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Theory and Application of Plane Partitions.
Part 2

By Richard P. Stanley

IV. Enumeration of column-strict plane partitions
14. Part restrictions
We are now ready to apply our theory of Schur functions to the enumeration of
plane partitions. The first such results were obtained by MacMahon [9], using an
entirely different technique.
If p, is the number of plane partitions of n with a certain property, we say that
the generating function for these plane partitions is the (formal) power series

Zp.x". (46)

We will regard the plane partitions counted by (46) to be enumerated if an explicit
expression can be found for (46). Only in rare cases can an explicit expression be
found for p, itself.

We will employ the notation

k) =1—x*
#)!=m2)...(0

For instance, the generating function for plane partitions with <1 row (ie.,
ordinary partitions) is [ [, (™', a well-known result of Euler (see Hardy and
Wright [6, Ch. 19]). The generating function for plane partitions with <1 row
and <2 columns is 1/(2)!, and here we have the explicit expression p, =
+2n + 3 + (—1)". In these examples, the generating functions can be determined
by “‘inspection.” For more general types of plane partitions, the generating func-
tions still have a simple form, but there appears to be no “obvious” reason why
this is so.

14.1. TueoreM. (Bender and Knuth [18]). Let S be any subset of the positive
integers. The generating function for column-strict plane partitions whose parts all
liein S is

(47)

[HOT'TTe+n"

ieS i,jeS
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260 Richard P. Stanley

Proof: By definition of the e,’s, this generating function is obtained from
Y., by setting x; = x' if ie S, x; = 0 otherwise. The proof now follows from

Corollary 8.3. O

The special cases S = {1,2,3,...} and S = {1,3,5,...} were first obtained by
Gordon and Houten [31] before Bender and Knuth discovered the general case.
In particular, the generating function for column-strict plane partitions with no
part restrictions is

[T )™+ 721 = 141)2) 324GV 6 ...
k=1

=1+ x4 2x> +4x> + Tx* + 12x5 + 21x° + 34x7 + 56x% + - - 4

Theorem 14.1 can be easily modified to keep track of not only the sum n of the
parts, but also the number of parts, the number of columns of odd length (using
Proposition 8.4), etc., and of course Corollary 8.3 itself keeps track of the number
of occurrences of each part.

As a further application of Corollary 8.3, we prove a “‘stability theorem” for
column-strict plane partitions. The proof illustrates an interesting technique
involving generating functions.

14.2. PROPOSITION. Let b(n, p) be the number of column-strict plane partitions
of n into exactly p parts. If p > 2m, then b(m + p, p) is equal to the coefficient of
x™ in the expansion of

(k)~W*32) = 1 4 2x + 5x% 4+ 11x3 + 23x* + 45x5 + 87x° + - --

—Js

k

1

(brackets denote integer part).
Proof: Define

M8

F(g,x) =

n

Y, bln, p)x"g”.
0p=0

By letting x; = gx’ in Corollary 8.3, we have

[co]

Flg,x) = l/ﬁ (1 —gx® JT (1 — g>xkyik=vrz),
k=1

k=1

Let

o]

F(g,x) = ), x’f(x)q".

p=0

It is clear that the expansion of f,(x) in powers of x has no negative exponents.
Also define

G(q, x) =1/ H 1- qzxk)[(k—l)/ll — Z xapgp(x)qu.
k=1 p=0

It is also evident that the expansion of g,(x) has no negative exponents.
Now

F(g,x) = G(g, x)/(1 — gx)(1 — gx?)...
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SO

o

Y, Xf(x)g” =

p=0

© quP
p=0 (p)!

(the latter sum being a well-known identity of Euler (cf. Hardy and Wright
[6, Thm. 349])). Equating coefficients of ¢” gives

[p/2] x3kgk(x)xp— 2k

S iy e T

Y x*Pg,(x)g*?) -
p=0

SO
21 x*g(x)
= —_— 49
= 2, Gz @

Using the notation f(x) = g(x)(mod x’*') to mean that the coefficients of x’ in
f(x) and g(x) are the same, for i =0, 1,...,j, there follows from (49) that

©

fox) = 3 xgx)/(1)(2). .. (mod xP1*1) (50)
k

=0

The right-hand side of (50) is just

G(E,X) /(l)(2)... = ﬁ (k) [k+302),
X k=1

and the proof follows since

£ o)

Sfx) = _ob(m +ppx™ O

m

We conclude this section with an interesting application of Theorem 14.1,
viz,, the enumeration of symmetric plane partitions. A symmetric plane partition
is a plane partition whose parts n;; satisfy n;; = n;;.

14.3. ProrosITION (Gordon [70]). The generating function for symmetric plane
partitions is

ﬁ @k —1)7'2k) ™" = 1/ B) @ (G) 6) () B)*(9)(10)° ...
k=1

=1+ x4+ x>+ 2x> + 3x* + 4x> + 6x°

+ 8x7 + 12x® + 16x° + 22x1° + ...

