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H?>-FUNCTIONS AND INFINITE-DIMENSIONAL
REALIZATION THEORY*

J. S. BARASt anp R. W. BROCKETT}

Abstract. In this paper the realization question for infinite-dimensional linear systems is exam-
ined for both bounded and unbounded operators. In addition to obtaining realizability criteria covering
the basic cases, we discuss the relationship between canonical realizations of the same system. What one
finds is that the set of transfer functions which are realizable by triples (A, b, c) with A bounded is
related in a close way to the space of complex functions analytic and square integrable on the disk
I's| < 1, and that the set of transfer functions which are realizable by triples (A, b, c) with 4 unbounded
but generating a strongly continuous semigroup is related in a close way to functions analytic and
square integrable on a half-plane. This relation makes possible a deeper study between the transfer
function and the models which realize it. Some examples illustrate the results and their applications.

1. Preliminaries and notation. In this paper we study realization theory for a
class of infinite-dimensional linear systems. On one hand our motivation comes
from a desire to understand engineering problems involving transmission lines,
elastic deformations, moving fluids, and related matters, where the assumption of
finite-dimensionality is too restrictive; on the other hand, we want to see the finite-
dimensional results themselves as part of a larger picture.

For the sake of definiteness we work in the most basic Hilbert space,

L(Z*) = {{a;},i = 1,2,3,---,such that {a;} is a square summable sequence}.

This makes possible a fairly direct comparison with many well-known results
concerning the finite-dimensional case. The problem is to express a given real
function Tdefined on [0, o0) as T(1) = c[e?'b], or to express its Laplace transform
T(s) as c[(Is — A)~'b] in some appropriately defined region of the complex plane.

We consider several distinct, but related cases. The first centers around the
existence of realizations (A, b, ¢) with 4 a bounded operator on [,(Z "), b an element
of I,(Z*) and ¢ a bounded linear functional on [5,(Z *). We call such triples bounded
realizations. We call a triple (A4, b, ¢) a regular realization if A is the infinitesimal
generator of a strongly continuous semigroup of bounded operators {e*'} on
I,(Z*), b is an element of [,(Z*) and c is a bounded linear functional on [,(Z ). In
both cases above the output can also be expressed, as is well known, as the inner
product of x{t) with some element of [,(Z*) which is uniquely determined by the
functional ¢, and which we denote also by ¢; i.e., we shall write y(t) = c[x(t)]
= (¢, x(1)).

We also consider cases where A is the infinitesimal generator of a strongly
continuous semigroup of bounded operators on [,(Z*), b is restricted to belong to
the domain of 4 (written 2,(A)) but ¢ is a linear functional defined on Z4(A) and
such that |e(x)| < k(|| Ax]| + ||x|) for all x € Zo(A) and some constant k. Such
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realizations will be called balanced realizations. They have important properties
not shared by regular realizations.

The triple (4, b, ¢) is called a realization for the weighting pattern T(¢) if and
only if T(t) = c[e*'b]. The system theoretic interpretation of this equation in
terms of “external” and “internal” descriptions of time-invariant linear systems
with scalar input, scalar output is considered to be well known. The fact that we are
using [,(Z ™) as our state space is not very restrictive, since any separable Hilbert
space is isometrically isomorphic to [,(Z™).

In order to describe what realizations realize what weighting patterns, we
need to introduce some notation. The open disk of radius p is denoted by D,

= {s|ls| < p}. We write D for D,. The boundary of D, the unit circle, is denoted by
T. By H*(D) we mean the set of complex-valued functions which are holomorphic
in D and have a Taylor series about zero with square summable coefficients.
The space H*(D,) is defined by saying that y(s) belongs to H%D,) if and only if
(s/p) belongs to H*(D). By L*(T) we mean the set of complex-valued functions
which are defined and square integrable, in the Lebesgue sense, on the unit circle.
By H?*(T) we mean the subspace of L*T) of functions with vanishing negative
Fourier coefficients. H¥(D) and H*(T) are related by the fact that for any function
in H*(D) the radial limits from within the disk lim,.; ¥(re’®) = $(6) exist for
almost all § and give an element ¢ of H*(T). This correspondence is, moreover,
one-to-one and onto so that H*(D) and H*(T) are closely related indeed. In fact,
the Fourier coefficients of ¢ are the Taylor coefficients of y. In addition, H*(D) is
a Hilbert space with the inner product B

<‘/’la lﬁz) = ZO &nﬁm

where r1(s) = Y2 o 08" and  Yy(s) = 3, B,s™ This makes HA(D), HXT) and
1,(Z™) isomorphic as Hilbert spaces with the isomorphisms defined by

(ag,a1,a2,--+) & Z a;s' o Z a, e

We denote by [ [ the half-plane Re s > p. We understand by H*([];) the
space of functions which are analytic in [ [; and square integrable along vertical
lines in [ ], such that

+ w0

sup W(x + iy)>dy £ M < .

xX>p v ~w

The relationship between H*(D) and H*(J[*) is this: ¢(-) e H¥[]*) if and only

if Y defined by
0o = (S * 1)

belongs to H*(D). (See Hoffman [7, p. 130] ) ; .

We would like to recall some of the facts from Fourier transform theory that
involve H*([]*) and especially the Paley-Wiener theorem. We denote by [ the
imaginary axis in the complex plane. It is well known that the Fourier transform

g0 [ et de = Giioy

is a unitary map between Ly(— o, c0) and L,(l, dw/2r). Consider L,(0, o) as the
subspace of L,(— o, o0) of functions which vanish on (— o0, 0), and L,(— o0, 0) as
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the subspace of L,(— 00, o) of functions which vanish on (0, o). Then obviously
Ly(—00,0) = L,(0, 00)* in Ly(— 0, c0). Moreover, if we let H(l) = % L,(0, «)
and A*(1) = ZF L,(— w0, 0), we see that H(1)* = H?(1). H*(I) consists exactly of the
boundary values of the elements of H*(J [ *) (which exist for almost all w). More-
over, if £ denotes the Laplace transform

g(t) o Jw e Mg(t)ydt = G(s) forg e L,(0, o0),
4]

1oy f e~ f(t)dt = F(s) for fe Ly(—a0,0),

the Paley-Wiener theorem says that HX([[ ") = #£Ly(0, o0). If we let [[~ denote
the half-plane Res <0, then also HX[][™) = #L,(— 0,0). Moreover, H(l)
consists exactly of the boundary values of the elements of H*(][ 7). The relation
between H*(J|*) and H*(J] ") is simple. A function f(s) belongs to H*(] [*) if and

only if f(—5) belongs to H*([] ). Then obviously we see that H%(l) = H*(l).

