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The World Wide Web is an information resource with virtually unlimited
potential. However, this potentia is relatively untapped because it is difficult for
machines to process and integrate thisinformation meaningfully. Recently,
researchers have begun to explore the potential of associating web content with
explicit meaning, in order to create a Semantic Web. Rather than rely on natural
language processing to extract this meaning from existing documents, this approach
requires authors to describe documents using a knowledge representation language.

Although knowledge representation can solve many of the Web’s problems,
existing research cannot be directly applied to the Semantic Web. Unlike most
traditional knowledge bases, the Web is highly decentralized, changes rapidly, and

contains a staggering amount of information. This thesis examines how knowledge



representation must change to accommodate these factors. It presents a new method
for integrating web data sources based on ontologies, where the sources explicitly
commit to one or more autonomously developed ontologies. In addition to specifying
the semantics of a set of terms, the ontol ogies can extend or revise one another. This
technique permits automatic integration of sources that commit to ontologies with a
common descendant, and when appropriate, of sources that commit to different
versions of the same ontology.

The potential of the Semantic Web is demonstrated using SHOE, a prototype
ontology language for the Web. SHOE is used to develop extensible shared
ontologies and create assertions that commit to particular ontologies. SHOE can be
reduced to datalog, allowing it to scale to the extent allowed by the optimized
algorithms devel oped for deductive databases. To demonstrate the feasibility of the
SHOE approach, we describe a basic architecture for a SHOE system and a suite of
genera purpose tools that allow SHOE to be created, discovered, and queried.
Additionally, we examine the potential uses and difficulties associated with the SHOE

approach by applying it to two problemsin different domains.
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Chapter 1

| ntroduction

The World Wide Web isthe greatest repository of information ever assembled by
man. It contains documents and multimediaresources concerning almost every
imaginable subject, and all of this datais instantaneoudy available to anyone with an
Internet connection. The Web's success islargely dueto its decentralized design: web
pages are hosted by numerous computers, where each document can point to other
documents, either on the same or different computers. Asaresult, individualsall over
the world can provide content on the Web, allowing it to grow exponentially as more
and more people learn how to useit.

However, the Web's size has also become its curse. Due to the sheer volume of
available information, it is becoming increasingly difficult to locate useful
information. Although directories (such as Yahoo!) and search engines (such as
Google and Alta Vista) can provide some assistance, they are far from perfect. For
many users, locating the “right” document is still liketrying to find aneedlein a
haystack.

Furthermore, users often want to use the Web to do more than just locate a
document, they want to perform some task. For example, a user might want to find

the best price on a desktop computer, plan and book a romantic vacation to a



Caribbean idand, or make reservations at a moderately-priced Italian restaurant
within five blocks of the movie they plan to see that evening. Completing these tasks
often involves visiting a series of pages, integrating their content and reasoning about
them in someway. Thisisfar beyond the capabilities of contemporary directories and
search engines, but could they eventually perform these tasks?

The main obstacle isthe fact that the Web was not designed to be processed by
machines. Although, web pages include special information that tells a computer how
to display aparticular piece of text or whereto go when alink isclicked, they do not
provide any information that helps the machine to determine what the text means.
Thus, to process aweb page intelligently, acomputer must understand the text, but
natural language understanding is known to be an extremely difficult and unsolved
problem.

Some researchers and web devel opers have proposed that we augment the Web
with languages that make the meaning of web pages explicit. Tim Berners-Lee,
inventor of the Web, has coined the term Semantic Web to describe this approach.

Berners-Lee, Hendler and Lassila [4] provide the following definition:

The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling

computers and people to work in cooperation.

Before we delve more deeply into just what the Semantic Web is, we will examine

some of the problemsthat it is meant to solve.



1.1 Why SearchisLacking

Users have two main tools to help them locate relevant resources on the Web,
catalogs and search engines. Catalogs are constructed by human experts, thus they
tend to be highly accurate but can be difficult to maintain as the Web grows. To keep
up with this growth, search engines were designed to eliminate human effort in
cataloging web sites. A search engine consists of a mechanism that “crawls’ the Web
looking for new or changed pages, an indexing mechanism, and a query interface.
Typically, the indices store information on the frequency of words and some limited
positional information. Users query the system by entering afew keywords and the
system computes its response by matching the entries against the index. Although
many contemporary search engines now also use link analysis to some degree, this
only helpsto identify the most popular pages, which may or may not be related to the
relevance of the pagesfor a particular query.

Although search engines are able to index large portions of the Web, users often
experience one of two problems: they either get back too many irrelevant results or
no results at all. The first problem arises because the same word can have different
meanings in different contexts and keyword indices do not preserve the notion of
relationships between words. Although rarer, the second problem is due to the use of
aterm (or set of terms) that does not appear in the web pages. Although queries can
sometimes be improved by either adding more specific words to the query (inthe
former case) or synonyms (in the latter case), many useful queriesare still beyond the
capabilities of contemporary search engines.

Let us use an example to illustrate some of the problems with contemporary web
search. Consider aquery to find the chair of MIT’s computer science department. A

reasonable set of search termsmight be “MIT computer science chair.” Asshownin



Figure 1.1, even Google, one of the most acclaimed search engines does not return the
desired information. *

Why was this query unsuccessful? In thefirst result, the string “MIT” is matched
to the German word “mit.” Asaresult, information from a German computer science
department isreturned. The second result is for the Committee on the Status of
Women in Computing Research. This page talks about the chairs of the committee,
who are both members of computer science departments, and lists members, one of
which is affiliated with MIT. Thus, the problem is that the search engine is not aware
of the desired relationship between the terms* chair,” “MIT,” and * computer
science.” Similarly, the third result is a person who received their degree from MIT, is
aprofessor of computer science at another institution, and was chair of another
organization.

The lack of an ability to understand the context of words and relationships
between search terms explains many of the false positives identified by the search
engine, but why was the desired document missed? Asit turns out, instead of a chair,
MIT has adepartment head, which isasimilar but not identical notion. Our lack of
knowledge about the department prevented us from providing the search engine with
aquery that would allow it to find the correct result. However, if we had asked a
person the same query, they might assume that we meant the the head of MIT’s
computer science department, or at least ask usto clarify our intention. If asearch
engine could understand the intended meaning of the words, or even better, the
semantic rel ationships between them, then more accurate searches would be possible.

Thisis one of the goals of the Semantic Web.

1Since search engines are constantly changing, you may get different results if you try this query

yoursdlf.
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1.2 Other Applicationsof the Semantic Web

Improved search is only one of the many potential benefits from a Semantic Web.
Internet agents, which are autonomous programs that interact with the Internet, can
also benefit. In order to accomplish some goal, an internet agent can request and
perceive web pages, and execute web services. Theoretically, such agents are capable
of comparison shopping, participating in an auction, or arranging a complete
vacation. For example, an agent might be asked to make reservationsfor atrip to
Jamaica, and the agent would book aflight, arrange for arenta car, and reserve a
hotel room, all based on the cheapest rates available. Although there are already
agents that can perform some of these tasks, they are built to handle only a predefined
set of web pages and are highly dependent on the structure of these pages. Thus, they
arevery brittle; if aweb page changes, the agent may no longer be able to locate
information or interact with it. Agentsthat could consider the semantics of aweb
page instead of its layout would be much more robust.

The Semantic Web could also make push systems more practical. A push system
changes the way that users are connected with data: instead of forcing information
consumers to find relevant web pages, the web pages are instead “pushed” to them.
Such systems require a profile of the user and a method to evaluate if aweb pageis
relevant to a given profile. However, unless this evaluation method is very accurate,
the system will keep “pushing” unwanted information to the user, reducing its utility.
Such results will tend more to annoy than to help the user, and are usually turned off.
Web pages with semantic content can be evaluated and pushed more accurately.

Finally, the Semantic Web may allow users to organize and browse the Web in
ways more suitable to the problemsthey have at hand. The Semantic Web could be
used to impose a conceptual filter to aset of web pages, and display their



relationships based on such afilter. This may also allow visualization of complex
content. With HTML, such interfaces are virtually impossible sinceit is difficult to

extract meaning from the text.

1.3 Knowledge Representation on the Web

The Semantic Web depends on the ability to associate formal meaning with content.
The field of knowledge representation (discussed in Section 2.2 provides a good
starting point for the design of a Semantic Web language because it offersinsight into
the design and use of languages that attempt to formalize meaning. However, the
nature of the Web challenges many of the assumptions of traditional knowledge
representation work, and requires us to look at the problem from a new perspective.
The impact of some of the most significant characteristics of the Web are discussed

below:

e TheWeb isdistributed. One of the driving factorsin the proliferation of the
Web is the freedom from a centralized authority. However, since the Web isthe
product of many individuals, the lack of central control presents many
challenges for reasoning with itsinformation. First, different communities will
use different vocabularies, resulting in problems of synonymy (when two
different words have the same meaning) and polysemy (when the same word is
used with different meanings). Second, the lack of editorial review or quality
control means that each page's reliability must be questioned. An intelligent
web agent smply cannot assume that all of the information it gathersis correct
and consistent. There are quite anumber of well-known “web hoaxes’ where

information was published on the Web with the intent to amuse or mislead.



Furthermore, since there can be no global enforcement of integrity constraints
on the Web, information from different sources may be in conflict. Some of
these conflicts may be due to philosophical disagreement; different political
groups, religious groups, or nationalities may have fundamental differencesin
opinion that will never be resolved. Any attempt to prevent such
inconsistencies must favor one opinion, but the correctness of the opinionis

very much in the “eye of the beholder.”

The Web isdynamic. The web changes at an incredible pace, much faster than
auser or even an intelligent web agent can keep up with. While new pages are
being added, the content of existing pagesis changing. Some pages arefairly
static, others change on aregular basis and still others change at unpredictable
intervals. These changes may vary in significance: although the addition of
punctuation, correction of spelling errors, or reordering of a paragraph does not
affect the semantic content of a document; other changes may completely alter
meaning, or even remove large amounts of information. A web agent must

assume that its data can be, and often will be, out of date.

The rapid pace of information change on the Internet poses an additional
challenge to any attempt to create standard vocabularies and provide formal
semantics. As understanding of a given domain changes, both the vocabulary
may change and the semantics may be refined. It isimportant that such changes

do not adversaly alter the meaning of existing content.

TheWeb ismassive. Inthe year 2000, estimates placed the number of
indexable web pages at over 2 billion, and predicted that this number would

doublein 2001. Even if each page contained only a single piece of



agent-gatherable knowledge, the cumulative database would be large enough to
bring most reasoning systems to their knees. To scale to the size of the ever
growing Web, we must either restrict the expressivity of our representation

language or use incompl ete reasoning algorithms.

e TheWeb isan open world. A web agent is not free to assume it has gathered
all available knowledge; in fact, in most cases an agent should assume it has
gathered rather little available knowledge. Even the largest search engines have
only crawled about 25% of the available pages. However, in order to deduce
more facts, many reasoning systems make the closed-world assumption. That
is, they assume that anything not entailed in the knowledge base is not true. Yet
it is clear that the size and evolving nature of the Web makesit unlikely that any

knowledge base attempting to describe it could ever be complete.

In thisthesis, we will analyze these problems, provide a method for integrating
web data, and introduce SHOE, a prototype language that demonstrates the potential
of the Semantic Web.

1.4 Contributions

In this dissertation, | will describe three significant contributions | have made to the

field of knowledge representation as it applies to the Semantic Web:

e | provide anew formal definition of ontologiesfor use in dynamic, distributed
environments, such as the World Wide Web. In addition to specifying the
semantics of a set of terms, ontologies are objects that can extend or revise one
another. An ontology can aso specify compatibility with earlier versions of

itself.



¢ | develop anew method for integrating distributed data sources. In this method,
sources explicitly commit to one or more autonomously devel oped ontologies.
This technique permits automatic integration of sources that commit to
ontol ogies with a common descendant, and when appropriate, of sources that

commit to different versions of the same ontology.

¢ | introduce SHOE, aweb-based knowledge representation language that allows
machines to automatically process and integrate web data. Authors provide
datain an XML format and explicitly commit to one or more shared ontologies
that provide semantics for the terms. Using the method described above, SHOE
can automatically integrate web data, even when ontologies evolve

independently from the data sources that commit to them.

Additionally, | demonstrate the feasibility and potential use of SHOE as a

semantic web language in two ways:

¢ | designed and implemented a basic architecture for semantic web systems. The
implementation includes two reusable libraries, and four general purpose
SHOE tools, totaling more than 20,000 lines of code. Included in thissuite are
toolsto help users create SHOE documents, a web-crawler that gathers
information from pages and stores it in a repository, and a powerful user

interface for querying the repository.

¢ | developed and deployed two applications to show how SHOE can be used in
practice. For the first application, | used avariety of techniquesto rapidly
create nearly 40,000 SHOE assertions from the web pages of 15 different
computer science departments, and then deployed a new means for searching

these pages. For the second application, | worked with a team of doctors and

10



scientists to create afood safety ontology with over 150 categories and
relations, and devel oped a special tool that uses SHOE assertions to solve an

important problem in this domain.

1.5 ThesisOverview

The next chapter of this thesis surveys work from anumber of related fields. The
Semantic Web is an emerging research area, but builds on existing technologies for
the World Wide Web and the literature of knowledge representation. Additionaly,
deductive databases provide algorithms and insights for using logic in large-data
situations such as the Web and the work in distributed databases has considered the
problem of managing information in decentralized environments. In addition to
introducing the reader to these diverse areas, the chapter discusses their relevance to
the topic of the thesis.

Chapter 3 formally examines the problems of the Semantic Web and describes
various methods for integrating datain this unique environment. The approach begins
with afirst-order logic language, and adds various notions of ontologiesto cope with
the problem of integration of autonomous sources that commit to different ontologies
or different versions of ontologies. This may be skipped by those who are only
interested in the pragmatics of the Semantic Web, but is essential for anyonewho is
designing a Semantic Web language.

The next three chapters describe the design and use of SHOE, the first
ontol ogy-based semantic web language. Chapter 4 describes the syntax and semantics
of the language. These semantics are grounded in the framework presented in Chapter
3. Chapter 5 discusses the issues of implementing the SHOE language and provides a

basic system architecture. It then describes anumber of specific tools that have been

11



devel oped to demonstrate the use of SHOE. Chapter 6 discusses the practical issues of
using the language by describing two case studies. These examples demonstrate how
SHOE can be used by both general search systems and specia purpose query tools.
The remainder of the thesisisa comparison to other languages and the
conclusions. Chapter 7 compares SHOE to the other leading Semantic Web
languages, which include Ontobroker, RDF, and OIL. It aso describes DAML+OIL,
an international effort to combine the best features of these languages. Chapter 8
provides an analysis of the language and discusses future directions of the Semantic
Web. Appendix A provides both SGML and XML DTDsthat precisely define the

grammar of the SHOE language.
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Chapter 2

Background

The Semantic Web is an emerging research area which builds on the foundations of
diverse prior work. First, since the Semantic Web will be built on top of the existing
Web, it isimportant to have a clear understanding of existing Web standards, and to
anticipate how the Semantic Web will interact with other Web technologies. Second,
thefield of knowledge representation is directly concerned with the issue of
semantics, and has resulted in many languages from which ideas can be drawn.
However, scalability isa problem for many traditional KR systems. Thus, work in
deductive databases, which has studied reasoning with large amounts of data, may
help us design inference algorithms that can scale to the size of the Web. Finadly, itis
possible to view the Web as a collection of autonomous databases. Thus work on
distributed databases, particularly in the area of semantic heterogeneity, is highly
relevant. In this chapter we will discuss each of these areas and how they relate to the
Semantic Web. We |eave the discussion of various Semantic Web |anguages until
Chapter 7.
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2.1 TheWorld WideWeb

In order to understand the World Wide Web, we will first ook at the Internet, the
infrastructure upon which it was built. Then we will examine the Hypertext Markup
Language (HTML), which is the language used to describe the majority of existing
web pages. Finally, we will discuss the eXtensible Markup Language (XML), which

may serve as afoundation for the Semantic Web.

2.1.1 Thelnternet

The Internet’s roots begin with ARPANET, a project commissioned by the Advanced
Research Projects Agency (ARPA) to study country-wide data communication. In
1969, ARPANET consisted of four computers (called hosts) in different cities, but
connected by anetwork. ARPANET grew over the years and electronic mail became
apopular early application. In 1973, ARPA introduced the “Internetworking”
program, with the goal of developing an open architecture network, where different
networks might have different architectures, but could interwork via a meta-level
“Internetworking Architecture.” A new network protocol was needed to support this
architecture, which led to the creation of the Transmission Control Protocol (TCP)
and Internet Protocol (IP), jointly known as (TCP/IP). TCP/IPisthe low-level
protocol used by most traffic on the Internet today. High level protocols such as the
File Transport Protocol (FTP), TELNET, the Simple Mail Transfer Protocol (SMTP),
and the Hypertext Transfer Protocol (HTTP), all rely on TCP/IP in order to transfer
files, perform remote logins, transfer electronic mail, and exchange Web documents

using the Internet.
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2.1.2 Development of the Web

In 1990, Tim Berners-Lee developed thefirst version of his World Wide Web
program at CERN. The concept behind Berners-Lee’s invention was to use hypertext
as ameans of organizing adistributed document system. Hypertext refersto a
collection of documents with cross-references (also known as links) between them
that enable readers to peruse the text in a nonsequential manner. In order to make the
Web work on the Internet, Berners-Lee had to devel op a mechanism for addressing
documents on different machines, a protocol that allowed computers to request
documents, and a ssimple language to describe the documents.

The mechanism for addressing objectsis the Uniform Resource Locator (URL). A
URL consists of a scheme followed by a colon and a scheme-specific part. The
scheme specifies a protocol by which the object is accessed and determines the form
of the scheme-specific part. The most commonly used scheme is http, in which the
scheme-specific part consists of the name of the host machine, pathname of afile, and
an optional reference to an anchor in the file. Sometimes, the term URL is used
interchangeably with the term Uniform Resource Identifier (URI), although
technically URI is a broader term used to indicate strings that may identify web
resources without specifying the primary access mechanism. Many URI schemes,
including the http one, set up hierarchical namespaces. These schemes often use the
Domain Name System (DNS) to identify the authority for the namespace. DNS,
which is a hierarchical namespace itself, has been successfully used to name hosts on
the Internet. The use of hierarchical namespaces allow new URIs to be created
without need for approval by asingle central authority, while guaranteeing that URIs
created by different authorities are distinct.

The Hypertext Transport Protocol (HTTP) is used to request documents. These
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<HTM_>
<HEAD>
<TlI TLE>Acne CD Store</ Tl TLE>
</ HEAD>

<BODY>
<H1>Acnme CD Store</Hl>
<P>\\&l come to our CD store!</P>

<H2>Cat al og</ H2>
<UL>
<LI>1. Cracker - Kerrosene Hat: $15.99
<LI>2. Phair, Liz - Exile in Quyville: $15.99
<Ll >3. Soul Coughing - Irresistible Bliss: $15.99

</ UL>
<P><A HREF="order. htm ">Pl ace your order!</A></P>

</ BODY>
</ HTM.>

Figure2.1: An example HTML document.

requests are received by programs called web serversthat run on the host machine. A
web server uses a URL provided in the request to determine which fileto deliver.
Often, thisfileis a Hypertext Markup Language (HTML) document. A program on
the reguesting machine called a browser rendersthe HTML for presentation on the
screen.

HTML isessentially atext stream with special codes embedded. These codes,
called tags, areidentified by having angle-brackets that surround them. An example
HTML document is given in Figure 2.1. The most important tag in HTML isthe
anchor tag, indicated by <A>. With the <A HREF=...> form, anchor tags create a

hypertext link to another document by specifying a URL. These tags indicate that a
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web browser should retrieve the document represented by the URL if thelink is
activated. Most of HTML's other tags were concerned with organization and
presentation of the document. The first version of the language included tags to
indicate headings (<H1>, <H2>, etc.), paragraphs (<P>), and lists (<UL> and
<LI>). Later versions added tags for special formatting such as bold and italics,
formsthat allowed pages to be interactive, tables, and text-flow around images.

Although HTML's tags are mostly presentation oriented, some tags were added to
provide weak semantic information. HTML 2.0 [3] introduced the META element and
the REL attribute. The META element specifies meta-datain the form of a name/value
pair. A popular use for META wasto indicate keywords, for example <META
name="keywords” content="Semantic Web">, that could help search enginesindex
the site. However, many sites began abusing the keywords by including popular
keywords that did not accurately describe the site (thisis known as keyword
spamming). As aresult, many search engines now ignore thistag. The REL attribute
of the anchor (<A>) and link (<LINK>) elements names a relationship from the
enclosing document to the document pointed to by a hyperlink; the REV attribute
names the relationship in the reverse direction. HTML 3.0 [80] added the CLASS
attribute, which could be used within amost any tag to create semantic subclasses of
that element, Unfortunately, the semantic markup elements of HTML are rarely used,
but even if they were, the semantics they provideislimited.

To address the semantic limitations of HTML, Dobson and Burrill [24] attempted
to reconcile it with the Entity-Relationship (ER) database model. Thisis done by
supplementing HTML with a ssimple set of tags that define “entities” within
documents, labeling sections of the body text as “ attributes’ of these entities, and

defining relationships from an entity to outside entities. This was the first attempt to
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formally add structured data to web pages and thus presented an approach to a

problem that was also a significant motivation behind the design of XML.

213 XML

Despiteits popularity, HTML suffered from two problems. First, whenever someone
felt that HTML was insufficient for their needs, they would simply add additional tags
to their documents, resulting in anumber of non-standard variants. Second, because
HTML was mostly designed for presentation to humans, it was difficult for machines
to extract content and perform automated processing on the documents. To solve
these problems, the World Wide Web Consortium (W3C) developed the Extensible
Markup Language (XML) [15].

XML isessentially asubset of the Standard Generalized Markup Language
(SGML) [35], astandard used by the text processing community. SGML isa
meta-language, in the sense that it can be used to define other languages, called
SGML applications. The benefits of SGML include platform independence,
separation of content from format, and the ability to determine if documents conform
to structural rules. XML kept these features, but left out those that were infrequently
used, confusing, or difficult to implement.

XML's syntax will seem familiar to users of HTML. Thisis not surprising, since
HTML isan application of SGML, XML's parent language. Like HTML (and
SGML), XML allows angle-bracketed tags to be embedded in atext data stream, and
these tags provide additional information about the text. However, unlike HTML,
XML does not provide any meaning for these tags. Thus, the tag <P> may mean
paragraph, but it may mean part instead. An XML version of our CD store exampleis

givenin Figure 2.2.
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<?xm version="1.0""?>
<cat al og>
<cd>
<artist>Cracker</artist>
<titl e>Kerosene Hat</title>
<price currency="USD'>15. 99</ pri ce>
</ cd>
<cd>
<artist>Phair, Liz</artist>
<title>Exile in CQuyville</title>
<price currency="USD'>15.99</ pri ce>
</ cd>
<cd>
<artist>Soul Coughing</artist>
<title>lrresistible Bliss</title>
<price currency="USD'>15. 99</ pri ce>
</ cd>
</ cat al og>

Figure 2.2: An example XML document.
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There are three kinds of tagsin XML start tags, end tags, and empty-element
tags. A start tag consists of a name and a set of optional attributes, surrounded by
angle-brackets. Each attribute is a name/value pair, separated by an equal sign. Inthe
example, each price tag has a currency attribute. An end tag consists of the name
from a previous start tag, but preceded by adash (*/”) and cannot have any attributes.
Every start tag must have exactly one matching end tag. Empty-element tags are like
start tags, but don’'t have a matching end tag. Instead, an empty element isindicated
by a dash just before the closing bracket. For example, <IMG SRC="photo.jpg”" />
would be an empty-element tag.

The data from a start tag to an end tag comprises an element. An element can
contain other elements, free text, or a combination of the two between its start and
end tags. A well-formed XML document contains exactly one top-level element, but
can have an arbitrary nesting of elementswithin that element.

Although XML’s flexibility makesit easy for authors to describe arbitrary content
quickly and easily, thisflexibility can be problematic for machine processing. Since
XML cannot express the meaning of tags, most processing applications require tag
sets whose meanings have been agreed to by some standard or convention. To help
with machine processing, XML allows grammarsto be defined for XML tags. This
information is contained in a document type definition (DTD) that specifiesvalid
elements, the contents of these elements, and which attributes may modify an
element. We will not discuss the details of DTDs, which can be quite complicated, but
suffice to say that they essentially define a context free grammar. An XML document
that has an associated DTD and conformsto therulesdefined in it is said to be valid.

Although aDTD provides a syntax for an XML document, the semantics of a

DTD areimplicit. That is, the meaning of an element inaDTD iseither inferred by a
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human due to the name assigned to it, is described in a natural -language comment
within the DTD, or is described in a document separate from the DTD. Humans can
then build these semantics into tools that are used to interpret or trandate the XML
documents, but software tools cannot acquire these semantics independently. Thus,
an exchange of XML documents works well if the partiesinvolved have agreed to a
DTD beforehand, but becomes problematic when one wants to search across a set of
DTDs or to spontaneously integrate information from multiple sources.

One of the hardest problemsin any integration effort is mapping between
different representations of the same concepts — the problem of integrating DTDs is
no different. One difficulty isidentifying and mapping differencesin naming
conventions. Aswith natural language, XML DTDs have the problems of polysemy
and synonymy. For example, the elements <PERSON> and <INDIVIDUAL> might
be synonymous. Similarly, an element such as <SPIDER> might be polysemous: in
one document it could mean a piece of software that crawls the World Wide Web
while in another it means an arachnid that crawls aweb of the silky kind.
Furthermore, naming problems can apply to attribute names just as easily as they
apply to element names. In general, machines do not have access to the contextual
information that humans have, and thus even an automated dictionary or thesaurus
would be of little help in resolving the problems with names described here.

An even more difficult problem isidentifying and mapping differencesin
structure. XML's flexibility gives DTD authors a number of choices. Designers
attempting to describe the same concepts may choose to do so in many different
ways. In Figure 2.3, three possible representations of a person’s name are shown.
One choice involves whether the nameisastring or is an element with structure of its

own. Another choice is whether the nameis an attribute or an element. One of the
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<l-- The NAME is a subelenent with character content -->
<PERSON>

<NAMVE>John Smi t h</ NAME>
</ PERSON>
<l-- The NAME is a subelenent with el enent content -->
<PERSON>

<NAME><FNAME>John</ FNAME><LNAME>SM t h</ LNAVE></ NAMVE>
</ PERSON>

<l-- The NAME is an attribute of PERSON -->
<PERSON NAME="John Smith">

Figure 2.3: Structural differencesin XML representation.

reasons for these problemsis the lack of semanticsin XML. Thereisno special
meaning associated with attributes or content elements. Element content might be
used to describe properties of an object or group related items, while attributes might
be used to specify supplemental information or single-valued properties.

Once humans have identified the appropriate mappings between two DTDs, it is
possible to write XSL Transformations (XSLT) stylesheets [18] that can be used to
automatically translate one document into the format of another. Although thisisa
good solution to the integration problem when only afew DTDs are relevant, it is
unsatisfactory when there are many DTDs; if there are n» DTDs, then there would
need to be O(r?) different stylesheets to allow automatic transformation between any
pair of them. Furthermore, when aDTD was created or revised, someone would have
to create or revise the n stylesheetsto transform it to all other DTDs. Obvioudly, this
isnot afeasible solution.

Of course, the problems of mapping DTDs would go away if we could agree on a

singleuniversal DTD, but even at the scale of a single corporation, data
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standardization can be difficult and time consuming — data standardization on a
worldwide scale would be impossible. Even if acomprehensive, universal DTD was
possible, it would be so unimaginably large that it would be unusable, and the size of
the standards committee that managed it would preclude the possibility of extension
and revision at the pace required for modern data processing needs.

Recently, the W3C has released an alternativeto DTDs called XML Schema
[85, 6]. XML Schemas provide greater flexibility in the definition of an XML
application, even alowing the definition of complex data types. Furthermore, XML
Schemas use the same syntactic style as other XML documents. However, XML
Schema only gives XML an advanced grammar specification and datatyping
capability, and still suffers from the same semantic drawbacksas DTDs.

The lack of semanticsin XML DTDs and XML Schemas makes it difficult to
integrate XML documents. In the next section, we discuss the field of knowledge
representation, which has been concerned with semantic issues. In Section 7.2, we
will discuss the Resource Description Framework (RDF), a W3C standard that

attempts to address some of the semantic problems of XML.

2.2 Knowledge Representation

Many of the problems with processing and integrating XML documents could be
solved if we could associate machine understandable meaning with the tags. This
meaning could be used to trandate from one DTD to another, or reason about the
consequences of a given set of facts. Knowledge representation, an important
sub-field of artificial intelligence, can provide insightsinto these problems. A
knowledge representation scheme describes how a program can model what it knows

about theworld. The goa of knowledge representation is to create schemes that allow
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information to be efficiently stored, modified, and reasoned with. Research in the
field has spawned a number of knowledge representation languages, each with its
own set of features and tradeoffs. These languages differ in the way that knowledgeis
acquired, the extent of the descriptionsthey provide, and the type of inferences that
they sanction. An understanding of knowledge representation can provide key
insightsinto the design of alanguage for the Semantic Web. In this section, we will

consider a number of representations and formalismsthat are particularly relevant.

2.2.1 Semantic Networksand Frame Systems

One of the oldest knowledge representation formalismsis semantic networks[79]. In
a semantic net, each concept is represented by a node in a graph. Concepts that are
semantically related are connected by arcs, which may or may not be labeled. In such
arepresentation, meaning isimplied by the way a concept is connected to other
concepts.

Many semantic networks use special arcs to represent abstraction, although as
Brachman [10] points out, the semantics of these links were often unclear. Now itis
rather common to use two arcsfor this purpose. Anis-a arc indicates that one concept
is subclass of another, while an instance-of arc indicates that a concept is an example
of another concept. These arcs have correlationsin basic set theory: is-aislikethe
subset relation and instance-of islike the element of relation.

The collection of is-a arcs specifies apartial order on classes; this order is often
called a taxonomy or categorization hierarchy. The taxonomy can be used to
generalize a concept to amore abstract class or to specialize aclassto its more
specific concepts. As demonstrated by the popularity of Yahoo and the Open

Directory, taxonomies are clearly useful for aiding auser in locating relevant
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information on the Web. However, these directory taxonomies often deviate from the
strict subset semantics followed by modern knowledge representation systems,
making them less useful for automated reasoning.

In the 1970’s, Minsky [73] introduced frame systems. In the terminology of such
systems, aframeis anamed data object that has a set of dots, where each slot
represents a property or attribute of the object. Slots can have one or more values
(called fillers), some of which may be pointersto other frames. Since each frame has
a set of dotsthat represent its properties, frame systems are usually considered to be
more structured than semantic networks. However, it has been shown that frame
systems are isomorphic to semantic networks.

KRL [7] isan early knowledge representation language based on frame systems.
The fundamental entitiesin KRL are units, which consist of a unique name, a
category type, and one or more named dots, each of which can have itsown
description. Each class has a prototype individual which represents atypical member
of the class. The language supports operations to add knowledge to a description, to
determine if two descriptions are compatible and to find areferent that matches a
given description. An interesting, but somewhat forgotten feature of KRL, was the
ability to view an individual from different perspectives. For example, (the age from
Person G0043) might be an integer, while (the age from Traveler G0043) might be an
element from the set {Infant, Child, Adult}.

KL-ONE [13] continued the tradition of frame systems, while spawning the
family of description logic systems, including Classic [12], LOOM [67], and
FaCThorrocks:fact. Description logics focus on the definitions of termsin order to
provide more precise semantics than semantic networks or earlier frame systems.

Term definitions are formed by combining concepts and rolesthat can provide either
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necessary and sufficient conditions or just necessary conditions. A descriptionissaid
to subsume another if it describes all of the instances that are described by the second
description. An important feature of description logic systems isthe ability to
perform automatic classification, that is, automatically insert a given concept at the
appropriate place in the taxonomy. The advantages of descriptions logics are they
have well-founded semantics and the factors that affect their computational
complexity are well understood, but it is unclear whether their inferential capabilities
are the right ones for the Web.

Semantic nets and frame systems provide an intuitive basis from which to design
asemantic web language. The SHOE language, which will be described in thisthesis,
makes extensive uses of class taxonomies. Although many knowledge representation
systems cannot scale to the sizes needed for the Web, our applications have made
extensive use of a scalable, high-performance system called Parka[27, 84], which
will be described in detail in Section 5.2.7.

2.2.2 First-Order Logic

First-order logic (FOL), also known as predicate calculus or predicatelogic, isa
well-understood formalism for reasoning. Although the logic and knowledge
representation communities are distinct, the expressivity of FOL nevertheless makes
it a powerful knowledge representation language. From the perspective of FOL, the
world consists of objects and the relations that hold between them.

A FOL language consists of logical and non-logical symbols. The logical symbols
represent quantification, implication, conjunction and diunction; while the
non-logical symbols are constants, predicates, functions, and variables. Constant,

variable and function symbols are used to build terms, which can be combined with
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predicates to construct formulas. A subset of the possible formulas that obeys certain
rules of syntactic construction are called well-formed formulas.

The semantics of FOL are given by Tarski’s model theory, referred to as
model-theoretic or denotational semantics. In thistreatment, an interpretation is used
to relate the symbols of the language to the world. An interpretation consists of a set
D of individuals called the domain of discourse, afunction that maps constants
symbolsto D, afunction that maps function symbolsto functionson D, and a
function that maps predicate symbolsto relationson D. If aformulaistrue under
some interpretation, then that interpretation isamodel of the sentence. Likewise, if a
set of formulasis true under some interpretation, then the interpretation is amodel of
theformulas. Given aset of formulasT’, if someformula ¢ is necessarily true, then
we say that I entails ¢, written I |= ¢. Typicaly, thereisaspecia interpretation,
called the intended interpretation that accurately reflects the desired meaning for a set
of sentences. A theory 7 isa set of sentences that are closed under logical
implication. Thus, for al ¢ suchthat 7 |= ¢, ¢ € 7. A good introductionto FOL can
be found in Genesereth and Nilsson’s textbook [39], while LIoyd [65] provides a
more detailed treatment.

An inference procedure is an algorithm that can compute the sentences that are
logically entailed by a knowledge base. FOL has a sound and complete inference
procedure called resolution refutation. A sound procedure only generates entailed
sentences, while a complete procedure can find a proof for any sentence that is
entailed. However, refutation is intractable, making it a poor choice for reasoning
with large knowledge bases.

The Knowledge Interchange Format (KIF) [41] is a standard language that can be

used to exchange FOL sentences between different programs. However, KIF does not
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explicitly address the problemsinherent in the decentralized definition of symbols
needed on the Web. In order to define domain specific vocabularies, we need
ontologies.

FOL isan extremely expressive representation, and can be used to describe
semantic networks and frame systems. Due to thisflexibility, when we describe a

formal model of the Semantic Web in Chapter 3, we will use FOL as our basis.

2.2.3 Ontology

In order for information from different sources to be integrated, there needs to be a
shared understanding of the relevant domain. Knowledge representation formalisms
provide structures for organizing this knowledge, but provide no mechanisms for
sharing it. Ontologies provide acommon vocabulary to support the sharing and reuse
of knowledge,

As discussed by Guarino and Giaretta[45], the meaning of the term ontology is
often vague. It wasfirst used to describe the philosophical study of the nature and
organization of reality. In Al, the most cited definition is due to Tom Gruber [42]:
“An ontology is an explicit specification of a conceptualization.” In this definition, a
conceptualization is an abstract view of the world, along the lines of Genesereth and
Nilsson [39]. In particular, itisatuple (D, R), where D isthe domain of discourse
and R isaset of relationson D. An ontology associates vocabulary terms with
entitiesidentified in the conceptualization and provides definitions to constrain the
interpretations of these terms.

Guarino and Giaretta [45] argue that Genesereth and Nilsson’s definition of
conceptualization should not be used in defining ontology, because it implies that a

conceptualization represents a single state of affairs (i.e., it is an extensional
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structure). However, an ontology should provide terms for representing al possible
states of affairswith respect to agiven domain. Therefore, they suggest that a
conceptualization should be an intensional structure (W, D, R), where W isthe set of
possible worlds, D isthe domain of discourse, and R isaset of intensional relations,
where an n-ary intensional relation is afunction from 1 to 2" (the set of all
possible n-ary relationson D). In alater paper, Guarino refines this model and

provides the following definition for an ontology. [44]

Anontology isalogical theory accounting for the intended meaning of a
formal vocabulary, i.e., its ontological commitment to a particular
conceptualization of the world. The intended models of alogical
language using such a vocabulary are constrained by its ontological
commitment. An ontology indirectly reflects this commitment (and the

underlying conceptualization) by approximating these intended models.

