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Abstract. Any associative bilinear multiplication on the set of n-by-n ma-

trices over some field of characteristic not two, that makes the same vectors

orthogonal and has the same trace as ordinary matrix multiplication, must be
ordinary matrix multiplication or its opposite.

1. Introduction

Matrix multiplication is the fundamental operation of linear algebra, modelling
composition of linear maps in terms of coordinates. This article characterises matrix
multiplication simply in terms of orthogonality and trace, in the following way.
Suppose there were another way to combine two matrices x, y ∈ Mn into a new
one x ? y ∈ Mn, that resembles composition of linear maps in the sense that it is
associative, bilinear, and respects the identity matrix:

(A) “Associativity”: x ? (y ? z) = (x ? y) ? z for all x, y, z ∈Mn;
(B) “Bilinearity”: (λx) ? y = λ(x ? y) = x ? (λy), (x+ y) ? z = (x ? z) + (y ? z),

and x ? (y + z) = (x ? y) + (x ? z) for scalars λ and x, y, z ∈Mn;
(I) “Identity”: x ? 1 = x for all x ∈Mn, where 1 ∈Mn is the identity matrix.

To these basic requirements we add two properties that, at first sight, do not fix
much information about x ? y. First, we require x ? y to have the same trace as
ordinary matrix multiplication xy:

(T) “Trace”: Tr(x ? y) = Tr(xy) for all x, y ∈Mn.

Second, we require that ? makes the same vectors orthogonal as ordinary matrix
multiplication. Formulated algebraically:

(O) “Orthogonality”: x ? y = 0 when xy = yx = 0, xx = x, and yy = y,
for x, y ∈Mn that have rank one.

These assumptions already imply that x ? y must equal the ordinary matrix mul-
tiplication, or its opposite, after all. That is, we will prove the following theorem,
for any scalar field F of characteristic not two.

Theorem 1. A function ? : Mn ×Mn → Mn satisfies (A), (B), (I), (T) and (O)
if and only if either x ? y = xy for all x, y ∈Mn, or x ? y = yx for all x, y ∈Mn.

This fits in the recent programme of results surrounding linear preserver prob-
lems, i.e. linear maps that preserve zero products, commutativity, etc. [4, 6, 1, 7].
Indeed, we will rely on one of those results [1]. Our original motivation came
from quantum theory, where the above properties arise as desiderata for a possible
noncommutative extension of Bayesian inference [5, 3].
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2. The main result

Proposition 2. A map ? : Mn ×Mn →Mn meets (B), (I), and (O) if and only if

(1) x ? y = xy + g(xy − yx)

for some linear map g : Mn →Mn and all x, y ∈Mn.

Proof. Assume (B), (I) and (O). Then [1, Theorem 2.2] applies, giving linear maps
f, g : Mn →Mn with x?y = f(xy)+g(yx). Furthermore, x = x?1 = f(x1)+g(1x),
and so f(x) = x− g(x). Therefore x?y = f(xy) + g(yx) = xy+ g(yx−xy). Taking
the negative of g now gives (1).

If ? is of the form (1), then it is easy to show that (B), (I), and (O) hold. �

Lemma 3. Suppose ? satisfies (B), (I), and (O). Then (T) holds if and only if g
sends traceless matrices to traceless matrices.

Proof. Property (T) is equivalent to Tr(g(xy − yx)) = 0 for all x, y ∈ Mn. But
matrices of the form xy − yx are precisely those with trace zero [2]. �

Write eij for the standard matrix units, so that eijekl = δjkeil. Because of
bilinearity, property (A) holds precisely when it holds for x = eab, y = ecd, z = eef
for all a, b, c, d, e, f ∈ {1, . . . , n}. Via Proposition 2, property (A) comes down to

− δdeδafg(ecb) + δdeeab ? g(ecf )− δcfeab ? g(eed)

=− δafδbcg(eed) + δbcg(ead) ? eef − δadg(ecb) ? eef
(2)

for all a, b, c, d, e, f ∈ {1, . . . , n}. We will use this formula very often below.
By linearity of g, we may write g(eij) =

∑n
k,l=1Gkl,ijelk for entries Gkl,ij ∈ F.

By convention, we will write g(ij)kl for Gkl,ij , and g(ii− jj)kl for Gkl,ii −Gkl,jj .