As we were preparing the original version of this paper we received from Paul
Fuhrmann a manuscript [13] which analyzes the bounded case and obtains a
number of the results described here with certain small changes due to the fact
that he works with discrete time systems. Helton [14] also investigates some
questions of this type but emphasizes a different class of ideas. A result similar to
our Theorem 4 appears in Balakrishnan [23].

2. Realizability criteria, bounded case. In this section we characterize the class
of weighting pattcrns which admit bounded realizations.
Let T:[0, oc) — R! be a continuous function of time. When can it be written as

T() = {c, et'b>,

where b, ce ,(Z*) and A:1,(Z") - 1,(Z*) is bounded? As is well known such a
representation is possible for T with [ A, b, ¢] all finite-dimensional if and only if
T is of the exponential order and its transform

T(s) =j e ¥T(t) dt, Re s > oy,
0

is rational. In the present case A is bounded; {e*'} defines a uniformly continuous
semigroup of operators (see [1, p. 626)), and since b and ¢ belong to [,(Z ") we have

(e, ey < bl - llell- M- el 4T r e RY,

where [e?'|| < Me!41'!l and the norms are /5,(Z*) and induced 1,(Z *) respectively.
Thus the class we are looking for includes only functions of exponential order.
Moreover, since A4 is bounded, {c, e?'b} is an entire function. )

The following two theorems characterize in the time and frequency domain the
set of realizable input—output maps.

THEOREM 1. T: [0, c0) — R* has a bounded realization if and only if Tis an entire
function of exponential order.

! This is a standard engineering term; in the mathematical literature this is called “exponential
type”.
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Proof. The necessity follows from the above. For the sufficiency, since T is
entire it has a power series expansion

T(t) = i Cat"

valid in the finite complex plane. Let o4 be the exponential order of T(-). Then
lim,~ , (n!lc)'" = a4 (see [20, p. 95]). So for k > a, we have

nllc|/k™ < (ao/k)"

and consequently the sequence {n!|c,|/k"}5=o € [,(Z"). Now take

[0
10
010
A=kl 01 0 :
0 1 0
0 ."J
b=1{1,0,0,- -},

¢ = {co,c1/k, -+, nlcy k", .-}
and this completes the proof.

Now using Laplace transforms in the complex domain we pass from the
equation T(t) = {c, e*'b) to the equation T(s) = {c,(Is — A)"'b> forRes > || A].
Since A is bounded using an elementary analytic continuation argument we see
that T(s) is analytic for |s| > | |l and also that T(c0) = 0. Hence T(s) = {e,bys™!

+ <c, AbYs™? + (¢, A%bys™3 + ---for |s| > || A|.

THEOREM 2. The functlon T: [0 00) — R! has a bounded realization if and only
if the Laplace transform T(-) of T(-) is analytic at infinity and vanishes there.

Proof. The necessity follows clearly from the above. For the sufficiency since
T(s) is analytic at infinity and vanishes there, it has a power series expansion

T(s) = Z as Y for |s| > ¢
=0

for some finite c¢. Then for k > ¢ we have that the sequence {|a)|/k’} € [,(Z*). So
again take

0
1 0
A:ko 1 0 ’
010
| 0]
b={1,0,0,~-},

C = {ao, al/k, az/k2,~ . '},

and this completes the proof.
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Remark 2.1. It is clear from the above that the singularities of T(-) must be
contained in a compact set of the complex plane. Hence if the singularities include
branch points, in order for T( - ) to have a bounded realization it must be possible to
consider the branch cuts in the finite plane (since any T(-) which has a bounded
realization is analytic at infinity). For example, a transfer function with a single
branch point does not have a bounded realization. On the other hand, there are
many cases of complex-valued functions with branch points for which the branch
cuts can be taken either in the finite plane or through infinity (e.g., 1/y/s* + 1 is
typical).

Suppose we have a physical system (and perhaps a model based on the under-
lying physical theories) with a transfer function which has this property, ie., we
can consider the branch cuts either in the finite plane or through infinity. We
consider the question of whether or not this particular transfer function has a
bounded realization. Now in most physical problems the position of the branch
cuts is implied by physical or asymptotic conditions (see the first few pages of
Noble’s book [25] on the Wiener—-Hopf technique for an example). Therefore if
these conditions exclude the possibility of considering the branch cuts in the finite
plane, then one concludes immediately that there is no bounded realization for
this transfer function.

Remark 2.2. It is apparent from the above that if T(-) has any bounded
realization, it can be realized by a multiple of the unilateral shift in /,(Z*) or by a
multiple of the bilateral shift ifi [,(Z). To see the latter take

10
010
A=k o010 |
01 0.
0 1.
L 0.‘.1

b={-,0100,-},
c={-,0,0,cocr/k, -, nlc,/k™}

(with {c;} and k as in Theorem 1). This is not surprising in view of the fact that the
shift can be considered as a “universal model” for bounded operators in Hilbert
space (cf. [9]). . :

We would like to discuss in more detail the relation T(s) = (c,(Is — A)™'b)>
for Re s > y, where y is large enough, and draw some conclusions from it. Since
A here is a bounded operator the point at infinity is in the resolvent set of A4,
denoted p(4). We denote by po(A4) the connected component of p(A) containing
the point at infinity, by o(A) the spectrum of 4 and by 6¢(4) the complement in C
(the complex plane) of pg(A). The function {c, (Is — A)~'b) is obviously analytic
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for |s| > [[4] and thus for Res > ||A||. T(-)is of exponential order, say |T(z)|
= Me'; then T(s) is analytic for Re s > o, (and also for Is| > o) (see [20, p. 95]).
Since  T(t) = {c,e*b) we see that oo < |A4]. So from the equation T(s)
= {c¢,(Is — A)"'b) valid for Re s > || A we deduce by analytic continuation that
T(-) is analytic for all s € po(A).

If we let o(T) = {se C|T(-) is not analytic at s} we deduce that for any
bounded realization (4, b, ¢) of T(-) we must have

o(T) = oo(A).