Most researchers agree that an ontology must include a vocabulary and
corresponding definitions, but thereis no consensus on a more detailed
characterization. Typically, the vocabulary includes termsfor classes and relations,
while the definitions of these terms may be informal text, or may be specified using a
formal language like predicate logic. The advantage of formal definitionsisthat they
allow a machine to perform much deeper reasoning; the disadvantage is that these
definitions are much more difficult to construct.

Numerous ontologies have been constructed, with varying scopes, levels of detail,
and viewpoints. Noy and Hafner [74] provide a good overview and comparison of
some of these projects. One of the more prominent themes in ontology research isthe
construction of reusable components. The advantages of such components are clear:

large ontol ogies can be quickly constructed by assembling and refining existing
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components, and integration of ontologiesis easier when the ontologies share
components.

One of the most common ways to achieve reusability is to allow the specification
of aninclusion relation that states that one or more ontologies are included in the new
theory. If these relationships are acyclic and treat all elements of the included
ontology as if they were defined locally then an ontology can be said to extend its
included ontologies. Thisisthe case for most systems, however Ontolingua [30] has
even more powerful featuresfor reusability: inclusion relations that may contain
cycles, the ability to restrict axioms, and polymorphic refinement.

Likean XML DTD or XML Schema, an ontology can provide a standard
vocabulary for a problem domain. However, an ontology can also contain structures
or axiomsthat define the semantics of the vocabulary terms. These semantics can be
used to infer information based on background knowledge of the domain and to

integrate data sources from different domains.

2.2.4 Context Logic

One of the problems with knowledge representation is that when we try to
conceptualize some part of the world, we must make some simplifying assumptions
about its structure. If we then try to combine knowledge bases (or logical theories),
differencesin their implicit, underlying assumptions may have unintended
side-effects. Context logic [46, 68] proposes to solve this problem by explicitly
placing each assertion in a context, where the context includes the assumptions
necessary for the assertion to be true.

The assumptions of a knowledge base often determine the structure of its

vocabulary. For example, an on-lineretailer may choose to represent its catalog using
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product(.X, P) where X isaproduct identifier and P isits price. However, this
representation assumes a standard currency, perhaps U.S. dollars. If the retailer went
international, they would need to change the representation to product(.X, P, C),
where (' identifies the currency. This representation still has an implied seller, and an
intelligent shopping agent might want thisinformation explicit, requiring instead a
representation such as sells(, X, P, ('), where S identifies the seller. We could
continue to identify assumptions and expand the representation ad infinitumif so
desired. Nevertheless, it may be more convenient for the retailer to provideits catalog
in the product(.X, P) form. But in order to do so, it must be possible to use the
assumptions implicit in the form to convert to the other forms as necessary.

In context logic, contexts are first-class objects that can be used in propositions.
Propositions of the formist(c,p) are used to indicate that proposition p istruein
context c¢. A particular individual : can be excluded from the scope of a context ¢ by
stating —presentin(c, ). The reification of context also makesit possible to combine
information from many contexts. For example, one may wish to reuse parts of one
context in another or make statements that are smultaneoudly truein a set of contexts.
Statements that achieve these effects are called lifting axioms.

Another issue raised by context logic isthat different contexts may contain
mutually inconsistent assertions. Such situations should not lead to inconsistency of
the entire knowledge base. Instead, context logic only requires a context to be locally
consistent. Thisissueis of direct relevance to the Semantic Web, where knowledgeis
being provided by many users who may have inconsi stent assumptions.

Context logic isimplemented in Cyc [63, 64], an ongoing project with the
ambitious goal of encoding the entirety of common sense. Contexts are represented

by microtheories, which partition the knowledge base, and can extend one another
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using standard ontology inclusion principles. Since Cyc has an enormous ontology,
microtheories are essential to its creation. They simplify the encoding of assertions
by knowledge engineers, avoid the inevitable contradictions that arise from alarge
knowledge base, and help guide inferencing mechanisms by grouping relevant
statements.

Ontologies and context logic are closely related. Each context is an ontology, and
ontology inclusion could be one particular type of lifting axiom. An important aspect
of context logic isthat different contexts may be suitable for solving different

problems. We will return to this point in Section 3.8.

2.3 Deductive Databases

One problem with many of the knowledge representation techniques discussed in
Section 2.2 is that they do not scale well. However, if the size of the current web is an
indication of the size the Semantic Web, then we know that any practical reasoning
method must scale to enormous sizes. Deductive databases [ 72] extend traditional
relational database techniques by alowing some of the relations to be computed from
logical rules. Thusthey combine the ability to perform inference with the ability to
scale to large data sizes, both of which are required for the Semantic Web. Deductive
databases address two deficiencies of |ogic programming languages such as Prolog
[81]. First, Prolog’'s depth-first evaluation strategy requires careful construction of
programsto avoid infinite loops. Second, efficient access to secondary storageis
reguired to cope with alarge volume of data.

A common logic-based data model is datalog [86, Chapter 3]. Itissimilar to

Prologin that it consists entirely of Horn clauses, but differsin that it does not allow
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function symbols and is a strictly declarative language. In datalog, relations that are
are physically stored in the database are called extensional database (EDB) relations
and areidentical to relationsin the relational data model. The main difference
between datalog and the relational model isthat it also alowsrelations which are
defined by logical rules, called intensional database (IDB) relations. Datalog also has
anumber of built-in predicates for standard arithmetic comparison. Any predicate
that is not built-in is called ordinary.

Datalog relations are denoted by atomic formulas, which consist of a predicate
symbol and alist of arguments. A argument can be either a constant or a variable.
IDB relations are Horn clauses, which take theform 4 :- b1, b, . . ., b,,, where i and
al b; are atomic formulas. The left hand side 4 is called the head or consequent, and
the right hand side is called the body, antecedents, or subgoals. The meaning of the
ruleisif the body is conjunctively true, then the head isalso true. IDB relations may
depend on each other recursively by containing each other in their bodies. Programs
that contain such rules are called recursive.

In order keep relations finite, datal og defines the notions of limited variables and
safety. A variableislimited if it appearsin an ordinary predicate of the rule's body,
appearsin an ‘=" comparison with a constant, or appearsin an ‘=" comparison with
another limited variable. A ruleissafeif al of itsvariables are limited.

An important branch of research in deductive databases deals with the
optimization of queries. The standard methods for evaluating queriesin logic are
backward-chaining (or top-down) and forward-chaining (or bottom-up). In

backward-chaining, the system uses the query as a goal and creates more goals by

Prologis not strictly declarative because the order of the rules determines how the system processes

them.
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expanding each head into its body. This approach ensures that only potentially
relevant goals are explored but can result in infinite loops. Forward-chaining starts
with the EDB and repeatedly uses the rules to infer more facts. As such, it avoids the
problems of looping, but may infer many irrelevant facts. An important result from
deductive databases is the magic sets technique [87], which rewritesrules so that a
forward-chaining evaluation will only consider potentially relevant goals similar to
those explored by backward-chaining.

Another prominent theme in deductive database research deals with allowing
negation in the model. When negated literals are allowed, a program may not have a
unique, minimal model, which is used to define the meaning of datalog programs.
Oneform of negation that has intuitive semantics is stratified negation, in which
negated subgoals are not used recursively.

Dueto the focus of deductive databases on logic with large data sets, this work
providesinsight into practical implementations of the Semantic Web. The work
described in thisthesis makes extensive use of X SB [83], a deductive database that
will be described in detail in Section 5.2.6.

2.4 Distributed Databases

If we can treat web pages as structured content, then it is possible to view the Web as
a collection of autonomous databases. From this perspective, research in distributed
databases isimportant. In this section, we will describe the themes of deductive
database research and discuss how they might be relevant to the Semantic Web.

The degree of coupling between the components of a multidatabase system can be
used to classify different architectures[9]. Global schemaintegration requiresthat the

individual schemas of each database be merged, so that a single schema can be



presented to users. Federated database systems (FDBSs) allow component databases
to retain some degree of autonomy, and export portions of their schemas for use by
the federation. In atightly coupled FDBS, a single schema exists for the federation,
and methods exist to trandate between each export schema and the federation
schema. In aloosely coupled FDBS, users create their own views from the export
schemas. When maintaining the autonomy of the component databases is of chief
importance, then the multidatabase language approach is used. No modifications are
made to the participating databases, instead a special query languageisisused to
access and combine results from the different databases.

The problems addressed by distributed database research include integrating
heterogeneous database management systems (DBM Ss), concurrency control and
transaction management of distributed databases, ensuring consistency of replicated
data, query planning for accessing distributed data sources, and resolving the
problems of semantic heterogeneity. We will discuss each of these issuesin turn to
determineits relevance to the Semantic Web. For a more detailed discussion of these
issuesin their original context, see the book by Elmagarmid, Rusinkiewicz, and Sheth
[25].

The problem of heterogeneous DBM Ss is integrating data contained in databases
designed by different vendors that possibly use different data models (e.g., the
relational model versus the object-oriented model). Thisis not a problem for the
Semantic Web because the Web has a standard access protocol (HTTP) and ideally
the Semantic Web will have a single language for exchanging knowledge (most likely
based on XML).

Concurrency control and transaction management are core issues for al DBMSs.

Concurrency control deals with allowing simultaneous access to a database while
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ensuring consistency of the database in the presence of potentially multiple writers.
Transactions are used to ensure that a sequence of operations are treated as a unit. For
example, when transferring money from one bank account to another, a transaction
can be used to ensure that if the database failed in the middle of the transfer, money
would not be lost or gained. These issues are very difficult for distributed databases
due to the heterogeneity and autonomy of the component databases. Fortunately, they
do not have much of an impact on the Semantic Web, since most operations are
read-only. That is, typically the only updates to web pages are performed by their
owners. Furthermore, each HTTP request is a separate transaction. However, if the
Semantic Web is eventually used as a genera infrastructure for e-commerce, then it
may become necessary to treat a series of HT TP operations as a transaction.

When different copies of the same data are maintained in different locations, the
datais said to be replicated. The problem with replication in distributed databases is
that all updates must be made to each copy to ensure that the datais kept consistent.
On the Web, it iscertainly possible, even probable, that data will be replicated, but
due to the autonomy of web sites, it isimpossible to ensure that this datais consistent.
In fact, since the Web is meant to represent the viewpoints of many, it is undesirable
to treat it asa single, consistent database.

Of the problemsfaced by distributed databases, the most significant to the
Semantic Web is semantic heterogeneity. Different database designers can model the
world in many different ways, resulting in differencesin naming, structure, and
format. The autonomy of web siteswill lead to smilar problems with the Semantic
Web.

Kashyap and Sheth [56] provide an overview of approaches to classifying and

evaluating the semantic similarity of objects from different databases. An important
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component to many of these approachesis identifying a context. However, the
contexts used are not necessarily the same asthose in context logic. In the semantic
proximity approach, the semantic similarity of two conceptsisis defined by the kinds
of contextsin which they are similar and the difference in the abstractions of their
domains. However, the information provided is insufficient to automatically integrate
two databases. In the context building approach, a set of interschema correspondence
assertions (ISCAs) define a context. An ISCA states whether two terms are
synonymous or polysemous, what difference in abstraction they represent and what
kinds of structural differences exist. An1SCA can be used to perform some
integration automatically, but lacks the expressive power to describe afull trandation
from one schema to another. The context interchange approach associates contextual
metadata with attributes, and has conversion functions that can trandate data from an
export context to an import context by using the appropriate function to resolve the
differenceindicated in the metadata. 1n general, these approaches seem limited to
resolving only some (if any) of the problems of semantic heterogeneity.

Other resource integration approaches use knowledge bases to perform schema
integration. The Carnot [19] architecture uses the Cyc knowledge base as a global
schema. A separate context is created for each component schema, and articulation
axioms are used to state equivalence between objects in these schemas and the global
one. Farquhar et al. [28] expand upon the use of contexts and articulation axioms,
arguing that they can be used to achieve either aloosely-coupled federated database
approach, or a global schema approach as needed. The advantage is that
multidatabase-style access can be achieved quickly, and integration can be performed
incrementally by adding more lifting axioms.

Closely related work in information integration focuses on building systems that

37



can combine information from many different types of sources, including file
systems, web pages, and legacy systems. Information integration systemstypicaly
have a mediator architecture [90], where mediators are components that serve as an
interface between user applications and data sources. The mediator receives queries
from the applications, determines which data sources contain the data necessary to
answer the queries, and issues the appropriate queriesto the sources. The data sources
are encapsulated by wrappers[78, 82] which provide a uniforminterfacefor the
mediators. TSIMMIS [37], Ariadne [58], Infomaster [40], and Garlic [82] all follow
this basic architecture. Most of these systems use some sort of logic language to
describe data sources and transl ate between them. For example, TSIMMI S specifies
mediators, wrappers, and queries using avariant of datalog, while Infomaster uses
KIF to specify trandations. With the appropriate wrappers, information integration
systems can treat the Web as a database. However, the heterogeneity of the Web
requires that a multitude of custom wrappers must be developed, and it is possible
that important relationships cannot be extracted from the text based solely on the
structure of the document. Semi-automatic generation of wrappers[60, 2] isa
promising approach to overcoming the first problem, but is limited to data that has a
recognizable structure. Another problem with existing mediator systems is that they
require asingle schemafor specifying application queries. However, this means that
if data sources begin providing new kinds of information, it will not become available

in the system until the mediator and wrapper is updated.

2.5 Other Related Work

Querying the Web is such an important problem that a diverse body of research has

been directed towardsit. In the previous sections we tried to focus on the research
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that was most relevant to the topic of thisthesis. In this section, we give a brief
overview of different approachesto the problem.

Some projects focus on creating query languages for the Web [1, 59], but these
approaches are limited to queries concerning the HTML structure of the document
and the hypertext links. They also rely on index servers such as AltaVista or Lycos to
search for words or phrases, and thus suffer from the limitations of keyword search.

Work on semistructured databases [ 70] is of great significance to querying and
processing XML, but the semistructured model suffersthe same interoperability
problems as XML. Even techniques such as data guides will be of little use when
integrating information developed by different communitiesin different contexts.

In order to avoid the overhead of annotating pages or writing wrappers, some
researchers have proposed machine learning techniques. Craven et al. [20] have
trained a system to classify web pages and extract relations from them in accordance
with asimple ontology. However, this approach is constrained by the time-consuming
task of developing atraining set and has difficulty in classifying certain kinds of

pages due to the lack of similarities between pagesin the same class.
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Chapter 3

A Logical Foundation for the Semantic Web

In this chapter, we will develop aframework for reasoning about the Semantic Web.
We will start with abasic logic approach and gradually refineit to deal with the
problems of representing knowledge on the Web.

3.1 AnInitial Approach

A requirement for the Semantic Web is the ability to associate explicit meaning with
the content of resources. We will do this by embedding alogical language in the
resources and providing a denotational semantics for it. Many of the knowledge
representation languages and structures discussed in Chapter 2, such as semantic
networks, frame systems, and datalog, can al be formulated in first-order logic. For
thisreason, and because first-order logic iswell-understood, we will useit as our
basis. In order to use this framework with systems that cannot be described in
first-order logic (e.g., probabilistic logics, temporal logics, higher-order logic), one
must reformul ate what follows to correspond to the desired logic.

First we must define our domain of discourse. The main objects of interest are

internet resources and entities that are described by them. An internet resourceis
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anything that provides information viathe Internet, such as aweb page, newsgroup,
or e-mail message. We will use R to refer to the set of these resources. The domain of
discourse, on the other hand, is the collection of things that are described or
mentioned by internet resources, including potentially internet resources themselves.
We will use D to refer to this set.

We will assume that we have afirst-order language £ with a set of non-logical
symbols 5. The predicate symbolsof S are Sp C S, the variable symbols are
Sx C S, and the constant symbols are S C 5. For smplicity, we will not discuss
function symbols, since an n-ary function symbol can be represented by an+1-ary
predicate. The well-formed formulas of £ are defined in the usual recursive way. We
will use W to refer to the infinite set of well-formed formulas that can be constructed
inL.

Let K : R—2" beafunction that maps each resource into a set of well-formed
formulas. We call K the knowledge function because it extracts the knowledge
contained in a resource and provides an axiomatization for it.

We will define an interpretation 7 in the standard way. It consists of the domain of
discourse D (as defined above), afunction Z : S — D that maps constant symbols
to elements of the domain, and a set of functionsZp, : Sp — D™ that map n-ary
predicate symbols to sets of n-tuples formed from the domain. If aformula ¢ istrue
with respect to an interpretation Z, then we write 7 |= ¢ and say that 7 satisfies ¢ or
that 7 isamodel of ¢. Given aset of sentences I, if aninterpretation 7 satisfies every
¢ € I'thenwewriteZ =T

One way to consider the Semantic Web is to think of each resource as specifying
an independent theory, that is, thereis no interaction between the theories. In this

approach, each resource must specify the complete theory that is needed to reason
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about it. For example, a genealogy web page that contains information on one's
ancestors should include the following axioms that provide basic semantics for the

ancestorO f predicate:

parentOf(x,y) — ancestorO f(x,y)

ancestorO f(x,y) A ancestorO f(y, z) — ancestorO f(x, z)

However, a disadvantage of the independent theory approach isthat all other
genealogy pages must replicate the axioms that define the basic geneal ogy predicates.
Furthermore, if one resource contained the fact ancestorO f(alice, bill) and another
contained thefact ancestorO f(bill, carol), then we would be unable to conclude
ancestorO f(alice, carol), because we cannot combine the theories.

In order to prevent the Semantic Web from becoming a billion unrelated islands,
there needs to be away to combine the information contained in the resources. We

will state this as a fundamental principle of the Semantic Web:

Principle 3.1 The Semantic \Web must provide the ability to combine information

from multiple resources.

Given this proposition, let us consider an approach to combining the resources.
We define anaive integrated theory N /7" as the union of the well-formed formulas

generated by the set of resources.
Definition 3.2 Given a set of resources R, a naive integrated theory is:
NIT(R)= |J K(r)
reR

At first glance, this seems to be a sufficient approach. Since the formulas of all

resources are combined, the axiomatization of any domain needs only to be expressed
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inasingleresource, and it is possible to deduce things that require premises from
distinct resources. However, upon closer inspection, problems with this approach
begin to emerge.

Recall that the Web is a decentralized system and its resources are autonomous.
As aresult, different content providers are free to assign their own meanings to each
nonlogical symbol, thusit islikely that multiple meanings will be assigned to many
symbols. Different axiomatizations for the same symbols may result from the
polysemy of certain words, poor modeling, or even malicious attempts to break the
logic.

To resolve the problem of accidental name conflicts, we will assume that the
constants S¢ of £ are URIs. Since URIs provide hierarchical namespaces (as
described in in Section 2.1.2), they can be used to guarantee that constants created by
different parties will be distinct.

Other problems are more complex. As pointed out by Guha[46, Section 2.6], a
theory usually has an implied background theory that consists of its assumptions. To
combine a set of theories accurately, we need to make some of these assumptions
explicit. For example, if one theory about stock prices assumed that the day was
yesterday and another assumed that the day was today, an integrated theory should
attach the date to each assertion. Guha calls this process relative decontextualization.
Relative decontextualization may also involve mapping Ssynonymous terms, or in the
more complex case, different representational structures that have the same meaning.
Note that in order to perform relative decontextualization, one must first know the
contexts associated with the two theories. We will distinguish between smple
combination, in which no relative decontextualization is performed, and integration,

inwhichit is performed.

43



Principle 3.3 Semantic web resources can only be integrated after they have

undergone relative decontextualization.

One way to avoid the need for relative decontextualization isto create a
standardized vocabulary with official definitionsfor each symbol, However, to handle
all expressions that might appear on the Web, the vocabulary would have to be
enormous, making it nearly impossible to standardize, comprehend, and later change

as necessary.

3.2 An Ontology-Based Approach

Recall from Section 2.2.3 that an ontology provides a common vocabulary to support
the sharing and reuse of knowledge. When two parties agree to use the same
ontology, they agree on the meanings for al terms from that ontology and their
information can be combined easily. Unfortunately, there is no widely accepted
formal definition of an ontology. In this section and the next two, we will formally

define ontologies that are applicable to the Semantic Web.

3.2.1 Ontology Definitions

Let usthink of an ontology as simply a set of symbolsand a set of formal definitions,
along thelines of Farquhar, Fikes, and Rice [30]. We will assume that the formal

definitions are written in the language £. We can now define an ontology:

Definition 3.4 Given alogical language £, an ontology isa tuple (V, A), where the
vocabulary V' C Sp issome subset of the predicate symbols of £ and the axioms

A C W are a subset of the well-formed formulas of L.



As aresult of this definition, an ontology definesalogical language that is a subset of
the language £, and defines a core set of axiomsfor this language. Since the ontology
defines alanguage, we we can talk about well-formed formulas with respect to an

ontology.

Definition 3.5 Aformula ¢ iswell-formed with respect to an ontology O = (V, A), iff
¢ isawell-formed formula of a language £’, where the constant symbols are S« and

the variable symbols are Sy, but the predicate symbolsare V.

We can also define what it means for an ontology to be well-formed.

Definition 3.6 Anontology O = (V. A) iswell-formed if every formulain A is
well-formed with respect to O.

We will now provide meaning for ontologies by defining interpretations and
models for them. First, we define a pre-interpretation that maps each constant symbol

of the language to the domain of discourse.

Definition 3.7 A pre-interpretation of £ isa structure that consists of a domain D

and a function that maps every constant symbol in S¢ to a member of D.

Every £-ontology uses the same pre-interpretation. Since the symbols from S¢ are
URIs, their intended interpretation is fixed by the URI scheme or by their owners. For
thisreason, it is assumed that these interpretations are universal. An interpretation of
an ontology consists of the pre-interpretation and a mapping of the predicate symbols

of L to relations on the domain.

Definition 3.8 An interpretation of an ontology consists of a pre-interpretation and a

function that maps every n-ary predicate symbol in Sp» to an n-ary relation on D.
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We can now define amodel of an ontology.

Definition 3.9 A model of an ontology O=(V, A) is an interpretation that satisfies

every axiomin A.

Thus an ontology attempts to describe a set of possibilities by using axiomsto limit
its models. Some subset of these models are those intended by the ontology, and are
called the intended models of the ontology. Note that unlike afirst-order logic theory,
an ontology can have many intended models because it can be used to describe many
different states of affairs.

Note that we chose to have the interpretation of an ontology assign relations to
every predicate symbol in the language £, not just those in the ontology. This makes
it possible to compare the models of different ontologiesthat may have separate
vocabularies. Since we are treating ontologies as digoint, thisis not significant now.
However, it will become important when we begin to discuss ontol ogies that can
extend other ontologies and reuse their vocabulary. Also note that the intended
interpretations of an ontology will limit the relations that directly or indirectly
correspond to predicatesin its vocabulary, while allowing any of the possibilities for

predicate symbolsin other domains.

3.2.2 Resource Definitions

Now we need to associate an ontology with each resource. If we let O be the set of
ontologies, then we can create afunction C' : R — O, which maps resources to
ontologies. We call this the commitment function because it returns the ontology that
aparticular resource commitsto. When a resource commits to an ontology, it agrees

to the meanings ascribed to the symbols by that ontology. Because ' isafunction, a
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resource can only commit to a single ontology, but in Section 3.3.3 we will show how
a single ontology can combine multiple ontologies, thus overcoming this limitation.
The vocabulary that aresource may useislimited by the ontology to which it

commits.

Definition 3.10 Aresource r iswell-formedif C(r) = O and K (r) iswell-formed

with respect to O.

That is, aresource iswell-formed if the theory given by the knowledge functionis
well-formed with respect to the ontology given by the commitment function.

We now wish to define the semantics of aresource. When aresource commits to
an ontology, it has agreed to the terminology and definitions of the ontology. Thus
every interpretation of an ontology is an interpretation of the resources that commit to
it, and an interpretation that also satisfies the formulas of aresource isamodel of that

resource.

Definition 3.11 A model of a resource r, where C'(r) = O, isamodel of O that also

satisfies every formulain K (r).

3.2.3 Simple Ontology Per spectives

Using the definitions above, we could once again create a separate theory for each
resource, knowing that the ontol ogies provide reusabl e sets of axiomsthat do not
need to be repeated for each resource in the same domain. However, this approach
would still prevent us from combining information from different resources, and thus
bein conflict with Principle 3.1. Instead, we will consider away to create larger
theories that combine resources which share ontologies. We will attempt to divide the

Semantic Web into sets of resources that share a context, and thus can be combined
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without relative decontextualization. We will call these divisions perspectives,
because they provide different views of the Semantic Web.

We need some guidelines for determining how to construct the perspectives. Each
perspective will be based on an ontology, hereafter called the basis ontology or base
of the perspective. By providing a set of terms and a standard set of axioms, an
ontology provides ashared context. Thus, resources that commit to the same
ontology have implicitly agreed to share a context. To preserve the semantics
intended by the author of each ontology and resource, we will require that the models
of each perspective be a subset of the models of its basis ontology and of each
resource included in the perspective. Thus, the perspective must contain the axioms

of the ontology and the formulas of each resource that commitsto it.

Definition 3.12 Given a set of ontologies © = {04, 0,,...,0,} where
O, = (Vi, A;), asimple ontology perspective based on ontology O; is:
SOP,(R) = A; U UJ K(r)
{reR|C(r)=0:}

With this approach, we have a separate logical theory for each ontology. Each of
these theories includes the axioms of the ontology that serves asits basis and the
theories of each resource that commits to that ontology. Since each resource in the
perspective agrees to the meanings ascribed to the symbols by the perspective's
ontology, there will be no name conflicts between different resourcesin the
perspective. Additionally, since only one ontology is used in each perspective, there
isno possibility of axioms from another ontology having unintended side effects.

Although the ssimple ontology perspective approach solves many problems, it
greatly restrictsinteroperability of resources. The only resources that can be

integrated are those that commit to the same ontology. Obvioudly, thisistoo
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restrictive; some content providers may find that an existing ontology would be
suitableif only afew minor additions were made. It would be unfortunate if a new,
incompatible ontology had to be created for this purpose. Furthermore, if information
concerning adomain is provided independently from different sources, thenitis
likely that the sources will want to use the terminology that is convenient for them.

These needs can be summed up in asingle principle.

Principle 3.13 A semantic web ontology should be able to extend other ontologies

with new terms and definitions.

This principle requiresthat ontologies be able to reference other ontologies, and to

provide axiomsthat relate new termsto the termsin these other ontologies.

3.3 Ontology Extension

Two prominent themes in ontology research are reusability and composability. Itis
recognized that ontology construction is a difficult and time-consuming task, so the
ability to create standard modules for specific purposesis appealing. In theory, if
standard ontologies existed for common tasks, much of the ontology design process
could occur by assembling a number of existing modules, and simply modeling the
unique aspects of the domain as needed. A useful consequence of ontology reuseis
that all ontologiesthat reuse a given module will use the same vocabulary and axioms
to model similar concepts. In the previous section, we described how different
resources can reuse ontologies, but now we will consider ontologies that reuse other
ontologies.

In most existing ontology work, reuse is handled by providing a mechanism that

allows an ontology to extend another ontology (see Section 2.2.3). Essentially, when
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an ontology extends another, it includes the axioms and vocabulary of that ontology
and any ontology extended by the second ontology. Using this framework, itis
possible to design taxonomies of ontologies, with high-level generic ontologies at the
top, and more specific ontologies at the bottom. Thusit is possible to have atop-level
ontology that defines common concepts such as Person and Organization, which is
extended by industry specific ontologies, that arein turn extended by corporation
specific ontologies, and so on.

Unlike work in schema integration, ontology extension integrates ontologies at
schema (ontology) design time. When a new ontology is created, its relationships to
other ontologies are specified. This process greatly reduces the semantic
heterogeneity of the ontologies, while accommodating differences where necessary.
When an existing term is needed, it is ssmply borrowed from another ontology; when
the terms from other ontologies are unsuitable, a new term can be created and axioms
can be used to describe its relationship to existing terms. Section 3.5 discusses the

practical problems of such an approach.

3.3.1 Ontology Extension Definitions

We can formally define ontology extension as follows:

Definition 3.14 Given ontologies O; and O,, O, issaid to extend O, iff all models of

0 are also models of 0.

Note that this definition depends on the ability to compare the models of two different
ontologies. Recall from Section 3.2.1 that the predicate interpretation function of an
ontology is defined for all predicate symbols of £, not just those in the ontology’s

vocabulary. Thus since every interpretation of every ontology has a set of tuples
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associated with each predicate symbols, it is possible to compare the tuples for each

predicate symbol and determine whether one interpretation is a subset of another.
Now let us add the concept of ontology extension to our formalism. We will refine

our definition of an ontology to include the set of ontol ogies extended by it. Definition

3.4 can be thought of as a special case of thisdefinition, where O = (V, A, ()).

Definition 3.15 Given alogic £, an ontology isa three-tuple (V, A, E), where the
vocabulary V' C Sp is some subset of the predicate symbols, theaxioms A C W area

subset of the well-formed formulas, and £ C O isthe set of ontol ogies extended by O.

This new ontology definition requires us to reconsider the definitionsfrom
Section 3.2. Many of the definitions are unchanged, but well-formedness with respect
to an ontology, the well-formedness of ontologies, and the models of an ontology
need to be redefined. However, before we can discuss the new definitions, we need to
consider the uniqueness of the vocabulary symbols used by ontologies and define the
concept of ancestor ontologies.

When different ontologies are used, they may assign different meanings to the
same symbol. In the previous section, we ignored this fact because each ontology was
used to form a separate theory. However, when ontologiesinclude other ontologies,
reasoners that assume that a symbol means the same thing when used in different
contexts risk incorrect inferences. Therefore we will assume that unless otherwise
stated, identical symbolsin different ontol ogies represent distinct concepts, as
advocated by Wiederhold [92]. In our framework, we will achieve this by prefixing
each predicate symbol with its source ontology and a colon, for example ont:symbol.
When we refer to symbols, we will use either qualified names or or unqualified
names, where a qualified name includes the prefix, while an unqualified name does

not. To prevent ambiguity, all unqualified names have exactly one corresponding
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qualified name, which isthe name formed by adding the prefix of the ontology in

which the name appears, or in the case of resources, the ontology committed to by the

resource. Thefunction ) : name — gname performs this mapping, where

gname C name C Sp andVa,x € gname « Q(x) = «. For convenience, we will

write the set of names resulting from applying ¢) to each member of aset N asQ(N).
An ancestor of an ontology is an ontology extended either directly or indirectly by

it. If Oy isan ancestor of O, wewrite Oy € anc(O;). Inthiscase, we may also say

that O, isadescendant of O,. The forma definition of an ancestor is:

Definition 3.16 Given ontologies Oy = (Vi, A1, E1) and Oy = (Vs As, Es),
Oy € anc(Oy) iff O, € E; or thereexistsan O; = (V;, A;, F;) such that O, € F; and
02 € anc(Oi).

An ontology should have access to al symbols defined in its ancestors, and
likewise aformulaof that ontology should still be well-formed if it uses symbols
from the ancestor ontologies. Thus, we need to redefine what it meansto be
well-formed with respect to an ontology. First, we must identify the vocabulary
accessible to an ontology. Thisis the union of its own vocabulary and that of al of its
ancestors. The vocabulary of an ontology is a set of unqualified names, but the
extended vocabulary can be a mixture of qualified and unqualified names. Thisis
because we must use the qualified names of the ancestor ontologies to guarantee that

there are no name conflicts.

Definition 3.17 The extended vocabulary V;* of an ontology O; = (V;, A;, E;) is

‘/i U U{j|OJEanc(O)} Q(‘/])

Now we modify Definition 3.5 to say that aformulais well-formed with respect

to an ontology if it iswell-formed with respect to a language where the predicate
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symbols are given by the extended vocabulary of the ontology.

Definition 3.18 A formula ¢ iswell-formed with respect to an ontol ogy
O = (V, A, E) iff ¢ isawell-formed formula of a language £, where the constant

symbols are S and the variable symbols are Sy, but the predicate symbols are V.

We also need to modify the definition of a well-formed ontology. In addition to
using the new definition of well-formednesswith respect to an ontology, we must
consider aspects of the extended ontologies. Besides requiring that they be

well-formed, we also must prevent cycles of ontology extension.

Definition 3.19 Anontology O = (V. A, E) iswell-formed iff A iswell-formed with

respect to O, all ancestors of O are well-formed, and O is not an ancestor of O.

Finally, let us redefine amodel of an ontology. In particular, al models of an

ontology should also be models of every ontology extended by it.

Definition 3.20 Given anontology O = (V, A, ), if £ = () then a model of O isan
interpretation that satisfies every formulain A, otherwise a model of O isa model of

every ontology in £ that also satisfies every formulain A.

3.3.2 Exampleof Ontology Extension

In Figure 3.1, we demonstrate how ontology extension can be used to relate the
vocabularies of different domains, thus promoting interoperability. When two
ontologies need to refer to acommon concept, they should both extend an ontology in
which that concept is defined. In thisway, consistent definitions can be assigned to
each concept, while till allowing communities to customize ontologiesto include

definitions and rules of their own for specialized areas of knowledge.
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Oc

({Thing, Person,Object},
{Person(z) — Thing(x),
%bject(:z;) — Thing(x)},
({Chair},
{Chair(x) — Og : Person(x)},
{0c})
({Chair},
{Chair(x) — Og : Object(x)},
{0c})
Ovz = ({DeptHead},
{DeptHead(z) < Oy : Chair(x)},
{Ou})
Ops = ({Seat},
{Seat(x) < Op : Chair(x)},
{Or})

Ou

Or

Figure 3.1: Example of ontology extension.

The problems of synonymy and polysemy can be handled by the extension
mechanism and use of axioms. An axiom of theform
Pi(xy,...,2,) & Py(xq,...,2,) can be used to state that two predicates are
equivalent. With thisidiom, ontologies can creste aliases for terms, so that
domain-specific vocabularies can be used. For example, in Figure 3.1, the term
DeptHead in Oy, means the same thing as Chair in Oy dueto an axiomin Oys.
Although this solves the problem of synonymy of terms, the same terms can till be
used with different meaningsin different ontologies. Thisis not undesirable, aterm
should not be restricted for use in one domain ssimply because it wasfirst used in a
particular ontology. As shown in the figure, different ontologies may also use the
same term to define a different concept. Here, the term Chair means different things
in Oy and O because different axioms are used to defineiit.

Figure 3.1 iseasier to understand when shown graphically asin Figure 3.2. Inthis

figure, we have assigned meaningful names to each ontology and used arcs to indicate



| |
| Thing i
|
! Person Obiject i
|
N R S
univ-ont =a furn-ont =a
o I ittt etk [
' Chair : i\ Chair i
- ________! e
univ-ont-2 | T omes furn-ont-2 | Comes
_______________ | r—-—-—-"=-=|-"—-"—"-"=—-"=—-""="""="1
 DeptHead ! | Seat |
| |

Figure 3.2: Graphical depiction of Figure 3.1.
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two common types of axioms. renames is used for axioms that state two predicates
areequivalent and isa is used for axioms of the form C'(z) — P(x), to go aong with
the intuition that this means that all members of aclass C' are also members of a class

P. We will say more on the usage of idiomsin a semantic web language in Chapter 4.

3.3.3 Extended Ontology Per spectives

If we include ontology extension in our semantic web language, then how does that
affect interoperability? Often, traditional ontology work has assumed that reuse was a
mechanism to ease the construction of a single unified ontology. It had not considered
that a number of related ontologies might be used to structure different data sets. For
example, if two resources commit to different ontologies, where one ontology isan
ancestor of the other, then it should be possible to integrate data from these sources.
However, since different ontologies can be provided by different sources, itis
important that new ontologies do not automatically require a reinterpretation of
existing data. Thus an extending ontology should provide the ability to reason about
existing resources in new ways, but should not supersede the ontology that it extends.
Otherwise, accidental or malicious ontologies could have serious side effects on

existing portions of the Web. This point isimportant enough to deserve a principle.

Principle 3.21 Each ontology should provide a different perspective on a set of

resources, and no ontology should change the per spective of another.

Given this principle and our new definition of an ontology, how can we define a
perspective that maximizes integration? We will assume that an ontology which
includes another does not attempt to change the intended meaning of the ontology and

will contain any axioms necessary for decontextualization with respect to it. Thus, we
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can refine our ontology perspectives from Section 3.2 to include resources that
commit to any ontologies that are ancestors of the perspective’'s basis ontology. We
wish for our perspectives to be the intersection of the models of the ontology and all
included resources. In the case of an ontology, its models are determined by its
axioms and those of its ancestors, while the models of aresource are determined by
its knowledge function and the ontology to which it commits. Thus, a new kind of

perspective an be defined as follows:

Definition 3.22 Given a set of ontologies O = {04, 0,,...,0,} where
0, = (Vi, A;, E;), then an extended ontology per spective based on ontology O; is:
FOP;(R) = A; U UJ A; U UJ K(r)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}

With extended ontology perspectives, there is a separate theory for each ontology,
but some theories may have overlapping axioms and ground atoms, depending on
how the basis ontologies arerelated. A perspective contains the axioms of its basis
ontology, the axioms of all of its ancestor ontologies, and the formulasfrom all
resources that commit to the defining ontology or one of its ancestors. Thus, two
perspectives that are based on ontologies with a common ancestor will have that
ancestor’s axioms in common, and will have the formulas of al resources that
commit to that ancestor in common as well.