Proof: We shall set up a one-to-one correspondence between column-strict
plane partitions 7 of n into odd parts, and symmetric plane partitions 7 of n. The
proof will then follow from Theorem 14.1 by taking S to be the set of all odd
positive integers. Let 7 be a column-strict plane partition of n. There is a well-
known correspondence between partitions of an integer k into distinct odd parts,
and self-conjugate partitions of k [6, Thm. 347]. Apply this correspondence to each
column of =, resulting in a new plane partition n, of n. Now replace each row of
m, by its conjugate partition. We get a symmetric plane partition 7 of n, and it is
easily seen that this establishes the desired one-to-one correspondence. []
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As an illustration of the above correspondence, we have

75 53 4 3 3 2 4 4 3 1
5311 4 3 2 2 4 4 2 1
11 331 3 2 2
2 11
n o 3

15. Shape restrictions, hook lengths, and contents

The generating function for column-strict plane partitions of shape A whose parts
lie in a set S is obtained from e, by setting x; = x' if i€ S, x; = 0 otherwise. By
using the Jacobi-Trudi identity (Theorem 11.1), we can express this generating
function as a determinant. As it stands, this determinant is not very enlightening,
and we seek ways of simplifying it for suitable choices of S. We shall evaluate this
determinant when S = {1,2,...,m}, i.e., we will find the generating function for
column-strict plane partitions of shape 4 and largest part <m. This generating
function will be denoted by H,,(A).

Our expression for H,(4) involves two sets of numerical invariants of the parti-
tion A, which we now define.

15.1. DeFINITION. If A is a partition of p, define the hook lengths of A to be the
integers h;; = 4, + Aj —i —j + 1, for 4;, ;> 0. We write d,,d,,...,d, for the
hook lengths of A (in some order). Also define the contents of A to be the integers
¢;; =j — i, for 4, 4; > 0. We write ¢;,c,,...,c, for the contents of 4 (in some
order).

Thus h;; is the number of entries directly to the right or directly below the
(i, j)-entry of the shape of A, counting the (i, j)-entry itself once, thereby explaining
the terminology ‘‘hook length.” For instance, if A is the partition 4, 3, 3, 2, then
its hook lengths and contents are as follows:

76 41 0 1 2 3
5 4 2 -1 0 1

4 3 1 -2 -1 0

2 1 -3 =2

hook lengths contents

The notion of ““hooks” were first introduced by Nakayama [48] in connection with
modular representations of the symmetric group. Many of their basic com-
binatorial properties were derived by Frame, Robinson, and Thrall [28]. The
definition of ‘“‘contents” was first given in this writer’s thesis [59, p. 163]; the
terminology is derived from Robinson [12, Ch. 4].

In order to evaluate H, (1) = e,(x, x%,...,x™) using the Jacobi-Trudi identity,
we need to evaluate h(x, x2, ..., x™). This is a well-known result in the theory of
partitions (see Hardy and Wright [6, Thm. 349]), viz.,

m+k—l)

h 2,...,x™ =xk
k(x,xa ’x) x( m—1

(1)
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where (:) denotes the Gaussian coefficient,
!
a _ L. (52)
b  (b)(a— b)!

There follows from the Jacobi-Trudi identity :
15.2. LEMMA. If A is given by Ay > A, = --- = 4, > 0, then

m4h—it+j—1
m—1

H,(%) = x“'i+j( )l j=1,...,r. 0O

The main result of this section is an explicit evaluation of this determinant.
The expression we give for it first appeared in this writer’s thesis [59, Ch. V,
Thm. 2.3]. An equivalent determinant was evaluated by Carlitz [20], though he
does not give its combinatorial interpretation. Gordon and Houten [31] also
evaluate this determinant in the case m = oo, but neither they nor Carlitz give it
as explicitly as we do. D. E. Littlewood [8, p. 124, Thm. I] proves a result essentially
the same as the next theorem, though he relates it to plane partitions only when
x = 1[ibid., p. 189, Thm. VI]. The case x = 1 was first done by Frobenius [29, §3]
in connection with a problem in group theory, and later a combinatorial proof
was given by MacMahon [45].

15.3. THEOREM. We have

X(m + ¢)(m + ¢3) ... (m + c,)

H,(2) = @d)y)...(d,)

where
A+

and where the c;’s are the contents and d;’s the hook lengths of A.

Proof: The proof is by induction on 4, = ¢. The theorem is trivially true for
A, =0, for here the determinant of Lemma 15.2 is upper triangular with 1’s on
the main diagonal, so H,(4) = 1.