This relation will be referred in the sequel as the spectral inclusion property. For
example, the function T(t) = €2 can obviously be realized by the unilateral shift
as above. Then for A being the unilateral shift we have o(4) = D U T (ie., the
closed disk). But T(-) has just a pole at s = 4. Consider now

o 421
T(t) = .
® ,,;0 2" - n!
Then we know that T(s) = > o5 %" has T as its natural boundary. Obviously

we can realize T using the construction of Theorems 1 or 2 with any k > 1.

Remark 2.3. The realization constructed in Theorems 1 and 2 uses the operator
kU, where U is the unilateral shift on [,(Z*). The spectrum of kU is the closed disk
of radius k, and hence its resolvent set is connected. The value of k we used is big
enough so that the singularities of T(-) are included in the disk of radius k. In
other words, we used an operator with spectrum big enough to include all the
singularities of T(-). It is therefore of interest to know how small k can be taken
for a given realizable weighting pattern T'( - ). It follows from a theorem in Widder
(20, p. 95], that if g is the exponential order (or “type” in Widder’s terminology)
of the entire function T(-), then T - ) will be analytic for |s| > o, and will vanish at
infinity, and conversely. Hence & in Theorems 1 and 2 must satisfy k = a,.

The connectedness of the resolvent set of the infinitesimal generator 4 has
important implications as far as the relationship to frequency response methods
for system identification is concerned. The values of T for s purely imaginary are
often empirically determined by letting u(f) = sin wt and looking at the periodic
solution which results. If the periodic component of the response is
M(w) sin (wt + ¢(w)), then

Tiw) = M(w) e

However, if the domain of analyticity of T is such that the entire imaginary axis
does not belong to a single component, then there is no way that experimental
data taken in different components can be pieced together and we must regard the
system as consisting of several unrelated parts. ;

Remark 2.4. There are two typical sets of examples of systems with uniformly
continuous state-transition operators, i.e., examples for which the operator A is
bounded. The first comes from systems governed by parabolic and certain hyper-
bolic partial differential equations with constant coefficients, where the spatial
domain is infinite or semi-infinite, after semidiscretization with uniform spatial
mesh (see Birkhoff and Varga [24] and Brockett and Willems [17]).
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The second comes from systems governed by certain particular classes of
partial differential equations. The ideas involved are best illustrated by the follow-
ing example. Consider the system

0 0 0
20wz (a - 52‘)"(“ 2) = b0,

y) = x(t, 1),

where x(t,-)e L,(0,1) is absolutely continuous and x(t,0) = 0; x(-,z) and
(0/8z)x( -, z) are differentiable; b(-) e L,(0, 1). The domain of —08/0z is Po(—0/02)
= {he L,(0,1) such that h is absolutely continuous and h(0) = 0}. If we let
&(t, z) = (8/0z + Dx(t, z), we obtain the system

0 o {0 -1
Ef([, Z) = E(E + I) é(t, Z) + b(Z)u(t),

0z

We can study the first system via this second one and in the latter the operator
(6/6z)@/dz + D)™ is a bounded operator on L,(0, 1) (indeed is given by &(t, z)
> &(t,2) — J5 e~ (1, ) do).

Other examples can be found in problems of infinite queues and in systems
governed by certain classes of integro-differential equations (compare with
previous example).

o) = (3 ; I>_ &, 2t

3. Realizability criteria, general case. In this section we investigate the
realizability problem when A is the infinitesimal generator of a Cy semigroup of
bounded operators on a Hilbert space #. By the Hille-Yosida theorem [18] a
necessary and sufficient condition that a closed linear operator A with domain
2(A) dense be the infinitesimal generator of a C, semigroup, is that there exist
positive real numbers M and f such that for every real A > §, A is in the resolvent
set of A and

M
=P,
If these conditions hold for all A > B, then (Is — 4)~ ! exists for all complex s with
Res > fand is given by (Is — 4)"'x = {7 e Me*'x dt forall xe #, ||(Is — A)"|
< M/(Res — )" for Res > B, and |le*| < Meé*'.

In case of a regular realization, b € # and c is a bounded linear functional on
A . Then the observation procedure (1.e., y(t) = ¢[x(t)]) is somehow restricted since
we cannot have point evaluations, or point evaluations of derivatives as c(-).
Moreover, since b is just an element of # we can regard in general the equation

(1) Ex

only in the weak sense (i.e., x( - } satisfies the integral equation given by the variation
of constants formula, but not the differential equation). On the other hand, in a
regular realization the properties of b and ¢ are symmetric, a fact which has some
implications for the desired duality in systems theory.

IIA— )™ <

n=12---

(t) = Ax(t) + bu(t)
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In case of a balanced realization, b € 9(A) and c is a linear functional defined
on Zo(A) and such that |c(x)| < k(| Ax| + [x]) for all x € Z¢(4) and some constant
k. Here we can regard equation (1) in the strong sense. Moreover, we can allow
point evaluations, or point evaluations of derivatives as ¢( - ); (for example, with 4
being 6%/0z% on L,[0, co) and c( - ) being |8/0z( - )]o, or with A being 8/0z on L,[0, o0)
and c being evaluated at 0). However, in this case ¢ and b do not have symmetric
properties.

Remark 3.1. If ¢ is a closed linear functional on 3# with 2(c) = 9o(A), then ¢
satisfies the conditions stated above in the case of a balanced realization. To see
this we have that 2,(A4) with the norm |x|, = |Ax|| + x| becomes a Banach
space since 4 is closed. Then the restriction of ¢ to Zo(A) is a closed linear operator,
defined everywhere, and hence by the closed graph theorem is bounded. Hence
there exists a k such that

lel)l = kllxlly = k(4] + [Ix]l) for all x e Zy(A).

The following theorem proves that in our setting (more specifically when the
state space is a Hilbert space) the class of weighting patterns which admit balanced
realizations is identical with the class of weighting patterns which admit regular
realizations.

THEOREM 3. A weighting pattern T(-) has a balanced realization if and only if it
has a regular one. Moreover, the infinitesimal generators in the two cases can be
taken to be the same.

Proof. Suppose T(- ) has a regular realization. Then there exist c,, b,, elements
of #, and a linear operator A4 generating a C,, semigroup e*' on .# such that

T(t) = {cy, e*by).

