribution of the
sequence is invariant under finite permutations.

DiFinetti’s theorem states that the sequence X7, X5, -+ can be represented as the mixture of IID se-
quences. Thus, the Bayes viewpoint is to decide using the data, what choice form the mixture is being
observed.

Hierarchical models requires a sense of partial exchangeability.

Definition. A sequence X1, X5, --- of random variables is called marginally partially exchangeable if it
can be partitioned deterministically, into subsequences

x® x o fork=1,2,-.

Example. (One way analysis of variance) Let {j,;n > 1} be a sequence with each j, € {0,1}. Then

1 1 &
Ixy o xa (1, T |p) = W exp (‘M(Z(%‘ - Hlji)2> :

i=1

We introduce the general hierarchical model by considering a protocal in a series of clinical trials in which
several treatments are considered. The observations inside each treatment group are typically modeled as
exchangeable. If we view the treatment groups symmetrically prior to observing the data, then we may take
the set of parameters corresponding to different groups as a sample from another population. Thus, the
parameters are exchangeable. This second level parameters necessary to model the joint distribution of the
parameters are called the hyperparameters.

Denote the data by X, the parameters by © and the hyperparameters by W, then the conditional density
of the parameters given the hyperparamters is

_ Ixjew(|0,9) foru(0]y)
f@|X,\I’(0|m7w) - fX|‘II((E|1/})

where the density of the data given the hyperparameters alone is

fxpw(z|Y) = /fX\@,\I/(x|97¢)f®|\Il(0|w) ve(d).
The marginal posterior distribution of the parameters can be found from
forx(6le) = [ forx.a(®le. ) furx (vlz) v (dv)

where the posterior density of ¥ given X = x is

Faix (ble) = JW
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and the marginal density of X is

fx(@) = / Fxw(@l$) fu () ve(dy).

Example.

1. Let X, ; denote the observed response of the j-th subject in treatment group i = 1,---,k. We have
parameters
M= (M-, My).

If (My,---, My) = (p1,- - -, pb), we can model X; ; as independent N (u;,1) random variables. M itself
can be modeled as exhangeable N(©,1) random variables. Thus, © is the hyperparameter.

2. Consider X; ; denote the observed answer of the j-th person to a “yes-no” question in city ¢ = 1,---, k.
The observations in a single city can be modeled as exhangeable Bernoulli random variables with
parameters

P:(Pla"'apk)-

These parameters can be modeled as Beta(A, B). Thus P is the parameter and (A, B) are the hyper-
parameters.

9.1 Normal Linear Models

For one-way analysis of variance (ANOVA), consider independent real valued observations
Xij, j=1,-ny i=1,--k
that are N(u;,02) given M = (1, -+, ptn) and
My, -, My

are independent N (¢, 72) given ¥ = ¢ and T'= 7. We model ¥ as N (tg,72/Co). The distribution of T" and
the joint distribution of (X,T") remained unspecified for now.

Thus
Stage Density
Data (2m0?)~"/2 exp (—# Zle(ni(a’ci — pi)? + (ng — l)sf))
Parameter (2m72)~F/2 exp (—# Zle(,ui - w)z)
Hyperparameter (2m72/¢o) Y% exp <72<%(w - ’(/)0)2)
Variance fer(o,7)

From the usual updating of normal distributions, we see that, conditioned on (X,T, V) = (o, 7,v), the
posterior of My, ---, M} are independent

7202 N T T2 + Po?
N(,Ui(av T7d))7 )v Ui(a’ T, 1/}) ="

n; 72 + o2 n; 72 + o2
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Consequently, given (2,7, ¥) = (o, 7,), the data X; and S; are independent with

S2 .
1)=%, a x},_, random variable.

2
X, a N(¢, 7 4 72) random variable, and (n; —
ng

This gives a posterior on ¥ conditioned on ¥ = ¢ and T = 7 that is

k -1 Qﬂbo niT;
. + )
N | Y1(0,7), % + Z % , where 1(0,7) = ZZ 1otbring
T i=1 o+ TN + Zz 1 02+T n;

To find the posterior distribution of (X,7), let X = (X1,---, Xx). Then, given (X,T) = (o, 7)

_ i — 1
X is N(¢ol,W(o, 7)) LSZZ is X%i—h
o

where W (o, 7) has diagonal elements

o +77(1+ C0) i=1,--,k
and off diagonal elements
2
Co
Consequently,
I T|X,s ,S?(UvT"r 515 vs%)

is proportional to

k
fer(o, 7)o (MF =R et (W (o, 7)) 1/2exp< Z(

This situation simplifies in the case
b
T=—.
VA
In this case, write vo = Ao, A\i = A+ n;, and v; = n A/ ;.
so that
niT; + YA ?0®  o? Yoto iy Vi B
/Lz(waavT) = T = ,uz(w)a m - )\z ’ ¢1(0 T) ~o + 21;1 i = ¢1,
G k
0
Y e = o+Z%

1=
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Therefore

1 1 1
Wloms =230+ (A * n> %

and after some computation
k l
1 1
det(W (o, 7)) = [[ =1+ =D )
=1 i 70 i

With the prior T (ag/2,b0/2) for 2, we have the posterior I'"!(ay /2, b1 /2) with
: : s ho
ai = ag + Zni, Iy = Z%’ by = by + Z((nl —1)sd + (T —u)?) + m(u — to)?
i=1 i=1 i=1

where

k _

Vi

h/| = § Yis U = - 1.
—~ v

Posterior distributions for linear functions are now ¢ distributions. For example

. by 1 . by (1 (2% 1 ))
\I/ tal A M?, tal 7 y N N )
is o, (V1 a1’Y+|’Y\) Is ta (i (V1) ax <)\z‘ ()‘i v+ )

k
=1

i

9.2 Bernoulli Process Data
The data from group i =1,---,k is
e n;, the number of subjects, and
e X, the number of succeses.