A desirable property of these perspectivesis that a perspective based on an
ontology entails all of the sentences that are entailed by any perspectives based on
ancestors of the ontologies. This ensures that any conclusions sanctioned by a
resource are valid conclusionsin any perspective that includes the resource. We will

show that extended ontology perspectives satisfy this property.
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Theorem 3.23 Given two ontologies O, and O, such that O, € anc(O,), if

EOP,(R) |= ¢, then EOP,, (R) = 6.

Proof Let Oy = (V1, Ay, 1) and Oz = (Va, Az, E3). We will prove the theorem by
showing that £O Py, (R) isasuperset of each of the partsof FOFo,(R). First,
because O, € anc(Oy), Ay € EOPy,(R). Second, due to Definition 3.16,

anc(Oy1) D anc(O3), thusthe A; of al ontologies O; € anc(O,) areaso

€ EOPy,(R). Findly, since Oy € anc(Oy) and anc(O1) D anc(O,), al K(r) such
that C'(r) = Oy or C(r) € anc(Oy) arein EO Py, (R). Therefore,

EOPy,(R) 2 EOPy,(R). Since FOL ismonotonic, if £O Py, (R) = ¢, then
EOPy,(R) E ¢.

Asit turns out, smple ontology perspectives are a special case of extended
ontology perspectives. When no relevant ontol ogies extend any other ontologies, the

two functions are equivalent.

Theorem 3.24 Given a set of ontologies © = {04, 0,,...,0,}, where
YO, € O,OZ = <VZ',AZ',®>, then EOPZ(R) = SOPZ(R)

Proof If we substitute §) for £; in Definition 3.22, then anc(O;) = () and the set of ;
such that O; € anc(O;) isempty. Therefore, the corresponding union is .
Additionally, since C' isatotal function, the set of r such that C'(r) € anc(0;) is
empty, which reduces the union conditionto {r € R|C(r) = O,}. Thusthe definition

reduces to:

EOPZ(R) == AZ U U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(0;)}
= A UDU UJ K(r)
{reR|C(r)=0:}
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= AU UJ K(r)
{reR|C(r)=0;}
= OPTi(R)

Extension isuseful in overcoming one of the limitationsimposed by the
commitment function. This function only allows each resource to commit to asingle
ontology, however with extension, avirtual ontology can be created that represents
multiple ontol ogies committed to by asingle resource. For example, given two
ontologies Oy = (V4, A1, E1) and O, = (Va, Ay, E5), the ontology
Ounion = (0,0,{0y, O5}) isequivalent to their union. A resource that needed to

commit to Oy and O, could instead commit to O..;00 -

3.4 Ontology Evolution

The Web is a dynamic place, where anyone can instantaneously publish and update
information. It isimportant that this ability is not lost when we provide more
structure for the information. People must be able to publish semantic web ontologies
as easily as other documents, and they must be allowed to revise these ontologies as
well. While good design may prevent many ontological errors, some errorswill not
berealized until the ontology is put to use. Furthermore, pressing information needs
may limit the time that can be applied to design particular ontologies, resulting in the
need to improve the ontologies later. More philosophical arguments concerning the
need for ontology revision are made by Foo [34].

Most ontology systems do not manage the problem of ontology change. Often
thisis because these systems are prototypes used for research purposes, and thus any
dependencies are insignificant. For centralized systems, a change to the ontology can

be synchronized with the corresponding changes to any dependent information,
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making change management unnecessary.

The devel opers of Ontolingua, alanguage used in the distributed development of
ontol ogies, made the decision to ignore prior versions of an ontology. Farquhar,
Fikes, and Rice [30] state that the inclusion feature in Ontolingua does not result in a
“cut and paste” of the contents because “ this interpretation would result in unfortunate
version dependencies.” However, thisignores the problem that the included ontol ogy
could change in away that would make all of itsincluding ontologiesinvalid.

One area where the problem of ontology change has been examined are medical
terminology systems. Medical terminologies often consist of hierarchies of concepts,
and sometimes include synonyms and properties. A number of different systems are
used for different purposes, and the terminol ogies are frequently merged or mapped to
each other, so that information from different systems can be combined. However,
due to anumber of factors, such as new medical knowledge and corrections of errors,
theindividual terminologieswill continue to evolve. Since these terminologies are
used in real systems, management of ontology change isacritical issue. Oliver et al.
[77] discuss the kinds of changes that occur in medical ontologies and propose the
CONCORDIA concept model to cope with these changes. The main aspects of
CONCORDIA arethat al concepts have a permanent unique identifier, concepts are
given aretired status instead of being physically deleted, and specia links are
maintained to track the retired parents and children of each concept. However, this
approach isinsufficient for managing change on the Semantic Web. In the next
sections, we will discuss the kinds of changes that might occur, and present a revised

ontology definition that can describe these changes.
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3.4.1 Ontology Evolution Examples

When we decide to change an ontology, then we must consider that in a distributed
ontology framework such as the one needed by the Semantic Web, there will often be
dependencies on it. We will illustrate the issues with examples of ontology change
within our framework. In Figure 3.3, we demonstrate what happens when anew term
is added to the ontology. Inthe example, Oy, 1, and r, represent a ssimple university
ontology and two resources that commit to it. Recall that an ontology is three-tuple
(V. A, E) where V isitsvocabulary, A isits set of axioms, and £ isthe set of
ontologies extended by it. Also recall that A" isthe knowledge function that maps
resources to formulas. Thus, Oy consists of asingle term Faculty, whiler, and r, are
resources that use the Faculty predicate. At some later point in time, Oy, ri, r5, and
% represent the state of relevant web objects. Here, the ontology Oy, represents a new
version Oy which includes terms that represent subclasses of Faculty. When an
ontology designer adds termsin thisway, it islikely that he will add axioms, such as
Professor(x) — Faculty(x)to help define theterms. Note that »; and -, are r, and
o, respectively at the later point in time. Because K () = K(r1) and

K(r}) = K(rq), these resources have not changed. Since the vocabulary V' of Oy, is
asuperset of V, r; and r,, are still well-formed with respect O;;. Once Oy, has been
revised to Oy;, we can create resources that use the new termsin Oy;; r} isan example
of such aresource that contains an assertion about drjones. All of the resources can
be integrated with an extended ontology perspective. For example, if

R = {r{,rh,r3}, thenin EO Py, (R), Faculty(drdoe), Faculty(drsmith), and
Faculty(drjones) are al true. Since we are assuming a monotonic logic, if we add
terms and axioms to an ontology, then we know that the logical consequences of a

perspective based on it will either be unchanged or increased.
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Ov = {Faculty},

0,

0)
K(r) = {Faculty(drdoe)}
K(ry) = {Faculty(drsmith)}

Oy = ({Faculty, AssistProf, AssocProf, Professor},
{AssistProf(z) — Faculty(x),
AssocProf(z) — Faculty(z),
Professor(xz) — Faculty(z)}

0)
K(ry)) = {Faculty(drdoe)}
K(ry) = {Faculty(drsmith)}
K(ry) = {AssocProf(drjones)}

Figure 3.3: Adding terms to an ontology.

However, if aterm isdeleted from the ontology then existing resources may
become ill-formed. An example of thisis presented in Figure 3.4. Here, we have a
simple music store ontology that defines the classes Cd and Tape. Resource r; makes
an assertion about an instance that isa Cd, while resource r, makes an assertion about
an instance that is a Tape. Assume that at some point in the future, tapes become
obsolete, and the decision is made to remove Tape from the ontology. If resourcer; is
not changed, then it becomes ill-formed because the ontology it commits to no longer
includes the predicate used in its assertion. Since the resource may be not be owned
by the ontology designer (for example, if it isa specific record storethat is reusing the
ontology), it isimpossible to ensurethat it will be updated when the ontology changes.

This leads us to another principle:

Principle 3.25 Therevision of an ontology should not change the well-formedness of

resources that commit to an earlier version of the ontol ogy.

In practice, strict deletion will probably occur rarely. It ismorelikely that aterm

will be removed because it can be merged with another term, or a different nameis
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({Cd, Tape},

0,

0)

{Cd(white Album)}
{Tape(darkSide)}

({Cd},

0,

0)

{Cd(white Album)}
{Tape(darkSide)}

Figure 3.4: Deleting aterm from an ontology.

({Class},

0,

0)

{Class(at)}
{Class(databases)}

({Class,Course},

0,

0)

{Class(at)}
{Class(databases)}
{Class(algFall2001)}
{Course(algorithms)}

Figure 3.5: Changing the meaning of aterm from an ontology.

preferred. 1f the meaning of the term is changed, then a significant problem can arise.
For example, consider Figure 3.5, where Class used to mean “ a subject matter of
instruction,” but was changed to mean “a particular offering of a course,” so that
Course could be used for the old meaning. In this case, old resources such asr; and
r, that used the term would be using it incorrectly in the context of the new ontology.
However, since they would still be well-formed, there is no way to automatically
detect the problem. As aresult, false conclusions may be drawn from the information.

One possible solution to the ontol ogy evolution problem isto require that
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revisions of ontologies be distinct ontologiesin themselves. Then each resource can
commit to a particular version of an ontology. For example, if in Figure 3.4,

C(r}) = Oy and C(r}) = Oy, then both resources commit to the version of the
ontology that till has the term Tape. Since the ontology committed to by the
resources does not physically change, they cannot become ill-formed unless the
ontology changes.

Although treating each ontology version as a separate ontology solves the
problems with deleting terms, it creates problems for integrating data from resources
that commit to different versions of the ontology. Consider the example in Figure 3.3.
Here, C'(r}) = Oy, C(ry) = Oy and C(rf) = Oy,. Because Oy and Oy, are different
ontologies, and neither extends the other, then any resources that commit to them
would be partitioned in separate theories. That is, the vocabularies are treated as
distinct even though in fact they arejust different formalizations of the same concept.
We will formulate the need to integrate resources that commit to different versions of

an ontology as a principle.

Principle 3.26 Resources that commit to a revised ontology can be integrated with

resources that commit to compatible prior versions of the ontology.

In this principle, we need to define what is meant by “compatible.” In cases such
asthe one examined in Figure 3.3, the newer version of an ontology is usually a better
formalization of the domain than a previousversion, (i.e., it isacloser approximation
of the intended models). Thus, it would be useful if we could use the new perspective
to reason about resources that committed to the older version. However, to do this, we
need some way to indicate when the ontology revision is ssimply arefinement of the
origina ontology. In the next section, we augment our definition of ontology for this

purpose.



3.4.2 Ontology Revision Definitions

We introduce the notion of backwards-compatibility to describe revisions that include
all termsdefined in the previous version and have the same intended meanings for
them, although the axiomatizations may be different. Thisindicates that reasoners
can safely assume that descriptions that commit to the old version also commit to the

revision.

Definition 3.27 An ontology O, is backwards-compatible with an ontology O iff

every intended model of O, isan intended model of O, and V; C V5.

Since the definition of backwards-compatible depends on knowledge of the intended
models of an ontology, it cannot be computed automatically, instead it must be
specified by an ontology’s author. Thisisdriven by the fact that ontologies only
specify atheory partially, and that the intended meaning of aterm may change even
though the ontology’s theory remains the same. Since the ontology can only restrict
unintended models, there isno way to formally describe the intended models of an
ontology. For example, if an ontology with a rather sparse axiomatization changed
the term Chair to mean something you sit on as opposed to the head of a department,
then if no relations or rules needed to be changed, any reasoning agent would be
unaware that the term means different thingsin different versions. Thus
backwards-compatibility must be indicated in an ontology definition. However,
syntactic compatibility, such as whether V; C V5, can be checked automatically, and
when backward compatibility is specified, syntactic compatibility should be verified.
We will refine Definition 3.15 to include the concepts of an ontology revising

another ontology and for an ontology to be backwards-compatible with older versions.
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Definition 3.28 Given alogic £, an ontology is a five-tuple (V, A, F, P, B), where
the vocabulary V' C Sp is some subset of the predicate symbols, theaxioms A ¢ W
are a subset of the well-formed formulas, £ C O isthe set of ontologies extended by
O, P C O isthe set of prior versions of the ontology, and B C P isthe set of

ontologies that O is backwards compatible with.

Definition 3.15 isaspecial case of this definition, where P = () and B = ). All of the
definitions from Section 3.3 still hold, although the five-tuple structure should be
substituted for the three-tuple one where necessary.

We will also name two special cases of ontologies.

Definition 3.29 A top-level ontology isan ontology O = (V, A, £, P, B), where
E =.

Definition 3.30 A basic ontology isan ontology O = (V, A, E, P, B), where
E=P=B=§0.

Thus top-level ontologies are ontologies that have no ancestors; they are at the top of
the ontology hierarchy. Every ontology must have at least one top-level ontology as
an ancestor. Basic ontologies are top-level ontologies that have no prior versions.
Note that backwards-compatibility does not require that the revision contains a
superset of the axioms specified by the original version. This allows axiomsto be

moved to a more general included ontology if needed.

3.4.3 Compatible Ontology Per spectives

Given the new definition of ontology, we can define a method of integration that

incorporates backward-compatibility.
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Definition 3.31 Given a set of ontologies © = {04, 0,,...,0,} where
0, = (Vi, A;, E;, P, B;), then a compatible ontology per spective based on ontology
OZ' is

COP.(R) = A;U AU K(r
J
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}

)
U U K(r)U U K(r)

{reR|C(r)E€B;} {r€R[3;,0,€anc(0;) A C(r)EB;}

Like extended ontology perspectives, this method creates perspectives based upon
different ontologies. Each perspective contains the axioms of its basis ontology, the
axioms of its ancestors, and the assertions of all resources that commit to the basis
ontology or one of its ancestors. However, these perspectives also include the
assertions of resources that commit to any ontologies with which the basis ontology is
backwards-compatible, and those of any resources that commit to ontologies that the
base’s ancestor ontol ogies are backwards-compatible with.

It should be mentioned that this method does not ensure that the perspectiveis
logically consistent. The word compatible isused here in the sense of
backward-compatibility, as defined in Section 3.4.2. The problem of inconsistency is
discussed in Section 3.6.

As with extended ontology perspectives, a desirable property of compatible
ontology perspectivesis that a perspective based on an ontology entails all of the
sentences that are entailed by any perspectives based on ancestors of the ontologies.

We will show that compatible ontology perspectives satisfy this property.

Theorem 3.32 Given two ontologies O, and O, such that O, € anc(O,), if

COPo,(R) = 6, then COPo, (R) [ 6.
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Proof Let Oy = (11, Ay, Fy) and Oz = (Vs, Az, E3). We will prove the theorem by
showing that C'O Py, (R) isasuperset of each of the partsof C'O Py, (R). Since
compatible ontology perspectives build on extended ontology perspectives, the proofs
for thefirst three setsareidentical. Since O, € anc(O4), then every r such that

C(r) € Byisadsointhefifthset of COPp,. Findly, since anc(O;1) D anc(O3), then
for each r such that O; € anc(Oy) A C(r) € B}, thenaso

O; € anc(O1) A C(r) € B;. Therefore, thefifth set of C'O Py, subsumes that of
COPo,. Sincedl setsthat form C'O Py, are subsets of the sets that form CO Py, ,
COPo,(R) 2 COPp,(R). Since FOL ismonotonic, if COPp,(R) | ¢, then
COPp, (R) E ¢.

Also, if no ontologies revise any other ontologies, then compatible ontology

perspectives are equivalent to extended ontology perspectives.

Theorem 3.33 Given a set of ontologies © = {04, 0,,...,0,}, where

Proof If we substitute ) for B; in Definition 3.31, then the set of r € R such that
C'(r) € B; isempty because there are no r such that C'(r) € (). Therefore, the
corresponding unionis (). Likewise, the set of r € R such that

O; € anc(O;) A C(r) € B; must be empty, and the corresponding unionis (). Thus

the definition reduces to:

COPZ(R) = AZ'U U AJ‘U U [((T)U@U@
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}
= AU U AJ‘ U U [X’(T)
{710 €anc(0;)} {reR|C(r)=0; v C(r)€anc(O;)}
— EOP(R)
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Technically, the Semantic Web should not allow ontologiesto arbitrarily revise
other ontologies. Unlike, ontology extension, revision impliesthat a change has been
authorized by the ontology’s owner. Potential mechanisms for ensuring thisinclude
requiring older versions to point to their revisions, requiring revisions to be placed in
the same directory of the same server as the ontology being revised, or to be signed

by the same entity.

3.5 Ontology Divergence

As discussed earlier, an important aspect of thisframework is that interoperability is
achieved through ontology reuse. That is, the preferred method of ontology
development isto extend existing ontologies and create new definitions only when
existing definitions are unsuitable. In thisway, al concepts are automatically
integrated. However, when there is concurrent development of ontologiesin alarge,
distributed environment such as the Web, it is inevitable that new concepts will be
defined when existing ones could be used. Even when ontology authors have the best
intentions, they may be unaware of similar efforts to describe the same domain, and
their ontologies may be widely used by the time the problem isnoticed. Asaresult
there will be atendency for the most specific ontologies to diverge and become less
interoperable. In these situations, occasional manual integration of ontologiesis
needed.

This section discusses the types of semantic heterogenity that may occur in
ontologies and presents a method for resolving ontology divergence within the
framework presented earlier in this chapter. Theideas described here are arefinement

of those presented in an earlier paper [52].
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3.5.1 Domain Differences

The divergence of ontologiesincreases the semantic heterogeneity (see Section 2.4)
of the Semantic Web. However, the use of first-order logic as our model resultsin a
more restricted set of possible differences than those typically described by work in
database schema integration. Wiederhold [91] describes four types of domain

differences, which we paraphrase here:

context: atermin one domain has acompletely different meaning in another

terminology: different names are used for the same concepts

scope: similar categories may not match exactly; their extensions intersect, but each

may have instances that cannot be classified under the other

encoding: thevalid valuesfor aproperty can be different, even different scales could

be used

Each of these differences can be resolved within our semantic web framework.
Context differences are due to polysemous terms, and are handled by treating termsin
each ontology as distinct. The other differencesrequire the use of articulation axioms
[19, 28], which are similar in purpose to lifting rules [46, Section 3.2]. An articulation
axiom is simply an axiom that describes how to relate terms from two different
ontologies. We will now demonstrate how to resolve the domain differences
described above using axioms.

Terminological differences are synonyms, and as such can be handled using the
equivalenceidiom described in Section 3.3.2. For example, if it was determined that
Employee in Oy,,..,» meant the same thing as StaffMember in O,q1.4,¢, then the

articulation axiom would be:
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Okmart : Employee(x) < Oyaimart : StaffMember(x)

Scope differences require mapping a category to the most specific category in the
other domain that subsumesit. Thus, if we knew that every FighterPilot in O, isa

JetPilot in Oy,,, then we would create the articulation axiom:

Ouy : Fighter Pilot(x) — Oyqq : Jet Pilot(x)

Encoding difference are somewhat trickier. The problemisthat different sets of
values are used to describe the same data. These sets may have different cardinalities
or may beinfinite. An example of value sets with different cardinalities may be two
rating schemes for movies. One scheme uses {Poor,Fair,Excellent} while the other

uses integers 1-5. In this case, individua values could be mapped asin:

Oysiskel = Rating(x, Excellent) < Ogpert = Rating(x, )

Other differences may be due to different units, such as meters versus feet.
Articulation axioms to resolve these sorts of encodings would require the use of

arithmetic functions, asin:

Ocngiish = Foot(x,1) = Operric =+ Meter(x,+(1,0.3048))

Note that arithmetic functions are smply functions whose domains range over
integers or real numbers, and thus do not require any special treatment in first-order
theory. However, such functions can be problematic in reasoning algorithm
implementation. For example, unit conversion may introduce inaccuracies due to
floating point arithmetic and rounding. This can get compounded if ontologies have

rulesfor trand ating both ways. For example, if areasoner trandated 3 feet to 0.914

71



meters, it better not then apply the opposite rule and get alength of 2.999 feet as well.
Such a process could go on ad infinitum. An even more difficult encoding difference
isdue to different textual representations. Consider “ Smith, John” versus “John
Smith.” An articulation axiom to establish name correspondences in general would
reguire afunction that can take the last-name-first form and convert it to the
first-name-first form. Although thisis easy in theory, in practice it requiresalarge list

of pre-defined functions or a complex language for defining functions.

3.5.2 Resolving Ontology Diver gence

Ontology integration typically involvesidentifying the correspondences between two
ontol ogies, determining the differences in definitions, and creating anew ontol ogy
that resolves these differences. The process for aligning ontologies can be performed
either manually or semi-automatically. Chimaera[69] and PROMPT [75] are
examples of toolsthat help usersto align ontologies. However, it isimportant to note
that ssimply creating a new integrated ontology does not solve the problem of
integrating information on the Web. When the web community has synthesized the
ontologies (that is, other web pages and ontol ogies come to depend on them), all of
the dependent objects would have to be revised to reflect the new ontology. Since this
would be an impossible task, we instead suggest three ways to incorporate the results
of an ontology integration effort, each of which isshown in Figure 3.6. In thisfigure,
we assume that O, and O, are two ontologies which have some domain overlap and
need to be integrated.

In the first approach, we create athird ontology, called a mapping or articulation
ontology, that can trandlate the terminologies of the two ontologies. In the example,

the mapping ontology is Oy;. In order to map the terminologies, O, must extend
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Figure 3.6: Methods for resolving ontology divergence.

both O, and O,, and provide aset of articulation axioms 7" as described above. Note
that Oy, does not add any vocabulary terms, thus Oy = (0, 7, {01, 05}, 0,0). The
advantage of a mapping ontology is that the domain ontol ogies are unchanged; thus, it
can be created without the approval of the owners of the original ontology. However,
sinceitislike any other ontology, it can be made publicly available and used by
anyone who would like to integrate the ontologies. The disadvantages are that the
integration only occurs in the perspective that is based on the mapping ontology, if the
source ontologies are revised then a new mapping ontology must be created, and a set
of articulation axioms are needed for each additional ontology that covers the domain.
Another approach to implementing integration is to revise each ontology to
include mappings to the other. First, we create anew version of each ontology, called
amapping revision. Each revision extends the original version of the other ontology
and includes a set of articulation axioms, alowing it to trandate the terms from that

ontology. Since each revision leaves the origina vocabulary unchanged, and

73



(assuming the articulation axioms are correct) does not change the intended models, it
is backward-compatible with the original version. Thus, in the example where O is
the mapping revision of O, and O}, is the mapping revision of O,, if T} isthe set of
articulation axioms from the vocabulary of O, to that of O; and 75 isthe set of
articulation axiom from the vocabulary of O; to O, then

0y = (W1, Ay U Ty, {02}, {01},{01}) and O3 = (V1, Ay U T3, {01}, {02}, {01 }).
This ensures that perspectives based on O] and O}, will integrate resources that
commit to O; and O,. The advantage of this approach is that the articulation axioms
areinserted into the latest versions of the ontologies, ensuring that they will apply to
later backward-compatible revisions. The main disadvantage is that due to the nature
of revision (see page 69), it can only be performed by the owners of the original
ontologies.

A common disadvantage of the mapping ontology and mapping revision
approaches isthat they ignore a fundamental problem: the overlapping concepts do
not belong in either domain, but are more general. The fact that two domains share the
concept may mean that other domainswill useit aswell. If thisis so, then each new
domain would need a set of articulation axiomsto map it to the others. Obviously this
can become unwieldy very quickly. A more natural approach is to merge the common
itemsinto a more general ontology, called an intersection ontology, which is then
extended by revisionsto the domain ontologies. First, we create a set of terms and
axiomsthat standardize the commonalities between O, and O, referred to as Vy and
A, respectively. We then create anew ontology Oy, where Ox = (Viy, An, 0,0, 0).
Then we determine a set of articulation axioms 7 and 75 that trandate from O to
0O, and O,, respectively. When combined with A, these will allow usto conclude

some formulasalready in A; and A,; we will refer to the sets of these formulasas D
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and D,. Formally, ¢ € D, iff ¢ € Ay and Ay U T = ¢ (Smilarly for D). Now we

can define the revised ontologies O and O}. O] = (Vi, A1 — D1,{On},{01},{O1})
and O = (V5, Ay — D3, {On},{0,}, {O,}). Note that as with the mapping revisions
approach, the revised ontologies retain the vocabulary and do not change the intended

models, so they can be backward-compatible.

3.6 Inconsistency

If the logical language used by the Semantic Web is rich enough to express
inconsistency, then an inconsistency within a single resource or one that exists
between a pair of resourceswill result in one or more perspectives that are
inconsistent. For example, since first-order logic is monotonic, if K(r;) = {A} and
K(ry) = {=A} then any perspective which contains both »; and r, isinconsistent.
Asiswell known, such an inconsistency trivializesfirst-order logic, allowing
anything to be proven. However, the distributed nature of the Web makes it
impossible to guarantee that inconsistencies will not be stated. This resultsin another

principle of the Semantic Web:

Principle 3.34 Aninconsistency due to a single resource or a pair of resources

should not make an entire perspective inconsi stent.

Although perspectives solve some of the problems of handling distributed
ontologies, logical inconsistency is still adanger. A perspective can become
inconsistent in three ways: if the basis ontology isinconsistent with one of its
ancestors, if aresourceisinconsistent with the basis ontology (or an ancestor), or if
two resources are inconsistent with each other. If an ontology is designed carefully,

then inconsistency between it and one of its ancestors can be prevented. We will
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require that avalid ontology must be consistent with al of its ancestors. When a
resource commits to an ontology, it implicitly agrees to the intended models of the
ontology. If the resource includes an assertion that isinconsistent with the ontol ogy,
then this agreement isviolated. Therefore, it is safe to assume that such resources are
invalid and can be excluded from all perspectives. However, thereis still the problem
that two resources which commit to the same ontology could be inconsistent. If so,
any perspective that included this ontology’s resource would be inconsistent. Dueto
the dynamic nature of resources, aresource’s validity should not depend on any other
resource. However, given the distributed nature of the Web, it isimpossible to
prevent two resources from contradicting each other. Thus, perspectives created using
the approaches described above will likely become inconsistent, and cannot be easily
fixed. Indeed, this could even be the form of a new, insidious, and incredibly smple
denial of service attack: publish an inconsistency and watch the Semantic Web grind
to ahalt. Clearly, there must be away to prevent or resolve potential inconsistencies.

A common way to handle inconsistencies is through some form of
nonmonatonicity. In nonmonatonic logics, certain statements are considered defaults,
and are only trueif it they are not inconsistent with more explicit information. Often,
an implicit assumption in these theories is that the most recent information is correct
and that it is prior beliefsthat must change. On the Web, this assumption cannot be
made; if anything, more recent information that conflicts with prior beliefs should be
approached with skepticism. Additionally, inconsistencies on the Web will often be
due to fundamental disagreements, and thus neither statement can be considered the
“default.”

The (primarily philosophical) field of belief revision [38] focuses on how to

minimize the overall changeto a set of beliefsin order to incorporate new
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inconsistent information. A representation of an agent’s knowledge at some point in
timeis called an epistemic state, and a change of knowledge leadsto a new epistemic
state via an epistemic change. The three types of epistemic changes are expansions,
revisions, and contractions. An expansion adds an assertion that is consistent with the
existing epistemic state. A revision adds an assertion that isinconsistent with existing
beliefs, and requires that some knowledge be retracted in order to determine the new
epistemic state. Finally, a contraction removes an assertion, which may lead to the
removal of other assertions that depend on it. Gardenfors[38] presents a series of
postul ates describing epistemic changes. An important criterion is that of minimal
change, that is, the only changes made to the epistemic state are those required to
accommodate the new information. In the case of revision, thismay require choosing
between equally adequate alternatives. In such cases, the relative epistemic
entrenchment of the beliefs (which determines how important they are), may be used
to choose an epistemic state. However, on the Semantic Web, it is unclear how the
epistemic entrenchment of an assertion should be determined. Furthermore, itis
unclear that maintaining asingle consistent set of beliefs makes sense in adistributed
knowledge system.

The chief problem with nonmonotonic logic and theories of belief revisionis
choosing which set of assertions should constitute the “beliefs’ of the Semantic Web.
Assumption-based truth maintenance systems (ATMSs) [21] present an alternative. In
an ATMS, multiple contexts are maintained, where each context represents a set of
consistent assumptions. Thusitisis possibleto consider the truth of aformulawith
respect to aparticular context, or to determine the set of contextsin which aformula
istrue. If we assume that each ontology and resource must be internally consistent,

then there can be contexts that assume that each isindividually true. More complex
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contexts can be formed from these by assuming that multiple ontol ogies or resources
aretrue at the same time. However, if there are n ontologies and resources, then there
could be as many as 2" possible contexts. Although contradictions can automatically
be propagated from ssimpler contexts to the complex contexts that contain them,
management of contexts would be a serious problem on the Semantic Web. The Web
already contains over a billion resources (web pages), and many more resources are
added every day. Each new resource would have to be compared with every existing
context to determine which new consistent contexts can be formed.

A different solution is to limit the language so that it is not possible to express
logical inconsistencies. In first-order logic, this can be done by omitting negation.t
Other logics, particularly description logics, include features such as cardinality
constraints and the specification of digoint classes, which can lead to inconsistency.
The main argument against limiting the language to prevent logical inconsistency is
that inconsistency can be a sign that two theories should not be combined. Still, the
advantage of limiting the language is that it does not have the computational or
philosophical problems associated with the other methods.

Unlike the previous sections, we do not suggest a solution to the problem of
inconsistency here. We have discussed the relative benefits of various alternatives,
but believe that only future research will determine the best choice for the Semantic

Web. In Section 4.1, we will discuss the choice made for the SHOE language.

IHere we mean only omission of the logical operator, and not of other logical connectives that can

be rewritten by using negation, such asimplication.
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3.7 Scalability

Throughout this chapter, we have used first-order logic as the basis for our discussion
of the Semantic Web. However, sound and complete reasoning in first-order logic is
intractable, meaning that there is no polynomial-time algorithm that solves the
problem. Thus, first-order logic systems will not scale to the quantity of formulas that
would be expected on the Semantic Web. So then how can the problem of scalability
be handled in a practical setting?

One approach is to use reasoning methods that are not sound and compl ete.
Resource-bounded reasoning algorithms (that limit the computation time, number of
steps, etc.) are quite common and would be applicable for many Semantic Web
applications. In many cases, it is not necessary to know all of the answers on the
Semantic Web, only ahandful of correct oneswill suffice. Given the extent of the
Web, it isunlikely that any reasoner will have accessto al of the assertions, soitis
improbable that even one which used a sound and complete algorithm would be truly
completein the global sense.

Another approach to scalability isto reduce the expressivity of the language. This
has been an important direction for the knowledge representation community which
has tried to characterize the computational complexity of languages with various
features. Starting with Brachman and Levesque [11], the complexity of different
forms of description logics has been computed, and languages have been devel oped
that attempt to maximize expressivity while minimizing complexity. Even so,
subsumption is intractable in many description logics.

An alternative to description logicsisto use Horn logic. It has been shown that
although Horn-logic and the most common description logics can express things the

other cannot, neither is more expressive than the other [8]. Thusthe relative
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advantages of the two languages depend on the kinds of constructs viewed as most
useful to the Semantic Web. In Section 3.6, we discussed the problemsinherent in
languages that include negation or other features that may lead to inconsistency; most
description logics face these problems due to the presence of cardinality restrictions.
Horn logic on the other hand can not be logically inconsistent. Furthermore, if we
restrict the language to datalog, which isaminor variant of Horn logic, then
polynomial reasoning algorithms such as the magic sets technique can be used.

Asin Section 3.6, we do not provide a solution to scalability problem here. This
is another difficult issue, and only future use of the Semantic Web will determine the
right combination of language features and query methods. In Section 4.1 we will
explain the choice made for the SHOE language, and in Section 5.2 will discuss the

use of reasoning systems with different inferential capabilities.

3.8 Semantic Web Queries

The design of a semantic web language requires consideration of how the language
will be used. The Semantic Web can be used to locate documents for people or to
answer specific questions based on the content of the Web. These uses represent the
document retrieval and knowledge base views of the Web.

The knowledge base view uses the logical definition of queries. aquery isa
formulawith existentially quantified variables, whose answers are a set of bindings
for the variables that make the formulatrue with respect to the knowledge base. But
what is a knowledge base in the context of the Semantic Web? In order to resolve a
number of problemsfaced by the Semantic Web we have extensively discussed
means of subdividing it. Theoretically, each of these perspectives representsa single

model of theworld, and could be considered a knowledge base. Thus, the answer to a
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semantic web query must be relative to a specific perspective.

Consider the set of ontologies and resources presented in Figure 3.7. There are
three compatible ontology perspectives generated from thisdata: C'O P (R),
COPy(R),and COPr(R). Based on Definition 3.31, different ontol ogies and
resources appear in each perspective. For example, C'O P;( R) includes the axioms
from O and the knowledge from r; and r,. It does not include r3 or r, because these
commit to other ontologies. C'O Py ( R) includes the axioms from O and, because
O¢ isan ancestor of Oy, those of O It also includes the resources r, 3, and r,
which commit to these ontologies. On the other hand, C'O Pr( R) includes axioms
from Or and O, and the resources 1, 2, and r,. Asaresult, the answer to any
particular query depends on which perspectiveit isissued against. Asshownin
Figure 3.8, the answer to Person(x) in COPg(R) isjust {bob} because from this
perspective the axioms and resources of O areirrelevant. However, in CO Py (R),
the answer is {bob, kate} because we have the axiom from Oy that tellsus every
Chair isaPerson. Also notethat in C'O Pr(R), theanswer is {bob} because O
includes O¢. When we ask a query such as C'hair(z ), then the variety in answersis
even greater. In CO Py (R) theanswer is {kate} whilein COPr(R) itis
{recliner29}. Thisis because the perspectives decontextualize the term Chair
differently. Also notethat in CO P ( R), the query isill-formed with respect to the
ontology that serves as the basis of the perspective (i.e., the ontology does not include
Chair initsvocabulary), and thus there can be no answers.

From the point of view of most agents, the Semantic Web can be seen as
read-only. Thisis because most web pages can only be updated by their ownersvia
the file mechanisms on their servers. A fileis either saved or unsaved, and only saved

filesare available viaHTTP. Thus, the update of a file becomes a single transaction
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Figure 3.7: Example ontologies and resources,

Perspective
Query COPg(R) | COPy(R) | COPr(R)
Person(z) || bob bob, kate | bob
Object(x) | sofad2 sofab?2 sofab2,recliner29
Chair(xz) || n/a kate recliner29

Figure 3.8: Query answers for different perspectives.

82



and many issues that are important to databases, such as concurrency and
serializability are not significant. Although web pages usually have a single writer,
there are many web pages that change frequently. If the agent reaccesses such pages
in the middle of the query, it may be presented with a different set of assertions. For
these reasons, it is recommended that for the duration of each query, reasoning
systems cache the assertions of al resources used in the query.

Document retrieval queries can locate a document that represents a concept,
which may or may not be partially defined, or locate a document that has specified
metadata. Here, metadata is data about the document itself, such as its author or
maodification date. When the domain of the language includes resources, then the
knowledge base view subsumes the the document retrieval view. That is, we can
specify the relationship between a document and the concept that it represents, and

we can describe both the document and the concept independently.

3.9 Summary

In this chapter, we have gradually developed aformal model for describing the
Semantic Web. The foundation for this model isfirst-order logic, but we found that
we needed ontologies to represent common background knowledge and provide
reusable vocabularies. We then presented a method of partitioning ontologies and
resources to ensure that only those that shared the same context were integrated. We
extended this model with the ability to specify ontology inclusion, so that content
providers could describe their own information needs while still reusing existing
ontologies. This allows us to increase the integration of distributed resources, asis
done with extended ontology perspectives. We further extended the model to deal the

problem of ontology evolution, and discussed the issue of backward-compatibility.
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This resulted in compatible ontology perspectives which can integrate resources that
commit to any ancestors of an ontology as well as resources that commit to
forward-compatible prior versions of the ontology. We discussed how extension alone
would be insufficient for integrating resources in a distributed ontology environment,
and discussed the problem of ontology divergence. Another important issuein
distributed environmentsis the inability to preserve integrity constraints and the
likelihood of global inconsistency. The size of the Web makes scalability an
important issue and possible approaches were also discussed. Finaly, we talked about

gueries on the Semantic Web, and how they depend on perspectives.



Chapter 4

The SHOE Language

In the previous chapter, we examined the problem of the Semantic Web and
developed a framework that handles some of these problems. In this chapter, we will
present SHOE, an actual Web language based on these concepts. SHOE [66, 48],
which stands for Simple HTML Ontology Extensions, was originally developed by
the PLUS Group at the University of Maryland in 1995. Since then, the PLUS Group
has refined the language and experimented with its use.