By the Hille-Yosida theorem there exists a positive real number § such that for
everyreal 4 > f, Aisin the resolvent set of A. Choosesucha A > 1. Then (Al — A)~!
is an everywhere defined bounded operator, and it maps the whole 3 onto Do(A)
since A is closed (see [21, p. 209]). Let

b= (A — A) 'b,.
Then be 9Po(A) and by, = (Al — A)b. Hence
T(t) = {c1, (A — A)b)Y = {cy, (Al — A)e™b>.
Define the linear functional c( - ) via
cx) = {cy, (Al — A)x) for xe Do(A).

Then
le(x)} < lleslllax — Ax]| < |,

< Ales Il Axl + Nxl).

(4

x| + [ Ax])

Therefore T(t) = c[e*b] and this is a balanced realization.

Conversely, assume that T(-) has a balanced realization. Then there exist
A, b, ¢ as in the definition of a balanced realization so that T(r) = c[e*'b]. Consider
Zo(A) with the inner product (x, y>4 = (Ax, Ay> + {(x, y) for x, y € 2o(A). This
inner product induces the norm x|, = (| 4x]? + |x|?)V2. Since 4 is closed,
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D(A) is complete under the norm | - ||, and hence it is a Hilbert space with the
inner product (-, > 4. For x € Z¢(A) we have

el = k(llAx| + x[) = 2k(Ax[* + [x][*)'* = 2k|x] 4.

Thus ¢( - }is a bounded linear functional on the Hilbert space Z,(A) (with the above
inner product). Hence by the Riesz representation theorem there exists d € Zo(A)
such that

c(x) =dd, x>, forall xe 2y(A).

Hence T(t) = {Ad, Ae*'b> + {d,e*b).

Since the space we are working with is a Hilbert space, A* also generates a
C, semigroup which is exactly (¢*")*. Hence if we choose a real 4 > § (§ from the
Hille-Yosida theorem), then both (LI — A) and (I — 4*)"! are everywhere
defined bounded operators.

We then have

T(t) = CAd, (A — JDe*b> + ACAd, e¥b> + {d, e*'b>
= (Ad,e*(A — AD)b) + {LAd + d, e?'b).
If welet (4 — ADb = by e #, then b = (4 — AI)~'b,. Therefore
T(t) = (Ad, e*b,> + (AAd + d,e*™(A — AI)—'b,>
— (Ad + (A* — A" (AAd + d), e''b,>.
Let ¢; = Ad + (A* — AI)~'(Add + d). Then
T(t) = {cy,e"b,)

and obviously A4, by, ¢ is a regular realization for T(-).

The last statement in the theorem is obvious from the above construction.

This theorem motivates the following definition.

DrerFINITION. A weighting pattern T(-) is realizable if and only if it has a
balanced realization.

We now give a preliminary description of the realizable weighting patterns.

THEOREM 4. A necessary condition for T(-) to be realizable is that it be con-
tinuous and of exponential order. A sufficient condition is that it be locally absolutely
continuous (i.e., absolutely continuous, on each bounded closed interval) and that
T(t) (which then exists as an a.e. defined function) be of exponential order (i.e.,
ess sup | T(¢)] £ Ke* for some positive K, ).

Proof. Necessity. Since T( - ) has a balanced realization, and hence by Theorem
3 it has a regular one, T(t) = {c, e"'b}. Since e is strongly continuous we get that
T(-) is continuous. Since [e#'|| £ Me”, by the Hille-Yosida theorem we get that
T(-) is of exponential order.

Sufficiency. Let T(-) be as in the hypothesis. Then for large enough o,
e "'T(t) € L,(0, 00). Hence the function e ~ %' T(¢) is in L,(0, o), it is locally absolutely
continuous and its derivative belongs to L,[0, c0). Take as b the function e~ **T(t),
and as Hilbert space s the space L,(0, co). The differentiation operator A = J/0z
on L,(0, o) is a closed operator with domain dense, generates the semigroup of
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left translations (restricted to [0, c0) of course) and its spectrum is the closed left
half-plane (i.e.,, 6(4) = {s e C|Re s < 0}) (see [18]). Its domain consists of elements
of L,(0, co) which are locally absolutely continuous and whose derivatives also
belong to L,(0, «v). Consider as ¢ the linear functional whose action on a function
fis described by

c[f]1=/10) (ie., evaluation at 0).
Then c is defined on 24(A4). Moreover, for x € Zo(A) we have

) = [xO)? < fo 2/x(2)|[%(2)| dz

< f |x(2)|? dz + f |x(2)|* dz.
0 0]
So [e(x)|< (I 4x| + fix]). Hence b, ¢ satisfy our requirements. Now c[e?'h]
= c[e""TIT(t + z)] = e 'T(t) and therefore T(r) = c[e***P"b]. This is a
balanced realization.

From the equation T(t) = {c, e*'b) we get via Laplace transform the equation

T(s) = {c,(Is — A)~'b> for Res> B,

where the f comes from the Hille-Yosida theorem. On the other hand, since T(-)
is realizable we know it is of exponential order, say o. Hence T(-) is analytic in
Re s > oo. Moreover, from Theorem 4 we have that g, < § and by the Hille-
Yosida theorem the function <{c,(Is — A4)~'b} is analytic in Re s > B. Let po(A)
be the connected component of p(4) which contains the half-plane Res > 8.
Then by analytic continuation we see that T(-) is analytic for all se po(A4). So
again (as in the bounded case) we arrive at the conclusion, that for any realization
A, b, ¢ of T(-) we must have the spectral inclusion property

o(T)  ao(4),

where o4(4) is the complement of po(A4) in C.

The corresponding (to Theorem 4) conditions in the complex domain are
described below.

THEOREM 5. A necessary condition for T(-) to be realizable is that its Laplace
transform T(s) belong to HY[];) N H*(;) for some p > 0. A sufficient condition
is that T(s)e HX[];)and (sT(s) — T(O) e H([],) for some p > 0.

Proof. This is an immediate consequence of Theorem 4, the Paley—Wiener
theorem [7] and the Hille-Yosida theorem.

Example. The delayed step whose transform is e ~%/s is not realizable, whereas
the delayed ramp e~ %/s? is realizable.

Remark 5.1. Suppose T(-) is continuous and of exponential order. Let
be L,(0, o) be the function e~ *T(¢), where ¢ is large enough. Let ¢, e L5(0, o0)
be the function c¢,(z) = (2/n)A/(A* + z*) and A4 be the differentiation operator.
Then by Theorem 9.9 in [19] we have

e 'T() = lim {c;, eb) =1lim | e ““*IT(t + z)c,(z) de.
A—0 A—>0J0O
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Hence T(t) = lim;_¢ {c;, e“*?""b}. Therefore T( -)is the pointwise limit of a one-
parameter family of realizable functions.