The successes can be modeled by the success parameters
(Pi,--, Pp).
The hyperparameters are (©, R) and given (0, R) = (0, ), the parameters are independent
Beta(0r, (1 — 0)r).
This random variable has
0(1—6)
r4+1 -~

Thus, 6 is the mean value of the P;. The larger R is, the more similar are the P;. Given (6, R, X) = (0,r,x).
the P; are independent

mean 6, and variance

Beta(0r + z;, (1 — 0)r +n; — x;)

random variables.
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The posterior distribution of (©, R) is proportional to

f@,R(e’ 7‘)

I'(r)k BT (0 + 2)T((1 = 0)r + ny — a;)
T(Or)*T((1 — 6)r)k };[1 T(r+mn;)

The next step uses numerical techniques or approximations. One possible approximation for large n; is
to note that

d . 1
— arcsin \/p = ———,
dp vP 2y/p(1—p)
and
Varg(Z) = ¢ (112)*Var(Z)
to obtain

X . . . 1
Y; = 2arcsin 4/ — is approximately N(2arcsin /p;, —)
Uz n;
random variable. .
M; = 2arcsin \/ P; is approximately N(u, —)
-
random variable given (M, T) = (u,7) = (2arcsin /6,7 + 1) Finally,

1

M is N —
18 (/~L07 )\T)’

and T is unspecified.

9.3 Empirical Bayes Analysis

The naive approach to empirical Bayes analysis is to estimate the hyperparameters at some level of the
hierarchical model, treat them as known and use resulting posterior distributions for lower levels of the
hierarchy.

Examples

1. The simpliest empirical Bayes method is to estimate prior parameters by viewing the data x =
(z1,---,2n) as a sample from the marginal distribution of X given the hyperparameter ¥ on H.

Let X1, -+, X,, in independent N(u,o?) random variables. Assume that o2 is known and that u has a
prior distribution that is N (po,72). To obtain moment estimates of ¥ = (g, 72), we need to calculate

Jomixyde= [ ] oot pet) dvde = [t dv = po
and

/ 22 (x) d = / / 23 fxpo (@) fu () dde = o + / 12 fu (W) dib = o2 + 2+ 7.
R™ R, JH H
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This gives moment estimates
. - . 1 -
,uozxandTQ:EE (z; — )2 — of

Under the usual Bayesian approach, the conditional distribution of p given X = x is N(u1 (), 71 (z)?)

where
2 2

ool + nriz (o

2 _
w7 1ol and 7 (z)° =

() = nt?+ o3’

The empirical Bayes approach replaces jo with jig and 79 with 7. Note that #2 can be negative.

. In the case of one way analysis of variance, we can say that
2
3

X is Ni(ol, W (o, 7)), and (n; — 1)5—2 is Xii—l
o

given (U, T,%) = (¢, 7,0). Set

k
A=%%/T? and n = E:ni7
i=1
then the likelihood of (¥, Y2, A) is

ﬁ(;+;)1/20-nexp( L z(l/w/;(n‘_l)s;)).

i=1

Fix 02 and ), then the expression above is maximized over ¢ be taking

a G 1
g 1/n; + 1/)\/Z /n; +1/\

Using this value for v and fixing A, we see that the expression is maximized over o2 by taking

R k T — 2
$2(\) = ;Z; (W + (n; — 1)s$> :

Using this value for 02 we obtain the function

=1

to obtain the MLE estimate A. Then set



For the special case n; = m for all 4,

k
. 1<~
‘I’(A):E;%y
which does not depend on A. Set
1 1
7_7+X7
then
) 1< S, m—1 g
Yy =—Y (& -2+ —— 2,
=oY@+ Ty

i=1 i=1
Substitute this in for the likelihood above, and take the derivative of the logarithm to obtain

ﬁ + n Zf:l(ji - \11)2
2y 2%2(y) ny? '

Setting this equal to zero gives

1 & )

=1

=R @ - )? ko1
- l -
k(m—1)>"._, s2 km

=11

or

L B

where F' is an F-distribution.

Note that v > 1/m. If F < k/(k — 1), then the derivative above is negative at v = 1/m and so the
maximum occurs at 1/m. Consequently, the maximum likelihood estimator

mk : k
Aol mors >
00 otherwise.

Consequently, 7% = 0 if F < k/(k — 1).

This naive approach, because it estimates the hyperparameters and then takes them as known, underes-
timates the variances of the parameters. In the case on one way ANOVA, to reflect the fact that ¥ is not
known, the posterior variance of M; should be increased by

DL A2 \?
(M) Var(¥) = (anz—i—A> Var ().
We can estimate A from the previous analysis and we can estimate Var(¥) by
k n;
VY

i=1
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