Now assume the theorem for plane partitions of shape 1*, where A* is obtained
from A by removing the first column from its shape, so A¥ = A; — 1 (when 4; > 0).
Suppose the hook lengths of A* are d,,d,,...,d,_, (r = A}), and the contents are
€1,C35...,Cp_y. Then the hook lengths of A are d,,d,,...,d,_,, 4, +7—1,
Ay +r—2,...,4, and the contents of A are ¢, + l,c; +1,...,¢c,_, + 1,
0, —1,..., —r + 1. Hence our theorem will be proved by induction if we show

L mym =1y, . m—r +1)

H,(4) = Gy +r=D0D0+r=2)...(0)

H,, 11 (2%), (53)
where by Lemma 15.2,

H,.(A*) = (4

xla—l—i-#-j(

m+x,—i+j—1)‘
m .
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In the expression for H,(4) in Lemma 15.2, divide x"~/*!(m — r 4 j) out of
the j-th column (j = 1,2,...,r) and multiply the i-th row by (A, —i+r)
(i=1,2,...,r). This gives

x(rzl)(m)(m —-1D...(m—=r+1)
A+r=DR;+r—-2)...(,)

xhmi+2j-r-1 m4+h—=14+j—1\ (M—i4+r)
m—1 (m—r+j)

It remains to transform the determinant in (55) into the determinant (54). This is
accomplished by a series of elementary column operations, somewhat similar to
those used in proving the Jacobi-Trudi identity.

First note that the entry in the i-th row and last column (j = r) of the deter-
minant in (55) is equal to

H,(4) =

. (55)

x}.i—i+r—l(

m+).,—i+r—l)
m

and hence equals the corresponding entry in (54). Now multiply the last column
of (55) by (1)/x*(m — 1) and subtract it from the next-to-last (j = r — 1) column.
This transforms the (i, r — 1) entry into

m4M—id+r=2\(M—i+7r
m—1 (m—1)
m4M—i+r—1 a

m (m-—1)

x}.(—l+r—3

_ xl;—i+r—3(
— xhi—itr=2 m+r—itr—2
m .

This expression agrees with the next-to-last column of (54).

Now multiply the column j=r — 1 of this transformed determinant by
(2)/x3*(m — 2) and subtract it from the column j = r — 2. This transforms the
(i, — 2) entry into
m4h—i4+r=3\(M—i4+0p

).;—i+r—5(

x m—1 (m—2)
_xhimitr=5 ma4r—itr—2 )
m (m—2)
_‘x;_,—i+'_3 m+},‘—l+r—3
= - ,

which agrees with the column j = r — 2 of (54).

Continuing in this way, at the k-th step multiplying the column j =r — k + 1
by (k)/x**(m — k) and subtracting it from the column j = r — k, we eventually
transform the expression for H,(4) in (55) into the expression in (54). Thus the
theorem is proved. []
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Obviously Lemma 15.2 can be extended via Proposition 12.2 to give a deter-
minantal expression for the generating function e, (x, x%,...,x™ for skew
column-strict plane partitions of shape A/u and largest part <m. It is not known
in what cases this determinant can be evaluated in a manner analogous to Theorem
15.3, even in the limiting case m — oo.

16. Row and column restrictions

It is natural to consider the problem of enumerating column-strict plane parti-
tions with <c columns (respectively, <r rows) and largest part <m. Clearly the
generating function for this class of partitions is ), H,,(4), where the sum is over
all partitions A with largest part 4, < c¢ (respectively, number of parts A7 < r).
By a series of intricate computations, Basil Gordon (unpublished) has succeeded
in expressing the former in a simple form, as conjectured by Bender and Knuth [18].
The limiting case m = oo was earlier proved by Gordon and Houten [31] (after
Gordon first did the case ¢ = 2 [30]). We simply state Gordon’s result here. It
would be desirable to have a simpler proof of this result.

16.1. ProposITION (Gordon). The generating function for column-strict plane
partitions with <c columns and largest part <m is

ﬁ ﬁ c+i+j—=1)
i=1j=i @4+j=1) .

One case of particular interest is ¢ = 2, m = oco. Here the above generating
function reduces to [[, ()", which is the generating function for ordinary
partitions. Hence the number of column-strict plane partitions of n with <2
columns is equal to the number of partitions of n. A combinatorial proof of this
fact was given by Sudler [61].

For the case of column-strict plane partitions with <r rows and largest part
<m, Gordon [33] obtains generating functions C,(x) in the case m = co. These
generating functions are built up inductively as r increases using the “‘false theta-
functions” of L. J. Rogers [54), and are not nearly as elegant as those of Proposi-
tion 16.1. The form of these generating functions imply, however, that no signif-
icant simplification is possible. For instance,

e

(1 _ X) Z (_l)nxn(n+3)lz
n=0
M*Q)*Q)* -
(1 =x)(2 =+ x+2x%) Y (—1yximn*r2
C = n=0
) ORORON
17. Young tableaux, ballot problems, and Schensted’s theorem
A Young tableau is a plane partition with the p parts 1,2,..., p. Usually in the
definition of a Young tableau, the parts are required to be in increasing order in
every row and column; however, the transformation i — p — i + 1 shows that
we get an equivalent theory by requiring the parts to be in decreasing order. Let
f* denote the number of Young tableaux of shape A. For instance, if 1 = (3, 2),

then f* = 5, corresponding to the five Young tableaux
5 43 5 4 2 5 41 5 3 2 5 31

2 1 31 3 2 4 1 4 2

O

Cy(x) =
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The numbers f* appear in several contexts in combinatorial theory, which we
shall discuss. First we give Frame’s elegant result [28] on computing f*
17.1. ProposiTION. If d,,d,,...,d, are the hook lengths of 4, then

f*=pYdd,...d,

Proof : Let u be the partition {(17). By definition of e,, f* is the coefficient
of k, in e, ie., f* = (e;, h). Consider the expansion of e; by the Jacobi-Trudi
identity (Theorem 11.1). It is easily seen that the coefficient of k, in a term
Ba—1+t,Pay=2+41, - - - Bz —p 4, is the multinomial coefficient

since t,,...,t; is a permutation of 1,...,r. It follows that
f* =PI/ — s + 0)l.