In order to give some better sufficient conditions for realizability we need the
following well-known result [22] from the theory of H?(J[*) functions: If
fe H(J]"), 1 £ p <oo, then it is represented by the proper Cauchy integral of its
boundary values. That is, for Re s > 0 we have the representation

i) = — fm S i),

27 J_iw S — iw

THEOREM 6. Let Te L,(0, o) and be continuous. If T(iw) = F,(iw)F,(iw), where
F1, F, belong to H*(l), then Tis realizable.
Proof. Certainly T(iw) € L,(1; dw/2n). Hence since Te L,(0, co) we have that

I .
Tt) = o f T(iw)e dow ae.

— 0

But since both sides are continuous the equality holds everywhere. Thus

T(t) = 517‘[ Jm Fi(iw)e'' Fy(iw) dow.

But this equality says that if we take as Hilbert space H%(l), as b the function

F,, as c the function F; and as A the operator induced on H?(l), by multiplication
by iw we have

T(t) = <c, e'b>

(where the inner product is that of L*(I, dw/27)). Hence 4, b, c is a regular realiza-
tion for T, and by Theorem 3, T'is realizable.

Let us note that since the Fourier transform is a unitary map between L, (0, o0)
and H?(1), and multiplication by ¢* on H*(l) corresponds to left translation on
L (0, o0}, we can give also a realization of Tin L,(0, c0) by the left translation
semigroup. Indeed, if we let

fi = F7UFy), fo=F UF)

and e? = left translation semigroup restricted to L0, o), we have T(t)
= { f1, e*f,>. Moreover, we can give a realization in terms of the right translation
semigroup on L,(0, o) since we also have

T() =< fa, e f1>
with A4, f}, f> as above. (Note that L,(0, c0) is invariant under right translations.)
Note. If T satisfies the conditions of Theorem 6, then by the Paley—Wiener
theorem Te HXJ]"). Hence
Tis) = 1 Jiw T(iw) d(iw) 1 fw F(io)F,(iw) dw

27 J_is S — i 2n Jo o s — iw

and we could have used this approach in the proof.

COROLLARY 6.1. Suppose T'is continuous and of exponential order. If for some
o the function Ty(t) = e~ *T(t) satisfies the conditions of Theorem 6, then T is re-
alizable.
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Proof. Of course if o is bigger than the exponential order of T then e *T(t)
belongs to L;(0, c0). So we really have to check for the factorization only. Now,
if 7; satisfies Theorem 6, then Ty(t) = {c, e*b>. So T(t) = {c, e +*Dtp>.

Remark 6.2. We see from the spectral inclusion property and from the Hille-
Yosida theorem that the singularities of T( - ), for any realizable T, are in some left
half-plane. In all our constructions we used operators with spectrum large enough
(in fact with spectrum some left half-plane) to include the singularities of a large
class of realizable functions.

Remark 6.3. The conditions of Corollary 6.1 are weaker than those of Theorem
4. To see this observe first of all that continuity is required in both. Theorem 4
implies that for large enough o the function e "' T(t) = T,(t) belongs to L,(0, ),
is locally absolutely continuous and its derivative belongs to L,(0, o).
Hence T(iw) and iwT;(iw) belong to H?(I) by the Paley-Wiener theorem. But
(1 — iw)Ti(iw) = gliw) also belongs to H(1). Hence

Ti(iw) =

. 1 .
1 —iw glio) = 1 + iw gliw)

and since 1/(1 + iw) belongs to H?(I) we see that T satisfies the conditions of
Corollary 6.1.

We give another sufficient condition for realizability.

THEOREM 7. If T € L,(0, oo} is continuous and T € HY([]*), then T is realizable.

Proof. Since T is continuous, belongs to L,(0, co) and T(iw) e LX(1; dw/2m)
we have that

1 re + )
- TG iwt
T(t) ol (iw)e™ do,
the equality holding everywhere. We know that f € H'([[*)ifandonlyif f = f, f,,
where fi, f, € H([]") (see [7, p. 134]). Hence there exist F,, F, € H¥]]") such
that T(iw) = F,(io)F (iw) = F,(iw)F,(iv), where F, = F,e H¥]]") Hence

L —
T(t) = — f F\(iw)e'“ Fy(iw) dow.
2n ).,
Thus by taking as Hilbert space s the space L,(l;dw/2n), as A multiplication
by iw; as ¢ the function F, and as b the function F,, we get

T() = {c,e'b)

and T is realizable.

Again using Fourier transforms we can give in the above case a realization
of Ton L,(— 0, o0) using the left translation semigroup or the right translation
semigroup.

CoroLLARY 7.1. Let T be continuous and of exponential order. If for some
a, T(-)e H'([])), then Tis realizable.

Proof. By taking ¢ big enough, then, we can make the function e™ *T{(r)
satisfy the conditions of Theorem 7.

Remark 7.2. The realization constructed in Theorem 7 has as infinitesimal
generator the differentiation operator on L,(— oo, c0), whose spectrum is just
the imaginary axis. So in this model we do not have a connected resolvent set.
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On the other hand, in the realization of Theorem 6 we do have a connected
resolvent set, but instead the spectrum becomes very large.

This last theorem indicates some other classes of realizable functions. We
need first a standard definition for fractional derivatives in the L,-sense, or
equivalently for the Sobolev spaces of fractional order.

DEeFINITION. Let 0 <y £ 1. Then fe L,(0, o0) has an L,-derivative of frac-
tional order 7 if and only if there exists g € L,(0, co) such that s'f(s) = g(s), where
we always choose the branch of s’ so that Re s’ > 0 for Re s > 0. The space
of all those f'is usually denoted by HZ.

COROLLARY 7.3. If T is continuous and belongs to H: for 5 <y < 1, then
Tis realizable.

Proof. We have that T(s) and s'T(s) = g(s)e H 2(n*). Hence T(s) = (1/s)g(s).
Since for 3 <y < 1 and for all « > 0 we have trivially that 1/(s + )’ e HX][*),
we get finally that for all o > 0, T € H'([];) and the result follows from Corollary
7.1.

Finally we have the obvious generalization of Corollary 7.3.

CoROLLARY 7.4. If T is continuous and for some o > 0, e *T(tye H? with
1 <y £ 1, then Tis realizable.