Lemma 4. For distinct i, j, k, l ∈ {1, . . . , n}:

g(ij)kl = 0,(3)

g(ii− jj)kl = 0.(4)

For distinct i, j, k ∈ {1, . . . , n}:

g(ij)jk = 0,(5)

g(ij)kj = 0,(6)

g(ij)ik = 0,(7)

g(ij)ki = 0,(8)

g(ij)kk = 0,(9)

g(ii− jj)kk = 0,(10)

g(ii− jj)ik = 0,(11)

g(ii− jj)ki = 0,(12)

g(ii− jj)kj = 0,(13)

g(ii− jj)jk = 0.(14)
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For distinct i, j ∈ {1, . . . , n}:
g(ij)jj = 0,(15)

g(ij)ii = 0,(16)

g(ij)ij = 0,(17)

g(ii− jj)ij = 0,(18)

g(ii− jj)ji = 0.(19)

Proof. All these equations are derived following the same pattern. Let i, j, k, l be
distinct. Taking a = k, b = l, c = i, and d = e = f = j in (2) results in
ekl ? g(eij) = 0. Taking the trace of both sides and using property (T) now shows
g(ij)kl = Tr(g(eij)ekl) = Tr(eklg(eij)) = Tr(ekl ? g(eij)) = 0, establishing (3).

Similarly, taking a = k, b = l, c = f = i, and d = e = j in (2) results in
ekl ? g(eii − ejj) = 0, from which (4) follows by taking the trace of both sides.

For (5)–(19) we simply list the appropriate choice of indices:

(5): c = d = e = i, a = f = j, b = k;
(6): c = d = e = i, b = f = j, a = k;
(7): a = c = i, d = e = f = j, b = k;
(8): a = f = i, d = j, b = c = e = k;
(9): c = d = e = i, f = j, a = b = k;

(10): c = f = i, d = e = j, a = b = k;
(11): a = c = f = i, d = e = j, b = k;
(12): b = c = f = i, d = e = j, a = k; use (5);
(13): c = f = i, b = d = e = j, a = k;
(14): c = f = i, a = d = e = j, b = k; use (8);
(15): c = d = e = i, a = b = f = j;
(16): a = b = c = i, d = e = f = j; use (15);
(17): a = c = i, b = d = e = f = j;
(18): a = c = f = i, b = d = e = j;
(19): b = c = f = i, a = d = e = j. �

Lemma 5. There is λ ∈ {0,−1} with g(ii− jj)ii = −g(ii− jj)jj = g(ij)ji = λ for
distinct i, j ∈ {1, . . . , n}. Moreover, there is z ∈Mn with g(ii) = λeii + z for all i.

Proof. For any k, l ∈ {1, . . . , n}, the entry g(ij)kl can only be nonzero when k = j
and l = i by (3), (5)–(9) and (15)–(17). Let λij ∈ F be that entry: g(ij) = λijeij .

Taking b = c = e = f = i and a = d = j in (2) leads to g(ii − jj)ii = g(ij)ji.
Similarly, a = d = i and b = c = e = f = j lead to g(jj − ii)jj = g(ji)ij . Next,
b = c = d = e = i and a = f = j show that g(ij)ji = g(ji)ij . Therefore

g(ii− jj)ii = g(ij)ji = λij , g(ii− jj)jj = −g(ij)ji = −λij .
Combining this with (4), (10)–(14), (18) and (19) shows g(ii− jj) = λij(eii − ejj).

We may write g(ii) = λieii + zi for λi ∈ F, and zi ∈ Mn linearly independent
from eii. Then λij(eii−ejj) = g(ii−jj) = λieii−λjejj +(zi−zj). It follows that zi
does not depend on i, and we simply write z instead. Similarly, λij = λi = λj does
not depend on i or j, and we may simply write λ for λij . Hence g(ii) = λeii + z.

It follows from the choice of indices for (18) that g(ij) = eij ? g(ii− jj), and so

g(ij) = λeij ? (eii − ejj) = λ(−g(ij)− eij − g(ij)) = −2λg(ij)− λeij .
Hence (1 + 2λ)g(ij) = −λeij . But g(ij) = λeij by definition, so λ ∈ {0,−1}. �
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Proof of Theorem 1. Lemma 5 gives λ ∈ {0,−1} and z ∈Mn with g(ii) = λeii + z.
Let x ∈Mn, say x =

∑n
i,j=1 χijeij for χij ∈ F. It follows from Lemma 4 that

g(x) =

n∑
i,j=1

χijg(ij) =

n∑
i=1

χiig(ii) +
∑
i 6=j

χijg(ij)

=

n∑
i=1

(λχiieii + χiiz) +
∑
i 6=j

λχijeij

= λ

n∑
i,j=1

χijeij +

n∑
i=1

χiiz

= λx+ Tr(x)z.

Therefore x ? y = xy + λ(xy − yx). �

Remark 6. The restriction of the base field F to characteristic not two is necessary.
For example, if F = Z2, then

(20)

(
α β
γ ε

)
?

(
ζ η
θ ι

)
=

(
αζ + γη βζ + εη
αθ + γι βθ + ει

)
satisfies (A), (B), (I), (O), and (T), but differs from matrix multiplication or its
opposite. In fact, apart from g = 0, 1, this is the only one of the form (1), for e.g.

g

(
α β
γ ε

)
=

(
α β
γ α

)
.
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