The above determinant is in fact a special case of the determinant for H,(4)
given by Lemma 15.2. Namely, let H(1) = lim,,_, , H,(4). Then by Lemma 15.2,

HQ) = [x¥7 /0y = i 4 j)!
= ()AL 4 x 4 X2 4 e 4 xHTIHTY) (56)

On the other hand, by Theorem 15.3,
H(A) = x/1)PTI1 + x + x% + .-+ + x4~ 1), 57

Comparing (56) and (57) as x — 1 proves the proposition. []

We now consider the relation of f* to Knuth’s correspondence 4 X (n, o)
(Theorem 6.1). It is clear that 7 and ¢ will both be Young tableaux with p parts
if and only if 4 is a p x p permutation matrix. Thus the total number of ordered
pairs (7, o) of Young tableaux of the same shape and p parts is equal to the number
of p x p permutation matrices. There follows:

17.2 ProposITION. ), (f?=p! O

Moreover, by Proposition 8.1, 4 %, (n, n) where = is a Young tableaux with p
parts, if and only if A is a symmetric permutation matrix, i.., an element of the
symmetric group S, whose square is the identity. There follows:

17.3 PROPOSITION. Let ¢, be the number of elements x in S, satisfying x> = 1.
Then

Z fr= t,- U
i-p
Propositions 17.2 and 17.3 were known (at least implicitly) since the early days
of group representation theory, in the context of the following result of Young [66].
17.4. PROPOSITION. Let A — p. Then f* is the degree of the irreducible (ordinary)
representation of the symmetric group S, corresponding to the partition A.
Proof: We have f* = (e,, h%) = (e,, s§). Thus by Frobenius’ theorem (Theorem
13.2),f* = x¢,»y. But x¢,,, is just the character x* evaluated at the identity element
of §,, which is the degree of the representation corresponding to 4. [
Thus Proposition 17.2 is seen to be a special case of the theorem that the sum
of the squares of the degrees of the irreducible (ordinary) representation of a finite
group is equal to the order of the group (see, e.g., M. Hall [5, Thm. 16.5.5]). On the
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other hand, Proposition 17.3 follows from Proposition 17.4 and the following
result of Frobenius and Schur (see [69, p. 197]): The sum of the degrees of the
(ordinary) irreducible representations of a finite group G is equal to the number
of elements x in G satisfying x> = 1 if and only if every representation of G is
equivalent to a real representation. Since it was known to Frobenius and Young
that every representation of S, is in fact equivalent to a rational representation,
Proposition 17.3 follows. Proposition 17.3 seems to have been first stated explicitly
by Robinson [53, part 1, p. 755], in the context of the representation theory of the
symmetric group. In a purely combinatorial form, Proposition 17.3 was essentially
first observed by Schiitzenberger [57, Prop. 2], and was stated explicitly by Bender
and Knuth [18] and by Knuth [7, vol. 3, §52.4].

The numbers t, were first considered by H. A. Rothe [72], and later studied by
Chowla, Herstein, and Moore [25], Moser and Wyman [46], and others. It is
known, for instance, that

tp= tp-1+(p_1)tp—2’ t0=t1=1
[ o]

t,x?/p! = e** =12
=

t, ~ (p/e)l2eV?],/2¢!*

Kreweras [43] has studied hook lengths, the f*’s, and related topics from a
lattice-theoretical point of view. He defines the Young lattice T (trellis de Young)
to be the set of all partitions of all integers, ordered by defining 4 < uif 4; > y;
for all i. This lattice T has the interesting characterization of being the unique
locally finite distributive lattice with 1 such that if an element X is covered by n
elements, then X covers n + 1 elements (for terminology, see Birkhoff [2]). The
number of maximal chains between a partition A € T and the top element 1 (corre-
sponding to the void partition (0)) is f*. More generally, if A < p in T, then the
number f** of maximal chains between A and u is equal to the number of Young
tableaux of shape 4/u (see Section 12), so by Proposition 12.4, f** = (e,;,, h{ =
(e;,e,h?), where g is the number of parts in the shape 4/u. Using this definition
of f* Kreweras gives interesting combinatorial proofs of Propositions 17.1, 17.2,
and 17.3, by induction arguments on elements of 7. A more general lattice-
theoretical approach to partitions is considered by Stanley [59].