SHOE combines features of markup languages, knowledge representation,
datalog, and ontologies in an attempt to address the unique problems of semantics on
the Web. It supports knowledge acquisition by augmenting the Web with tags that
provide semantic meaning. The basic structure consists of ontologies, which define
rules that guide what kinds of assertions may be made and what kinds of conclusions
may be drawn from these assertions, and instances that make assertions based on
those rules. As a knowledge representation language, SHOE borrows characteristics

from both predicate |ogics and frame systems.
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4.1 Design Rationale

Although we have developed aformal model in Chapter 3, an actual language needs
to address issues such interoperability with existing technology, language
expressivity, performance, and usability. In this section, we will make a number of
choices regarding these issues and explain the rational e behind these choices. Note
that in many cases thereis no clear right answer, so some choices are based on
intuition and experimentation.

First, we will address the issue of syntax. Although the standard languages of
knowledge representation are Lisp-based and Prolog-based, the Web is dominated by
HTML and XML. Since the Web community is much larger than the knowledge
representation one, there is a strong reason to choose a Web-like syntax over a
traditional knowledge representation one. Such alanguage could embedded in HTML
documents, alowing it to be added to legacy web pages with minimal hasse, or it
could be embedded in XML documents. An XML syntax can be analyzed and
processed using the Document Object Model (DOM), which can be parsed and
manipulated by a number of free and commercial libraries, providing a strong
foundation upon which devel opers can build Semantic Web tools. Additionaly,
software which is XML-aware, but not SHOE-aware, can still use the informationin
more limited but nevertheless powerful ways. For example, some web browsers are
ableto graphically display the DOM of a document as atree, and future browsers will
allow usersto issue queries that will match structures contained within the tree. A
second reason for using an XML syntax is that SHOE documents can then use the
XSLT stylesheet standard [18] to render SHOE information for human consumption,
or trandate it into other XML formats. We chose to give SHOE both an HTML and

an XML syntax, thus alowing it to be used by the entire web community, regardiess
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of whether or not they have migrated to XML.

In Chapter 3 we described the need for ontologies, and presented a model of how
ontol ogies could be used on the Semantic Web. Ontologies are a critical component
of SHOE, athough they are formulated somewhat differently than the five-tuples of
Definition 3.28. First, a SHOE ontology has both an identifier and aversion number,
whereit is assumed that al ontologies with the same identifier are different versions
of the same ontology. This approach avoids the problem of having to list every
previous version of the ontology, since these can be determined by comparing
identifiersand version numbers. Additionally, backwards-compatible revisions can be
specified by version number only. In Section 4.3, we will explicitly describe how
SHOE ontologies relate to the framework presented in Chapter 3.

SHOE has a feature for ontology inclusion, and the included ontology is specified
by a combination of the ontology’sidentifier and version number. In adistributed
environment such as the Web, few agents will know every ontology. To help agents
locate an unfamiliar ontology, SHOE also allows the URL of an included ontology to
be specified. To handle potential name conflicts between ontologies, every SHOE
ontology has its own namespace, and a special prefixing mechanism isused to refer to
the components of another ontology.

Since SHOE is meant to be used by ordinary web authors, it isunrealistic to
expect them to provide complex first-order logic formulas to describe their content.
SHOE followsthe strategy of the OKBC API [17] and the Ontolingua language [42],
which both have first-order logic based foundations, but provide frame-based idioms
for convenience. A frame-based paradigm tends to be easier to use, because it has
similarities to object-oriented programming languages and databases, which have

become quite popular for software development. SHOE has categories (commonly
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called classes in the knowledge representation literature), which can be thought of as
frames, and relations, which determine the dots of those frames. Categories can have
supercategories, with the semantics of an isa link. The arguments of SHOE relations
are typed, and SHOE provides some basic data types for this purpose. These basic
data types can be used to check the syntax of values and to provide an interpretation
for the value. To handle the common case of synonyms, SHOE a so has an aliasing
feature. Finally, for advanced ontology designers, SHOE provides additional axioms
caled inferencerules. All of SHOE's features have equivalent first-order logic
expressions, which ensure that the framework from Chapter 3 still applies.

Asdiscussed in Section 3.7, the kinds of axioms that can be expressed in a
language determinesits scalability. Recall that sound and complete reasoning in
first-order logic isintractable and thus of little use on real-world problems such as
those presented by the Semantic Web. It is expected that on the Web, facts will vastly
outnumber axioms. Since deductive database research operates under the same
assumptions, we chose to base SHOE's semantics on datal og, and make use of the
algorithms and systems developed for it. Note that the categories, relations, and alias
features can all be expressed in datalog, so the only consequence of thisdecision is
that we must restrict the axioms to Horn clauses. In Chapter 7, we will discuss some
Semantic Web languages that have made different choices.

SHOE associates knowledge with resources by declaring instances. These
instances contain assertions about themselves and other instances, and the assertions
may describe membership in particular categories, or relationsthat hold. Every
instance commitsto at least one ontology, which defines the categories and relations
used.

Every instance must have akey, which is used to reference it, but creating and
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assigning such keys can be problematic in distributed environments. However, URLS
provide agood mean for identifying resources on the internet, and can be used as the
basis for forming instance keys. It is assumed that each key identifies exactly one
entity, but no assumptions are made about whether two distinct keys might identify
the same entity. Thisis because many different URLSs could be used to refer to the
same resource (due to the facts that a single host can have multiple domain names and
operating systems may allow many different paths to the samefile). To solve these
problemsin a practical setting, a canonical form can be chosen for the URL; an
example rule might be that the full path to the file should be specified, without

1~

operating systems shortcutssuch as’ ™’ for auser’s home directory. Even then, there
are still problems with multiple keys possibly referring to the same conceptual object.
Thus, this solution ensures that the system will only interpret two objects as being
equivaent when they truly are equivalent, but ensuring that two object references are
matched when they conceptually refer to the same object isan open problem.

Finally, we must address the issue of potential inconsistency. Asdiscussed in
Section 3.6, if inconsistency is not managed, then any theory formed by combining
resources can be easily trivialized, degrading the usefulness of the language.
Although it is possible to create perspectives that only include maximally consistent
sets of ontologies and resources, the process is complex and inefficient. Instead, we
chose to keep SHOE easy to understand and implement, and have carefully designed

the language to eliminate the possibility of contradictions between agent assertions.

SHOE doesthisin four ways:

1. SHOE only permits assertions, not retractions.

2. SHOE does not permit logical negation.
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3. SHOE does not alow relations to specify acardinality, and thus limit how many

relation assertions of a particular kind can be made for any single instance.

4. SHOE does not permit the specification of digoint classes.

Clearly, this restricts the expressive power of the language; it could be argued that
without these features, agents cannot recognize when resources are inherently
incompatible and should never be combined. While thisis true, accidentally
combining afew resources incorrectly and drawing a few false conclusionsis more
appealing than having to check every resource for inconsistency with every other
resource, or worse, accidentally combining two inconsistent resourcesto create a
trivialized theory. However, research into pragmatic ways to handle semantic web
inconsistencies is deserving of future work.

We have explained the basic decisionsin the design of the SHOE language. In the

next section, we describe the resulting language in detail .

4.2 Language Description

This section describes the SHOE language, which provides a way to incorporate
machine-readable semantic knowledge in World Wide Web documents. We will

describe the syntax and semantics of ontologies, instances, and their components.

42.1 A Comment on Syntax

SHOE has two syntactical variations. Thefirst syntax isan SGML application that
extends the HTML syntax with additional semantic tags. This syntax can be used to

embed SHOE in ordinary web documents. To indicate conformance with SHOE,
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HTML documents must include the following text in the HEAD section of the

document:

<META HTTP- EQUI V="SHOE" CONTENT="VERSI ON=1. 0" >

The CONTENT of the meta-tag indicates that the document is compliant with version
1.0 of the SHOE language.

Sections 4.2.3 and 4.2.4 describe the elements of SHOE and present the
remainder of the SGML syntax. The syntactic descriptionsin these sections use a
sans serif font to indicate key words of the language and italicsto indicate that the
author must supply a parameter or expression. Brackets ('[* or ’]") are used to
indicate optiona portions of the syntax. Since SGML is not case-sensitive, the
element and attribute names can appear in any case. Arbitrary white spaceis allowed
between attributes within atag and between tags. Also, the quotes around attribute
values may be omitted if the value does not contain white space. A complete and
concise specification of the syntax is given by the SGML DTD for SHOE, whichis
provided in Appendix A.1,

The second SHOE syntax isan XML application. While the SGML syntax allows
SHOE to be easily embedded in the numerous existing HTML web pages, the XML
syntax allows SHOE to |leverage emerging web standards and technologies. Since
XML isbasically asubset of SGML, the XML syntax for SHOE is very similar to the
SGML one. The SHOE XML DTD is presented in Appendix A.2.

The XML version of SHOE can either stand aone, or be included in another
XML document. A stand-alone SHOE XML document must begin with the
appropriate XML prolog:

<?xm version="1.0"7?>
<! DOCTYPE shoe SYSTEM
"http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ shoe_xm . dtd" >
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The root element of this document must be shoe, and it must contain aversion

attribute with value “1.0”, as shown below:

<shoe version="1.0">

All SHOE elements must be between thistag and a closing </shoe> tag.
Alternatively, SHOE can be embedded in other well-formed XML documents.

When documents combine different element sets, they must use XML namespaces

[14] to prevent accidental name clashes. The smplest way to do thiswith SHOE isto

set the default namespace within the shoe element.

<shoe xm ns="http://wwmv. cs. und. edu/ proj ect s/ pl us/ SHOE/ "
versi on="1.0">

Note that most of the Web’'s HTML is not well-formed XML. However, the
Extensible HyperText Markup Language (XHTML) [89] provides avariation of
HTML that iscompatible. Thus, an HTML document could be converted to XHTML,
and then SHOE can be added to it.

Although the syntax presented in sections 4.2.3 and 4.2.4 describe the elements of
SHOE using the SGML syntax, most of it is still applicable to the XML variation.
However, since XML is more restrictive, the following additional rules must be

applied:

¢ All empty elements, i.e., elements which have no content and no end tag, must
endwitha’/>" instead of a’>’. Specifically, this appliesto the
USE-ONTOLOGY, DEF-CATEGORY, DEF-ARG, DEF-RENAME,

DEF-CONSTANT, DEF-TYPE, CATEGORY, and ARG elements.

e No attribute minimizationis alowed. In SGML attribute minimization allows

the names of some attributes to be omitted and only their values to be specified.
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In the SGML syntax, thisis usually used to specify VAR within the subclauses
of an inferencerule (see page 105). Inthe XML syntax, the attribute name

USAGE must be explicitly provided, e.g. USAGE="VAR” instead of VAR.

e Since XML iscase-sensitive, all ement and attribute names must bein lower

case.

o All attribute values must always be quoted, including those which are numeric

aswell asthe FROM and TO keywords.

4.2.2 TheBase Ontology

The base ontology is the ultimate ancestor of al other ontologies. Thereisa
one-to-one correspondence between versions of the SHOE language and versions of
the base ontology, thus the version number of the META tag or the version attribute of
the shoe element indicates which version of the base ontology is applicable.

The base ontology provides some fundamental categories, relations, and data
types. It defines the categories Entity and SHOEEntity, where the latter isa
subcategory of the former. SHOEERNtity is the superclass of all classes defined in other
SHOE ontologies. The relations name and description can be used to provide names
and definitions for any instance. Finally, the base ontology defines four basic data

types, which can constrain the values used in relation assertions. The datatypes are:

STRING A sequence of ASCII characters, including but not limited to letters, digits,

and punctuation. Strings have an implicit aphabetical ordering.

NUMBER A floating-point numeric literal. These can be provided as integers,

decimals, or in the standard exponential notation, i.e., they have the form:
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[+]-] digit+ ['." digit+] [(("e |'"E)[+]-]digit+)]

The standard ordering applies to al numbers.

DATE A date and time, based on RFC 1123. Values may have the following form:

WW DD MW YYYY HH MM SS TZD

where WWW is athree |etter abbreviation for the day of week, DD is the day of
month, MMM is the three | etter abbreviation of the month, YYYY isthe four
digit year, HH isthe two digit hour (from O to 23), MM is the two digit minute,
SS isthetwo digit second, and TZD is the time zone designator. Dates are

ordered chronologically.

TRUTH (Boolean) A boolean value, either YES or NO, case-insensitive. For

comparison purposes, NO is considered less than YES.

4.2.3 Ontology Definitions

SHOE uses ontologies to define the valid elements that may be used in describing
instances. An ontology isstored in an HTML or XML file and is made available to
document authors and SHOE agents by placing it on aweb server. The ontology can
include tags that state which ontologies (if any) are extended, and define the various
elements of the ontology, such as categories, relations, and inference rules. Figure4.1
shows an example of a SHOE ontology.

Each ontology has an identifier and a version number that uniquely definesit.
Accidental reuse of ontology identifiers can be avoided by including the domain name

of itsauthor in thisidentifier. Ontologieswith the same identifier but different version
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<l-- Declare an ontology called "university-ont". -->
<ONTOLOGY | D="uni versity-ont" VERSI ON="1.0">

<!-- Extend the general ontology, assign it the prefix "g." -->
<USE- ONTOLOGY | D="general -ont" VERSI ON="1. 0" PREFI X="g"
URL="ht t p: // ww. ont ol ogy. org/ general 1. 0. htmi ">

<l-- Create local aliases for sone terns -->
<DEF- RENAME FROVE"(g. Person" TO="Person">
<DEF- RENAME FROME"g. Organi zati on" TO="Organi zati on">
<DEF- RENAME FROWE"(g. nane" TO="nane">

<!-- Define sone categories and subcategory rel ationships -->
<DEF- CATEGORY NAME="Facul ty" | SA="Person">
<DEF- CATEGORY NAME="St udent" | SA="Person">
<DEF- CATEGORY NAME="Chair" | SA="Facul ty">
<DEF- CATEGORY NAME="Department" | SA="Organi zation">

<l-- Define sonme relations; n-ary relations are also allowed -->
<DEF- RELATI ON NAME="advi ses" >
<DEF- ARG POS="1" TYPE="Facul ty">
<DEF- ARG POS="2" TYPE=" St udent">
</ DEF- RELATI ON\>

<DEF- RELATI ON "hasGPA" >
<DEF- ARG PCS="1" TYPE="Student">
<DEF- ARG POS="2" TYPE=". NUMBER' >
</ DEF- RELATI ON\>

<!-- Define a rule: The head of a Departrment is a Chair -->
<DEF- | NFERENCE>
<I NF-| F>

<RELATI ON NAME="g. headOf " >
<ARG PCS="1" VALUE="x" USAGE="VAR'>
<ARG PCS="2" VALUE="y" USAGE="VAR'>
</ RELATI ON>
<CATEGORY NAME="Departnment" FOR="y" USACE="VAR'>
</ I NF- I F>
<| NF- THEN>
<CATEGORY NAME="Chair" FOR="x" USAGE="VAR'>
</ | NF- THEN>
</ DEF- | NFERENCE>

</ ONTOLOGY>

Figure 4.1: An example university ontology.
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numbers are considered to be different versions of the same ontology. An ontology is
arevision of another ontology if it has the same identifier but alater version number.

A SHOE document may contain any number of ontology definitions. Many of the
definitions within an ontology have an associated name, and these are collectively
called named components. The named components are categories, relations,
constants, and types. The names of these components are all subject to the same
restrictions: they must begin with aletter, may only contain letters, digits, and
hyphens; cannot contain whitespace, and are case-sensitive. Thereisasingle
namespace for all named components, and thusit isinvalid for an ontology to define
two components that have the same name.

In HTML documents, the ONTOLOGY element must be a subelement of the
BODY element; in XML documents, it must be a subelement of the shoe element.
Only the SHOE elements described in the rest of this section may be nested in the
ONTOLOGY element. An ONTOLOGY element has the following form:

<ONTOLOGY ID="id"
VERSION="version”
[BACKWARD-COMPATIBLE-WITH="bcwy bcw, ...bcw,"]
[DESCRIPTION="text"]
[DECLARATORS="decy decy ...decy,"] >

content

</ONTOLOGY >

ID (mandatory) Specifies the ontology’sidentifier. This must begin with aletter,
contain only letters, digits, and hyphens; and may not contain whitespace.

| dentifiers are case-sensitive.

VERSION (mandatory) Specifies the ontology’s version number. Version numbers

may only contain digits and dots.

BACKWARD-COMPATIBLE-WITH Specifies a whitespace-delimited list of
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previous versionsthat this ontology subsumes. Each bcw; must be avalid

ontology version number.
DESCRIPTION A short, human-readable description of the purpose of the ontology.

DECLARATORS Specifies awhitespace-delimited list of URLSs for content
resources the ontology has associated with itself. Ordinarily, an ontology
cannot assert relationships or categorizations, only define the rules that govern
such assertions. This mechanism alows an ontology to state that one or more
resources contain important standard assertions associated with the ontology.

See Section 4.2.4 for information on specifying assertions.

content All of an ontology’s definitions and extensions must appear between the
open and close ONTOLOGY tags. Thisincludesthe USE-ONTOLOGY,
DEF-CATEGORY, DEF-RELATION, DEF-RENAME, DEF-INFERENCE,
DEF-CONSTANT, and DEF-TYPE elements. The elements are described in the

rest of this section.

Extending An Existing Ontology

An ontology can extend one or more ontologies so that it may use their elements and
sanction their rules. The extended ontology is indicated by itsidentifier and version
number. If an agent cannot locate the ontology, it isfreetoignoreit. Althoughitis
expected that there will be certain standard ontologies which are known to all agents,
itis good practice to provide an optional URL for the ontology.

To distinguish between its elements and those of the included ontology, an
ontology must provide a unique prefix for each ontology it extends. When the

including ontology references a component from the extended ontology, it must
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concatenate the prefix and a period with the name of the component. For example, if
the general-ontology defines the category Person, and the university-ontology
ontology included it and assigned the prefix g, then the reference to Person from
university-ontology would be g.Person. Prefixes may also be attached to
already-prefixed references, forming a prefix chain. For example, if the
university-ontology was in turn extended by the cs-dept-ontology which assigned it
the prefix u, then that ontology could refer to the Person category as u.g.Person. A
valid reference is one where removal of thefirst prefix, resultsin areferencethat is
valid in the ontology indicated by that prefix.

The base ontology isimplicitly extended by all other ontologies. To refer to its
categories, relations, and data types, an ontology can simply use a prefix that is a
single period, asin .NUMBER. Such references are said to contain empty prefix
chains. Of course, ontologies that explicitly include the base ontology are also freeto
use the prefixing mechanism defined above when referring to components defined in
the base ontology.

Ontology extension is specified with the USE-ONTOLOGY tag, which has the
following form:

<USE-ONTOLOGY ID="ontid"
VERSION="ontversion”
PREFIX="pre fiz"
[URL="url"]>
ID (mandatory) Specifies the extended ontology’s unique identifier. This must be a

valid ontology identifier, as specified above.

VERSION (mandatory) Specifies the extended ontology’s version number. This

must be avalid ontology version number, as specified above.

PREFIX (mandatory) Assigns alocal prefix for referring to the componentsin the
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extended ontology. When the ontology refersto these components, this prefix
must be appended before the component’sname. Itisillegal for a
USE-ONTOLOGY tag to specify aprefix that is used in another

USE-ONTOLOGY tag of the same ontology.

URL A URL that pointsto a document which contains the extended ontology. This
allows agents that do not know of the ontology to locate it and incorporate it

into their knowledge base.

Category Definitions

A category (or class) isa set of objectsthat share some common properties.
Categories may be grouped as subcategories under one or more parent categories
(superclasses), specifying the is-a relation that is commonly used in semantic
networks and frame systems. The use of categories allows taxonomies to be built
from the top down by subdividing known classes into smaller sets.

A category definition has the following form:

<DEF-CATEGORY NAME="catname”
[ISA="pcatre fi pcatrefs ...pcatref,"]
[DESCRIPTION="text"]
[SHORT="text">

NAME (mandatory) The name of the defined category. This must be a letter
followed by a sequence of letters, numbers, and hyphens; it may not contain
any whitespace. The name s case-sengitive and must be distinct from the
names of al other components defined by the ontology. It is recommended that

the name be of mixed capitalization (for example, Educationallnstitution).

ISA A whitespace-delimited list of valid category references. Each of these specifies

a parent category for the defined category.
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DESCRIPTION A short, human-readabl e definition of the category.

SHORT A phrase which an agent may use to display the category to auser in amore
understandable fashion than the category’s name. In English ontologies,
SHORT should be a singular or mass noun, lower-case unless it is aproper
noun. For example, the category Educationallnstitution might have

SHORT="educational institution”.

Relation Definitions

A relation is acomponent used to describe arelationship between instances and other
instances or data. A relation is composed of zero or more elements called arguments,
and is equivalent to an n-ary predicate. If arelation is defined for some set of
arguments, this permits SHOE documents to assert that the relation holds for certain
instances of those arguments. The arguments of arelation are explicitly ordered, so
each has a numbered position. Many relations are binary (have exactly two
arguments).

A relation definition has the following form:

<DEF-RELATION NAME="relname”
[DESCRIPTION="text"]
[SHORT="text">

arguments

</DEF-RELATION>
NAME (mandatory) The name of the defined relation. This must be aletter followed
by a sequence of letters, numbers, and hyphens; it may not contain any
whitespace. The name is case-sensitive and must be distinct from the names of
all other components defined by the ontology. It is recommended that this name
be of mixed capitalization with the first letter uncapitalized (for example,
“isMemberOf ™).
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DESCRIPTION A short, human-readable definition of the relation.

SHORT A phrase which an agent may use to display the relation to auser in amore
understandable fashion than the relation’s name. In English ontologies, SHORT
should be alower-case verb phrase for singular subjects, such that it makes
some sense when appearing after the first argument but before the remaining
arguments. For example, therelation “isMemberOf” might have SHORT="is a

member of”.

arguments A sequence of two or more arguments. Each argument is defined by:

<DEF-ARG POS=("posint" | "FROM" | "TO")
TYPE="datatype”
[SHORT="text">

POS (mandatory) The position of the argument being defined. One of two
formats should be followed. N-ary relations must use a positive integer to
specify which argument is being defined. For the first argument, POS
must equal 1 and each successive argument should be assigned the next
greatest integer. It isillegal to re-use an integer or skip a number.
Alternatively, binary relations (those consisting of exactly two arguments)
can use the FROM and TO values to define the positions of the first and
second argument, respectively. If arelation defines an argument with
POS="FROM" then it must aso define exactly one other argument with

POS="TO". Thereverseisaso true.

TYPE (mandatory) The type of the argument. This must be avalid reference
to abasic datatype, category, or ontol ogy-defined type. Basic datatypes
are those defined in the base ontology, that is.STRING, .NUMBER,

.DATE, and .TRUTH. These types are described in Section 4.2.2. If a
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category referenceis provided, then the argument is considered to have an
instance data type, and relation assertions may use any instance in this
argument position. Ontology-defined types are described under Data Type
Definitions, later in this section. The format of data stored under these
types is implementation-specific.

The data type assigned to the argument determines how values used in
relation assertions are interpreted. For example, if thetype is.STRING,
then the value 2345 will be interpreted as the string “2345”, whileif the
valueisaNUMBER, it will be interpreted as the integer 2345.

SHORT A description of each argument in therelation. This should be a

lower-case singular or mass noun.

Renaming Components

Ontologies can provide aliases for other components viarenaming. Any named
component (i.e., category, relation, constant, type, or another rename) in the ontol ogy
or one of its ancestors can be renamed. Renaming is usually used to indicate
synonyms or to reduce the length of prefix chains when referencing a component
defined in a distant ancestor. For example, an ontology could rename the category
cs.junk.foo.person to ssimply person, so long as person is not defined elsewherein the
ontology.

A renaming has the following form:

<DEF-RENAME FROM="compre "
TO="newname">

FROM (mandatory) A referenceto component being renamed. This must be avalid

reference, meaning its prefix chain can be followed to locate the component in
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its source ontol ogy.

TO (mandatory) The element’s new name. This must be aletter followed by a
sequence of letters, numbers, and hyphens, and may not contain any
whitespace. The name is case-sensitive. It isconsidered part of the component
namespace, and must be distinct from the names of all other components
defined by the ontology. It is recommended that this name follow the naming

conventions that apply to the renamed component.

Inference Rules

An ontology can include additional axioms by defining inferencerules. An inference
rule consists of a set of antecedents (one or more subclauses describing assertions that
entities might make) and a set of consequents (consisting of one or more subclauses
describing assertions that may be deduced if the consequents are satisfied).

The antecedents and consequents are sets of one or more subclauses, each
corresponding to alogic atom. Antecedent subclauses are enclosed by <INF-IF> and
</INF-IF> tags, while consequent subclauses are enclosed by <INF-THEN> and
</INF-THEN> tags. An antecedent may be either arelation subclause, a category
subclause, or a comparison subclause, but a consequent may only be arelation
subclause or a category subclause. An inference rule with no antecedents or no
consequentsisinvalid. The syntax of each type of subclause is described below.

The argumentsin subclauses may either be constants or variables. An inference
rule can have multiple variables, all of which areimplicitly universally quantified.
Constants require exact matches, but variables can be bound to any value that satisfies
the expression. Within a particular inference rule, all variableswith the same name

are the same variable and must always be bound to the identical values. Variablesin
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different rules are always considered distinct.
All variables must be limited (see Section 2.3), although a stricter definition of
limited is used than that defined for datalog. Every SHOE variable must:

e appear in an antecedent that is a category or relation subclause, or

e appear with another limited variable in an antecedent that is an equal

comparison subclause.
Also, each variable has a data type that can be determined from therule.

¢ If thethe variable appears in a category subclause, then it is of instance type.

o If thevariable appearsin arelation subclause, then it is of the type given by the
relation’s definition for that argument position. If the type is a category, then

the variableis of instance type.

e If thevariable appearsin a comparison subclause with another typed variable,

then it is assigned the type of that variable.

Note that this means that every SHOE limited variable can be assigned a datatype.
Any inference rule that has an unlimited variable or assigns a variable more than one
datatypeisinvalid and may beignored. However, a variable of instance type does
not have to be a member of the category which specifies the argument’stype. Thisis
because some categories subsume other and some instances are members of multiple
categories.

A SHOE inference has the form:

104



<DEF-INFERENCE
[DESCRIPTION="text"]>
<INF-IF>
antecedents
</INF-IF>
<INF-THEN>
consequents
</INF-THEN>
</DEF-INFERENCE>

DESCRIPTION A short, human-readable description for the rule.

antecedents Oneor more category, relation, or comparison subclauses as defined

below.

consequents Oneor more category or relation subclauses, as defined below.

A category subclause is satisfied if the instance denoted by some key or variable
isamember of the specified category. It has the form:

<CATEGORY NAME="catref”
FOR="val"
[[USAGE=]("VAR” | "CONST")]>

NAME (mandatory) A referenceto the category. This must be avalid reference,
meaning its prefix chain can be followed to locate the component in its source

ontology.

FOR (mandatory) Specifies an instance key or a variable to be bound to an instance

which has been declared to belong to this category.

USAGE Indicatesif val refersto the key of an actual instance (CONST) or to a
variable (VAR). A variable can be bound to any instance which has been
declared to belong to this category. If no USAGE is specified, it defaultsto

CONST. Note that even when avalue is specified, the USAGE= is optional.

105



A relation subclauseis satisfied if the relationship holds between all of its
arguments. It hasthe form:

<RELATION NAME="relre f">
arguments

</RELATION>

NAME (mandatory) A referenceto the relation asserted for the instance. This must
be avalid reference, meaning its prefix chain can be followed to locate the

component’s definition in its source ontology.

arguments The set of argumentsfor the relation, specified one after another. There
are two forms of relation assertions, the general form and the binary form. The
genera form may be used for relationships of any number of arguments. When
using this form, the relation assertion must have the number of arguments
specified in the relation’s definition. Assertions with a different number of

arguments areinvalid and may be ignored.

Alternatively, the binary form can be used for relations that are defined to have
exactly two arguments. In thisform, POS can be FROM or TO. If therelation’s
definition specifies that one of the argumentsis an instance type, then it may be
omitted as long as the other argument is specified. In these cases, the value for
the argument is assumed to be the key of the reference instance. Thus, thisform
allows a shorthand for many common relationships, and alows instances to be

specified in more of aframe-like manner.

Regardless of form, if arelation assertion contains two or more arguments with

the same POS, then it isinvalid and may be ignored.

Each argument has the form:
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<ARG POS=("posint” | "FROM” | "TO")
VALUE="val”
[[USAGE=]("VAR” | "CONST")]>

POS (mandatory) The position of the argument being defined. A positive
integer indicates that this argument fits that position in the list of
arguments defined for therelation. FROM issynonymous with 1. TO is

synonymous with 2. Rules for use of arguments are specified below.

VALUE (mandatory) Specifies the term whose argument position isindicated
by the POS attribute. For example, <ARG POS="7" VALUE="George">
declares that the constant “ George” is argument 7 in the relation. If the
relation’s definition specifies that the type is a basic data type, then the
value must be an element of that type. If thetypeisinstance, then the
value must be an instance key or a constant reference. A constant
reference is prefixed with an exclamation point (*!"), as will be discussed
under Constant Definitions on page 108. Finally, if the argument typeis
an ontol ogy-defined type, then its syntax is implementation dependent,

but SHOE agents unfamiliar with the type may tresat it as a string.

The data type assigned to the argument in the relation’s definition
determines how the value isinterpreted. For example, if thetypeis
STRING, then the value 2345 is interpreted as the string “ 2345, while if
the valueisaNUMBER, it isinterpreted as the integer 2345.

USAGE Declares whether the element for this argument isa variable or
constant, indicated by VAR and CONST, respectively. For example,
<ARG POS="7" VAR VALUE="X"> declares that the variable X is
argument 7 in therelation. If no value is specified, USAGE defaultsto

CONST. Note that even when avalue is specified, the USAGE= is
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optional.

A comparison subclauseis used to evaluate its arguments with respect to
equality and the standard ordering operators. A comparison must have exactly two
arguments. It isincorrect for an ontology to declare comparison declaration
subclauses that have any other number of arguments; if this happens, the whole
inference ruleisincorrect and may be ignored. A comparison clause has the form:

<COMPARISON OP="0p">
argy
args

</COMPARISON>>
OP (mandatory) One of the operator key words: equal, notEqual, greaterThan,
greaterThanOrEqual, lessThanOrEqual, or lessThan. These all evaluate
whether arg; isequal, not equal to, greater than, or less than arg., depending
on the types of the arguments. The ordering of the basic data typesis described
in Section 4.2.2. For instance types, the values are case-sensitive and

greaterThan/lessThan have no meaning.

arg, Thefirst operand of the comparison. The syntax and semantics isthe same as

for arelation argument (see arguments above).

arg, The second operand of the comparison. The syntax and semanticsis the same
asfor arelation argument (see arguments above).

Constant Definitions

A constant is a specia instance defined in the ontology. It can be used to provide a
standard name for a shared individual, such as the color red. Although red could

technically be defined in an instance, and the DECLARATORS attribute of the
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ONTOLOGY element could be used to specify that this instance makes standard
assertions for the ontology, the key of the concept red would be a URL like
http://www.cs.umd.edu/ontology-associated-instance.html#red. However, by making
it a constant, the color can become an official component of the ontology and can be
referred to using the ontology prefixing mechanism.

A constant is referenced by prepending a“!” and a prefix chain to its name. For
example, if an ontology defined red as a constant, and some instance uses this
ontology with the cs prefix, then the instance can reference red with the key !cs.red.
Note that this means that there may be more than one key that references the same
constant instance, depending on the particular path of prefixes chosen. All such keys
should resolve to the same instance.

A constant definition has the form:

<DEF-CONSTANT NAME="constname”
[CATEGORY="catre f"]>

NAME (mandatory) The name of the constant instance. This must be a letter
followed by a sequence of letters, numbers, and hyphens; it must not contain
any whitespace. The name s case-sengitive and must be distinct from the
names of al other components defined by the ontology. It is recommended that
the entire name be in lower case, so that constant names can be easily

distinguished from the names of other kinds of components.

CATEGORY A referenceto asingle category under which the constant is to be
categorized. This must be avalid reference, meaning its prefix chain can be

followed to locate the component’s definition in its source ontol ogy.

Any additional assertions about the constant must be made in one or more content

resources. The DECLARATORS attribute can be used to specify that these contain
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standard assertions of the ontology.

Data Type Definitions

Datatypes are sets that have specific syntactic restrictions and an implicit ordering
theory associated with them. Asdescribed in Section 4.2.2, SHOE defines four basic
datatypes. .NUMBER, .STRING, .DATE, and .TRUTH. However, certain applications
may require other data types. These data types can be given namesin SHOE
ontologies, but SHOE does not associate any specific semantics with them. Thus, a
data type definition ssimply allows SHOE to be used in specialized applications, where
custom processors handle the specific additional data types appropriately.

Unlike the basic data types which can have empty prefix chains (that is, thereis
no string before the period), ontol ogy-defined types must be referenced just as
ontol ogy-defined categories are: with a prefix chain that can be followed back to the
ontology that originally defined the type.

A data type definition has the form:

<DEF-TYPE NAME="typename”
[DESCRIPTION="text"]
[SHORT="text">

NAME (mandatory) The name of the newly defined data type. This must be a letter
followed by a sequence of letters, numbers, and hyphens, and may not contain
any whitespace. The name s case-sensitive and must be distinct from the
names of al other components defined by the ontology. It is recommended that

the entire name be capitalized.
DESCRIPTION A short, human-readable definition of the data type.

SHORT A phrase which an agent may use to display the type to a user in amore
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understandable fashion than the data type’s name. In English ontologies,

SHORT should be alower-case singular or mass noun.

4.2.4 |Instance Assertions

In the previous section, we described how to define SHOE ontologies. In this section
we will describe how to provide SHOE content that commits to these ontologies. An
instance isasingle individual or concept; it can be classified under particular
categories, have properties, and be related to other instances. SHOE content is
provided by aresource called a source document. Each source document contains one
or more reference instances, that indicate the resource that the content is related to. A
reference instance contains many assertions, and the instances referenced in these
assertions (called subject instances) may differ from the reference instance. Usually,
the reference instance is the source document, but it can aso be used to specify
semantic content for other resources. For example, SHOE cannot be added to a GIF
image, but SHOE content in another resource can contain a reference instance that
describes thisimage. An example referenceinstance is shown in Figure 4.2.

All instances must have aunique key. If the instance is aresource, then thiskey is
typically some standard URL for the resource. If the instance is an entity described
solely by that resource, then the key may be formed by adding a unique pound-suffix
to the resource’'s URL. For example, http://www.jdoe.org/#Fido isavalid key for an
instance located at http://www.jdoe.org/. It isgood style for this key to correspond
with an actual anchor in the document.

All SHOE content must indicate a reference instance using an <INSTANCE > tag.
If the source document isan HTML document, then thistag may appear at the top

level within its body (i.e., it may not be enclosed by any other tags within the BODY).

111



<I NSTANCE KEY="http://univ.edu/jane/">

<l-- Use the semantics fromthe ontol ogy "university-ont",
prefixed with a "u." -->
<USE- ONTOLOGY | D="uni versity-ont" VERSI ON="1.0" PREFI X="u"
URL="htt p://ww. ont ol ogy.org/univ1l. 0. htm ">

<I-- Caimsone categories for this instance and others. -->
<CATEGORY NAME="u. Chair">
<CATEGCORY NAME="u. Student" FOR="http://univ.edu/john/">

<l-- Caimsone properties and rel ationships -->
<RELATI ON NAME="u. nane" >
<ARG PCS="TO' VALUE="Jane Snith">
</ RELATI ON>

<RELATI ON NAME="u. advi ses" >
<ARG PCS="TO' VALUE="http://univ. edu/john/">
</ RELATI ON\>

</ | NSTANCE>

Figure 4.2: An exampleinstance.
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In an XML document, the instance element must be a subelement of the shoe
element. Only SHOE tags, as described under content below, may appear between
the open and close INSTANCE tags. The assertions made within these tags are
considered knowledge relevant to the referenceinstance. Some documents may have
multiple reference instances, each of which must have a unique key.

The syntax of areferenceinstanceis:

<INSTANCE KEY="key"
[DELEGATE-TO="del; del; ...del,"]>

content

</INSTANCE>
KEY (mandatory) The unique key for the instance. Keys must begin with aletter,
may contain only the characters allowed in URLS, and must not contain
whitespace. They are also case-sensitive. Keys that begin with an exclamation

point (“!”) and the key “me”, in any case, are reserved.