4. Canonical realizations. In the rest of this paper we shall restrict our study
to weighting patterns T with bounded realizations. Moreover, we assume that
Tis realizable by the unilateral shift itself (i.e., we can take k = 1 in the construction
of Theorems 1 or 2), or equivalently that (1/s)T(1/s) e H*(D). This does not harm
the generality of the discussion, since we can reduce the general case by a simple
change of variable, to the above case. Indeed, if we define

Ts) = ¥ D500 = kT(ks) = $[T<£>}
so k' k
where % denotes Laplace transform, then T, satisfies the above for some finite
k> 0.

It is obvious that if a weighting pattern has one realization it has many. An
element ¢ of a separable Hilbert space # is called a cyclic vector for a bounded
operator A if and only if the linear span of ¢, A¢, A%¢p, A>, --- is dense in H#.
One calls a realization (A4, b, ¢) canonical whenever b is a cyclic vector for A,
and c is a cyclic vector for A*. However, we avoid the term “minimal” because
many of the implications of this term are absent in the present setting. (Some
authors prefer to call such a realization “controllable and observable” or “e-
controllable and e-observable” or “weakly controllable and weakly observable™.)
If a weighting pattern T has a finite-dimensional realization, it has one with mini-
mal dimension of the state space, which is called minimal. As is well known (see
(2, pp. 105-115]) a finite-dimensional system is minimal if and only if it is controll-
able and observable (canonical). Moreover, any two minimal realizationsdiffer by a
change of basis in the state space, and the spectral properties of A in any minimal
realization are uniguely determined by the weighting pattern. Here the situation
is much more complicated. It happens that a canonical realization is much more
loosely specified by the weighting pattern.

We start with a construction of a canonical realization starting from a given
one.
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THEOREM 8. Let T(1) = {c,e?b). Let M be the closed linear span of ¢, A*c,
A*2¢, ---in A (a separable Hilbert space). Let Py be the orthogonal projection
on M. Then (i) T(t) = {c, e"M4Pmip, p> .

Now let N be the closed linear span of Pyb, - - -, (PyyAPy)'Pub, - - in M and
let Py be the orthogonal projection on N. Then (ii) T(t) = {(Pyc, eé"¥4"M P, b,
Moreover, N is the closed linear span of Pyb, - -- , (PNAPN)Y'Pyb, - - - and the closed
linear span of Pnc, - -+, (PNAPX)* Pyc.

Proof. It is obvious that M is the smallest closed subspace of # which
contains ¢ and is invariant under A*. Hence M* is invariant under 4. Hence
A(I — Ppy)x € M* for all x € #. So Py A(I — Py)x = 0 for all x € #. Hence

Using (2) we get (Py APy)Pyb = PyA'D.

Hence (c, e"™4P™'P by = (¢, Pye'b)y = (¢, e?'h) = T(t) and this proves (i).
Similarly, N is the smallest closed subspace of M which contains Pyb and is
invariant under Py APy. Then for every x € #, (I — Py)PyAPyPyx = 0. Thus

3) PyAPy = PyPy APy Py = Py APy Py = Py APy.
Using (2) and (3) we obtain
(PNAPN)Pyb = PyAPN(PyAPN) ™ 'Pyb = Py APyPNAPN(PyAPYY ~ 2Pyb
@) = PyAPyAP(PyAPy) *Pyb = Py A*Py(PyAPy) ™ 2Pyb
= Py A'PyPyb = Py A'Pyb = (PyAPy) Pyb.
Thus

(Pye, ePVAPNIP L bYS = (e, PyePNAPNIP, bY = (¢, o PMAPNIP, Y,
= (¢, Pye®b)y = {c,e*b) = T(1),
and this proves (ii).
From (3) we get

(5) (PNAPN)*iPNC = PNA*iC.

The first assertion in the last statement is proved by (4), i.e., by the fact that
(PNAPN) Puyb = (PyAPy)' Pyb for all i. The second is an easy consequence of (5)
and of the cyclicity of ¢ for A*,

Here, as we assumed in the beginning of this section, if T(-) is realizable, it
can be realized by the shift (unilateral or bilateral). Some important questions
which arise naturally are the following. It is obvious that the realization given by
Theorems 1 and 2 is controllable. Also we know that the spectrum of the unilateral
shift is the closed unit disk. Given a weighting pattern T, how simple can the
spectrum of the infinitesimal generator A of a realization be? How small can the
spectrum be? If we take a canonical realization (4, b, ¢), is the spectrum of A
uniquely determined by T'? How are all canonical realizations of a given Trelated
to each other? When can we make the resolvent set of the infinitesimal generator
A connected?

An immediate observation, which gives, however, some indication of the
interplay of the notions described in these questions is the following: We can
realize any such T by the bilateral shift. Such a realization is obviously non-
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canonical. On the other hand, since the spectrum of the bilateral shift is just
T, the spectrum can be considered as “simple”. However, the resolvent set is not
connected.

Given a weighting pattern T we have the shift realization as described in
Theorems 1 and 2:

d

— X

dx

) =< x(),

where x(t)e lL,(Z") for all ¢, b= {1,0,0,---}, U is the unilateral shift and
¢ = {T(0), TY0), T?(0), ---}. Here b is obviously a cyclic vector for U. It
is immediately seen as a consequence of Theorem &, that if we let M be the
closed linear span of ¢, U*c, ---, U*ic, --- and Py the projection on M, then
(PyUPy, Pub, ) is a canonical realization of T, with state space M. We can write
the “shift realization” in terms of H? functions as follows:

(t) = Ux(t) + bu(t),

d
7 Xt 8) = sx(t, 9) + (o),

W) = f sT(o)x(t, 9) dufs),

where x(t, - ) € H? (H*(D) or H*(T)). (Compare with [17] where similar equations
are used.) Under the isomorphism between [,(Z*) and H*(D), ¢ corresponds to
(1/5)T(1/s) which equals sT(s) on T (since T(-) has real Taylor coefficients).
U corresponds to multiplication by s, U* corresponds to the mapping:

f(s)»—»M on H3(D).