Let us now turn to a well-known result of Erd6s and Szekeres [26] : any permuta-
tion of the integers 1,2,...,n% + 1 either contains an increasing subsequence of
length n + 1 or a decreasing subsequence of length n + 1. Schensted [55] has
obtained a considerable strengthening of this result via Proposition 8.5. Note
that when Proposition 8.5 is applied to the permutation matrix A4 of the permuta-

1 2
j 1 J 2 e jm
of the same shape whose number of rows is equal to the length of the longest
increasing subsequence of the permutation j, j,,...,j., and whose number of
columns is equal to the length of the longest decreasing subsequence of j, , j,, - . - jm-
There follows from the definition of f*:

17.5. PRoOPOSITION (Schensted [55]). The number of permutations of 1,2,...,m
with longest increasing subsequence of length ¢ and longest decreasing subsequence

p

, we get that A % (=, o), where n and o are Young tableaux

tion (
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of length r is equal to ), (f*)?, where the sum is over all partitions x of m satis-
fying pi =c, py =r. O

Note that the result of Erdos and Szekeres follows trivially from this proposi-
tion, since any partition u of n? + 1 necessarily satisfies u, > n or uj > n. As a
further application, Stanley [58] found the number of permutations of 1,2,..., n?
with longest increasing and decreasing subsequences both of length n.

Another type of problem closely related to the f*’s are ballot problems. The
*“‘generalized ballot problem” may be stated as follows. After an election among
r candidates A,,...,A,, the number of votes received by A; is 4;, where
Ay = A, > -+ = A,. What is the probability P(1) that A4; never trails 4, , during
the voting, for all i = 1,2,...,r — 1, if the votes are cast consecutively?

The “classical ballot problem,” or Bertrand’s ballot problem [19] is the case
r = 2. Bertrand obtained the probability P(A) = (4, — 4, + 1)/(4, + 1). The
generalized ballot problem was first solved by MacMahon [9, Section 103]. We
shall now indicate a solution, expressed somewhat differently from MacMahon.
Let us call a sequence of votes satisfying the conditions of the ballot problem an
admissible sequence corresponding to A. (Called by MacMahon a lattice permuta-
tion.)

17.6. ProrosiTION. The number of admissible sequences corresponding to A
is f%.

Proof: We need to set up a one-to-one correspondence between admissible
sequences and Young tableaux of shape A. Suppose A — p. If the ith voter votes
for candidate A4;, then we require the integer p — i + 1 to appear in the jth row
of the Young tableau. This is easily seen to set up the desired correspondence. [

Thus the desired probability is

Pl =1 /(,11,/12, a)

where ( I 1 ’is a multinomial coefficient. Hence by Proposition 17.1, we
1954250054,
finally get
A2, A
P A — 1 2 r ,
“) d,d,...d,

where the d;’s are the hook lengths of A.

For further aspects of ballot problems, see Feller [4, Ch. III], Takacs [14, Ch. 1],
and the excellent survey article by Barton and Mallows [68].

In conclusion, we mention a result of Philip Hall [35] connected with finite
abelian p-groups.

17.7. ProposITION (P. Hall). Let C,(p) be the number of composition series of
a finite abelian p-group of type A = (4,,4,, .). Then for fixed 4, C,(p) is a poly-
nomial in p of degree (i — 1)4; = X(}!) and leading coefficient f*. [

V. Enumeration of ordinary plane partitions
18. Row, column, and part bounds
We proceed to the enumeration of ordinary plane partitions (i.e., no strictness
conditions). The general idea is to set up correspondences between column-strict
plane partitions and plane partitions. There are two basic such correspondences

R
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known, leading to two classes of generating functions for plane partitions. The first
such generating function was the main result of MacMahon on plane partitions
[9, Section 495]; his method of proof is entirely different from ours. Other proofs
have been given by Chaundy [23] and Carlitz [21].

18.1 THEOREM. The generating function G,(r, c) for plane partitions with <r
rows and <c columns, with largest part <m, is given by

000 K PR

r r

(r)(r+l) (r+c—1)
v\ or r

Proof: Let © be a column-strict plane partition of shape A, where A = {c¢"). Then

the transformation n;; — n;; — r + i — 1 (defined for all parts n;; > 0 of m) sets up
a one-to-one correspondence between column-strict plane partitions of n shape A

r

G,(r,c) = (58)

r+1
with largest part <m and plane partitions of n — c( 5 ) with <r rows and <c

r+1

columns, with largest part <m — r. It follows that G,(r,c) = x_c( 2 )H,,,+,(,1).
It is a simple matter to evaluate the hook lengths and contents of A to obtain via
Theorem 15.3 an explicit expression for this generating function, which is then
easily transformed into the form (58). [J

By letting ¢ - 00, m — oo in the above theorem, we get the beautiful generating
functions of MacMahon [9, Section 422] (see also Chaundy [23], Carlitz [21], and
for r < 3, Cheema and Gordon [24)):

18.2. COROLLARY. The generating function for plane partitions with <r rows is

Z (k)—min(k.r)_
k=1
In particular, the generating function for (unrestricted) plane partitions is
[T %=1+ x+3x? + 6x> + 13x* + 24x° + 48x5 + 86x’
k=1

+ 160x® + 282x° + 500x'° +--- O

Though the above generating functions are very simple in form, no really easy
proof of Corollary 18.2 is known.