DELEGATE-TO Specifiesthe URLS of resources that are permitted to make
assertions on behalf of thisinstance. This should be awhitespace-delimited list
of valid keys. Typically, the delegated resource will contain a reference
instance with the same key as the permitting instance. Agents should consider
all assertions made within that subinstance asif they were made by the
permitting instance itself. This might be done to consolidate assertions for a
web site into a single document, or to eliminate alarge number of assertions
from slowing down the download time of a document. If the delegated instance
does not declare this specia subinstance, then delegating declarative power is

simply a pointer to an agent to look elsewhere for relevant SHOE knowledge.

conlent The content of an instance can be a combination of <USE-ONTOLOGY >,

<CATEGORY>, <RELATION>, and <INSTANCE> tags. An <INSTANCE>
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tag that appears within another is called a subinstance, and has the same syntax
as other instances. The valid syntax for the other kinds of content are described

below.

Committing to an Ontology

Every SHOE reference instance must commit to one or more ontol ogies, which
provide the semantics for the knowledge about the instance. The ontologies
committed to by an instance are indicated with the <USE-ONTOLOGY > tag, which
has the following form:

<USE-ONTOLOGY ID="ontid”
VERSION="ontversion”
PREFIX="prefix"
[URL="url"]>

ID (mandatory) Specifies the extended ontology’s unique identifier. This must be a

valid ontology identifier, as specified in Section 4.2.3.

VERSION (mandatory) Specifies the extended ontology’s version number. This

must be avalid ontology version number, as specified in Section 4.2.3.

PREFIX (mandatory) Assigns alocal prefix for referring to components defined in
the ontology committed to. When the ontology refersto these components, this
prefix must be appended before the component’sname. Itisillegal for a
USE-ONTOLOGY tag to specify aprefix that is used in another

USE-ONTOLOGY tag of the same instance or an enclosing instance.

URL A URL that pointsto a document which contains the ontology committed to by
the instance. This allows agents that do not know of the ontology to locate it

and incorporate it into their knowledge base.
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Note that the syntax of the USE-ONTOLOGY tag for instancesisidentica to the

one for ontologies.

Category Assertions

Instances may be classified, that is, they may be declared to belong to one or more

categoriesin an ontology, using the CATEGORY tag:

<CATEGORY NAME="catre f"
[FOR="key"]>

NAME (mandatory) A referenceto the category asserted for the instance. This must
be avalid reference, meaning its prefix chain can be followed to locate the

category’s definition in its source ontol ogy.

FOR Containsthe key of the instance which is asserted to be a member of the
category. This value must be an instance key, a constant reference, or the value
“me”. A constant reference is prefixed with an exclamation point (‘!’), as
described under Constant Definitions on page 108. The value“me” isa
shorthand for the key of the reference instance. If the FOR attribute does not

appear, then the key is assumed to be that of the reference instance.

Relation Assertions

A reference instance may contain assertions about the properties and rel ationships of
instances. These take the following form:

<RELATION NAME="relre f">
arguments

</RELATION>

NAME (mandatory) A referenceto the relation asserted for the instance. This must

be avalid reference, meaning its prefix chain can be followed to locate the
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component’s definition in its source ontology.

arguments The set of argumentsfor the relation, specified one after another. There
aretwo forms of relation assertions, the general form and the binary form. The
genera form may be used for relationships of any number of arguments. When
using this form, the relation assertion must have the number of arguments
specified in the relation’s definition. Assertions with a different number of

arguments areinvalid and may be ignored.

Alternatively, the binary form can be used for relations that are defined to have
exactly two arguments. In thisform, POS can be FROM or TO. If therelation’s
definition specifies that one of the argumentsis an instance type, then it may be
omitted as long as the other argument is specified. In these cases, the value for
the argument is assumed to be the key of the reference instance. Thus, thisform
allows a shorthand for many common relationships, and alows instances to be

specified in more of aframe-like manner.

Regardless of form, if arelation assertion contains two or more arguments with

the same POS, thenitisinvalid and may be ignored.

Each argument has the form:

<ARG POS=("posint” | "FROM” | "TO")
VALUE="val">

POS (mandatory) The position of the argument being defined. A positive
integer indicates that this argument fits that position in the list of
arguments defined for therelation. FROM issynonymous with 1. TO is

synonymous with 2. Rules for use of arguments are specified below.
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VALUE (mandatory) Specifies the term whose argument position isindicated
by the POS attribute. For example, <ARG POS="7" VALUE="George">
declares that the constant “ George” is argument 7 in the relation. If the
relation’s definition specifies that the type is a basic data type, then the
value must be an element of that type. If thetypeisinstance, then the
value must be an instance key, a constant reference, or the value“*me”. A
constant referenceis prefixed with an exclamation point (‘!"), as described
under Constant Definitions on page 108. The value “me” is a shorthand
for the key of the reference instance. In any of these cases, the specified
instance is assumed to be of the category specified by the relation
definition. Finaly, if the argument type is an ontology-defined type, then
its syntax is implementation dependent, but SHOE agents unfamiliar with
the type may treat it as a string.

The data type assigned to the argument in the relation’s definition
determines how the value isinterpreted. For example, if thetypeis
STRING, then the value 2345 is interpreted as the string “ 2345, while if
the valueisaNUMBER, it isinterpreted as the integer 2345.

4.3 Formal Semantics

We will now present aformal semantics for the SHOE language. These semantics are
based on compatible ontology perspectives, as described in Section 3.4. That
definition depends on ontol ogies defined as tuples, a knowledge function that
describes the content of resources, and a commitment function that determines which

ontology aresource commitsto. Thus, we need to describe how SHOE ontologies
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map into the required ontology structure, and how to define the knowledge and

commitment functions based on the content of SHOE instances.

431 Preliminaries

Before we present the formal semantics, we must define afew useful functionsand
sets. Firgt, it isuseful to know which symbolsof £ correspond to what kinds of
SHOE concepts. We will specify certain subsets of the symbols S that correspond to
SHOE categories, relations, types, and constants. 5., iSthe set of category symbols,
Srer 1Sthe set of relation symbols, S;,,. iSthe set of type symbols, and S.,,..: iSthe set
of constant symbols. S..:, Sye, and Sy, are subsets of the predicate symbols, that is,
Seat € Sp, Sper € Sp, and Sy € Sp. The ontology constant symbols are a subset of
the language’s constants symbols, that is S....: € Sc.

Additionally, we will use a set of functionsto trandate different aspects of the

SHOE syntax to concepts in our logical model. The following functions are used:

ont : Id x Ver — O Maps pairs of SHOE ontology identifiers (/d) and version
numbers (Ver) to ontology structures. Since not all combinations of identifiers

and version numbers have associated ontologies, thisis apartial function.

res : Url — R Mapsauniform resource locator (URL) from the set Ur[ to a specific

resourcein R.

resolve : ShoeOnt x CompRef — S Mapsa SHOE ontology from the set
ShoeOnt and acomponent referencefrom the set CompRe f toasymbol in S.

This function has the following properties:

e resolve(O, p.name) = resolve(O’, name) if O’ isthe ontology referenced

by prefix p.
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e resolve(O, p1.pa. ... py.name) = resolve(Q’, ps. ... p,.name) if O’ isthe

ontology referenced by prefix p;.

atom : Shoe Exp — W Maps an atomic SHOE expression (an element of
Shoe Exp) to the equivalent well-formed formulain the set . The semantics

of thisfunction are specified in Table 4.2.
var : String — Sx Mapsastring to avariable symbol.

type : Sy X integer — St,e U Seqe Mapsarelation symbol and an integer
argument position to the type of the corresponding argument. In SHOE,

arguments types can be data types or categories, thus S;,,c U Seq:.

literal : Syype x String — Sc Maps atype symbol and a string to the symbol

representing that string as interpreted by the type.

We will also assume that the logical language £ contains a set of built-in
predicates. These are the binary predicates =, #, <, <, >, and >. For convenience,
we will write them in infix form. The definitions of these predicates are as needed by
the basic data types. Note, that we assume that the symbols of the data types values
aredistinct. This can be done without loss of generality due to ssmple renaming.

In the next two sections, we will provide semantics for a canonical form of
SHOE. Inthisform, all default values are made explicit, and any invalid components

are assumed to be removed.

4.3.2 Ontology Semantics

Recall that an ontology structureisatuple O = (V, A, F, R, B), where V' isa set of

vocabulary symbols, A isaset of axioms, £ isthe set of ontologies extended by O, R
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isthe set of ontologiesrevised by O, and B isthe set of ontologieswith which O is
backwards-compatible. In Table 4.1, we show how the tags in a SHOE ontology,
identified by SO, can be used to construct an ontology structure O. In thistable, we
ignore attributes that have no semantics, such as SHORT and DESCRIPTION.

A SHOE <ONTOLOGY > tag indicates a new ontology O identified by an ID and
VERSION. The <ONTOLOGY > tags of all ontologies determine the ont() function.
The use of aversion number impliesthat all ontologieswith the same identifier but an
earlier version number are prior versions of the ontology, and thus this information
and the ont() function can be used to determine R, the set of ontologiesrevised by O.
The BACKWARD-COMPATIBLE-WITH tag lists al prior version numberswith which
the new ontology is backward-compatible, and can be used by the ont() function to
identify the ontologiesthat form the set B. Finally, The DECLARATORS tag lists the
keys of resourcesthat contain standard assertions associated with the ontology. As
will be discussed in detail in Section 4.3.3, an instance is associated with aresource r
and the tags contained within the set of instances define the knowledge function K.
The knowledge of declarator instances can be considered part of the axiomatization A
of the ontology.

The <USE-ONTOLOGY> tag identifies an ontology extended by the current
ontology, viaits ID and VERSION. The set of <USE-ONTOLOGY > tagsfully
determines £. Note that the PREFIX attributeis only used to construct prefixed
names which are used to disambiguate the vocabularies of multiple included
ontologies. The resolve() function depends on it, but otherwiseit is not used in the
semantics. The URL attribute provides a location from which the ontology can be
retrieved, which may be helpful to agents that consume SHOE, but has no direct

bearing on the semantics.
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Tagsin Ontology SO

| Formal Semantics

< ONTOLOGY ID="id” VERSION="per”
BACKWARD-COMPATIBLE-WITH

="bcwy bewsy ... bew,,”
DECLARATORS
="decy decy ... decy,">

ont(id,ver) =0 =(V, A, E, R, B)
Yo, if v < ver and ont(id, v) = O, then Oy € R
Vi, 1 < i< n,if ont(id, bew;) = Oy,
thenO; € B
Vi, 1 < i< m,ifres(dec;) = v, then K(r;) C A

<USE-ONTOLOGY
ID="uid” VERSION="uver”
PREFIX="upre"
URL=""uurl">

if ont(uid, wver) = O, thenO, € £

<DEF-CATEGORY NAME="catname”
ISA="pcat pcat, ... pcat,”>

<DEF-RELATION NAME="relname”
DEF-ARG POS="1" TYPE="type;”
DEF-ARG POS="2" TYPE="types"

DEF-ARG POS="n" TYPE="type,”
</DEF-RELATION>

if resolve(SO, catname) = ¢, thenc € V, Sy
Vi, 1 < i< n,if resolve(SO, peat;) = p

then [Va c(z) — p(z)] € A
if resolve(SO, relname) = p,thenp € V, S,
Vil<i<n,

if resolve(SO, type;) =tandt € Seqe

then [Vay, ..., z, p(e1,22,.. ., 2p)

— t(l‘z)] cA

<DEF-RENAME
FROM="oldname"
TO="newname">

if s = resolve(SO, oldname)
and s’ = resolve(SO, newname)
thens’ € V

if s € Sear OF 5 € Siype
then [Vz s(x) < s'(z)] € A

if s € S,.; then
Ver, ..., &2 s(21,22,. .., 2y) <
sy, 29,...,25)] €A

if s € Seonss then[s=s]1€ A

<DEF-INFERENCE>
<INF-1F>
body, bodys ...body,
</INF-IF>
<INF-THEN>
heady heads ...head,,
</INF-THEN>
</DEF-INFERENCE >

Vi, 1 < i< n,atom(body;) = IB;
Vi, 1 < i< m,atom(head;) = TH;
[V(IBy AIBy A---AIB, —

TH ANTHaA---ANTHy) €A

<DEF-CONSTANT NAME="conname”
CATEGORY="concat”>

resolve(SO, conname) = k € S¢, Sconst
if resolve(SO, concat) = cthen[e(k)] € A

<DEF-TYPE NAME="typename”>

if resolve(SO, typename) =T
thenT € V, Stype

</ONTOLOGY >

Table 4.1: Semantics of SHOE ontologies.
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SHOE defines classes with the <DEF-CATEGORY > tag. In the semantics, classes
are unary predicates. The resolve() function associates the name of the category with
a predicate symbol in the logical language and this predicate symbol is an element of
V, the ontology’svocabulary. The ISA attributeisused to specify alist of superclasses
for the new class. The resolve() function can be used to obtain a predicate symbol
from the component references to each superclass, and thisis used to construct a
formulathat is added to the ontology’s axioms A. If the symbol for the new classis ¢,
and the symbol for the superclassis p, then this axiom is of the form Va ¢(z) — p(z).

A <DEF-RELATION> tag defines anew n-ary predicate, whose symbol is added
to the vocabulary V' of the ontology. The tag also specifies types for each argument of
the relation. The semantics of these types depend on what they are. If they are one of
SHOE's data types, such as .NUMBER, .DATE, .STRING, or .TRUTH, the typeis only
a congtraint on the syntax of assertions using the relation. On the other hand, if the
typeis acategory, then syntax cannot be used to determineif itisvalid. Infact, since
the Web is an open world, there is no way to definitively determine that a given
instance is not a member of the specified category. Thus, in thiscaseit is assumed
that the object is of the correct type, which can be inferred by means of an additional
axiom in the ontology. If the relation corresponds to an n-ary predicate p and the
category for argument = corresponds to symbol ¢, then the axiom is of the form
Vo, ..., x, pler, 22, .. 2,) — Ha;).

A <DEF-RENAME> tag provides an alias for another component used by the
ontology. It can be used to establish synonyms or shorten prefix chains. If the name
identifies a category, relation, or type, then abiconditional that establishes the
equival ence between the symbol s representing the old name and the new name can be

added to the ontology’s axioms A. For example, the equivalence of two n-ary
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| SHOE Expressions (exp)

Formal Semantics |

<CATEGORY NAME="catname”
FOR="forkey" >

if resolve(SO, catname) = ¢
and resolve(SO, forkey) = k
then atom(exp) = c(k)

<CATEGORY NAME="catname”
USAGE="VAR” FOR="forkey" >

if resolve(SO, catname) = ¢
and var( forkey) = = € Sx
then atom(exp) = c(x)

<RELATION NAME="relname”>
<ARG POS="1" VALUE="val;"
<ARG POS="2" VALUE="vals">

<ARG POS="n" VALUE="val,”>
</RELATION>

Vi, 1 < i< n,v; = resolve(SO, val;)
if resolve(SO, relname) = r

then atom(exp) = r(vi,va, ..., v,)

<COMPARISON OP="0p">
<ARG POS="1" VALUE="val">
<ARG POS="2" VALUE="valy">
</COMPARISON>

vy = resolve(SO, valy), va = resolve(SO, valy)
if op=equal then atom(exp) = [v1 = va]
if op=notEqual then atom(exp) = [v1 # va]
if op=greaterThan then atom(exp) = [v1 > v2]
if op=greaterThanOrEqual
then atom(exp) = [v1 > vs]
if op=lessThan then atom(exp) = [v1 < va]
if op=lessThanOrEqual
then atom(exp) = [v1 < vs]

<ARG POS=";" VALUE="val;"
USAGE="VAR">

v; = var(val;) € Sx

Table 4.2: Semantics of the atom() function.

predicates s and s’ isgiven by Vaq, ..

STy S(@1, T, .

). If

) Sy, g, ...

instead the name identifies a constant, then the equivalence of the instance is added.

A <DEF-INFERENCE> tag specifies an axiom to add to the theory. The axiom

consists of an implication with antecedents specified by the <INF-IF> tag and

consequents specified by the <INF-THEN> tag. The <INF-THEN> part can contain

<RELATION> and <CATEGORY > tags, while the <INF-IF> part can contain either

of those tags as well as <COMPARISON>> tags. Note that by only allowing

comparison subclauses to appear in the <INF-IF> part of an inference, we prevent the

possibility of drawing conclusions that contradict the implicit theory of the basic data

types. Each of these subclauses trandlates to a single atom, as specified by the atom()

function, that is used in the axiom. The semantics of this function are given in Table
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4.2. Animportant point isthat when USAGE="VAR" is specified for a value, the
resulting atom contains a variable (i.e., an element of Sx) in the appropriate place.
When the axiom isformed, all variables are universally quantified.

The following restrictions apply to the axioms. First, when COMPARISON is
used, both arguments must be of the same type. Second, instance types can only be
used with the equal and notEqual comparisons. A variable used in a CATEGORY is
always of type instance, while a variable used in a RELATION is of the type required
by the argument. However, it isillega for the same variable to be used in two
arguments of different basic types (although it islegal to be used in arguments that
require two different categories).

A <DEF-CONSTANT> tag specifies aconstant that is identified by the ontology.
The symbol associated with the constant by resolve() isan element of the constant
symbols S.,,.s;. The constant can be assigned a category, and if so, the appropriate
ground atom is added to the ontology’s axioms A.

Finally, a <DEF-TYPE> tag is used to specify anew datatype. Thistagis
reserved as a hook for allowing users to customize SHOE. However, SHOE does not
provide means to define the syntax or semantics of this datatype, any agents that use
the type would need additional knowledge for recognizing the data type expressions
and ordering of the values for use in <COMPARISON>. Any agent that does not
recognize the type can treat it as an additional category to which no instances or

subclasses can be added.

4.3.3 Instance Semantics

SHOE <INSTANCE> tags provide knowledge about resources. Recall from Chapter

3 that aresource is specified by a knowledge function A and a commitment function
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| TagsinInstance ST

Formal Semantics |

<INSTANCE KEY="instkey" res(instkey) = r
DELEGATE-TO="del; dely ... del,"> | Vi, 1 < i< n,if res(del;) = d
then K (r) D K (d)
<USE-ONTOLOGY if ont(uid, uver) = Oy then C(r) = O,
ID="uid” VERSION="uver”"
PREFIX="upre"
URL="uurl">
<CATEGORY NAME="catname” if resolve(ST, catname) = ¢
FOR="forkey"> and resolve(SI, forkey) = k
then [c(k)] € K(r)
<RELATION NAME="relname"> Let resolve(ST, relname) = r and
<ARG POS="1" VALUE="val,"> Vi, 1 < i< n,t; =type(r,i)
<ARG POS="2" VALUE="val;"> if t; € Stype thenv; = literal(t;, val;)
e otherwise, v; = resolve(ST, val;)
<ARG POS="n" VALUE="val,,"> then [r(vy, ve, ..., v,)] € K(r)
</RELATION>
</INSTANCE>

Table 4.3: Semantics of SHOE instances.

C'. SHOE reference instances can be used to specify these functions. Table 4.3
summarizes the semantics for each of these tags.

The <INSTANCE> tag identifiesaresource viaa KEY. The res() function returns
the resource associated with aparticular key. The rest of the tags specify the content
of the knowledge and commitment functions for that resource. If the instance
includes a DELEGATE-TO attribute, it specifies resources whose assertions are
included by reference. Thusif an instance specifies that resource r delegatesto d, the
knowledge function of » should be a superset of that for d.

A SHOE instance commitsto an ontology with a <USE-ONTOLOGY > tag. As
with the <USE-ONTOLOGY > tag for ontologies, this tag specifies and identifier and
version number for an ontology. Thus, if the resource isr and the ontology given by
the ont() functionis Oy, then C'(r) = Op. Notethat in SHOE, an instance can
commit to many ontologies. Although the forma model does not support this

directly, we can create asingle virtua ontology which extends all of the ontologies
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committed to by the instance, and use this ontology in our commitment function.

The <CATEGORY> tag makes an assertion about the class of some instance.
This assertion is a unary ground atom formed by the category predicate and a
constant. This ground atom is one of the formulas returned by the knowledge
function K for the resource.

The <RELATION> tag makes an assertion that is an n-ary ground atom.
Assuming the RELATION element isvalid, thisatom is formed by applying the
resolve() function to the relation name and to each of its argument values. The terms
of the atom depend on the types specified in the relation definition. If the typeisa
data type, then the literal() function trandlates the value into an appropriate symbol.
Otherwise the resolve() functionis used. This ground atom is one of the formulas

returned by the knowledge function K for the resource.
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Chapter 5

| mplementation

In this chapter, we will examine how the SHOE language can be implemented. A
Semantic Web system based on SHOE requires that a number of distinct tasks be
performed. We begin with an overview of these tasks and present a basic architecture
for systems to support them. We then describe a number of general purpose tools that

have been designed for SHOE, and show how they fit into this architecture.

5.1 Architectural I ssues

A system that uses the SHOE language must take into account a number of design

issues. The system must consider how ontologies are designed and possibly provide
tool support for the process, it must provide toolsto help users add assertions (called
annotations) to their web pages, and it must decide how these assertions are accessed
and then processed. In this section we will discuss each of these issues and present a

genera architecture.
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5.1.1 Ontology Design

Before SHOE can be used, appropriate ontologies must be available. Ideadly, the
Semantic Web will have vast libraries of reusable ontologies, and specific domain or
task ontologies can be quickly assembled by extending these ontologies. However,
when there are many ontologies, an ontology author may find it difficult to locate the
appropriate ontologies to reuse. Aninvaluable aid in thistask is an index of
ontologies. Thisindex may be created by hand, as web directories are, or by aweb
crawler, like standard search engines. A smpleindex may be a set of web pages that
categorize ontologies, while amore complex repository may associate a number of
characteristics with each ontology so that specific searches can beissued [88]. An
example of aweb-based index containing over 150 ontologiesis available from

http: //Amww.daml .org/ontol ogies .

If existing ontologies do not completely fulfill the needs for a particular
application, then a new ontology must be constructed. This can be a complicated and
labor-intensive process, and requires the cooperation of ontology engineers and
subject matter experts. A SHOE ontology issmply atext file, and as such atext
editor isall that isrequired to create one. However, due to the complexity of ontology
design, SHOE cannot have widespread success without tools that assist usersin
creating and editing ontol ogies. However, due to the focus of the SHOE project on
toolsthat would have the highest immediate impact, a SHOE ontology editor has not
been designed yet. Still, there are a number of ontology editors that can create
ontologies in other languages, such as Protégé [76] and the Ontolingua Server [29],
and these can provideinsights into what a SHOE ontology editor might look like.

When a SHOE ontology is completed, it can be placed on the Internet so that it

can be accessed by intelligent agents and SHOE-enabled search engines. Itisaso
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possible to create SHOE ontol ogies solely for use on intranets. These proprietary
ontologies may even extend public ontologies, thus maintaining a certain level of
compatibility with the rest of the Semantic Web. However, proprietary ontologies are
discouraged for al except the most sensitive applications, as they hide ontology
constructs that could be reused by others and thus lead to greater ontology divergence
throughout the Semantic Web.

5.1.2 Annotation

Oneway of using SHOE isto add it directly to the web pagesit describes; this process
is called annotation. The first step isto choose or create an appropriate ontology, as
discussed in the previous section. Then the user must select instances and describe
their properties. Thisinformation isencoded in SHOE and added to web pages, but
the exact method depends on the problem domain and the resources available. As
with ontologies, a simple text editor is all that is required to begin annotating web
pages. However, thisrequires familiarity with the SHOE specification and is prone to
error. Therefore, we have provided the Knowledge Annotator, a graphical tool that
allows users to add annotations by choosing itemsfrom lists and filling in forms. The
Knowledge Annotator is described in more detail in Section 5.2.2.

However, it istedious to use an authoring tool to generate large amounts of
markup, but without plentiful markup, the Semantic Web is of limited value. In fact,
detractors of the Semantic Web |anguage approach often cite the difficulty in
obtaining markup as the main reason why it will never work. Fortunately, there are
many ways to generate semantic markup.

Many useful web pages have some regular structure to them, and programs

(commonly called “wrappers’ or “web-scrapers’) can be written to extract this data
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and convert it to SHOE format. Later, we will describe atool called Running SHOE
that helps users quickly create wrappersfor certain kinds of pages. As XML becomes
ubiquitous on the Web, generating wrappers will become easier, and authors will be
able to use style sheetsto transform asimple XML vocabulary into a semantically
enriched one.

If aweb page's provider iswilling to include semantic markup, the process can be
even easier. For example, databases hold much of the Web's data, and scripts produce
web pages from that data. Because databases are structured resources, an analyst can
determine the semantics of a database schema, map it to an ontology, and modify the
scripts that produce the web pages to include the appropriate semantic markup.

Other extraction tools might include machine-learning [36, 60] or
natural -language-processing techniques. NL P techniques have had success in narrow
domains, and if an appropriate tool exists that works on the document collection, then
it can be used to create statements that can be trandated to SHOE. It should be
mentioned that even if such an NLPtool is available, it is advantageous to annotate
the documents with SHOE because this gives humans the opportunity to correct
mistakes and allows query systems to use the information without having to reparse

the text.

5.1.3 Accessing Information

Once SHOE ontologies and instances are available on the Web, SHOE agents and
search engines must be able to access thisinformation. There are two basic
approaches. direct access and repository-based access. In the direct access approach,
the software makes an HTTP request to the relevant web page or pages and extracts

the SHOE markup. The advantage of this approach isthat extracted knowledgeis
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guaranteed to be current. However, the latency in internet connections means that this
approach cannot be realistically used in situations where many pages must be
searched. Therefore, it isbest used to respond to specific, localized queries, where
incompl ete answers are expected. It may also be used to supplement ordinary
browsing with additional semantic information about pages in the neighborhood of a
selected page.

The repository-based access approach relies on aweb-crawler to gather SHOE
information and cache it in a central location, which is similar to the way
contemporary search engineswork. Certain constraints may be placed on such a
system, such asto only visit certain hosts, only collect information regarding a
particular ontology, or to answer a specific query. Queries are then issued to the
repository, rather than the the Web at large. The chief advantage of the this approach
isthat accessing alocal KB is much faster than loading web pages, and thusa
complete search can be accomplished in less time. However, since a web-crawler can
only process information so quickly, there is a tradeoff between coverage of the Web
and freshness of the data. If the system revisits pages frequently, then thereisless
time for discovering new pages. Exposg, whichisdiscussed in Section 5.2.4, isa

SHOE web-crawler that enabl es the repository-based access approach.

5.1.4 Information Processing

Ultimately, the goal of a SHOE system is to process the data in some way. This

information may be used by an intelligent web agent in the course of performing its
tasks or it may be used to help a user locate useful documents. In the latter case, the
system may either respond to a direct query or the user may create a standing query

that the system responds to periodically with information based on its gathering
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efforts.

A SHOE system requires areasoner, which is acomponent that can infer new
factsfrom available information and/or answer queries from agiven set of facts and
rules. In arepository-based system, thisisusually provided by a knowledge base
system. In order to deal with large amounts of SHOE information, this system must
be selected carefully. While SHOE can be implemented relatively easily in
semantically sophisticated knowledge representation systems like LOOM or CYC-L,
the language is intended to be feasibly implementable on top of fast, efficient
knowledge representation systems with correspondingly simpler semantics.

The selection of a SHOE repository should depend on a number of factors. In
order for the system to be a complete SHOE reasoner, it must have the expressivity of
datalog. To handle the large volumes of data, it must use efficient secondary storage.
Also, since the repository will be large, it should be leveraged by many users, and
thus must support concurrent, multi-user operation. Finally, it must have a strategy
for dealing with perspectives. Later in this chapter, we will discuss a number of
knowledge base systems, and how they meet these criteria.

It should be noted that due to the size of the Web, complete reasoning may need to
be sacrificed for the sake of improving query response times. Thus, it may be useful
to have many repositories, each with different inferential capabilities and
performance characteristics. Then users can select the requirementsfor a particular

guery and the repository that best fulfillsthese needs can provide the answer.

5.1.5 A Basc Architecture

Now that we have discussed the various requirements and choices for a SHOE

system, we can propose a general architecture. The foundation of any SHOE
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architecture depends on the existence of web pages that contain SHOE instances,
where each instance commits to one or more SHOE ontologies that are also available
on the Web. A number of architectures can be built around this concept, with
different sets of tools for producing and consuming thisdata. Thisideais influenced
by the design of the Web, where HTML isalinguafrancathat is produced by text
editors, web page editors, and databases; and processed by web browsers, search
engines, and other programs.

We describe a basic architecture (shown in Figure 5.1) that was investigated
extensively in thisthesis. In this architecture, a number of tools can be used to creste
SHOE web pages. These toolsinclude text editors, the Knowledge Annotator,
Running SHOE (see Section 5.2.3), and possibly other domain specific tools. For
efficiency reasons, the assertions are gathered from the web pages by aweb crawler
called Exposé (see Section 5.2.4), and stored in a knowledge base. The specific
knowledge base system used can vary depending on the needs of the application, and
multiple knowledge base systems can be used simultaneously. Finally, a number of
front-ends, including SHOE Search (see Section 5.2.9), domain specific tools, or KB
specific tools can be used to query the data. The generic SHOE toolswill be

discussed extensively in the next section.

5.2 SHOE Software

To support the implementation of SHOE we have devel oped a number of general
purpose tools. Most of these tools are coded in Java and thus allow the development
of platform independent applications and applets that can be deployed over the Web.
These tools are the results of over 20,000 lines of source code, which for length

reasons are not included in this thesis. However, both source and application versions
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Figure5.1: A basic SHOE architecture.

of the tools may be downloaded from
http: /mwww.cs.umd.edu/projects/plus/ SHOE/downl oads.html.

When describing the design of these tools, we will use Java's object-oriented
terminology. Specifically, a classis acollection of data and methods that operate on
that data and an object isinstantiation of aclass. The reader should be careful to
distinguish between the use of these terms as programming language constructs and
their use elsewhere in this paper to refer to knowledge representation concepts.
Another important concept from Javais a package, which isa collection of Java

classes meant to be used a unit.
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521 TheSHOELibrary

The SHOE library is a Java package that can be used by other programsto parse files
containing SHOE, write SHOE to files, and perform simple manipulations on various
elements of the language. This library serves as afoundation for al of the Java
software described later. The emphasis of the library is on KB independence,
although these classes can easily be used with aKB API to store the SHOE
informationin aKB.

The central class, called SHOE Doc, represents a SHOE document. This class can
be used to parse afile or internet resource, or to create a new SHOE document from
scratch. The document is stored in such away that the structure and the format is
preserved, while efficient access to and update of the SHOE tags within the document
isstill possible. SHOE_Doc has methods for returning the ontologies and instances
contained within the document, and also provides methods to add and del ete them.

Each SHOE tag has a corresponding class that models that element. These classes
have a common ancestor and include methods for reading and interpreting the tags
contained within them, modifying properties or components and validating that the
object is consistent with the rules of the language. Each class uses data structures and
methods that are optimized for the most common accesses to it.

SHOE ontologies are represented by an Ontology class. This class contains
methods for retrieving and editing the various components of the ontology.
Additionally, it has a method that will return a category’s set of descendantsin atree
structure, and another method that returns these structuresfor all of the ontology’s
top-level categories.

SHOE documents must be parsed in two steps. Thisis because SHOE is

order-independent but the interpretation of some tags may depend on othersin the
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same document. The first step ensures that the document is syntactically correct and
creates the appropriate structures for each of its components. The second step ensures
that the SHOE structures are internally consistent with themselves and any ontologies
that they depend on.

Access to ontologiesis controlled viathe OntManager class. Since ontology
information is used frequently, it is more efficient to access thisinformation from
memory than to access it from disk, or even worse, the Web. However, an application
may require more ontologies than can be stored in memory, so the ontology manager
must cache the ontologies. One of the most important features of this classisa
method which resolves prefixed names. In other words, it determines precisely which
ontology element is being referred to. Thisis non-trivial because prefix chains can
result in lookups in a series of ontologies and objects can be renamed in certain
ontologies. When objects that contain such prefixed names are validated, the names
areresolved into an identifier that consists of the id and version of the ontology that
originated the object and the name of the object within that ontology. Thisidentifier is
stored within the object to prevent unnecessary repetition of the prefix resolution
process.

The ontology manager aso handles ontology proxies. A proxy ontology is a copy
of an ontology that is hosted at a different location. It may be needed when an
Internet connection is unavailable or when connections to an ontology’s original
location are too slow for ordinary use. Proxy ontologies can be specified in afile that
contains the identifiers, version numbers, and alternate locations for a set of
ontologies. The aternate location may be afile on thelocal disk, or it could specify a
mirror site that has better accessibility than the ontology’s home site. If aproxy is

specified for a particular ontol ogy, the ontology manager will attempt to download it
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from from the proxy location first.

The SHOE library provides awell-tested and easy to use set of classes and
methods for manipulating SHOE documents. This library can be used by any Java
software for the SHOE language, and is at the core of many of the tools described in

the subsequent sections.

5.2.2 Knowledge Annotator

The Knowledge Annotator is atool that makesit easy to add SHOE knowledge to
web pages by making selections and filling in forms. Ascan be seen in Figure 5.2, the
tool has an interface that displays instances, ontologies, and assertions (referred to as
clamsinthefigure). A variety of methods can be used to view the knowledge in the
document. These include a view of the source HTML, alogical notation view, and a
view that organizes assertions by subject and describes them using simple English.

The Annotator can open documents from the local disk or the Web. These are
parsed using the SHOE library, and any SHOE instances contained in the document
are displayed in the Instances panel. When an instance is selected, the ontologiesit
commitsto and its assertions are displayed in the other panels. Instances can be
added, edited and deleted. When adding an instance, the user must specify itskey and
an optiona name. If desired, the name can be extracted from the document’s TITLE
with the press of a button.

Every instance must commit to at least one ontology, but may commit to more.
These ontologies provide the set of categories and relations that are used to describe
the instance. An ontology can be added by selecting it from alist of known
ontologies, or by specifying itsidentifier, version number, URL, and a desired prefix.

These fields can a so be edited for any use-ontology, and an ontology can be deleted
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Figure 5.2: The Knowledge Annotator.

from the list of ontologies committed to by an instance. When the user selects an
ontology, the OntManager class of the SHOE library is used to retrieveit, so that it
may be used in the next step.

After the user has selected an instance and committed to an ontology, he can add,
edit, and delete assertions. When adding or editing an assertion, the user is presented
with awindow like the one shown in Figure 5.3. This window containsalist from
which the user can select the ontology that contains the desired category or relation.
Thiswill place avaluein the Prefix field and cause the set of el ements from the
ontology to appear in the adjacent window. Thislist can be filtered to show just the
relations or just the categories using the Filter choicelist. A relation or category
assertion is added by selecting the type of assertion from the Type choicelist, and

then selecting a name from the Elementslist. If arelation is selected, the types of its
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Figure 5.3: The Knowledge Annotator’s assertion window.

arguments are displayed next to the appropriate fields, and the user can enter values

for thesefields. When the user enters an instance key in one of these fields, the

available relations will automatically be filtered to display only those relations where

the instance is of the correct type for that argument. This can help the user focusin on

the relevant relations of large ontologies. If acategory is selected, the user must

supply the key of the instance. To reduce the amount of work for the user, the first
argument of a new relation assertion or the key of anew category assertion defaultsto
the subject of the assertion selected in the main window. The addition or edit of the
assertion can be confirmed with the OK button, which closes the window, or the New
button, which allows another assertion to be added.

The Annotator automatically checksthat all supplied values are valid and adds the

correct SHOE tags to the document. New tags are inserted near the end of the
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document’s body or within the correct instance. The document can then be saved to a
file.

The Knowledge Annotator can be used by inexperienced users to create smple
SHOE markup for their pages. By guiding them through the process and prompting
them with forms, it can create valid SHOE without the user having to know the
underlying syntax. For these reasons, only a rudimentary understanding of SHOE is
necessary to markup web pages. However, for large markup efforts, the Annotator
can be painstakingly slow. In the next section, we describe Running SHOE, which

can help in many situations.

5.2.3 Running SHOE

Some web pages have regular structure, with labeled fields, lists, and tables. Often, an
analyst can map these structures to an ontology and write a program to translate
portions of the web page into the semantic markup language. Running SHOE (see
Figure 5.4) isatool that helps users specify how to extract SHOE markup from these
kinds of web pages. The user selects a page to mark up and creates awrapper for it by
specifying a series of delimitersthat describe how to extract interesting information.
These delimitersindicate the start of alist (so that the program can skip header
information) and end of alist (so that it can ignore trailing information), the start and
end of arecord, and for each field of interest, a pair of start and end delimiters.

For each field the user identifies, he must indicate whether itsvalueis alitera or a
URL. Many web pages use relative URLS, which only specify apath relative to the
URL of the current page. When the user indicates that afield contains URLS,
Running SHOE knowsto expand the relative URL s by using the page's URL as a
base. Thisisuseful because in general URL s make good keys for SHOE instances,
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Running SHOE.
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but relative URL s are poor keys because they do not uniquely identify aweb page. If
we expand the relative URLSs, then they become unique, and we can use them as keys.