We need a few well-known facts from the theory of H*-functions and Toeplitz
operators. The reader is referred to [7], [8] and [10] for further details. A function
fe HXD) is called inner if | f(e'®)| = 1 a.e. A function fe H*(D) is called outer if it
is a cyclic vector for the shift in H*(D) (i.e., the linear span of the functions £, sf,
s%f, ---is dense in H*(D)). A Blaschke product is a function of the form

a; — s a;

a0
Bs) = s*[] = ,
=1l —agsaf
where k is a nonnegative integer and the a; are complex numbers (not necessarily
distinct) such that 0 < |aj| <1, 3%, (1 — |aj) < co. A singular function is a

function of the form
el + s :
S(s) = exp <— |7 dﬂ(9)>,

where u is any positive finite measure on [0, 2r] which is singular with respect to
the normalized Lebesgue measure. Every fe H(D) has a factorization f = ¢ - h,
where ¢ is inner and h is outer. The factors are unique up to constant factors of
modulus one. Any inner function has a factorization ¢ = cBS, where c is a constant
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of modulus one, B is a Blachke product and S is a singular function. An inner
function is normalized if we choose ¢ = 1, or equivalently if we require the first
nonzero Taylor coefficient to be real and positive. Beurling showed that to every
closed subspace M of H*(D) which is invariant under the shift (ie., under multiplica-
tion by s) there corresponds a unique normalized inner function ¢ such that
M = ¢H?*D) and conversely. We also have the corresponding facts for H*(T).

A Laurent operator on I,(Z) has a matrix representative which is con-
stant on diagonals (i.e., o; = a;—;) and corresponds to multiplication by ¢(s)
=) st on L3(T) (where a; = o,,,). A Toeplitz operator 4 on [,(Z™)
has a similar matrix representative (which is infinite in only one direction). If
P:L*(T) - H(T) is the associated projection, then for all f € HXT) we have

Af = P(¢-f).

The only way the “shift realization” can be canonical is if ¢ is a cyclic vector
for U* (i.e., for the backward shift) or equivalently if (1/5)T(1/s) is a cyclic vector
for the backward shift on H2(D). (See also Fuhrmann [13, Thm. 2.6].) In [5] the
authors studied cyclic vectors of the backward shift very extensively. We are going
to use some of their results and we refer to [5] for further details. There exist many
cyclic vectors for the backward shift on H (D), as well as noncyclic ones. The
rational functions are noncyclic. The authors give several ways of constructing
cyclic vectors. Any H2-function with isolated branch points on T is a cyclic vector
and any function with lacunary Taylor series and square summable Taylor coeffi-
cients is also a cyclic vector. Since f(s) € H (D) is a cyclic vector for the backward
shift if and only if sf(s) is one, we have two cases to consider: namely, the case
when T(1/s) is a cyclic vector for the backward shift and the case when T(1/s)
is noncyclic.

We would like to close this section with some important remarks about the
cyclic and noncyclic case. Let Q be the subset of the realizable transfer functions,
for elements of which the set of real numbers k, such that T(k/s) is in H(D),
is open. Let G be the complement of G in the set of realizable functions. Theorem
2.2.4 in [5] reads as follows: If f is holomorphic in ]s[ < R for some R > 1, then fis
either cyclic or a rational function. Since k > ¢, for elements of @, an immediate
consequence of the above theorem is that the elements of Q are either cyclic or
rational functions. Then in G we have either cyclic or noncyclic but not rational
functions, as illustrated in Fig. 1.

Q|G
noncyclic
rational but
functions nonrational
functions
cyclic
functions

Fi1G. 1
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Also from [5] we have that the set of cyclic vectors is dense in H*(D) as is the
set of noncyclic vectors. However, the set of noncyclic vectors is a set of the first
category, whereas the set of cyclic vectors is not. Hence the noncyclic vectors are
somehow much more rare than the cyclic ones. Moreover, an element of HX(D) is
noncyclic if and only if there exists a sequence of rational functions (satisfying
special conditions [5, Thm. 4.1.1]) which converges to it in the L*(T)-norm, a
fact which indicates that the noncyclic case is very much like the rational functions
whereas the cyclic situation is new, harder, and potentially more interesting.

5. The noncyclic case. Now consider the case where T(1/s) is not a cyclic
vector for the backward shift. This case is treated by Fuhrmann [13] in detail;
however, there are some additional facts given here about the spectrum of A.
(H? stands for H(D) or HX(T).)

To proceed we need the following theorem from [5, p. 56].

THeOREM 9 ([5]). f € HA(D) is noncyclic if and only if there exist ge H*(D)
and an inner function ¢ such that f(e?) = e “g(e)p(e®®) a.e. on T. Moreover, if
we require that ¢ be normalized and relatively prime to the inner factor of g, then
¢ and g are uniquely determined. In this case the closed subspace generated by
U*f,n=0,---, o0, is precisely (p H*(D))*.

The normalized inner function ¢ thus uniquely associated with each non-
cyclic (for the backward shift) vector f'is called the associated inner function of f.

We see immediately that the subspace M of [(Z*) which is the state space
for the canonical realization (Py U Py, Pyb, ¢) derived from the “shift realization”
corresponds to the closed subspace of H? generated by {U*"(1/s)T(1/s)}2% ¢ which
we also call M. Hence applying Theorem 9 we get that

M = (pH?)",

where ¢(e?)g(e®®) = T(e ) = T(e®) ae. on T (since T(e"®) has real Fourier
coefficients), and ¢ and g are uniquely determined by Theorem 9.

We need another theorem now from [6].

THEOREM 10 [6). Let K = ¢pH?, ie., K is a closed subspace of H* invariant
under the shift U. Let M = (¢H?)*. Then the spectrum of U restricted on M is
the set sy which consists of

(i) all the points in C with |A} < 1, where ¢(4) = 0,

(ii) all the points in C with |A| = 1, where @(-) is not continuable analytically
across the boundary T of D at A.

Using Theorems 9 and 10 we see that the spectrum of the infinitesimal
generator of the canonical realization (PyUPy, Pub, ¢) is uniquely determined
by T. Namely, the spectrum consists of the zeros of ¢ in D (which coincide with
the zeros of the Blaschke product part of ¢) and the points of T through which
¢ is not continuable analytically outside the unit circle (which coincide with the
union of the support of the measure of T which is associated with the singular
part of ¢ and the set of points of T which are accumulation points of the sequence
of zeros of ¢ (sce [7, pp. 68—69])).