We remark that Bender and Knuth [18] give a mild generalization of the
¢ = oo case of Theorem 18.1, viz, the generating function for plane partitions
with <r rows and largest part <m, and with exactly k parts in the rth row is

k m r—1
X*[[m+j=DM 1] [TG+i—D7"
j=1 i=1j=1
Various persons have considered the problem (or obviously equivalent prob-
lems) of enumerating the number of r x ¢ rectangular arrays of the integers

0,1,2,...,m which decrease in every row and column (e.g., Carlitz [21], or for
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r = 2, Carlitz and Riordan [22]). Clearly the desired number of such arrays is
G,(r, ¢)y~,. Thus Theorem 18.1 gives this number explicitly, since

...~

It is natural to ask for the generating function for plane partitions of a given
shape A and largest part <m. Unfortunately the technique used in proving
Theorem 18.1 does not extend to this case. MacMahon [9, Section 495] obtains
a fairly simple expression for this generating function involving a determinant;
but it seems unlikely that this determinant can be simplified significantly, even
in the cases m = o0 or x = 1.

It is possible, however, to extend the proof of Theorem 18.1 to the case of
reverse plane partitions of shape A, when m = co. A reverse plane partition of
shape A is an array of positive integers of shape A which increases in every row
and column. We state some results on reverse plane partitions which follow from
Theorem 15.3, referring the reader to Stanley [59, Ch. V, Section 2] for the details.

18.3. PRrOPOSITION. Let A — p. The generating function for reverse plane parti-
tions of shape A is

x?/(dy)(dy) - .. (dp),

where the d,’s are the hook lengths of . [

18.4. PrOPOSITION. Let A — p. The generating function for column-strict reverse
plane partitions with largest part <m is H,(1). [

18.5. ProposITION. Let A — p. The generating function for row and column-
strict reverse plane partitions of shape 4 is

xb/(dl)(dz) cee (dp s

where the d;’s are the hook lengths of A and b = Z((3) + i) = p + Zd,.
19. The conjugate trace and trace of a plane partition

If we let ¢ — oo in (58), we see that the generating function for plane partitions
with <r rows and largest part <m is

:l-_[x [I1 G+j-1n7! (59)

In view of (59), it is natural to ask whether there is some combinatorial inter-
pretation of the coefficient of ¢'x" in the expansion of

H H (1 _ qxi+j—l)—l.
i=1j=1

An affirmative answer was given by Stanley [60], using a second correspondence
between column-strict plane partitions and plane partitions. In order to state
Stanley’s result, we require some definitions.

19.1. DEFINITION. Let 7 be a plane partition. The conjugate trace of n is defined
to be the number of parts n;; of « satisfying n;; > i. The trace of n is defined to be
Zny;.

@
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We write T}, (n) (respectively, T,,,(n)) for the number of plane partitions of n
with <r rows and largest part <m, and with conjugate trace t (respectively,
trace t). Also define

Th(mn) = lim Ty, (n), Tf(n) = lim T7(n)
m= r—o
T(n) = lim T,,(n), T(n) = lim T(n).

Thus, e.g., T,(n) is equal to the number of plane partitions of n with <r rows
and trace t.

Every plane partition n has six conjugates (called aspects by MacMahon
[9, Section 427]). One of these, call it 7', is obtained from 7 by taking the conjugate
partitions of each row. For example,

3321 4 3 2
3.1 211
2 1 2 1
] ’

It is easily seen that = and =’ are plane partitions of the same integer n, that they
have the same number of rows, and that the conjugate trace of m is equal to the
trace of n’. (This explains the terminology ‘“‘conjugate trace.””) There follows:

19.2. PROPOSITION. T¥(n) = T,(n). O

We now come to Stanley’s result:

19.3. THEOREM. We have

M8

S T = [ 1] (1 = gx*i=1y .
t=0

i=1j=1

n=0

Proof: Frobenius [29] (cf. also Sudler [61], Littlewood [8, p. 602]) has con-
structed a one-to-one correspondence between linear partitions 4; > 4, > --- >
A, > 0 of p and pairs of strict partitions yu and v of the form

A=p>pp>>p>0
r=v;>v,>->v,>0,
with Z(y; + v;) = p + s. This correspondence is defined by the conditions
w=A—i+1 (wheni, —i+1>0)
vw=A—i+1 (whenii—i+1>0)
Note that in this correspondence,
A; =i ifand onlyif y; > 1. (60)

This correspondence has a simple visual interpretation which we illustrate with
the example 4 = (4,4,3,1,1,1), u = (4,3,1), v = (6,2, 1).
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0
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Figure 1. A construction of Frobenius.

Bender and Knuth [18] generalize this construction straightforwardly as
follows: If m is a plane partition, then apply the construction of Frobenius to each
column to get a pair of column-strict plane partitions 7, and =, of the same shape.