After the user has specified the delimiters and pressed the View Recor ds button,
the tool displays atable with arow for each record and a column for each field.
Running SHOE creates this table by scanning through the document, and extracting
records and fields based on the specified delimiters. Since, irregularitiesin apage’s
HTML code can cause the program to extract fields or records improperly, thistable
is used to verify the results and perform corrections before proceeding.

The next step isto convert the table into SHOE markup. In the top-right panel, the
user can specify ontology information and a series of templates for SHOE category
and relation assertions. The ontology information, including identifier, version
number, prefix, and URL, are used to create a USE-ONTOLOGY tag. The templates
are used to specify the type of assertion, its name, and its arguments. For category
assertions, the first argument is the key of the instance being classified, while the
second argument is not used. For relation assertions, both arguments must be
specified. Either aliteral or afield reference can be used as atemplate argument. A
literal issSimply a string that will appear in SHOE tagsasis. A field referenceis of the
form @: and references the :th field, where fields are numbered based on the order of
the table’s columns.

By pressing the View SHOE button, the user instructs the tool to extract and
display the set of SHOE tags. Essentially, the tool takes each assertion template and
iterates through the table creating a tag for each record, where field references are
replaced by the record’s value for the identified column. If the user is satisfied with
the results, then he can save them to afile with the Save SHOE button.

The pages that work best with Running SHOE tend to have long lists or tables of
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things, where each item or row contains a hyperlink to some concept’s homepage.
Using thistool, atrained user can extract substantial markup from these web pagesin
minutes. Furthermore, Running SHOE lets users save and retrieve templates, so it is
easy to regenerate new SHOE markup if the page's content changes. Although
Running SHOE was originally designed to extract SHOE from HTML pages, it can
also be used with XML document. In fact, since XML more clearly delineates the
content of the document, it is even easier to use Running SHOE with XML

documents than with HTML ones.

524 Expose

After SHOE content has been created, whether by the Knowledge Annotator,
Running SHOE, or other tools, it can be accessed by Exposg, a web-crawler that
searches for web pages with SHOE markup. Exposé stores the knowledge it gathers
in a knowledge base, and thus can be used as part of arepository-based system. The
web-crawler isinitialized by specifying a starting URL, arepository, and a set of
constraints on which web sites or directoriesit may visit. These constraints allow the
search to focus on sources of information that are known to be of high quality and can
be used to keep the agent from accumulating more information than the knowledge
base can handle. Exposé can either build a new repository of SHOE information or
revisit a set of web pages to refresh an existing repository.

A web-crawler essentially performsagraph traversal where the nodes are web
pages and the arcs are the hypertext links between them. Exposé maintains an open
list of URLstovisit, and aclosed list of URLs that have already been visited. When
visiting web pages, it follows standard web robot etiquette by not requesting pages

that have been disallowed by a server’s robot.txt file and by waiting 30 seconds
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between page requests, so as not to overload a server.

The progress of the crawl can be monitored and paused by the user. Exposg’'s
display shows each URL that has been requested, the timestamp of the request, and
the status of the request. The tool also keeps track of the total number of page
requests, how many of the pages have SHOE on them, and how many requests
resulted in errors. At any time, the user can pause the search, and then resume it | ater.

Upon discovering anew URL, Exposé assignsit a cost and uses this cost to
determine where it will be placed in a queue of URLsto be visited. In thisway, the
cost function determines the order of the traversal. We assume that SHOE pages will
tend to be localized and interconnected. For thisreason, we currently use a cost
function which increases with distance from the start node, where paths through
non-SHOE pages are more expensive than those through SHOE pages and paths that
stay within the same directory on the same server are cheaper than those that do not.

When Exposeé |oads a web page, it parsesit using the SHOE library, identifies all
of the hypertext links, category instances, and relation arguments within the page, and
evaluates each new URL as above. Finaly, the agent uses the SHOE KB Library API
to store SHOE category and relation assertion in a specified knowledge base. This
API, described in the next section, makes it easy to adapt Exposé for use with

different knowledge bases.

525 TheSHOEKB Library

The SHOE KB library is a Java package that provides a generic API for storing
SHOE data and accessing aquery engine. Applicationsthat use this API can be easily
modified to use a different reasoning system, thus allowing them to execute in a

different portion of the completeness/ execution time tradeoff space.

144



ShoeKb, the main class of the SHOE KB Library API contains methods for
storing ontol ogies, storing SHOE document data, and issuing queries to arepository.
It maintains a catalog of al ontologies stored in the KB, and provides a renaming
method that distinguishes between components defined in different ontologies. When
storing document data, it deletes any assertions that werein a previous version of the
document, since they are no longer reflected on the Web. The class also allows a
default ontology to be specified, which is used to disambiguate query predicates and
identify the basis of the query’s perspective.

The ShoeKb class aso provides the option to forward-chain a special kind of
inference. SHOE's formal semantics state that if an instance appears in an argument
of arelation which is of an instance type, then alogical consequence of the assertion
isthat the instance is amember of the required category. However, this can result in
the addition of alarge number of rulesto the KB. Therefore, the library supportsthe
option to forward-chain these particular consequences and explicitly store them in the
knowledge base.

Logical sentences are represented by a Sentence class. Subtypes of thisclass
include Query, which is a conjunctive query, and Axiom which isaHorn clause. Both
gueries and axioms are composed of Atom objects.

The ShoeKb class uses a KBInterface which defines methods to access the basic
primitives of knowledge bases. KBInterface is|oosely based on arestricted version of
OKBC [17], and contains methods for connecting to knowledge bases, storing
sentences in them, and issuing queries. This class can be subclassed with
implementations for specific knowledge representation systems, and thus provides a
generic API for standard knowledge base functionality.

The SHOE KB library is used by all of the SHOE tools that must access a
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knowledge base. By using astandard AP, these applications can be easily modified
to use different backends. All that is needed is a simple subclass of ShoeKb or
KBiInterface that interfaces with the knowledge base. Subclasses of the ShoeKb class
have been implemented for XSB, Parka, and OKBC-compliant knowledge bases.

These systems are discussed in the following sections.

526 XSB

X SB [83] isan open source, logic programming system that can be used as a
deductive database engine. It is more expressive than datalog, and thus can be used to
completely implement SHOE. XSB'’s syntax is similar to that of Prolog, but while
Prolog will not terminate for some datalog programs, X SB uses tabling to ensure that
all datalog programs terminate.

We will now describe how compatible ontology perspectives can be implemented
in XSB. In this approach, the SHOE ontologies and instances are trandlated into an
XSB program that can evaluate contextualized queries. Although thisdiscussion is
specific to XSB, with minor modifications the approach can be applied to other logic
programming systems.

First, we must consider a naming convention for predicates in the deductive
database. Since two ontologies may use the same term with different meanings, the
definitions of such terms could interact in unintended ways, and thus a renaming must
be applied. A ssimple convention isto assign a sequence number to each ontology and
append this number to each term defined by the ontology. The sequence numbers can
be stored in the deductive database using aontSeq/2 predicate which associates an
ontology with its sequence number.

As shown in the formal semantics (see Section 4.3), SHOE ontol ogies can be
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trandated into five-tuple ontology structures (V, A, £, R, B). The axioms A of these
structures can be written as Horn clauses, which with some modification can be used
in the XSB program. First, a naming substitution as describe above must be applied.
Second, we must localize the clauses so that they do not firein inappropriate contexts.
A naive approach would simply generate anew program for each query, thus ensuring
that only the appropriate rules are included, but the size of the Semantic Web would
make this extremely expensive. Instead, it is more efficient to create a single program
that includes some sort of switch to indicate the context. There are two possible ways
of doing this. one isto add a context argument to each predicate and set this argument
to the ontology identifier; the other isto create a context predicate and add this
structure to the body of each rule. For example, if the O,,,,;, ontology was assigned
the sequence number 1, and contained the axiom

Va, Organization(x) «— University(x), then thefirst method would trand ate the

axiom into:

organi zationl(univ, X) :- universityl(univ, X).

Alternatively, the second method would trandate the axiom as:

organi zationl(X) :- context(univ), universityl(X).

We find this second method more natural, and choose it over thefirst one. To ensure
that the program fails gracefully, adefault fail ruleis created for each ontology term
that appears only in the body of arule.

When an ontology O, extends another ontology O, that is O, € Ej, then any
perspective based on O; must aso include al axioms of O,. Another way of thinking
about thisisthat the context of O; impliesthe O, context. Thus, if we had a univ

ontology that extended a gen ontology, our logic program would need the rule:
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context (gen) :- context(univ).

This says that whenever the context is univ, the context is also gen. However, as we
will explain later, context is a dynamic predicate, which must be defined using the

assert predicate in XSB. Thus, the XSB program actually has:

.- assert((context(gen) :- context(univ))).

We also need rulesto indicate how a backward-compatible ontology can use data
that committed to a previous version. When the revision is the current context, we
want all facts that use predicates from the earlier ontology to imply facts using
predicates defined in the newer ontology. For example, assume that the O, ontology
declaresitself to be backward-compatible with the O.;; ontology (that is
O.51 € B.s2). If the sequence numbers of the O.,; and O, ontologiesare 1 and 2,
respectively, the Person term can be made compatible across ontol ogies by adding the

following rule to our program:

person2(X) :- context(cs2), personl(X).

This saysthat if the context iscs2 and X isapersonl, then X isalso aperson2. In
other words, from the perspective of O.,, a0, :Personisaso a0, :Person.

In the formal semantics, DEF-RENAME is equivalent to a biconditional axiom of
theform s(xy, zq, ..., 2,) < §'(21,22,...,2,). Thisiseasily implemented in the
program by splitting it into two Horn clauses. Note, that although it may be tempting
to perform pre-processing to simply use the same predicate wherever the name or its
alias appears, this would be incorrect. For example, assume we have ontologies A, B,
and B’, where B extends A and B’ is backward-compatible with B, but does not
extend A. Also assumethat B : ¢ renames A : p and B’ defines ¢ differently than B

does. If we used the renaming approach, then our compatibility axiom would be
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A:p— B':q, butthisisfase because resources that commit to A are not in the
perspective based on B’! Instead, wemust be abletosay B : ¢ — B’ : q.

Now we can turn our attention to SHOE instances. According to the formal
semantics, assertions are simply ground atoms, and the corresponding atoms for a
resource can be retrieved using the knowledge function K. It iseasy to trandate these
atomsinto factsin the deductive database. For relation assertions, we smply need to
find the correct predicate for any given relation name, while for category assertions,
we must convert the category to the appropriate unary predicate. In both cases, the
commitment function C' specifies the ontology that the resource commitsto, and thus
determines how to rename the predicates.

Finally, we add a helper predicate for issuing queries to the knowledge base using
aparticular context. Since al of the rulesin the program use the context predicate to
determine if they should fire, a query must be able to create afact for this predicate.
We can use assert to dynamically update context before we issue our query, and then
retract the context after the query has completed. In order to return the entire set of
answersto a query, instead of atuple at atime, the query predicate must call the
Prolog predicate setof between the assert and retract. Thus, our query predicate looks
like:

query(C, V, Q L) :- assert(context(Q)),
setof (V, Q L),
retract(context(C)).
The query predicate takes a context C, avariable ordering v, and aquery Q asinputs,
and returnsalist variable L that bindsto the answers.

Given a set of SHOE documents, the SHOE KB API for XSB constructs an XSB

program using this method. This program can then be compiled for maximum

performance. The API aso has the ability to start an X SB process, |oad a program,
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send queries, and parse the answers.

Although X SB is capable of implementing SHOE's full semantics, this approach
does haveits limitations. First, programs cannot be modified dynamically, and to
handle new ontologies or instances, a new program must be created and compiled. It
may be possible to alleviate thisby using XSB’s feature for storing the extensional
database in arelational database. If thiswas done, then assertions could easily be
added and deleted using the database’s standard features. Another problemis that
XSB isasingle-user system, which means that a new XSB process must be started for
each user. Since the knowledge base will be very large, this can be extremely
inefficient. A potential solution is to create a client-server interfaceto asingle XSB
process, but this would still be unable to process queries concurrently. A fina
problem with XSB isthat it may not scale to the sizes needed for semantic web

knowledge bases. Future work will address these problems.

5.2.7 Parka

Parka[27, 84] is ahigh-performance knowledge representation system whose roots
lie in semantic networks and frame systems. It is capable of performing complex
gueries over very large knowledge bases in less than a second [84]. For example,
when used with a Unified Medical Language System (UMLS) knowledge base
consisting of almost 2 million assertions, Parka was able to execute complex
recognition queriesin under 2 seconds. One of Parka’'s strong suitsisthat it can work
on top of relational database systems, taking advantage of their transaction guarantees
while still performing very fast queries.

Parka represents the world with categories, instances, and n-ary predicates and

can infer category membership and inheritance. It includes a built-in subcategory

150



relation between categories (called isa) and a categorization relation between an
instance and a category (called instanceof). It also includes a predicate for partia
string matching, and a number of comparison predicates.

Parka can support SHOE's most widely-used semantics directly. Aswith XSB, a
renaming must be applied to guarantee the uniqueness of terms defined in different
ontologies. The standard category axioms can be represented by Parka'sisa relation,
the membership of an instance in a category can be represented by the instanceof
predicate, and all relation definitions can be accommodated by defining new
predicates. Additionally, the Parka version of the SHOE KB API automatically
computes and explicitly stores the inferred typesfor certain relations. Furthermore,
renaming is handled by pre-processing step, which computes the source ontology and
component for any name. A simple name substitution is then used to ensure that the
correct predicateis selected. Thus, the only language component that Parka does not
support is ageneral inference rule mechanism.

A Parka knowledge base can be updated dynamically, which is advantageous for a
system that must mirror the rapidly changing Web. In order to provide the best
possible snapshot of the Web, the knowledge base must delete assertions that no
longer appear in aresource. To enable Parkato delete these assertions, we have to
keep track of each assertion’s source. One solution would be to represent source
information with an extra argument to each predicate, but the isa and instanceof links
are built-in binary predicatesin Parka. Thus, this approach could not be used without
changing the internal workings of the knowledge base. An alternativeisto store two
factsfor each assertion. The first fact ignores the source, and can be used normally in
Parka. The second fact uses aclaims predicate to link the source to thefirst fact.

Although thisresults in twice as many assertions being made to the knowledge base,
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it preserves inheritance while keeping queries straightforward. The claims predicate
can be used to find the the source of an assertion or to find all assertions from a
particular source.

Parka uses sockets for multi-user, client-server operation. When the
Parkalnterface class (a subclass of KBInterface) isinstantiated, it sends a message to
the Parkalistener, which responds by creating a new process and establishing a socket
for communication with the client. When the issueQuery method is called, the query
istrandated into Parkaformat and sent to the server viathe socket. After the server
processes the query, the client uses the socket to retrieve the answers.

Parka's chief advantages are that it alows dynamic updates and that it can berun
in a multi-user, client-server mode. However, Parka does not provide the ability to
partition its knowledge base, and because the inference across isa and instanceof
linksis built-in, true partitioning cannot be accomplished within the system.
Furthermore, because Parka does not have arbitrary axioms, it does not support the
SHOE notion of ontology backward-compatibility. Thus a Parka knowledge base is
best used to represent a single extended ontology perspective, preferably based on

many ontologies.

5.2.8 Relational Database Management Systems

It isalso possible to use arelationa database management system (RDBMS) asa
SHOE repository. RDBM Ss have been designed to efficiently answer queries over
large databases, and thus scal e better than X SB or Parka. However, this efficiency
comes at a cost: thereisno way to explicitly specify inference.

We will now sketch a method for representing SHOE in an RDBMS. First, aswith

XSB and Parka, a renaming must be applied to distinguish between predicatesin
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different ontologies. Then each n-ary SHOE relation is represented by a database
relation with » attributes, while each category is represented by a unary relation.
Every SHOE relation assertion and category assertion isatuplein one of the database
relations.

Even certain types of inference rules can be implemented in RDBMSs. As
described by Ullman [86, Chapter 3], for any set of safe, non-recursive datalog rules
with stratified negation, there exists an expression in relational algebrathat computes
arelation for each predicate in the set of rules. Thus database views could be used to
compute each predicate. Although the semantics of SHOE are safe and include no
negation, SHOE rules can be recursive. Therefore, some but not all, of the rules could
be implemented using views. Depending on the RDBMS, some recursive predicates
may even be computable. For example, some commercial RDBM Ss include
operators to compute the transitive closure of arelation (e.g., the CONNECT WITH
option in the Oracle SELECT operator).

A SHOE repository that uses a RDBMS sacrifices completeness for improved
performance, giving us another option for applications. Although we have not yet
implemented aversion of the SHOE KB library for aRDBMS, thiswill be

accomplished in future work.

529 SHOE Search

SHOE Search [47] isatool used to query the information that has been loaded into a
SHOE KB. It gives users anew way to browse the web by allowing them to submit
structured queries and open documents based on the results. The basic ideaisthat if
gueries are issued within a context, the tool can prompt the user with context specific

information and can more accurately locate the information desired by the user. A
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Figure 5.5: SHOE Search.

screen shot of SHOE Search isshown in Figure 5.5.

The user selects a context by choosing an ontology from a drop-down list. The list
of available ontologies are those that are known by the underlying KB. The identifiers
and the version numbers of each ontology are displayed, so that the user may choose
to issue queries against earlier versions of ontologies.

After the user chooses an ontology, the system populates a list of categories that
are defined in that ontology. Thislist is organized so that the specializations of each
category are indented beneath it. This taxonomy makes it possible for the user to
quickly determinethe kinds of objects that are described in the ontol ogy and to choose
aclassthat is of sufficient granularity for his or her needs. Since one of the main
purposes of choosing an ontology is to reduce the number of choices that the user will

have to make subsequently, the list of categories generally does not include categories
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defined in ontol ogies extended by the selected ontology, even if they are ancestors of
categories defined locally. It isassumed that if these categories are of interest to the
user, then he can first select an appropriate ontology. However, ontol ogies may
rename an element from an extended ontology and effectively “import” them. Such
categories are included in the list, and displayed with their local name.

When the user chooses a category and presses the Select button, the system
responds with a set of properties that are applicable for that category (in aframe
system, this would essentially be the slots of the selected frame). Applicable
properties are inheritable; thus any properties that apply to an ancestor of the selected
category are also included in the set. However, as with the list of available categories,
it isimportant to provide somefiltering for the user, so only those relations that are
defined or aliased in the selected ontology will appear, even if other ontologies define
relations that could be relevant.

Technically, SHOE's properties are rel ations which can have some number of
typed arguments. As such, aproperty of aclass can be considered arelation where the
first argument must be a member of that class. However, this makes the determination
of properties dependent on the somewhat arbitrary ordering of arguments as chosen
by the ontology designer. That is, the relation worksFor (Person, Organization) would
be a property of the class Person, but the inverse relation hasEmpl oyee(Organization,
Person) would be a property of Organization. In order to prevent SHOE Search
gueries from be restricted by these kinds of representational decisions, arelationin
which the class is a subclass of the second argument is considered an inverse property
and isincluded in the set available to the user. Such propertiesare clearly labeled in
the display.

The property list allowsthe user to issue a query by example. He can typein
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values for one or more of the properties, and the system will only return those
instances that match al of the specified values. Some of these property values are
literals (i.e., strings, numbers, etc.) while others may be instances of classes. In the
latter case, the user may not know the keys for these instances, since they are
typically long URLs. Therefore, arbitrary strings are allowed in these fields and the
query will attempt to match these strings to the names of instances. To increase the
chance of a match, case-insensitivity and partial string matching are used.

When the user presses the Query button, the system constructs a conjunctive
guery and uses the SHOE KB library to issue it to aKB. Thefirst atom of the query
specifies that the instance must be of the selected category, e.g.,
instanceO f(x, Person). The remaining atoms depend on the type of the argument
that the value represents. In the case of numbers, the atom is ssimply looking for an
instance that has the specified value for the relation. In the case of strings, two atoms
are added, one to find the values of the relation, and the other to perform a partial
string match on them to the string specified by the user. The latter of these atoms
assumes the presence of a string M atch predicate which istrueif the first argument’s
string contains the second argument’s string. Finally, if the type of the argument isa
category, then three clauses are added: one to get the valuesfor the relation, one to
get the corresponding names of these instance keys, and athird to partially match the
name strings to the string specified by the user. Note that even if the user only
specified values for two properties, the resulting query could contain as many as
seven conjuncts. One of the advantages of SHOE Search isthat useful but complex
gueries are constructed automatically. For example, the query constructed by the user

in Figure 5.5 corresponds to a Parka query of the form:
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instanceO f(Article, x1) Apublication Research(zy, xy) Aname(zg, ny)A

stringMatch(ng, “Simple HTML Ontology Extensions’ )A

publication Author(zy, x3) A name(xs, n3) A stringMatch(ns, “Heflin™ )

Many users would have difficulty constructing such queries by hand.

When the KB returnsthe results of the query, they are displayed in tabular format.
The KB islikely to return many duplicate results, some of these will be due to
redundancies of different web pages, others might be because the same page was
visited many times using different URLs. Either way, duplicate results would s mply
clutter the display, and therefore they are removed before the system displays them.
Generally, both the names and keys are displayed for related instances, so that the user
can distinguish between instances that happen to have identical names. If the user
clicks on an instance key, whether it is the instance that matches the query, or one that
matches one of its properties, the corresponding web pageis opened in anew browser
window. This allows the user to browse the Web with more control over the queries.

Sometimes users may have trouble deciding what values to use for agiven
property and may end up getting no results because incorrect values were entered. To
remedy this problem, we have added a Find button next to each property that finds
valid values for that property. If thisbutton is pressed the system will essentialy issue
aquery to find all instances that have a value for the selected property and return
those valuesin the tabular display. The user may then select one of these values and
pressthe Add To Query button to insert it into the query field for the property. In
order to do this, the system always keeps track of which columns of query results
correspond to which properties.

The user may wish to view the values for a certain property without restricting the

query. The Show checkbox allows the user to specify that an additional property
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should be displayed in the results. If the user specifies a value for a property, then its
Show box is checked by default. If the box is checked but no property value was
specified, then an extraatom is added to the query, where its predicate is determined
by the property and a new variableis used for its value. Since the current system only
supports conjunctive queries, this option can have unintuitive results. For example, if
the user chooses to show a property for which no instances have a value, then no
answers are returned, even if there are many possible answers for therest of the query.

The Show checkbox and the Add To Query button can be used together to help
the user gradually filter results and find the desired instances. The user starts by
checking some of the Show boxes and issuing aquery. One of the results can be
selected and added to the query. When the query is reissued, fewer results should be
returned. By repeating this process the user can continue to reduce the results
returned to a manageabl e set.

It may be the case that not all of the relevant web pages are described by SHOE
markup. In such cases, the standard query method of SHOE Search will not be able to
return an answer, or may only return partial answers. Therefore, we have a Web
Sear ch feature that will trandate the user’s query into a smilar search engine query
and allow him to submit it to any one of a number of popular search engines. Using
SHOE Search in thisway has two advantages over using the search engines directly.
First, by prompting the user for values of properties, it increases the chance that the
user will provide distinguishing information for the desired results. Second, by
automatically creating the query, SHOE Search can take advantage of helpful features
that are often overlooked by users such as quoting phrases or using the plussign to
indicate a mandatory term. The quality of results for these queries vary depending on

the type of query and the search engine used.
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Figure 5.6: SHOE Search’s web search window.

Figure 5.6 displays a window with the search engine query that is generated from
the inputs specified in Figure 5.5. Currently, we build a query string that consists of a
guoted short name for the selected category and, for each property value specified by
the user, a short phrase describing the property followed by the user’svalue, whichis
guoted and preceded by a plus sign. For search engines with advanced query
capabilities, these queries could be expanded to include synonyms for terms using
disunction or positional information could be used to relate properties to their values.

SHOE Search provides asimple interface for querying the Semantic Web. Itis
primarily used as a Java applet, and as such is executed on the machine of each user
who opensit. Sinceit uses the SHOE KB library, it can be easily tailored for use with

arange of knowledge representation systems.

5.3 Summary

In this section we have described the issues of implementing a SHOE system and
presented a basic architecture. We have developed numeroustoolsto help in all
aspects of the process, including creating SHOE assertions, discovering them with a
web-crawler, storing them in a knowledge base, and using them to answer queries and
retrieve documents. In the next section we examine the practical issues of the

language by using the tools to solve problemsin two different domains.
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Chapter 6

Case Studies

In this chapter, we will discuss the application of SHOE to two different domains.
Thefirst case study describes the use of SHOE in the domain of computer science
departments. In this study, we attempted to quickly generate alot of SHOE from
existing web pages. Another key feature of the study is an examination of a
non-trivial ontology revision. The computer science case study was essentially anin
vitro experiment, because only members of the research team participated in it, but the
second case study, which considered the domain of food safety, was morein vivo. It
attempted to solve areal-world problem and was devel oped as a cooperation between
the SHOE team and members of the Joint Institute for Food Safety and Nutrition
(JFSAN). A key feature of this case study is the use of SHOE with a domain-specific
tool. In both case studies, we discuss the processes of designing the ontologies,

adding SHOE markup to web pages, and providing useful servicesto users.

6.1 Computer Science Departments

The computer science department application was intended to be a proof of concept

for the SHOE language. We chose this domain because it was well-defined and
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familiar to the research team. Our objective was to evaluate the ease of adding SHOE
to web pages, the types of queriesthat could be constructed, and the performance of
SHOE queriesin asimple environment. In this section we describe the devel opment
of the ontology and different methods for annotating web pages, particularly focusing
on the problem of rapid creation of SHOE assertions. Finally, we provide a detailed
example of how the need for ontology revision can arise and show how SHOE's
backward-compatibility feature can be used in solving the problem. Some of the

material in this section has appeared in a previous article [49].

6.1.1 The Computer Science Department Ontology

Thefirst step in developing any SHOE application isto create an ontology. We named
this domain’s ontology cs-dept-ontology and assigned the version number 1.0 toit. In
SHOE thisis specified by the following tag:

<ONTOLOGY | D="cs-dept - ont ol ogy" VERSI ON="1.0">

Normally, the ontology should extend other ontologies, but since this was thefirst
SHOE ontology, we could only extend the base ontology. This is specified as:
<USE- ONTOLOGY | D="base- ont ol ogy" VERSI ON="1.0" PREFI X="base"
URL="http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ ont s/ basel. 0. htm ">
The next step was to identify the top-level categories of the domain. These
categories should be broad classifications of the types of objects found in the domain.
For the CS domain, the top-level categories were Person, Organization, Publication
and Work. All of these categories were subcategories of SHOEEntity from the base
ontology, which is SHOE’'s most generic category. Next, we refined the categories by
identifying more detailed subcategories. For example, subcategories of Person

included Faculty and Student, while subcategories of Organization included
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Department and University. Many of the subcategories also had subcategories of their
own. For example, subcategories of Professor were AssistantProfessor,
AssociateProfessor, and FullProfessor. In SHOE, each category is defined by a

DEF-CATEGORY tag, as shown below:

<DEF- CATEGORY NAME=" St udent" | SA="Person">

In some cases, a category had more than one supercategory. For example, the
supercategories of Chair are AdministrativeStaff and Professor. In SHOE, thisis
defined by listing multiple category names in the value of the ISA attribute, where
they are separated by whitespace as shown here:

<DEF- CATEGORY NAME=" Chair"
| SA="Adm ni strativeStaff Professor">

After identifying the categories and organizing them in a taxonomy, we needed to
define properties and relationships for these categories. An Organization might be
described by its name, its parent organization, and its members. A publication might
be described by its name, authors, and publication date. In SHOE, these propertiesare
defined with the DEF-RELATION element. We created relations called
subOrganization, member, publicationAuthor, and publicationDate. For each relation,
its arguments must be identified. For example, subOrganization is arelationship
between two organizations, and thus it should have two arguments, both of type
Organization. Thisiswritten in SHOE as:
<DEF- RELATI ON NAME="subOr gani zati on" SHORT="is part of">

<DEF- ARG POS=1 TYPE="Organi zati on" SHORT="subor gani zati on">

<DEF- ARG POS=2 TYPE="Or gani zati on" SHORT="superorgani zati on">
</ DEF- RELATI ON\>

Note that the SHORT attribute can help identify which organization fitsin which

argument.

162



While many relations are between two instances, some are between an instance
and a datatype value. For example, the publicationDate relation is between a
publication and its date of publication, where date isa basic SHOE datatype. This
relation iswritten in SHOE as:

<DEF- RELATI ON NAME="publ i cati onDat e" SHORT="was witten on">
<DEF- ARG POS=1 TYPE="Publication">

<DEF- ARG PCS=2 TYPE=". DATE">
</ DEF- RELATI ON>

An important consideration is to make the arguments of the relations as general as
possible while still being correct. For example, we could have given subOrganization
arguments of type Department and University. However, thiswould not capture the
full meaning of the relation. Since both Department and University are subcategories
of Organization, our original definition can be used to relate instances of these types,
aswell as many other different types.

This desire for broad applicability of relationsiswhy we have not mentioned
relations for the names of organizations or publications yet. Objects of both
categories can have names, and in fact anything can have a name. Recall that the base
ontology has a name relation, whose arguments are Entity and the STRING data type.
Sinceall of our top-level computer science categories are subcategories of
SHOEEnNtity, and SHOEERtity is a subcategory of Entity, we can use the name relation
to provide aname for any instance of any category in our ontology. However, since
name is such an important relation, it would be convenient to have alocal version of

it. SHOE's DEF-RENAME element can be used for this purpose. For example:

<DEF- RENAVE FROWE" base. nane" TO="nane">

This creates alocal name for the name relation, so that within the context of the CS

Department ontology, it can referred to as name, instead of base.name.
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<DEF- | NFERENCE DESCRI PTI ON="Transitivity of Suborganizati ons">
<INF-1F>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="x" USAGE="VAR'>
<ARG PCS="TO' VALUE="y" USAGE="VAR'>
</ RELATI ON\>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="y" USAGE="VAR'>
<ARG PCS="TO' VALUE="z" USAGE="VAR'>
</ RELATI ON\>
</I NF-1F>
<l NF- THEN>
<RELATI ON NAME="subOr gani zati on" >
<ARG PCS="FROM' VALUE="x" USAGE="VAR'>
<ARG PCS="TO' VALUE="z" USAGE="VAR'>
</ RELATI ON>
</ | NF- THEN>
</ DEF- | NFERENCE>

Figure6.1: The “transitivity of suborganizations’ rule.

The final step in building the ontology is to provide a set of inference rules that
help constrain the possible meanings of the terms and allow reasonersto infer implicit
information from a set of assertions. We defined three inferencerulesfor this
ontology. These rules state that subOrganization is atransitive relation, that
affiliatedOrganization isasymmetric relation, and that membership in and
organization transfers through the subOrganization relations. A SHOE example of the
trangitivity of subOrganization isgivenin Figure6.1

When the ontology was completed, it was embedded inan HTML page. This
page also included a human-readable description of the ontology that serves as a
handy reference for users to learn about the ontology. The ontology page was made
publicly available viaaweb server so that it would be accessible to all web-based

agents and could be reused by other people.
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6.1.2 Annotating Web Pages

After an ontology has been created, it is possible to begin annotating web pages with
SHOE content. The categories of the CS Department ontology have a direct
correspondence with the main topics of many web pages, and thus can be used to
describe those web pages. For example, it can used to describe department
homepages, faculty homepages, student homepages, research project homepages,
course homepages and publication lists.

We began by annotating the pages of the Parallel Understanding Systems (PLUYS)
research group. These pages included a group homepage, a members page, a
publications page, a projects page, and a software page. We will use the group
homepage (shown in Figure 6.2) to describe a ssimple example of SHOE markup. The
first step isto identify the instances mentioned on the web page. Sincethisisa
homepage, the most important instance is the subject of the page, whichisthe PLUS
group. Other instances mentioned include the Department of Computer Science, the
University of Maryland, the High Performance Systems Software Lab, and the
Advanced Information Technology Lab.

A fundamental problem in distributed systems is knowing when data from
different sources describes the same instance. The SHOE approach requiresthat each
instance have a unique key. A URL can often serve as this key because it identifies
exactly one web page, which is owned by a single person or organization. If an
instance has a homepage, then the URL of this page is a good candidate for the key.
Thus, the key for the PLUS group instance is http: //mww.cs.umd.edu/projects/plus/.
This was used as the reference instance for the PLUS Group page, as shown in Figure
6.3. Every reference instance must also commit to at |east one ontology by means of a

USE-ONTOLOGY tag. For this application, the ontology is the CS Department
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Figure 6.2: The PLUS group’s homepage.

ontology.

The next step isto classify each of the instances according to the ontology. The
PLUS group is aresearch group, and thus was categorized under cs.ResearchGroup
as shown in Figure 6.3. We also categorized the Department of Computer Science as
acs.Department and the University of Maryland as a cs.University. Note the keys for
these instances were chosen based on the URLs of their homepages, which are
available from the hypertext links in the PLUS page (they are the values of HREF
attributesin A tags).

Finally, we identified relations between the instances. Obviously there were
relationships between the PLUS group and the other instances mentioned on the page.
The page’s text says that the PLUS group is associated with the High Performance
Systems Software Lab and the Advanced Information Technology Lab. We decided
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<I NSTANCE KEY="http://ww. cs. und. edu/ proj ects/plus/">
<USE- ONTOLOGY | D="cs- dept - ont ol ogy" VERSI ON="1. 0" PREFI X="cs"
URL="http://ww. cs. und. edu/ proj ect s/ pl us/ SHOE/ ont s/ cs. htnl ">
<CATEGORY NAME="cs. Resear chG oup" >
<CATEGORY NAME="cs. School " FOR="http://ww. und. edu/" >
<CATEGORY NAME="cs. Department” FOR="http://wwmv. cs. und. edu/ ">
<RELATI ON NAMVE="cs. affili at edOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/ users/ hendl er/ Al TL/ ">
</ RELATI ON\>
<RELATI ON NAMVE="cs. affili at edOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/ proj ect s/ hpssl . htm ">
</ RELATI ON\>
<RELATI ON NAME="cs. subOrgani zati on"
<ARG PCS="FROM' VALUE="http://ww. cs. und. edu/" >
<ARG PCS="TO' VALUE="http://ww. und. edu/" >
</ RELATI ON\>
<RELATI ON NAME="cs. subOr gani zati on">
<ARG PCS="TO' VALUE="http://ww. cs. und. edu/" >
</ RELATI ON\>
<RELATI ON NAME="cs. nanme" >
<ARG PCS="TO' VALUE="Parall el Understanding Systens">
</ RELATI ON\>
</ | NSTANCE>

Figure 6.3: SHOE markup for the PLUS group.
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that here “associated with” meant “ affiliated organization of” and created
cs.affiliatedOrganization relations between the PLUS group and each of these
organizations. Note that once again, the URLs from the hypertext links were chosen
asthe keys for these instances. The page a'so mentions that the research groupis*“in
the Dept. of Computer Science at the University of Maryland.” This clearly indicates
parent organizations of the group, and indicates that the University of Maryland isthe
parent organization of a particular computer science department. We could have
created cs.subOrganization relations for all three relationships, but due to the
trangitivity of the relation (as specified in the ontology), the fact that the PLUS group
is asuborganization of the University of Maryland is redundant with the other two.
Note that in the figure, whenever the PLUS group was the subject of arelation
assertion, the corresponding argument was omitted because in SHOE, the argument’s
value defaults to the reference instance’s key.

When the SHOE tags were compl eted they were inserted into the BODY of the
web page. However, since web browsers ignore any tags that they do not recognize,
and SHOE content is entirely contained within such tags, thereis no change in the
presentation of the pages. Thus, the tags only affect software that is SHOE aware.

Using the methodol ogy described above, we added SHOE markup to the
remaining pages of the PLUS group and to the homepages of its members. Since the
pages were already on the Web, the annotationsimmediately became publicly
available. Most of these annotations were produced using the Knowledge Annotator,
although text editors were used in some cases. However, it became clear that both
approaches were somewhat time-consuming, and that it would take along time to

annotate a large corpus using these techniques.
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6.1.3 GeneratingMarkup on alLarge Scale

It was clear that creating a sufficient amount of markup to test the Semantic Web idea
would either require alarge number of people to perform the task manually, or the use
of specialized tools. In this section we will discuss the use of Running SHOE to
create computer science markup, and the use of another program to extract
publication information from a useful website that was unsuitable for Running SHOE.

Computer science department web sites often contain pages that have a
semi-regular structure, such as faculty, project, course, and user lists. Often, the items
in these list contain an <A> tag that providesthe URL of the item’s homepage, and
this element’s content is the name of the entity being linked to, providing us with a
value for the name relation. Other properties of the instance are near the <A> tag and
are delimited by punctuation, emphasis, or special spacing. These kinds of pages are
ideal for Running SHOE, which was described in Section 5.2.3.