Recall now that T(e®®) = $(e®)g(e®) a.e. on T, where ge HX(T). Since ¢ is
inner we get T(e') = g(e)/¢(e’®) a.e. on T. When T has a meromorphic continua-
tion in D we have T(s) = g(s)/p(s) in D. Since g, ¢ are analytic on D and ¢ is
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relatively prime to the inner factor of g, it follows that the singularities of T()
in D are exactly the zeros of ¢(-) in D (with the same multiplicity as well). On
the other hand, since e “T(e~ ) e (9H*(T))* and e *T(e~®) is a noncyclic vector
for the backward shift by assumption, we know [5, pp. 58-59, Cors. 3.1.8 and
3.1.10] that the set of points of T, through which ¢ is analytically continuable,
coincides with the set of points of T, through which (1/s)T(1/s) is analytically
continuable. Hence the set of points of T, through which ¢ is analytically contin-
uable, coincides with the set of points of T, through which T(1/s) is analytically
continuable, which is the same as the set of points of T, through which Tis analyt-
ically continuable (in the reverse direction). So in this case we arrived at the
conclusion that the spectrum of Py UP)y consists of the set of points of D which
are singularities of T and of points of T through which T cannot be continued
analytically. Obviously the last set is what we have defined as o(T). Hence we
obtain

o(T) = o(Py UPy).

We have thus proved the following theorem.

THEOREM 11. Let T be given weighting pattern with (1/s)T(1/s)e HX(D), such
that T(1/s)dis not a cyclic vector for the backward shift on HX(D). Then there exists
a canonical realization of T with the spectrum of the infinitesimal generator of the
realization being exactly s,, where ¢ is the associated inner factor of (l/s)T(l/s)
If M = (9H?), this realization is contructed by taking as ¢ the function (1/s)T(1/s),
as b the projection of 1 on M and as A the restriction of the forward shift on M.
Moreover, if T has a meromorphic continuation in D, this spectrum is just o(T).

We see that in the above case the “spectral inclusion property” becomes in
fact an equality, i.e., the spectrum of the infinitesimal generator of the realization
described in Theorem 11 is minimal. This motivates the following definition.

DEerINITION. A canonical realization (4, b, ¢) of a weighting pattern T'is called
S-minimal (S from spectrum) if o{4) = o(T) (multiplicities counted whenever
possible).

These considerations lead us to a trivial corollary of Theorem 11.

CoOROLLARY 11.1. Any T which has the “shift realization” and is such that

T(1/s) is not a cyclic vector of the backward shift on H?, and where T has a mero-
morphic continuation in D, has an S-minimal realization, wzth A having a connected
resolvent set.

We do not have a complete picture for the relation between canonical (resp.
S-minimal) realizations of the same weighting pattern 7, in this case. However,
a partial analysis indicates that the noncyclic case is very similar to the rational
case.

6. The cyclic case. The cyclic case is very interesting since it reflects a number
of physically interesting phenomena; for example, transfer functions with branch
points and branch cuts. Transfer functions like these arise in systems governed by
partial differential equations. Hence an understanding of the cyclic case should
undoubtedly shed some light towards the realization problem for distributed
systems,

This case is more difficult, since the associated inner factor of T which proves
so crucial in the noncyclic case is now trivial. That is, the shift realization for cyclic
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transfer functions is already canonical. However, the spectrum of this realization
is far from being equal to o(T), unless we have a pathological transfer function
with branch points on a dense subset of T. Hence canonical by no means implies
S-minimal. (Again compare with Fuhrmann [13, Cor. 2.7] who observes the
nonuniqueness of the spectrum.)

It is apparent from the spectral inclusion property that all the points on
the branch cuts (if the transfer function has branch points) are included in the
spectrum of any infinitesimal generator A with connected resolvent set which
realizes the transfer function. However, branch cuts are not uniquely defined
(e.g., for 1/./s? + 1 any curve between i and —i can be a branch cut provided
it has no self intersection). Hence the set o(T) is not uniquely determined and
consequently there is not a unique “minimal spectrum” for the infinitesimal
generators of the realizations. A reasonable expectation is that the spectrum of an
S-minimal realization (provided one exists) will be unique if there are no branch
points and otherwise will be unique modulo the branch cuts.

We conclude this section with an example of a realization for the Bessel
function of zeroth order Jg( - ) which is S-minimal. It is easy to verify that

(= )m(e/2°™
m=0 (m')Z

satisfies our realizability criteria. Jo(s) = 1/./s? + 1 has branch points on
+1i, hence J - ) is a cyclic vector. We must take the branch cut in the finite plane.
We are after a canonical realization whose infinitesimal generator has spectrum
exactly the line between i and —i. Recalling that exp (3(s — 1/s)t) is a generating
function for the Bessel functions of integral order, i.e., that

exp <% <s - 1) t> = ‘OOZ TAt)s",

and using Laurent operators we see that for

s

To(t) =

I 0
0 -1
A=1 o0 —1
-2 i
1o
0 1
Tty Tty T_4(t) T_1)
et = Tty Folt)  T_(1)
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Hence the above A alongwithb =c=[---0 0 1 0 0. -] gives a realization
for Jo(-) in [,(Z). That the spectrum of A is exactly [i, —i] is a well-known fact
from [10]. However, this realization is not canonical (it is easy to verify that the
vector[---0 0 1 0 1 0 O---]isorthogonal to Ab for all i). We are going
to use Theorem 8 to reduce the above realization to a canonical one. So let M be
the closed linear span of ¢, A*c, A*%c, --- in [(Z). Then M is A* invariant. But
since A* = —4 it is also A invariant, Le., M reduces A. Since b = ¢, we get by
Theorem 8 that 4, = A restricted to M, b, ¢ is a realization of Jo which is obviously
canonical. Let 4 € p(4). Then Al — A has a bounded inverse. But since M reduces
A, Al — A, has also a bounded inverse. Hence

p(A) = p(Ay).

Therefore p(A;) is connected. Using the spectral inclusion property, the fact that
o(4) = o(7) and the above relation, we have

o(T) < o(A4y) € 6(A) = o(F).
Thus
o(Ay) = 0(9:)

and A,, b, ¢ is an S-minimal realization.

This example shows that S-minimal realizations can exist for cyclic functions
as well. It also shows that there exists no Hilbert space analogue of the finite-
dimensional state space isomorphism theorem between two canonical realiza-
tions of the same T unless further assumptions are made. (See Helton [14])

Notice also that nearly the same realization will work for the Bessel function
Z,, where

-~ 1 1 "
J"(S)_,/s2 I 1<s+./s2 + 1>

provided we keep A, b as above and takec = {---0 0 1 0 0 -}, with the
1 in the nth place.
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