For instance, the plane partition

4
4
4
2
2
corresponds to the pair
4 4 2 1
311
2

1

1
5322
4 21
1

In this correspondence, the number r of rows of © equals the largest part m, of
T, ; the largest part m of = equals the largest part m, of =, ; and by (60) the con-
jugate trace t of m equals the number of parts p;, = p, of =, and =,. Also if =; is
a plane partition of n;, then = is a plane partition of n, + n, — t.

Thus T},,(n) is equal to the number of pairs =;, n, of column-strict plane

partitions of the same shape satisfying:

(i) the largest part of &, is <r
(ii) the largest part of m, is <m

(iii) the number of parts of =, or n, is ¢
(iv) the sum of the parts of =, and =, is n + t.
It follows from Knuth’s correspondence (Theorem 6.1) that

u[\/Jg

Y T =

i

::ls

1j=1a

[T Y ¢x
0

5018

Q
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where

t=§aij
n+t=2(j§i:a,.j) +Zi:(i;au).

J

The above product thus equals
m r -] m r
l‘[ H Z qnux(i-*j—l)nu — H H (1 - qxi+j—1)—1_ 0
j i=1j=1

Stanley [60] performs an algebraic analysis of the generating function in
Theorem 19.3 for the case m = co. We state two of the more interesting results
given there. The first of these results is a stability theorem analogous to Proposi-
tion 14.2.

19.4. PROPOSITION. T7i(n + t)(=T,(n + t)) is the coefficient of x" in the expan-
sion of

@
l‘[ (k)—min(k+ 1,r)

’
k=1

ift > n. In particular (letting r - 00), T*(n + t)(= Tn + t))is the coefficient of x"
in the expansion of

[T )%+ =1 + 2x + 6x? + 14x> + 33x* + 70x° + 149x6 + - -,
k=1

ift>n O

The next result is a generalization of the classical formula ) aep (FH? = p!
(Proposition 17.2), obtained by equating coefficients of x? below.

19.5. PROPOSITION. Let x be an indeterminate. Then

l;p (fHx + e)(x + ¢3)...(x + ¢,) = pIxP,

where the ¢;’s are the contents of A. []

20. Asymptotics
It is natural to ask for an asymptotic estimate of the number of plane partitions
of n with various properties. The simplest case occurs when the corresponding
generating function is a rational function; in theory the entire asymptotic expan-
sion can be determined by the method of partial fractions. The next proposition
gives some results of this nature; we only give the first term of the asymptotic
expansion, and we omit the proofs.

20.1. ProposiTION. (i) Let A be a fixed partition of p, and let a,(n), b,(n), c,(n)
denote respectively the number of ordinary plane partitions, column-strict plane
partitions, and row and column-strict plane partitions of n of shape A. Then

ay(n) ~ by(n) ~ c;(n) ~ f*n?~/pl(p — 1)!
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(ii) Let p be a fixed positive integer, and let a®(n), bP(n), c'?(n) denote respec-
tively the number of ordinary plane partitions, column-strict plane partitions, and
row and column-strict plane partitions of n with exactly p parts. Then

aP(n) ~ bPn) ~ cPn) ~ 0" pl(p — Y,

with ¢, = )", f* (see Proposition 17.3).
(iii) Let t and r be fixed positive integers, and let T}(n), T¥(n), T,(n), T,(n) be
as in Section 19. Then

TH(n) = T,(n) ~ r'n'~1/tY( — 1!
THn) = Tn) ~ n*~Y/t)2t — 1)! O

It is considerably more difficult, however, to obtain asymptotic results when
the appropriate generating function is not rational. Using the generating function
of Corollary 18.2, E. M. Wright [63] obtained the asymptotic expansion for the
number a(n) of plane partitions of n. His proof is based on the techniques
developed by Hardy and Ramanujan [36] (see, e.g., Ayoub [1, Ch. III]) in their
analysis of the ordinary partition function p(n). There does not, however, appear
to be a plane partition analog of Rademacher’s convergent series for p(n) [51],
essentially because the generating function for a(n) is not a modular function.
The leading term of Wright’s expansion is as follows:

20.2. PROPOSITION. Let a(n) be the number of plane partitions of n. Then

a(n) ~ ({(3)2711)136n 25136 exp(3 - 27 3((3)! *n* + 2C),
where { is the Riemann zeta function and

C= f ylogydy

Subsequently Gordon and Houten [32] obtained an asymptotic formula for the
number by (n) of column-strict plane partitions of n with <k columns, and for
the total number b(n) of column-strict plane partitions of n, using the generating
function of Proposition 16.1 (as m — o). We state their result only for b(n).

20.3. PropOSITION. Let b(n) be the number of column-strict plane partitions of
n. Then

7C4

2N - 34561(3) ©
where N = (n/{(3))/3, and {, C as in Proposition 20.2. [J

b(n) ~ 2734(3n{(3)) V2N ~492* . exp —C(3)N2

VI. Conclusion

21. Open problems
We summarize most of the open problems concerning plane partitions mentioned
previously, and discuss some new ones.