For example, consider the page of computer science faculty at the University of
Maryland. Asshown in Figure 6.4, the HTML used to describe each faculty member
has a standard format. The person’sinformation is preceded by a <DT> tag, and
followed by apair of newlines. The HREF attribute of the A element isthe URL of
their homepage, which serves as a good instance key for them, while the content of
the element is their name. The beginning and ending of the list of faculty isindicated
by the <DL> and </DL> tags. We can create three SHOE assertions for each item in
the list. We know that the category of every instanceis cs.Faculty, we can extract the
cs.name for each instance, and we know that each instance is a cs.member of the
Department of Computer Science at UMCP. The screen shot in Figure 5.4 shows the
use of Running SHOE on this particular page.

Using Running SHOE, a single user created SHOE markup for the faculty,
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<HR>

<DL>

<DT><A HREF="http://ww. cs. und. edu/ ~agrawal a/ " >Ashok K. Agrawal a</ A>
<DD>Pr of essor, CS and UM ACS. | EEE Fell ow. Ph.D., Harvard

Uni versity, 1970.

<DD><| >Research Interests:</I1> Design and eval uati on of systens,

real tinme systenms, networks.

<DT><A HREF="http://ww. cs. und. edu/ " yi anni s/ ">John (Yi anni s)

Al oi nonos</ A>

<DD>Pr of essor, CS, CfAR, and UM ACS. NSF Presidential Young

I nvestigator. Ph.D., University of Rochester, 1987.

<DD><| >Research Interests:</I> Artificial intelligence, vision,
robotics, |earning, neuro-informatics.

<DT><A HREF="http://ww. cs. und. edu/ “waa/">WIliamA. Arbaugh</A>
<DD>Assi stant Professor, CS and UM ACS. Ph.D., University of

Pennsyl vani a, 1999.

<DD><| >Research Interests:</I> Information System Security, Enbedded
Systens, Operating Systens, and Networking.

<DT><A HREF="http://ww. cs. und. edu/ “nvz/">Marvin V. Zel kow tz</A>
<DD>Pr of essor, CS and UM ACS. Co-Dir., Fraunhofer Center --

Maryl and. | EEE Fellow. Ph.D., Cornell University, 1971.

<DD><| >Research Interests: </|1> Software engi neering, environnment
desi gn, program conpl exity and measurenent.

</ DL>

Figure 6.4 Source HTML for the University of Maryland's CS faculty page.
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courses, and projects of 15 major computer science departmentsin less than a day.
Although, an experienced user can create markup for a single page in mere minutes,
Running SHOE is only effective when there are long lists with regular structure.
However, there are many important resources from which it cannot extract
information, such as CiteSeer (http://citeseer.nj.nec.convcs), an index of online
computer science publications. Interaction with CiteSeer involves issuing a query to
one page, viewing a results page, and then selecting aresult to get a page about a
particular publication. This multistep process prevents Running SHOE from
extracting markup from the site.

To extract SHOE from CiteSeer, we built atool called Publication SHOE Maker
(PSM). PSM issues a query to get publications likely to be from a particular
ingtitution and retrieves a fixed number of publication pages from the results. The
publication pages contain the publication’stitle, authors, year, links to online copies,
and occasionally additional BibTex information (BibTex isacommon format for
bibliographic information). Each publication page’s layout is very similar, so PSM
can extract the values of the desired fields easily.

An important issue is how to link the author information with the faculty
instances extracted from the department web pages. Fortunately, CiteSeer includes
homepage information, which HomePageSearch (http://hpsearch.uni-trier.de/)
generates for each author. By using these URL s (as opposed to the authors names),
PSM can establish links to the appropriate instances.

In the examples described in this section, we created SHOE markup for pages that
were owned by other parties. This raises a significant question: if an annotator does
not have write privileges for the annotated web pages, then how does he associate

SHOE assertions with them? The answer is create new web pages on his or her server

171



that serve as summaries or indexes of the original web pages. Each of these pages
contain areference instance whose key is the URL of the page from which the
markup was extracted. They may consist solely of SHOE tags, or may include
additional summary informationin HTML.

Since the results of Running SHOE and PSM are no different from those of text
editors or the Knowledge Annotator, they can be processed by SHOE agents in the
same manner. Since SHOE allows individuals to annotate their own pages, or make
assertions about the content of other web pages, the efforts of information providers

and professional indexers can be combined.

6.1.4 Processingthe Markup

The main goa for the CS Department application was to use SHOE to improve web
search of CS Department information. To achieve this, we chose to implement a
repository-based access system that relied on the Exposé web-crawler. In order to
compare the features of different repositories, we configured the web-crawler to store
itsresultsin both XSB and Parka KBs. Exposé was able to gather 38,159 assertions
from the various web pages that we annotated. Once the knowledge was loaded into
the KBs, the SHOE Search tool could be used to query them, either as a stand-alone
application or as a Java applet.

The possible benefits of a system such as this one are numerous. A prospective
student could use it to inquire about universities that offered a particular class or
performed research in certain areas. Or aresearcher could design an agent to search
for articles on a particular subject, whose authors are members of a particular set of
ingtitutions, and were published during some desired timeinterval. Additionally,

SHOE can combine the information contained in multiple sources to answer asingle
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guery. For example, to answer the query “Find all papers about ontologies written by
authorswho are faculty members at public universitiesin the state of Maryland” one
would need information from university home pages, faculty listing pages, and
publication pages for individual faculty members. Such a query would be impossible
for current search engines because they rank each page based upon how many of the
guery termsit contains.

Sample queriesto the KB exposed one problem with the system: sometimes it
didn’t integrate information from a department web page and CiteSeer as expected.
The source of this problem was that the sites occasionally use different URLSto refer
to the same person, and thus the SHOE assertions used different instance keys for the
same entity. Thisis afundamental problem with using URLs as keysin a semantic
web system: multiple URLSs can refer to the same web page because of multiple host
names for agiven | P address, default pages for a directory URL, host-dependent
shortcuts such as atilde for the users directory, symbolic links within the host, and so
on. Additionally, some individuals might have multiple URLs that make equally valid
keys for them, such as the URLSs of both professional and personal homepages. This

problem is an important one for future work.

6.1.5 Revisingthe CS Department Ontology

The CS Department ontology described in Section 6.1.1 is adequate for the purpose
of representing and querying the most common concepts that are relevant to its
domain. However, it was not designed to promote reusability and interoperability.
For example, the categories Person and Organization are more general than the
domain of computer science departments, and could be useful in many other

ontologies. Yet, for an ontology to reuse these terms, it would have to include the
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entire CS Department ontology. Clearly, the CS Department ontology should have
been more modularized. In this section we will discuss the development of a more
modular set of ontologies, and describe how the CS Department ontology can be
revised in such away that any web pages that depend on it do not need to be updated.
Thislast point iscritical on the Semantic Web, because the web pages that commit to
an ontology may be distributed across many servers and owned by many different
parties, making a coordinated update impossible.

We begin by creating agenera ontology, called general-ont, that contains
elements that are common to most web domains. The top-level categories of this
ontology are Agent, PhysicalObject, Event, Location, Address, Activity, and
WebResource. These categories are refined with subcategories, including the Person,
Organization, and Work classes from the CS department ontology. The ontology has
some of therelations originally defined in the CS department ontology, including
member and head. It also corrects one source of confusion in the CS ontology by
using the relation subOrganizationOf instead of subOrganization; this new name
more clearly signifiesthat the first argument is intended to be the child organization.
Finally, the ontology includes all of the CS Department ontology’s inferencerules,
and adds additional ones, to state conditions such as “A person who worksfor an
organization isamember of that organization” and “A person who isthe head of an
organization isamember of that organization.”

Another area of the CS Department ontology that could be reused by many other
ontologiesis the Publication taxonomy and relations. These can be contained in a
document ontology called document-ont. The top-level category of this ontology is
Document, and its subcategories include unpublished documents as well as published

ones.
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Continuing with our modularization of the CS Department ontology, it is clear
that none of the original ontology is specific to CS Departments. In fact, most of the
remaining ontology is applicable to universitiesin general or other types of academic
departments. Therefore, we must also create a university ontology, called
university-ont. Thisontology extends both general-ont and document-ont, and
includes cs-dept-ontology categories such as Faculty, Student, University and
Department.

Finally, we can revise the CS Department ontology so that it is integrated with our
new, modularized ontologies. We will call the new ontology version 1.1 of the
cs-dept-ontology. This ontology extends both university-ont and document-ont and,
for reasons we will discuss momentarily, is backward-compatible with
cs-dept-ontology, version 1.0. All of the categories and relations are defined in other
ontologies, but to maintain backward-compatibility, we need local names for these
components. Therefore, the ontology consists of a series of DEF-RENAME
definitions. In some cases, the ontology needs to contain components just to ensure
backward-compatibility. For example, recall that in general-ont, we decided to
change the name of subOrganization to subOrganizationOf. For cs-dept-ontology,
version 1.1 to be compatible with version 1.0, it must rename subOrganizationOf to
subOrganization.

Now that we have a backward-compatible revision of the CS Department
ontol ogy, the web pages that committed to version 1.0 should be integrated with two
compatible ontology perspectives, one based on version 1.0, and one based on version
1.1. What this meansisthat the old web pages can be automatically integrated with
web pages based on the new ontology from the perspective based on version 1.1.
Thus, there isno need to upgrade all of the web pages at once. Instead, their owners
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can upgrade at their own pace (by committing to the new version of the ontology and
possibly using some of the new terms) or even choose not to upgrade.

The need to modularize or restructure ontologies after they have come into use
will be important on the Semantic Web. Although not all revisons will be as drastic
as the one described in this section, SHOE' s backward-compatibility feature and

compatible ontology perspectives ensure that revisions can occur smoothly.

6.1.6 Summary

We have described a case study in which SHOE was applied to the domain of
computer science departments. We demonstrated how a simply SHOE ontology can
be constructed and how web pages can be annotated. We showed that there were
many possible means of acquiring SHOE information, including manual human
annotation and semi-automated wrapper generation, and that it was possible to
generate a significant number of SHOE assertions in days. We aso examined how the
basic architecture discussed in Section 5.1.5 could be used in practice and compared
the use of two different knowledge base systems as repositoriesfor SHOE
knowledge. Finally, we discussed how ontologies could be modularized, even after
they have been put to practical use, and how backwards-compatibility can eliminate

the need to upgrade existing web pages when an ontology must be revised.

6.2 Food Safety

The second case study in this chapter describes the application of SHOE to the
domain of food safety. Whereas the first case study was carefully constrained, this

one focused on areal-world problem and was performed in concert with the Joint
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Institute for Food Safety and Applied Nutrition (JFSAN). JFSAN is a partnership
between the Food and Drug Administration (FDA) and the University of Maryland,
and is working to expand the knowledge and resources available to support risk
analysisin the food safety area. One of their goalsisto develop awebsite that will
serve as a clearinghouse of information about food safety risks. Thiswebsiteis
intended to serve adiverse group of users, including researchers, policy makers, risk
assessors, and the general public, and thus must be able to respond to queries where
terminology, complexity and specificity may vary greatly. Thisisnot possible with
keyword-based indices, but can be achieved using SHOE. The work described in this
section wasfirst presented in an earlier paper [51].

In order to scope the project, JFSAN decided to focus the SHOE effort on a
specific issue of food safety. The chosen issue was Transmissible Spongiform
Encephal opathies (TSES), which are brain diseases that cause sponge-like
abnormalitiesin brain cells. “Mad Cow Disease,” which istechnically known as
Bovine Spongiform Encephalopathy (BSE), isthe most notorious TSE, mainly
because of its apparent link to Creutzfeldt-Jakob disease (CJID) in humans. Recent
Mad Cow Disease epidemics and concerns about the risks BSE poses to humans

continue to spawn international interest on the topic.

6.2.1 TheTSE Ontology

Unlike the CS Department ontology, the TSE ontology was created by ateam of
knowledge engineers and domain experts from the FDA and the Maryland
Department of Veterinary Medicine. The ontology focused on the three main
concernsfor TSE Risks. source material, processing, and end-product use. The

top-level categoriesin the source material areawere Material, Animal, DiseaseAgent,
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and two important subcategories of Material were Tissue, and BodyFluid. The
processing area had atop-level category called Process, which was subdivided into
BasicProcess and AppliedProcess. The BasicProcess category was further
subdivided based on the nature of process, while AppliedProcess was subdivided
based on the purpose of the process. The end-product use portion of the ontology had
EndProduct (which was a subcategory of Material), ExposureRoute, and Risk
categories. Additional basic categories such as Person, Organization, and Event
rounded out the rest of the ontology, which has 73 categoriesin all.

After creating the categories, it was necessary to create the relations. Relationsfor
Material included weight and volume, which were ternary because they had to relate a
specific material to aquantity and express the measurement unit of the quantity.
Relations for DiseaseAgent included its transmissibility, transmission method, and
symptoms. For Process, the important relations included hasinput and hasOutput,
which identify itsinputs and outputs, and duration, which identified the length of the
process. A total of 88 relations were created, twelve of which had three or more
arguments.

A significant problem in the design of this ontology was scoping the effort. Many
of the categories and relations that were devel oped were not of use to the subsequent
annotation effort. Grininger [43] suggests that competency guestions can be used to
scope an ontology and later test it for completeness. A competency questionis
essentially a question about the domain that the ontology should be able to answer.
For a Semantic Web markup language, we suggest that an ontology also be scoped by
the kinds of information that is currently (or will soon be) available on web pages.

Otherwise, portions of the ontology may be irrelevant to the annotation process.
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6.2.2 Food Safety Annotation

Following the creation of the initial ontology, the IFSAN team annotated web pages.
This process can be divided into two distinct markup activities. First, since the Web
had little information on animal material processing, we created a set of pages
describing many important source materials, processes and products, and added
annotations to those pages. Second, we annotated pages that provided general
descriptions of the disease, described recommendations or regulations, or presented
experimental results.

The web pages created by the team were very easy to annotate, since their primary
purpose was to provide useful SHOE markup. Pages were created to describe sources
such as cattle and pigs; processes such as daughter, butchering, and rendering; and
end products such as animal feed, human food, and personal products. The SHOE
annotations for each process included its category, inputs, and outputs. Annotations
for the other pages were typically just the category.

The second set of web pages were much more difficult to annotate. Unlike the
computer science department web pages of the other case study, these pages were not
homepages and had very few hypertext links. Assuch, it was difficult to find instances
that had obvious keys. Instead, the user had to identify a significant noun and then
create akey for it. Furthermore, the pages were typically long, prose texts, instead of
short, structured forms. Thus extracting relationships typically involves parsing of
sentences, and since natural language is much richer than knowledge representation
languages, the process of trandating sentences into suitable structures was difficult.
Prose documents can potentially be trandated into numerous SHOE assertions, and
the extent of markup required for such pages was unclear. To compound matters, the

important concepts of these pages often had little overlap with the original ontology.
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A better strategy would have been to decide how such pages would be annotated and
design the ontology to facilitate this kind of markup. Such a strategy would of course
depend on the intended use for the markup. In the case of these pages, improving
search was the primary purpose, and thus markup about the document’s source and

data, and a subject matter classification would probably have been sufficient.

6.2.3 Processing the Annotations

The basic architecture for the food safety domain is the one described in Section
5.1.5. Although the system has not been officially released yet, it isintended that
various sources outside of JFSAN will be able to annotate their web pages with the
TSE ontology and thus be accessible via SHOE query tools. The basic process would

work asfollows:

1. Knowledge providers who wish to make material available to the TSE Risk
Website use the Knowledge Annotator or other toolsto add SHOE markup their
pages. The instances within these pages are described using elements from the

TSE Ontology.
2. The knowledge providersthen place the pages on the Web and notify JFSAN.

3. JFSAN reviewsthe site and if it meetstheir standards, adds it to thelist of sites

that Exposg, the SHOE web-crawler, is allowed to visit.

4. Exposé crawls aong the selected sites, searching for more SHOE annotated

pages with relevant TSE information. It will also look for updates to pages.

5. SHOE knowledge discovered by Exposé isloaded into a Parka knowledge base.
Currently, XSB is not needed because the initial version of the TSE ontology
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did not define inference rules. However, alternate KBs may be added |ater.

6. Java applets on the TSE Risk Website access the knowledge base to respond to
users queries or update displays. These appletsinclude the TSE Path Analyzer
(described in Section 6.2.4) and SHOE Search.

It isimportant to note that new websites with TSE information will be forced to
register with JIFSAN. This makes Expos€'s search more productive and allows
JFSAN to maintain alevel of quality over the data they present from their website.
However, this does not restrict the ability of approved sites to get current information
indexed. Once asiteisregistered, it is considered trusted and Exposé will revisit it

periodically.

6.24 TheTSE Path Analyzer

One of JFSAN'’s requirements was the need to analyze how source materials end up
in products that are eventually consumed by humans or animals. Thisinformationis
extremely valuable when trying to determine the risk of contamination given the
chance that a source material is contaminated. It is expected that information on each
step in the process will be provided on different web sites (since different steps are
usually performed by different companies), thus using a language like SHOE is
essential to integrating thisinformation.

To accommodate this need, we built the TSE Path Analyzer, which is an example
of adomain specific query tool. The TSE Path Analyzer allows the user to pick any
combination of source, process and product from lists that are derived from the
taxonomies of the ontology. The system then displays a graph of all possible
pathways that match the query. For example, Figure 6.5 displaysthe results of aquery
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Figure 6.5: The TSE Path Analyzer.

to find all pathways that begin with ruminant source material, include a separation
process, and result in aruminant feed product. In the display, square boxesindicate
source materials and rounded boxes indicate processes. The user can click on any box
to open aweb page with more details on that subject. This tool essentialy provides
users with a dynamic map of a set of web pages based upon a semantic relation.

The Path Analyzer is arepository-based query tool. It issuesits queriesto a Parka
repository that is updated by the Exposé web-crawler. In response to a user’s query, it
grows the graph from the selected source material by retrieving all processes that

have that material as an input, and then retrieving all products that are outputs of
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those processes. The processis repeated on the products until eventually the entire set
of paths from the source material are computed. Then the graph is pruned to remove
any paths that do not involve the selected process and end product. If no sourceis
selected, then the procedure starts with the selected process and works it way through
the process's inputs and outputs. If only a product is selected, then the procedure
worksits way back through the processes that created the product.

The biggest advantage of the TSE Path Analyzer isthat it provides asimple user
interface to solve a complicated problem. Users only have to select items from up to
three list and press a button. A tool like the TSE Path Analyzer could not have been

created without a markup language to provide its source information.

6.2.5 Summary

The food safety case study demonstrated some of the problemswith applying SHOE
to real-world problems. First, ontology design can be much more difficult, and
significant effort needs to be devoted to properly scoping the ontology. Second, this
application demonstrated that certain kinds of pages are more ideal for SHOE than
others. The most effective use of SHOE isin describing web pages that have many
hypertext links and some sort of structure (such asfield lists or tables). Although,
SHOE can be applied to prose-like pages, they require more work on behalf of the
annotator. We also demonstrated how domain-specific tools can use SHOE to provide

simpleinterfacesthat help users solve complex problems.
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Chapter 7

Comparison of Semantic Web L anguages

Although SHOE was one of the first Semantic Web languages, there are other
languages with different syntaxes, semantics, and approaches to the problems of
knowledge representation on the Web. We will compare the most significant of these
languages (Ontobroker, RDF, and OIL) to SHOE. We will then describe DAML+OIL
an emerging standard that isthe result of an international effort to combine the best

features of SHOE and these languages.

7.1 Ontobroker

The Ontobroker system [31, 23] issimilar to SHOE in many respects. It includes an
ontology definition language, a web page annotation language, aweb crawler, an
inference engine, and a set of query interfaces. Ontobroker is based on frame-logic
[57], and includes primitivesfor subclassing, instantiation, attribute declaration,
attribute value specification, predicates, and rules. Frame-logic rules can be built
using all of the connectives of predicate logic (implication, conjunction, digunction,
and negation), and variables may be universally or existentially quantified. As such,

the language is more expressive than SHOE, but suffersfrom the scalability problems
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oject[].

Person :: (bject.
Faculty :: Person.
Chair :: Faculty.
Student :: Person.
Organi zation :: Object
Departnment :: Organi zation.
Per son|

name =>> STRI NG
headOf =>> Organi zati on].

Facul ty]
teaches =>> { ass;
advi ses =>> Student].

FORALL X, Y
X:Chair <- X Person[headO' ->> Y] AND Y: Depart nment

Figure 7.1: An Ontobroker ontology.

of predicate logic. One advantage of aframe-logic language is that ontology objects
(such as classes and attributes) arefirst class citizens and can be used in expressions.

Ontobroker ontologies are written in ordinary frame-logic instead of an SGML or
XML syntax. Thisis because these ontologies are not meant to be shared on the
Internet, but are instead tailored to homogeneous intranet applications. As such there
isalso no need for ontology inclusion or versioning. A short Ontobroker university
ontology isshown in Figure 7.1. In frame-logic, C; :: C'; meansthat class C; isa
subclass of 3, and C[A =>> T] means that class C' has an attribute A of type T'.
Ontobroker axioms can have existential or universal variables (with the EXISTS and
FORALL quantifiers, and can use the logic connectives < —, — >, < — >, AND, OR,
and NOT.

An Ontogroup isa set of usersthat agree to a particular domain-specific ontology.
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This group serves as an index of content providers, which isused to focus the work of
the web crawler. However, this means that new users must register with the group to
begin providing information, and the annotations will be of little use to those who are
not members of the community, since they do not have access to the ontology
information.

The language for annotating web pages also makes use of frame-logic notation
and is very compact. It can be embedded in ordinary HTML pages by way of asmall
extension to the common <A> tag. The class of an instance is specified by an

expression of the form O:C', as demonstrated here:

<a onto=" 'http://ww. state. edu/users/jsmth/’:Chair">

An attribute value may be specified by an expression of the form O[A — >> V], asin:

<a onto=" 'http://wwv. state. edu/users/jsnmith/’ [name="Jane Smth ]">

Furthermore, a set of specia key words allows the annotations to avoid redundancy
with other information on the page. For example, the page keyword indicates that the
value should be supplied by the URL of the page. Additionally, the href keyword
specifies that the value is the same as the value of the href attribute in the same tag,
and the body keyword specifies that the content of the tag suppliesthe value. For
example, on the page http://www.state.edu/user g/jsmith/, an alternate way of

supplying the name annotation shown aboveis:

<a ont o="page[ nane=body] ">Jane Snit h</a>

One of the best features of the Ontobroker approach is its compact and simple
language for expressing both ontologies and data. An important aspect of thisisthe
use of the special keywords page, href, and body to reduce redundancy between the

markup and the document’s content. These feature can help ensure that when a
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document changes, its markup stays synchronized with the content. However,
Ontobroker is not meant to be used on the entire Web. Its ontologies are not publicly
available, instead they are designed for local applications that process a controlled set
of web pages. Although this alows Ontobroker to ignore many of the problems

discussed in thisthesis, it makesit unsuitable for use as a Semantic Web platform.

7.2 RDF

The Resource Description Framework (RDF) [62, 61] is a W3C recommendation that
attempts to address XML'’s semantic limitations. It presents a ssimple model that can
be used to represent any kind of data. This datamodel consists of nodes connected by
labeled arcs, where the nodes represent web resources and the arcs represent
properties of these resources. 1t should be noted that this model is essentially a
semantic network, although unlike many semantic networks, it does not provide
inheritance. The nodes/arcs model also meansthat RDF is inherently binary,
however, this does not restrict the expressivity of the language because any n-ary
relation can represented as a sequence of binary relations.

RDF can be exchanged using an XML serialization syntax, which is shown by
examplein Figure 7.2. The basic syntax consists of a Description element which
contains a set of property elements. The about attribute identifies which resourceis
described. The property rdf:type is used to express that aresource isamember of a
given class, and is equivalent to the instance-of link used in many semantic nets and
frame systems. There are a number of abbreviated variations of the RDF syntax,
which is an advantage for content providers but requires more complex RDF parsers.
Using two of the abbreviation techniques, Figure 7.2 can be rewritten as shown in

Figure 7.3. It isimportant to note that all of these syntaxes have awell-defined
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<?xm version="1.0"7?>
<RDF xm ns="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: g="http://schena. org/ general #' >
<Description about="http://ww.state. edu/ users/jsnith">
<type resource="http://schema. org/ university#Chair" />
<g: nanme>Jane Smi t h</ g: nanme>
</ Descri pti on>
</ RDF>

Figure 7.2: An RDF Instance.

<?xm version="1.0"?>
<RDF xm ns="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: g="http://schena. or g/ gener al #"
xm ns: u="http://schema. org/ uni versity#">
<u: Chair about="http://ww. state. edu/users/jsmth"
g: nanme="Jane Smth" />
</ RDF>

Figure 7.3: An Abbreviated RDF Instance.

mapping into the RDF data model, and thus avoid some of the problemswith

representational choicesin basic XML. Nevertheless, it isstill easy to create different

representations for a concept.

To prevent accidental name clashes between different vocabularies, RDF assigns

a separate XML namespace [14] to each vocabulary (these vocabularies, called
schemas, can be formally defined using RDF Schema as discussed below). This

approach has two disadvantages. First, since namespaces can be used with any

element and RDF schemas need not be formally specified, it is possible to write RDF

statements such that it is ambiguous as to whether certain tags are RDF or

intermeshed tags from another namespace. Second, namespaces are not transitive,
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which means that each RDF section must explicitly specify the namespace for every
schemathat is referenced in that section, even for schemas that were extended by a
schema whose namespace has already been specified.

In addition to the basic model, RDF has some syntactic sugar for different
collections of objects called containers. There are three types of containers. bag,
sequence, and aternative. A bag is unordered, a sequence is ordered, and an
aternativeisaset of choices. Using a special aboutEach attribute, a document can
make statements that apply to every element in a collection.

Perhaps RDF s most controversial and least understood feature is reification. The
intent of RDF reification was to allow statements to be made about statements. This
can be used to provide metadata about the statement, such as creator, effective date,
etc., or to provide additional information such as a confidence factor. Reification
involves describing a statement with four statements. These statements use the
property type to classify aresource as a Statement and the properties subject,
predicate, and object, to model the three parts of the statement. A reified statement
does not assert the statement it describes. This allows providersto talk about
statements without claiming they are true, although the mechanism israther verbose.
A statement can be both described and asserted by associating abagld with an RDF
description. In addition to asserting the statements, it creates a collection of
corresponding reified statements, and descriptions can use the value of the bagld to
describe these statements. Some of the problemswith RDF reification include
confusion about whether it can be used for modalities, and also the fact that thereis
no way to distinguish between two identical statementsin different documents. The
latter problem means that any statement about a reified statement in one document

must also apply to all identical statementsin other documents.
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To allow for the creation of controlled, sharable, extensible vocabularies the RDF
working group has developed the RDF Schema Specification [16]. RDF schema
allows usersto create schemas of standard classes and properties using RDF. For this
purpose, the specification defines anumber of classes and properties that have
specific semantics. The rdfs:Class and rdfs:Property classes allow aresource to be
typed as a class or property respectively, and properties can be used to describe these
classes and properties. The property rdfs:subClassOf essentially states that one class
isasubset of another, and is equivalent to theis-a link used in semantic networks and
frame systems. With the rdfs:subClassOf property, schema designers can build
taxonomies of classes for organizing their resources. RDF Schema also provides
properties for describing properties; the property rdfs:subPropertyOf allow properties
to be specialized in away similar to classes, while the properties rdfs:domain and
rdfs:range allow constraints to be placed on the domain and range of a property. An
excerpt from the RDF Schema version of the university ontology from Figure4.1is
givenin Figure 7.4.

Note that since classes and properties are resources, they are identified by URIs.
Each URI is the concatenation of the URL of the resource’s source document, a hash
('#) and the resource’s ID. For this reason, RDF does not have to handle problems of
polysemy. Since URIs are often long and unwieldy, namespace prefixes can be used
to create shorter identifiers. However, namespace prefixes cannot be currently used in
attribute values, and thus some URIs must be written in full form.

In RDF, schemas are extended by simply referring to objects from that schema as
resourcesin anew schema. Since schemas are assigned unique URIs, the use of XML
namespaces guarantees that exactly one object is being referenced. Unfortunately,

RDF does not have afeaturethat allowslocal aliases to be provided for properties and
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<?xm version="1.0"7?>
<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns: rdf s="http://ww. w3. or g/ TR/ 1999/ PR- r df - schema- 19990303#" >
<rdfs:C ass rdf: | D="Facul ty">
<rdfs:subd assOf rdf:resource=
"http://schena. org/ general #Per son" />
</rdfs:C ass>

<rdfs:d ass rdf:|D="Student">
<rdfs:subC assOF rdf:resource=
"http://schena. org/ general #Per son" />
</rdfs:Cl ass>

<rdfs:d ass rdf: 1 D="Chair">
<rdfs:subd assOf rdf:resource="#Faculty" />
</rdfs:C ass>

<rdfs: Property rdf:|D="advi ses">
<rdfs: domai n rdf:resource="#Faculty" />
<rdfs:domai n rdf:resource="#Student" />
</rdfs:Property>
</ rdf : RDF>

Figure 7.4: An example university RDF schema
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classes. Although an alias can be approximated using the rdfs:subClassOf or
rdfs:subPropertyOf propertiesto state that the new name is a specialization of the old
one, thereis no way to state an equivalence. This can be problematic if two separate
schemas “rename” aclass, because when schemas simply subclass the original class,
the information that al three classes are equivalent islost.

RDF schemais written entirely in RDF statements. Although at first this may
seem like elegant bootstrapping, closer inspection revealsthat it isonly areuse of
syntax. RDF is not expressive enough to define the special properties
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range, and thus correct
usage of these properties must be built into any tool that processes RDF with RDF
schemas.

A significant weakness of RDF isthat it does not specify a schemainclusion
feature. Although namespaces allow a document to reference terms defined in other
documents, it is unclear as to whether the definitions of these terms should be
included. Infact, it is unclear what constitutes the definition of aterm. The problem
isthat the definition of aclass (or property) isa collection of RDF statements about a
particular resource using properties from the RDFS namespace. Typicaly, these
statements appear on a single web page, grouped using an rdf:Description element.
However, since aresourceisidentified by aURI, thereis no reason why some of
these statements could not appear in another document. Thus anyone could add to the
definition of an object introduced in another schema. Although there are many
situations where thisis beneficial, accidental or malicious definitions may alter the
semanticsin an undesirable way. For example, someone could make the class
WebDeveloper a subclass of OverpaidPerson, and anyone who stated that they were a

WebDeveloper, would now aso be implicitly stating they were an OverpaidPerson.
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A possible solution to thisisto treat XML namespaces as the only source of ontology
inclusions, and then use extended ontology perspectives as described by Definition
3.22. However, this approach seems somewhat ad hoc, and may require that
namespaces be added to include documents that have no new names, but instead
provide only additional definitionsfor names from other namespaces.

RDF does not possess any mechanisms for defining general axioms, which are
used in logic to constrain the possible meaning of aterm and thus provide stronger
semantics. Axioms can be used to infer additional information that was not explicitly
stated and, perhaps more importantly for distributed systems such as the Web, axioms
can be used to map between different representations of the same concepts. Useful
axioms might specify that the subOrganization property istransitive or that the
parentOf and childOf properties are inverses of each other. Many RDF proponents
believe that axioms can be added to RDF by layering alogic language on top of RDF
schema. However, it appears that doing so would result in an awkward syntax. The
problemisthat if the terms of complex logical formulaare modeled resources, then
RDF requires that each term be treated as an assertion, which would be incorrect. The
only other option isto reify each term, which will not assert them, but since
reification requires four statements to model each term, thisis an extremely verbose
and unwieldy method to represent logic sentences.

Another potential problem for RDF is the Web's tendency towards rapid change.
Although RDF provides a method for revising schemas, this method is insufficient.
Essentially, each new version of a schemais given itsown URI and thus can be
thought of as adistinct schemain and of itself. However, therevisionisredly just a
schema that extends the original version; itsonly link to the original schemaisby use

of the rdfs:subClassOf and rdfs:subPropertyOf properties to point to the original
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definitions of each class and property. As such, atrue equivalence is not established
between the items. Additionally, if schemas and resourcesthat refer to the schema
that was updated wish to reflect the changes, they must change every individual
reference to a schema object to use the new URI. Finally, since schemas do not have
an official version associated with them, there is no way to track the revisions of a
schema unless the schema maintainer uses a consistent naming scheme for the URIs.
Even with RDF Schema, RDF has very weak semantics. Still, there are many who
believe that it provides agood foundation for interchanging data and that true
semantic web languages can be layered on top of it. By layering, we mean creating a
language that uses the RDF syntax, but also adds new classes and properties that have
specific semantics. In the next two sections, we will discuss two languages that layer

on top of RDF and RDF Schema.

7.3 OIL

OIL [32, 22, 33], which stands for Ontology Interchange Language or Ontology
Inference Layer, isalanguage for describing ontologies on the Web. OIL’s semantics
are based on description logics, but its syntax islayered on RDF. One of the design
goasfor OIL wasto maximize integration with RDF applications. Thus, most RDF
Schemas are valid OIL ontologies, and most OIL ontologies can be partially
understood by RDF processors. Unlike RDF, OIL has awell-defined semantics.
There are multiple layers of OIL, where each subsequent layer adds functionality
to the previous one. Core OIL is basically RDFS without reification, which was
omitted because as discussed in Section 7.2 it can be problematic. Standard OIL adds
anumber of description logic primitivesto the Core OIL layer, and is the focus of

most OIL work to date. Instance OIL adds the capability to model instances,
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essentially using RDF to describe the instances. Finally, Heavy OIL is an undefined
layer that will include future extensions to the language. This layered approach
allows applications to use pre-defined subsets of the language to manage complexity.
OIL starts with the basic primitives of RDF, classes and properties. There are two
basic types of classes: primitive classes and defined classes. Primitive classes are
essentially ordinary RDFS classes, while defined classes provide necessary and
sufficient conditions for membership. Defined classes require the use of class
expressions, which are boolean combinations of classes and dot constraints. The
standard boolean operations are provided by oil:AND, 0il:OR, and oil:NOT. Slot
constraints restrict classes to only those instances which are the domain of a property
where the range satisfies some constraint. Slot constraints include oil:HasValue,
oil:ValueType, oil:MaxCardinality and oil:MinCardinality. The oil:HasValue constraint
states that there must exist at least one value for the ot that isa member of a
specified class expression. The oil:ValueType constraint states that all values for the
slot must be members of a specified class expression. The cardinality constraints state
that there must exist at most (or at least) n instances that have the value for the
particular dot. Inall of these cases, the oil:hasProperty property is used to indicate the
property to which the constraint applies, and oil:hasClass is used to indicate the class
expression (if any) of the constraint. An example OIL class definition for Husband is
givenin Figure 7.5. In this ontology, a husband is a male who is married to afemale.
OIL dots are RDF properties, and thus slot definitions can use RDFS constructs
such as rdfs:subclassOf, rdfs:domain, and rdfs:range. OIL also adds properties and
classes that can be used to give dots more precise definitions. The
oil:inverseRelationOf property states that two propertiesare inverserelations. If a

property is an instance of the oil: TransitiveProperty class, then the property is
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<?xm version="1.0"7?>

<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns:rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schenma- 19990303#"
xm ns:oil ="http://ww. ont oknow edge. org/oil/rdfs-schema" >

<oi | : Defi nedd ass rdf: | D="Husband" >
<rdf s: subCl assOf rdf:resource="#Mle" />
<oi | : hasSl ot Constrai nt >
<oi | : HasVal ue>
<o0i |l : hasProperty rdf:resource="#i sMarri edTo" />
<oi | : hasd ass rdf:resource="#Fenmal e" />
</ oi | : HasVal ue>
</ oi |l : hasSl ot Constrai nt >
</rdfs:Cl ass>
</ rdf : RDF>

Figure 7.5: An OIL ontology that defines the class Husband.

trangitive. Finally, if a property is a subclass of oil:SymmetricProperty, thenitisa
symmetric relation.

In addition to defining classes and dots, OIL ontologies can describe themselves
with metadata, import modules and provide arule base. There are a standard set of
meta-properties, based on the Dublin Core, that include ontology name, ontol ogy
author, and others. The import mechanism is ssimply to use XML namespaces, and
suffers from the same drawbacks as RDF in this area. The rule base isintended to
provide additional axioms or global constraintsfor the ontology, but its structureis
currently undefined.

The advantages of OIL aretied to itsdescription logic basis. If two ontologies
used the same set of base termsin their definitions, then it is possible to automatically
compute a subsumption hierarchy for the combination of the ontologies. Additionally,
the rich modeling constructs allow consistency to be checked, which eases the

construction of high-quality ontologies. However, it is possible for logical
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inconsistencies to arise due to instances, which will be distributed across the
Semantic Web and thus harder to control. There are no guidelines as to how reasoners
should approach this kind of inconsistency. For example, if a Person class defined the
oil:maxCardinality of a marriedTo dot to be one, what should happen if different
documents contain assertions about different people being married to Madonna?
OIL's other weaknesses are inherited from RDF. It has no explicit import mechanism
and inadequate support for ontology evolution. OIL aso cannot specify many of the
common kinds of articulation mappings needed to integrate ontologies. For example,
OIL cannot express synonymy of classes or properties, and cannot express mappings
between different structures that represent the same concept. For these reasons, it
seemsthat OIL is better suited as an RDF representation of description logic than asa

foundation for the Semantic Web.