(i) Find a combinatorial proof of Littlewood’s identity (31).

(ii) What is the effect of transposing A on Knuth’s dual correspondence

X (n, 6) (Theorem 9.1)? Tie in with Littlewood’s identity (32).

(iii) Develop further the theory of skew plane partitions (Section 12). In partic-
ular, when can the determinant e, (x, x?,...,x™) given by Proposition 12.2 be
explicitly evaluated?

(@
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(iv) Find a combinatorial proof of Gordon’s generating function for column-
strict plane partitions with <c columns and largest part <m (Proposition 16.1).
(v) When m — oo in Proposition 16.1, we get

I‘jl“j(c+i+j—1)

as the generating function for column-strict plane partitions with <c¢ columns.
This leads us to ask for a combinatorial interpretation of the coefficient of g'x"
in the expansion of

c+i+j—1)

w (1 — gx
]._[ I;I (1 _ qxi+j—1) :

Even the cases ¢ = 1,2 are not trivial. In the case ¢ = 1, t corresponds to the
sum of the largest powers of 2 dividing the parts of the plane partition. In the case
¢ = 2, it follows from a construction of Sudler [61] that ¢ corresponds to one of
the parts n,, or n,, of the plane partition, but the rule for deciding which one
is rather complicated.

(vi) Simplify when possible MacMahon’s determinant generating function for
plane partitions of shape A and largest part <m (see Section 18).

(vii) Is there a simple expression for the generating function ZZa(p, n)g’x
where a(p, n) is the number of plane partitions of n with exactly p parts?

(viii) (Gordon) Find a simple combinatorial interpretation of the coefficient
s(n) of x" in the expansion of [[_, (1 + x*)*. It follows from Corollary 9.2, upon
substituting x; = x’, y; = x'~1, that s(n) is equal to the number of pairs (7, ) of
column-strict plane partitions of conjugate shape, the combined sum of whose
parts is n + p, where p is the number of parts of 7 or ¢. A simpler interpretation,
however, is desired.

(ix) Gordon [33] investigates the generating functions D,(x) for row and
column-strict plane partitions with <r rows. He is able only to express D,(x) as
a sum of determinants, except in the case r = 2. In this case he obtains

1 — (1 _ x) i x(2n—l)(n+1)
Dy(x) = 2

MmER)QA)...
Can similar expressions be obtained for r > 2?7
(x) Let E(n) denote the expected length of the longest increasing subsequence
of a random permutation of 1,2,...,n. The asymptotic rate of growth of E(n)
is unknown. It follows from Schensted’s theorem (Proposition 17.5) that

B = ¥ LU
A'—n
Using this fact, Baer and Brock [67] have compiled extensive tables which suggest
that possibly E(n) ~ Zﬁ, but no proof is known.

(xi) Develop a *‘g-analog” of the theory of plane partitions. In this g-theory,
the role of the symmetric group should be replaced with the general linear group
over the field GF(q). For some combinatorial aspects of the finite general linear
groups, see Green [34], Klein [38], and the references cited there.
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(xil) Multi-dimensional partitions. Develop a theory of multi-dimensional parti-
tions. For instance, a 3-dimensional partition (or solid partition) is an array n;;
of non-negative integers decreasing in all three directions. MacMahon [9, Section
424], conjectured that the generating function for r-dimensional partitions is

IT
k=1

but this was shown by Atkin et al. [17], and later by E. M. Wright [65], to be false.
(Nanda [49], [50] erroneously assumes this conjecture to be true for r = 3.
Bender feels that the key to understanding solid partitions lies in finding an
analog to Theorem 6.2 (symmetry of e,).

Very few positive results are known concerning multi-dimensional partitions.
E. M. Wright [64] has found a complicated generating function for a special class
of solid partitions. G. Kreweras [43, eqn. (85)] has found the number of “Young
tableaux” of solid partitions with a certain kind of shape. Knuth [71] proves a
theorem upon which he bases an algorithm for counting solid partitions. Knuth’s
theorem was also proved in a more general form by Stanley [59, p. 55]. Finally
we mention the reciprocity theorem of Stanley [59, Ch. II, Thm. 6.5] for multi-
dimensional partitions, which is a consequence of his more general Theorem 6.2.
Gordon [33] also gives a proof of this theorem in the case r = 2. The terminology
of the theorem is self-evident.

21.1. THEOREM. Let {i;,iy,...,is} < {1,2,...,r} and let {j;,jo,...sjr=s} =
{1,2,...,r} = {iy,iz,...,is}. Let A(x) be the generating function for r-dimensional
partitions strict in directions iy, i,,. .., i, and of a fixed shape =, (n is an r-1-dimen-
sional partition) and let B(x) be the generating function for r-dimensional partitions
strict in the complementary directions j,,j,,...,j,—s and also of shape n. Then
A(x) and B(x) are rational functions of x related by

B(x) = (—1yxPA(1/x),

where p is the number of parts of 7. [

-
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