74 DAML

The DARPA Agent Markup Language (DAML) [54, 55] is perhaps the highest profile
Semantic Web language. This high profileisin part because DAML isamajor
DARPA project with multiple academic and industry teamsinvolved, and in part
because it involves many member of the W3C, including Tim Berners-Lee himself.
DAML attemptsto combine the best features of other Semantic Web languages,
including RDF, SHOE, and OIL. The earliest versons of DAML were officially
called DAML-ONT, but alater effort to more closely involve the developers of OIL
has resulted in DAML+OIL. Intherest of this section, unless explicitly stated
otherwise, theterm DAML refersto DAML+OIL.

Like OIL, DAML builds upon RDF and has adescription logic basis. DAML

allows class expressions to be asingle class, alist of instances that comprise aclass, a
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property restriction, or a boolean combination of class expressions. The
daml:intersectionOf, daml:unionOf, and daml:complementOf properties provide
conjunction, digunction, and negation of class expressions, and thus serve the same
purpose as the oil:AND, oil:OR, and 0il:NOT classes.

A DAML property restriction is indicated by the daml:Restriction class, which
contains a daml:onProperty property that specifies the dot being restricted, aswell as
additional information about the restriction. The daml:toClass property is used to say
that all values for the ot must be members of the specified class expression, and has
the same use as the oil:ValueType class. The daml:hasClass property islike the
oil:HasClass class, and states that at at least one value for the sot must be a member
of the specified class expression. DAML also has adaml:hasValue property, which
does not have an equivalent in OIL. This property is used to state that one value of the
dot must equal the specified value. Like OIL, DAML includes cardinality
restrictions, specifically daml:minCardinality and daml:maxCardinality. Because of
the different way that DAML structuresrestrictions, it also needs daml:hasClassQ,
daml:maxCardinalityQ, and daml:minCardinalityQ properties so that cardinality
restrictions can be qualified by a specific class expression. Figure 7.6 presentsthe
DAML version of the Husband ontology from Figure 7.5.

DAML also provides primitivesfor defining properties. In addition to the basic
ones available in RDF, it adds a daml:inverseOf property and daml:TransitiveProperty
class, which areidentical to elements of OIL. DAML aso hasthe
daml:UniqueProperty and daml:UnambiguousProperty classes which state that a
property can only have one value per instance and that a value can only belong to one
instance, respectively.

Like SHOE, DAML has an explicit feature for including ontologies, provides a
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<?xm version="1.0"7?>

<rdf: RDF xm ns:rdf ="http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#"
xm ns:rdf s="http://ww. w3. org/ TR/ 1999/ PR- r df - schenma- 19990303#"
xm ns: dam ="htt p://ww. dam . or g/ 2001/ 03/ dan +oi | #"* >

<dami : Ont ol ogy rdf: about="">

<dani : ver si onl nf 0>1. 0</ dam : ver si onl nf 0>

<dam :inports rdf:resource="http://schena. org/ base#" />
</ dam : Ont ol ogy>

<danm : d ass rdf: | D="Husband">
<rdfs:subCl assOf rdf:resource="#Mle" />
<rdf s: subCl assCf >
<danl : Restriction>
<dami : onProperty rdf:resource="#i sMarri edTo" />
<danl : hasCl ass rdf:resource="#Fenal e" />
</dam : Restriction>
</rdfs:subd assCf >
</dam : Cl ass>

</ r df : RDF>

Figure7.6: A DAML ontology that defines the class Husband.
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means for handling synonymous terms, and provides some primitive version
information. DAML’s daml:imports issimilar to SHOE's USE-ONTOLOGY element.
It istransitive and specifies that the definitions from the imported document also
apply to the current ontology. This allows extended ontology perspectives (see
Definition 3.22) to be used with DAML. However, unlike SHOE, DAML uses XML
namespaces to provide names, which requires some redundancy between the
namespace declarations and daml:imports statements.

DAML has adaml:equivalentTo property that is used to state that two resources
areidentical. Since classes and properties are resources, this can be applied to them
aswell as other classes. Thus, daml:equivalentTo provides the functionality of
SHOE's DEF-RENAME element, plus the capability to state that two instances are
identical. The latter feature is extremely useful on the Web, where resources are
identified by URLs. Since syntactically different URL's often identify the same
resource, it islikely that different users could use different IDs for that resource.
Using daml:equivalentTo, content from these two sources can be effectively merged.

The daml:versioninfo property allows an ontology to provide version information.
However, in DAML the contents of this property are not defined, thus it cannot be
used to automatically determine prior versions of the ontologies. Furthermore, there
is no way to indicate a backward-compatible version. Therefore, compatible ontology
perspectives (see Definition 3.31) cannot be used with DAML.

DAML aso includes support for XML Schemadatatypes. All datatypes are
considered special classes and each has an identifier that is constructed from the URL

of its source document and its name. Thus, a data value can be assigned atype, asin:

<xsd: deci mal rdf:val ue="3.14" />

Also, therange of a property could be a data type:
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<danl : Dat at ypeProperty rdf: 1 D="hei ght">
<rdfs:range rdf:resource=
"http://ww. w3. org/ 2000/ 10/ XM_Schema#deci mal "/ >
</ daml : Dat at ypePr operty>

Since DAML is based on description logics, it has all of the advantages of OIL.
However, since it is aso based on RDF, it has many of the disadvantages of that
language. Despite al of itsfeatures, DAML is till not more expressive than SHOE.
Although the cardinality constraints and boolean expressions can express things that
cannot be expressed in SHOE, SHOE's Horn clause-like inference rules can express
things not possible in DAML. However, there are plansfor aDAML-Logic language,
that will extend DAML+OIL with some fragment of first-order logic. Such a

language would most likely be more expressive than SHOE.

7.5 Summary

We have described four different semantic web languages, and compared them to
SHOE. In Table 7.1, we summarize the results of this comparison. In thistable,
syntax describes the notation of the language. Class hierarchy indicates whether the
language allows taxonomies of classes to be defined. The Horn logic, description
logic, and predicate logic rows al indicate the ability of alanguage to express the
axioms of that kind of logic. Class and predicate equivalence deals with the
language's ability to establish equivalence between classes and predicates (known as
relations or propertiesin some languages), respectively. Instance equivaence
concerns the ability to express the equivalence of individuals. A language that has
decentralized ontol ogies allows ontol ogies to be devel oped autonomously, and does

not require a central authority to approve or control them. Ontology extension is the
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Feature SHOE Ontobroker | RDFS | OIL | DAML+OIL
Syntax SGML/XML | HTML XML | RDF | RDF
Formal semantics Yes Yes No Yes | Yes
Class hierarchy Yes Yes Yes Yes | Yes
Hornlogic Yes Yes No No No
Description logic No No No Yes | Yes
Predicate logic No Yes No No No
Class equivaence Yes Yes No No Yes
Predicate equivaence Yes Yes No No Yes
Instance equivaence No No No No Yes
Decentralized ontologies | Yes No Yes Yes | Yes
Ontology extension Yes No Yest Yest | Yes
Ontology revision Yes No No No No
Revision compatibility Yes No No No No

Table 7.1: Comparison of semantic web languages.

ability of the language to include other ontologies. RDFS and OIL are marked with
an asterisk because this featureis not explicit, but can be implied by namespaces.
Ontology revision concerns the ability to explicitly state that one ontology is a new

version of another ontology, and a language alows revision compatibility if it can

state that arevision is backward-compatible with specific prior versions.
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Chapter 8

Conclusion

In this chapter, we will review the SHOE language and systems, and discuss how they
meet the needs of the Semantic Web. Based on this analysis, we will recommend
future directions for semantic web research. We then speculate as to how the

Semantic Web could revolutionize the way people use the Internet.

8.1 Analysis

In thisthesis, we have described the challenges that must be overcometo realize the
Semantic Web. Thefirst problem is to extract structured knowledge from web pages.
Then we must be able to integrate the data that is extracted from different sources. We
have shown how ontologies can be used for integration, but since the Web isa
distributed system with information on a multitude of sources, a single ontology
solution is unrealistic. To accommodate the needs of diverse information providers,
we allow ontologiesto be created autonomously, but provide means for extending
other ontologies to enable integration at design time. We pointed out that ontologies
on the Web will need to evolve, and included features to maximize integration

between data that commits to different versions of ontologies. A final problemis
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creating systems that can scale to the Web's enormous size. We will now examine our
proposed solutions to these challenges.

In order to enable any agent to easily extract content from web pages, we can use
SHOE tags to formally describe the knowledge. Although, thisis one of SHOE's
greatest strengths, it can aso beits Achillesheel. There are already a billion web
pages in existence, and convincing their owners to add semantic tagswill not be an
easy task. A page author will only add the tags if they can help lead othersto the web
page, but users will not query SHOE systems unless there is sufficient SHOE content
to provide alikely match. In his description of the early days of developing the Web,

Tim Berners-Lee describes a smilar problem: [5, page 30]

A big incentive for putting a document on the Web was that anyone else
in theworld could find it. But who would bother to install aclient if there
wasn't exciting information aready on the Web? Getting out of this

chicken-and-egg situation was the task before us.

In Chapters 5 and 6, we presented tools and techniques that reduce the level of effort
needed to create SHOE markup. We also presented tools that demonstrate how the
markup can be used. We believe that tools like these will demonstrate that the benefit
of using a semantic web language outweighs the cost of of annotating pages. Still,
thereis the chicken-and-egg problem, and large quantities of useful semantic web
content must be created to get the ball rolling. Thisis already beginning to emerge,
dueto projectslike DAML at DARPA.

In Chapter 6, we described how SHOE could be used in two different domains. In
the process, we found that certain types of pages were more amenable to annotation
than others. In particular, pages with many hyperlinks that provided succinct

information in labeled field, list, or table formats seem to be the best kinds of pages

204



for this process. In general, people had difficulty identifying relevant instances and
relations from long prose documents with few hyperlinks. Any effort to use SHOE
must take into account the content and organization of the source web pages, so that
an appropriate strategy for markup can be devel oped.

A significant issue for the Semantic Web is establishing the identity of
individuals. The approach taken by SHOE isto choose a unique URL for each
individual. In many cases, such as when the individual is aperson or organization
with a homepage, thisis an acceptable solution. However, some people have multiple
homepages (such as a personal page and professional page), and the URLs of a person
can change over time (if the person changes jobs or internet service providers).
Furthermore, problems arise with objects that are not owned by any person or
organization. For example, who has the right to choose keys for Napoleon, the
continent of Asia, the 16th century, or the Sun? In SHOE, we would create constants
in ontologies to describe each of these concepts, but this begs the question of who has
the right to create these ontologies. Perhaps the answer lies not in choosing a
particular identifier for a concept, but in allowing a page to assign any unique
identifier it chooses and state that it is equivalent to other identifiersfor the same
concept. DAML’s equivalentTo feature providesjust this capability, and could be one
of the most important features of a Semantic Web language.

A fundamental component of the SHOE approach isthat every document must
commit to aformally described ontology. This provides acompromise between the
extremes of asingle, universal schemafor the entire Web and individual schemas for
each document. However, unlike XML DTDs, SHOE ontologies are arranged in a
taxonomy with generic ontologies at the top that are extended by domain-specific

ontologies. This approach encourages reuse while simultaneously allowing arbitrary
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extension. Ontologies can serve as contexts where different sets of axioms are
applicable. Furthermore, ontology axioms can be used to articulate between the many
common types of representational differences, providing a declarative means for
transformation. However, SHOE lacks features such as arithmetic functions,
aggregation, and string manipulation functions that are needed to provide articulation
axiomsfor the full range of representational differences.

Due to the Web's dynamic nature, semantic web ontologies will inevitably need to
change, but these changes could adversely affect the various resources that commit to
the ontologies. In SHOE, each revision of an ontology is a separate resource with its
own unique version number, and instances commit to a specific version of an
ontology. This ensures that dependencies are not broken. Furthermore, the definition
of compatible ontology perspectives alows SHOE to integrate data from resources
that committed to different versions of an ontology. This approach seemsto work
well, even in the presence of major structural changes to the ontology such as those
described in Section 6.1.5.

To deal with the quantity of information on the Semantic Web, the language must
be scalable. Although we limited SHOE to the expressivity of datalog, this may still
not scale to the needs of al applications. Therefore, we indicated that SHOE could
use anumber of different knowledge representation systems, which differed in the
completeness of reasoning and query response time. For example, a deductive
database can support the full semantics of SHOE, but there will be performance
tradeoffs. On the other hand, relational database management systems can provide
performance gains but at the cost of no inference.

We believe that SHOE has demonstrated many of the features needed in a

semantic web language. SHOE provides interoperability in distributed environments
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through the use of extensible, shared ontologies, the avoidance of contradictions, and
localization of inference rules. It handles the changing nature of the Web with an
ontology versioning scheme that supports backward-compatibility. It takes steps in
the direction of scalability by limiting expressivity and allowing for different levels
on inferential support. Finally, since the Web is an “open-world,” SHOE does not

alow conclusions to be drawn from lack of information.

8.2 FutureDirections

Although we believe SHOE is good language that has practical use, we do not mean
to suggest that it solves all of the problems of the Semantic Web. We are at the
beginning of anew and exciting research field and there is still much work to do. In

this section, we discuss some possibilities for future work.

8.2.1 User Friendly Tools

Clearly, since the Semantic Web is intended to be an extension of the contemporary
Web, itstools must be usable by the layperson. Since query toolswill be used most
often, the greatest attention should be paid them. Ideally, we want a query tool that is
as easy to use as as keyword-based search engine, but provides the accurate answers
possible with structured queries. The first challenge for such atool is establishing the
context of the query. Although it is easy to choose a query context from the pick list
in our SHOE Search tool when there are only a dozen ontologiesto choose from, the
Semantic Web may have thousands of ontologies. How can a user choose the right
context from this set? Another problem is how can a user learn enough about an

ontology’s contents to create the desired query. Most users want instant answers, and

207



will not bother to peruse pages of ontology documentation just so they can form a
query. Perhapsthe answer isto alow the user to type a query string, which the system
attemptsto parse into a structured query, prompting the user to disambiguate terms
when necessary.

Another important aspect of usability isthe creation of SHOE documents. SHOE
hopes to overcome the knowledge acquisition bottleneck by amortizing the cost of
annotation over the entire set of content providers, but unless the processis
straightforward, thisis doomed to failure. We are actively working with our usersto
determine what interfaces are the most intuitive. Certainly, the ultimate annotation
process would be fully automatic, but due to limitations of NLP in general domains,
thisgoal iscurrently unrealistic. However, a semi-automatic method that incorporated

ideas from NLP or machine learning may simplify the processfor the user.

8.2.2 Scalability

Because the scope of the Semantic Web is as broad as that of the contemporary Web,
scalability is critical to any Semantic Web system. We intentionally restricted SHOE
to the expressivity of datalog so that we could use reasoning algorithms developed for
large data sets. However, it isunclear if even this restriction will truly allow usto
scale to problems with thousands of ontologies and billions of assertions as will be
required on the Semantic Web. In Section 5.1.4, we discussed how different
knowledge base systems could provide different inferential capabilities and
performance characteristics, and suggested that incomplete reasoners would provide
better performance. Future experiments need to verify this hypothesis and explore the
tradeoffs, so that well-informed decisions can be made.

We conducted a preliminary experiment that compared the use of XSB and Parka
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as SHOE repositories in the computer science domain. We chose ten representative
gueries, which ranged from one to five conjuncts and had up to four variables. Seven
of these queriesincluded a predicate which was partially defined by one of the
ontology’sinference rules. Two of the predicates used partia string matching, which
can help users locate instances without knowing their complete names. Using a Sparc
20 with 128 megabytes of memory, we issued the queries to both KBs, and measured
the system’s response time (in milliseconds) and the number of answers returned for
each query.

The results of the experiment are shown in Table 8.1. Response times for XSB
varied from 39ms to 124215ms, while the response times for Parka varied from
376msto 2991ms. Although, XSB out-performed Parkaon half of the queries, this
can be partially attributed to the different ways the SHOE KB library accesses the
repositories. XSB is executed as a child process, whose input and output streams are
managed by the SHOE software. Parka, on the other hand, is a client-server
application, and the SHOE KB library communicates with it via sockets. Thus, a
dominant cost in the Parka timings was the additional overhead of socket
communication, which can be as much as 2000 ms. An interesting feature of the XSB
timingsis that three queriestook over 10 seconds to complete. The onething in
common between these queriesis that each involved atest for membershipin a
high-level category. Dueto child categories and to relations that had arguments typed
to the high-level categories, the corresponding predicates of these categories appear
in the heads of many rules. This caused XSB’s search to branch out significantly
more than in other queries and resulted in the longer completion times. In general, it
seems that the smaller variance in query compl etion time makes Parka a better choice

for queries where response time isimportant.
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Time (Ms) No. of Answers

Query XSB | Parka | XSB | Parka
instanceO f(x, University) 2248 | 2430 27 27
instanceO f(x, Organization) 13031 | 1337 | 254 254
member(hittp : [ /www.cs.umd.edu/, x) 1040 | 1663 | 480 478
member(hittp : //www.umd.edu/, z) 1121 376 | 480 0
member(http : [/www.cs.umd.edu/, x) A 1373 | 1010 57 57
instanceO f(x, Faculty)

member(x, http : //www.cs.umd.eduusers/heflin/) 39 | 1016 5 4
instanceO f(x, Department) A 72 979 1 1
member(x, http : //www.cs.umd.eduusers/heflin/)

instanceO f(p, Publication) A 20208 | 2091 23 23

publication Author(p, a) A
member(hitp : [ /www.cs.stanford.edu/, a)

instanceO f(p, Article) A publication Author(p, a) A 352 | 2991 7 7
name(a,n) A stringM atch(n, “Heflin” )
instanceO f(x, Person) A 124215 | 2092 46 23

publication Author(p, ) A member(o,x) A
name(o,n) A stringM atch(n, “Stanford” )

Table 8.1: Comparison of XSB and Parka.

The other aspect of the experiment was the degree of completenessin the returned
answers. While XSB always provided complete answers, Parka only provided
complete answers for 6 of the 10 queries. In one case (when querying the members of
the UMCP CS department), Parka could not provide any answers, although XSB
returned 480. This was because no page explicitly contained assertions about
members of http://www.umd.edu/, but XSB was able to use the rule that stated
membership transfers through the subOrganization relation to infer that all members
of http://www.cs.umd.edu/ were also members of http://www.umd.edu/. In another
guery, which concerned the people who authored publications and were members of
an organization with Stanford in its name, XSB returned twice as many answers as
Parka. The reason isthat X SB returned each person twice, once each for being a
member of “Stanford University” and the * Stanford University Computer Science
Department.” Since Parkawas unable to determine that the individuals were

members of the university, it only returned them as members of the computer science
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department. In the other two queries, Parka only returned one or two results less than
XSB. Although, Parka's lack of a complete inference engine for SHOE only seriously
affected one query in this set, larger and richer ontologies are likely to have more
inference rules, and the differences between Parka and X SB on queries using these
ontologies will be much more significant.

This comparison indicates that Parka's query response times are much more
reliable than XSB’s, where certain queries can result in an intolerable delay.
However, there are certain queries for which Parkais useless. Itis clear then that each
system is better in certain situations. Obviously, a more thorough experiment is
needed. Such an experiment should ensure that additional variables such as network
latency are accounted for, test awider range of systems, including relational
databases, compare variations in the way SHOE isimplemented in each system, and

use larger and more realistic knowledge bases for the tests.

8.2.3 Language Design

Although SHOE was the first ontology-based web language, there are many
directionsfor possible improvement. Researchers need to develop a set of criteriafor
evaluating Semantic Web languages. Based on our analysisin Chapter 3, we suggest
afew basic requirements. First, the language must be able to define ontologies, and
ontologies must be able to extend and revise other ontologies. Second, the language
must have the power to express trand ations between different representations of the
same concepts, and particularly include the ability to establish equivalence of terms.
Third, the language must have an XML syntax, so that it can make use of existing
infrastructure.

In order to trand ate between different representations of the same concepts, a
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language would need additional primitives not present in SHOE. For example, in
order to convert between different measurement units, the language must allow
arithmetic functionsin inference rules. However, if an arithmetic function is used
recursively in arule, inference procedures may never terminate. Aggregation and
string manipulation are needed for other types of conversions. To provide truly
flexible facilities, arbitrary functions should be considered, but since the definition of
an arbitrary function would require a much more complex language, it should be
specified by means of a remote procedure call.

Although, SHOE takes an open-world approach, there are many useful queries
and actions that cannot be performed by web agents without closed-world
information. Localized closed-world (LCW) statements [26] are a promising step in
thisdirection. LCW statements can be used to state that the given source has all of the
information on a given topic. LCW statements are more appropriate for the Web than
the closed-world assumption, but thereis still aquestion as to how a query system
acquiresthe set of LCW statements that could be relevant. One possible extension to
SHOE isto allow LCW statements to be expressed in the language.

Finally, research must be conducted to establish the best set of primitivesfor a
semantic web language. For example, the limited expressivity of SHOE did lead to
occasions where incorrect usage of an ontology’s vocabulary could not be detected,
resulting in erroneous conclusions. A language that could express negation, digoint
sets, and/or cardinality constraints could use those features to validate and evaluate
datathat isdiscovered. However, in adistributed system the violation of a constraint
may be due to bad data that was discovered earlier. Assuch, a constraint should not
prevent data from being included in the KB, but should instead be used as afilter at

guery time that resultsin awarning or lowering of the confidencein a particular
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assertion. Features from other logics may also be useful. For example, temporal,
probabilistic, or fuzzy logics might have a place on the Semantic Web.

Clearly, there are anumber of featuresthat could be of use in a semantic web
language. To properly evaluate candidate languages, we need to identify what
expressive needs are most important and compare complexity of the languages. An
important direction for future work is an enumeration of the possible features along

with an analysis of the cost, complexity and benefit of each feature.

8.2.4 Web Servicesand Agent Communication

In thisthesis, we focused on the Semantic Web as a search and query mechanism, but
it can be much more. The Web aready provides a number of services, some of which
look up information (such as flight schedules) and some of which perform an action
(such as book a flight). However if these services could be described with semantic
markup, then intelligent agents can use these services. Preliminary research in this
areais described by Mcllraith, Son, and Zeng [71]. A crucial problem to be solved
here is the design of an ontology that is flexible enough to describe the wide range of
potential services.

Web services can be thought of as ssimple agents, and techniques for describing
them could be expanded for use in agent communication [53]. An agent can advertise
its capabilities using a service ontology. Other agents could then understand this
advertisement and determine if they should request a service from the advertising
agent. Ontologies may aso be needed for the process of negotiation and for rating of

agent services.
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825 A Web of Trust

A serious problem on the contemporary Web isfinding reliable information. This
problem will be even more crucia for the Semantic Web, where agents will be
integrating information from multiple sources. If anincorrect premiseis used dueto a
single faulty source, then any conclusions drawn may be in error. In the perspective
approaches of Chapter 3, it isassumed that al resources used to form a perspective
arereliable. This approach could be extended with an additional trust function which
extracts from the set of resources only those assertions that are deemed reliablein
some way.

One problem with trust is that it can be very subjective, and two individuals may
disagree on whether aparticular source isreliable. To further complicate matters, a
given source may be reliable only on certain subject matter and reliability may
depend on supporting evidence. A potential solution to these problemsisto create
special ontologiesthat provide belief systems using sets of rulesthat filter out claims
which may be suspect. Such ontologieswill require specia relations such as
claims(z, a), whichistrueif = isthe source of assertion «, and believe(a), which is
trueif the agent should believe assertion « [50]. Users can then subscribeto a

particular belief system or customize one to their own needs.

8.3 A Vision of the Semantic Web

The Semantic Web, which was was once the dream of afew isolated individuals, is
now on the verge of revolutionizing the Internet. The DAML project has helped to
garner the cause widespread attention, and the W3C's Semantic Web activity iswell

underway. In the summer of 2001, aworking group will form to develop aW3C
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standard for web ontologies. By 2003, this standard should be in place and will serve
as the foundation of a Semantic Web.

Then, the Internet will begin to be transformed in amazing ways. First, people will
be able to conduct more accurate searches, and the answers they receive may be based
on the automatic integration of numerous sources. Aswith the current Web, there will
be many search engines to choose from, but these engineswill differ not just in
coverage of the Web, but also in inferential completeness and query response time.
Some search engines will have asingle trust model that represents one viewpoint of
the Web, while others may allow usersto configure their own trust model. However,
since the details of many web pages will be too complex to annotate, there will still be
aplace for keyword-based search engines on the Web. The best search engines will
combine keyword and semantic web search techniquesto best satisfy their users.

Although improved search is a significant capability of the Semantic Web, the real
revolution will occur with agents that don’t just find things, but also do things. These
agents will be automated personal secretaries that interact with each other over the
Internet. For example, you could tell your agent to make travel arrangements for you
to attend a conference. The agent would go the conference web page to find out about
the location and dates of the conference. It would then use your personal information
and preferencesto determine ameans of transportation, contact atravel site, and make
plane and hotel reservations. The agent may also discover that your favorite band is
playing in town during your stay, and even though the show is sold out, the agent
might find reasonably priced tickets from aticket broker. In addition to presenting
your itinerary, the agent would mention the concert and ask if you to wanted to
purchase the tickets. Although this may sound far-fetched, when web pages are

annotated in a semantic markup language, the problem becomes much easier to solve.
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Semantic web agents will also bring changes to e-commerce. People will be able
to search for products that contain exactly the featuresthey desire and at the lowest
possible price. If the seller also has an agent, then the two agents may even negotiate
alower pricefor you. The impact of this on the Web will be that sellers who wish to
stay in business will have to constantly match their competitors prices or differentiate
themselves on some other aspect such as features of the product, quality, or customer
service. All of these things can be described on the Semantic Web and could play in

the consideration of a product for the agent.
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Appendix A

SHOE DTDs

This appendix contains the DTDs for both the SGML and XML syntaxes of SHOE.
These DTDs specify what tags can be used in a document, their structure, and how

they may be nested.

A.l SGML DTD

The SGML syntax of SHOE is an application of the Standard Generalized Markup
Language (SGML). An SGML DTD describes a document structure using element,
attribute, and entity declarations. Comments are indicated with <!- - and - ->.

An element declaration consists of <!ELEMENT, the element name, minimization
options, a content specification, and a >. The minimization options consists of two
characters indicating the minimization for the start and end tags of the element. The
character - indicates the tag isrequired, while O indicates that it is optional. The
content specification can be declared or amodel group. InthisDTD, the only
declared content is CDATA, which stands for character data and means the content is
text that does not include any tags. Model groups are used to specify the subtags of an

element. Here, “,” separates elements that must appear in sequence, “

" separates
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items of achoice, and “&” separates items that must appear in any order. The
quantity of elementsisindicated with “?” for optional but cannot repeat, “*” for
optional but can repeat, and “+” for mandatory and repeatable.

Attribute declarations associ ate attributes with elements and have the form
<IATTLIST, element name, a sequence of attribute definitions, and a >. Each attribute
definition consists of an attribute name, declared value, and default value. The only
declared values used here are CDATA or lists of literal values. The default value can
be #REQUIRED indicating that the attribute must appear in every tag, #IMPLIED
indicating that it may be absent, or a specific value.

Finally, entities are like macros, in that they can associate a name with some
component of the DTD. An entity declaration consists of <!ENTITY %, the entity
name, an optional system identifier, some content, and a >. An entity’s content is
inserted wherever the entity is referenced with %entityname;. A external entity can be
referenced by using the PUBLIC system identifier and specifying the name of the
public entity.

The DTD below builds onthe HTML 3.2 DTD by redefining the block entity to
include the elements ONTOLOGY and INSTANCE, and then defining the
corresponding sub-elements. It then includesthe HTML DTD as a public entity.

<l-- DID for SHCE -->
<l-- Last Mod: 1/1/98 -->

<IENTITY % shoe. content "ONTOLOGY | | NSTANCE' >

<!-- The following three entity declarations are used to
override the HTM. content nodel for blocks, so that
an ONTOLOGY or | NSTANCE can appear anywhere a bl ock
can. Typically this is as a top level elenment in the
BODY of the HTM. docunent -->

<IENTITY %list "UL | OL | DR[| MNU>
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<IENTITY % preformatted "PRE">

<IENTITY % bl ock
"P| %ist | Yreformatted | DL | DIV | CENTER |
BLOCKQUOTE | FORM | ISINDEX | HR | TABLE |
%shoe. content ;">

<l-- Declarations for ontol ogies -->

< ELEMENT ONTOLOGY - - (USE-ONTOLOGY | DEF- CATEGORY |
DEF- RELATI ON | DEF- RENAME |
DEF- | NFERENCE | DEF- CONSTANT |
DEF- TYPE) * >

< ATTLI ST ONTOLOGY

id CDATA #REQUI RED
version CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
decl arators CDATA #1 MPLI ED
backwar d- conpati bl e-wi th CDATA #1 MPLI ED >
<! ELEMENT USE- ONTOLOGY - O EMPTY >
<I' ATTLI ST USE- ONTOLOGY
id CDATA #REQUI RED
version CDATA #REQUI RED
prefix CDATA #REQUI RED
url CDATA #1 MPLI ED >
<! ELEMENT DEF- CATEGORY - O EMPTY >
<! ATTLI ST DEF- CATEGORY
name CDATA #REQUI RED
i sa CDATA #1 MPLI ED
description CDATA #1 MPLI ED
short CDATA #| MPLI ED >
<! ELEMENT DEF- RELATI ON - - (DEF-ARG* >
<! ATTLI ST DEF- RELATI ON
name CDATA #REQUI RED
short CDATA #1 MPLI ED
description CDATA #| MPLI ED >
<! ELEMENT DEF- ARG - O EMPTY >
<! ATTLI ST DEF- ARG
pos CDATA #REQUI RED
type CDATA #REQUI RED
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short CDATA #1 MPLI ED >
<l-- pos nust be either an integer, or one of the
strings: FROM or TO -->

<! ELEMENT DEF- RENAMVE - O EMPTY >
<! ATTLI ST DEF- RENAME
from CDATA #REQUI RED
to CDATA #REQUI RED >
<! ELEMENT DEF- CONSTANT - O EMPTY >
<! ATTLI ST DEF- CONSTANT
nane CDATA #REQUI RED
cat egory CDATA #| MPLI ED >
<! ELEMENT DEF- TYPE - O EMPTY >
<! ATTLI ST DEF- TYPE
nane CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
short CDATA #| MPLI ED >
<l-- Declarations for inferences -->
<I-- Inferences consist of if and then parts, each of

whi ch can contain multiple relation and category
cl auses -->

<l ELEMENT DEF-I NFERENCE - - (INF-IF, INF-THEN >
<! ATTLI ST DEF- | NFERENCE
descri ption CDATA #1 MPLI ED >
<! ELEMENT | NF-1F - - (CATEGORY | RELATION |
COVPARI SON) + >
<! ELEMENT | NF- THEN - - (CATEGORY | RELATION)+ >
<! ELEMENT COVPARI SON - - (ARG ARG >
<! ATTLI ST COVWPARI SON
op (equal | notEqual | greaterThan |
gr eat er ThanOr Equal | | essThanOr Equal |
| essThan) #REQUI RED >
<l-- Declarations for instances -->
<! ELEMENT | NSTANCE - - (USE- ONTOLOGY | CATEGORY |

RELATI ON | | NSTANCE) * >
<I ATTLI ST | NSTANCE

key CDATA #REQUI RED
del egate-to CDATA #| MPLI ED >
<! ELEMENT CATEGORY - O EMPTY >

<I' ATTLI ST CATEGCORY
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nane CDATA #REQUI RED

for CDATA #| MPLI ED
usage (VAR | CONST) CONST >
<I-- If VAR is specified for a category that is not

within a <DEF-1 NFERENCE>, then it is ignhored -->

<! ELEMENT RELATI ON - - (ARG* >
<! ATTLI ST RELATI ON
name CDATA #REQUI RED >
<! ELEMENT ARG - O EMPTY >
<! ATTLI ST ARG
pos CDATA #REQUI RED
val ue CDATA #REQUI RED
usage (VAR | CONST) CONST >
<l-- pos nust be either an integer, or one of the
strings: FROMor TO -->
<I-- If VAR is specified for an arg that is not within a

<DEF- | NFERENCE>, then it is ignored -->
<!-- Include DID for HTM. -->
<IENTITY % HTMLDTD PUBLI C

"-//WBC//DTD HTM. 3.2 Final//EN' >
WHTMLDTD;

A2 XML DTD

Since XML isessentially asimplified version of XML, the XML syntax for SHOE is
very smilar to the SGML one. Likewise, the XML DTD isvery similar. The key

differences between thetwo DTDs are:

e XML iscase-sensitive, so the case of all e ement and attribute namesis

relevant. We chose lower-case to correspond with XHTML.

e XML does not alow tag minimization, so the tag minimization tokens are not

used in e ement declarations.

e ThisDTD can stand on itsown, and does not need to referencethe HTML DTD.
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<! ELEMENT shoe (ontology | instance)* >

<l-- Since this may be enbedded in a docunent that
doesn’t have META el enents, the SHCE versi on nunber
is included as an attribute of the shoe elenent. -->
<! ATTLI ST shoe
versi on CDATA #REQUI RED >
<l-- Declarations for ontol ogies -->
<! ELEMENT ont ol ogy (use-ontol ogy | def-category |

def-relation | def-renane |
def-inference | def-constant |
def-type)* >

<l ATTLI ST ont ol ogy

id CDATA #REQUI RED

versi on CDATA #REQUI RED

descri ption CDATA #1 MPLI ED

decl arators CDATA #1 MPLI ED

backwar d- conpati bl e-wi th CDATA #1 MPLI ED >

<! ELEMENT use-ont ol ogy EMPTY >
<l ATTLI ST use-ont ol ogy

id CDATA #REQUI RED
versi on CDATA #REQUI RED
prefix CDATA #REQUI RED
ur CDATA #| MPLI ED >

<! ELEMENT def -cat egory EMPTY >
<! ATTLI ST def-category

name CDATA #REQUI RED
i sa CDATA #1 MPLI ED
description CDATA #1 MPLI ED
short CDATA #| MPLI ED >

<!l ELEMENT def-rel ation (def-arg)* >
<l ATTLI ST def-rel ation

name CDATA #REQUI RED
short CDATA #1 MPLI ED
description CDATA #| MPLI ED >
<!l ELEMENT def-arg EMPTY >
<I ATTLI ST def-arg
pos CDATA #REQUI RED
type CDATA #REQUI RED
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short CDATA #1 MPLI ED >
<l-- pos nust be either an integer, or one of the
strings: FROM or TO -->

<! ELEMENT def -renane EMPTY >
<I ATTLI ST def-renane
from CDATA #REQUI RED
to CDATA #REQUI RED >
<! ELEMENT def - const ant EMPTY >
<I ATTLI ST def - const ant
name CDATA #REQUI RED
cat egory CDATA #| MPLI ED >
<! ELEMENT def-type EMPTY >
<l ATTLI ST def-type
name CDATA #REQUI RED
descri ption CDATA #1 MPLI ED
short CDATA #| MPLI ED >
<l-- Declarations for inferences -->
<I-- Inferences consist of if and then parts, each of

whi ch can contain multiple relation and category
cl auses -->

<! ELEMENT def-i nference (inf-if, inf-then) >

<l ATTLI ST def-i nference

descri ption CDATA #| MPLI ED >
<I'ELEMENT inf-if (category | relation |
conparison)+ >
<! ELEMENT i nf -t hen (category | relation)+ >
<! ELEMENT conpari son (arg, arg) >
<I ATTLI ST conpari son
op (equal | notEqual | greaterThan |
great er ThanOr Equal | | essThanOr Equal |
| essThan) #REQUI RED >
<l-- Declarations for instances -->
<!l ELEMENT i nst ance (use-ontol ogy | category |
relation | instance)* >
<l ATTLI ST i nstance
key CDATA #REQUI RED
del egate-to CDATA #| MPLI ED >
<! ELEMENT cat egory EMPTY >

<! ATTLI ST category
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nane CDATA #REQUI RED

for CDATA #| MPLI ED
usage (VAR | CONST) " CONST" >
<I-- If VAR is specified for a category that is not

within a <def-inference> then it is ignhored -->

<! ELEMENT rel ati on (arg)* >
<I ATTLI ST rel ation
nane CDATA #REQUI RED >
<! ELEMENT arg EMPTY >
<I ATTLI ST arg
pos CDATA #REQUI RED
val ue CDATA #REQUI RED
usage (VAR | CONST) " CONST" >
<l-- pos nust be either an integer, or one of the
strings: FROMor TO -->
<I-- If VAR is specified for an arg that is not within a

<def-inference> then it is ignored -->
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