
ABSTRACT

INSTABILITIES OF VOLATILE FILMS AND DROPS

by
Nebojsa Murisic

We report on instabilities during spreading of volatile liquids, with emphasis on the

novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrys-

talline silicon (Si) wafer. This instability is characterized by emission of drops ahead

of the expanding front, with each drop followed by smaller, satellite droplets, forming

the structures which we nickname “octopi” due to their appearance. A less volatile

liquid, or a substrate of larger heat conductivity, suppress this instability. In addition,

we examine the spreading of drops of water (DIW)-IPA mixtures on both Si wafers

and plain glass slides, and describe the variety of contact line instabilities which ap-

pear. We find that the decrease of IPA concentration in mixtures leads to transition

from “octopi” to mushroom-like instabilities. Through manipulation of our exper-

imental set up, we also find that the mechanism responsible for these instabilities

appears to be mostly insensitive to both the external application of convection to the

gas phase, and the doping of the gas phase with vapor in order to create the saturated

environment.

In order to better understand the “octopi” instability, we develop a theoretical

model for evaporation of a pure liquid drop on a thermally conductive solid substrate.

This model includes all relevant physical effects, including evaporation, thermal con-

ductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil,

disjoining pressure, and gravity. The crucial ingredient in this problem is the evap-

oration model, since it influences both the motion of the drop contact line, and the

temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two

evaporation models: the equilibrium “lens” model and the non-equilibrium one-sided

(NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface,



the “lens” model also assumes that evaporation proceeds in a (vapor) diffusion-limited

regime, therefore bringing the focus to the gas phase, where the problem of vapor mass

diffusion is to be solved, which invokes analogy with the problem of lens-shaped con-

ductor from electrostatics. On the other hand, NEOS model assumes non-equilibrium

at the liquid-gas interface and a reaction-limited regime of evaporation; the liquid and

gas phases are decoupled using the one-sided assumption, and hence, the problem is

to be solved in the liquid phase only. We use lubrication approximation and de-

rive a single governing equation for the evolution of drop thickness, which includes

both models. An experimental procedure is described next, which we use in order

to estimate the volatility parameter corresponding to each model. We also describe

the numerical code, which we use to solve the governing equation for drop thickness,

and show how this equation can be used to predict which evaporation model is more

appropriate for a particular physical problem.

Next, we perform linear stability analysis (LSA) of perturbed thin film config-

uration. We find excellent agreement between our numerical results and LSA predic-

tions. Furthermore, these results indicate that the IPA/Si configuration is the most

unstable one, in direct agreement with experimental results. We perform numerical

simulations in the simplified 2d geometry (cross section of the drop) for both pla-

nar and radial symmetry and show that our theoretical model reproduces the main

features of the experiment, namely, the formation of “octopus”-like features ahead

of the contact line of an evaporating drop. Finally, we perform quasi-3d numerical

simulations of evaporating drops, where stability to azimuthal perturbations of the

contact line is examined. We recover the “octopi” instability for IPA/Si configuration,

similarly as seen in the experiments.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The instabilities of evaporating drops and thin films have been attracting attention

of researchers for quite some time. Lately, the significant rise of interest in this field

is primarily a consequence of variety of new applications, for which the use of thin

films and drops, and their stability in particular, is critical. Recent developments in

semiconductor industry have brought with them a new generation of highly sensitive

nano-devices. Volatile thin films and drops have found their way into many pro-

cesses which are crucial for efficient fabrication and proper operation of these devices

([40, 46]). In particular, drying films and drops play an essential role in processes

such as analysis of DNA/RNA microarrays ([6]), fabrication of electronic devices by

ink-jet printing technique ([40]), in operation of microlens ([40]), and in immersion

lithography ([21, 65]), among others. The stability of evaporating thin films and

drops has been studied to a great extent in the past, but there are important issues

for which the explanation is still lacking. With the advancement of highly-sensitive

new technologies, these issues become ever more significant. It is therefore of great

interest to better understand why and under what circumstances these evaporating

thin films and drops become unstable. New types of instabilities, with their fascinat-

ing appearance and richness of structure have further fueled the interest of scientific

community. It is apparent therefore that more complete understanding of the evolu-

tion of thin films and drops, including drying, would result in further applications in

nano-device fabrication, innovative lab-on-a-chip technology and many other fields.

This project centers on instabilities occurring during the spreading and evap-

oration of volatile films and drops. In particular, it treats a novel instability which

occurs during spreading of isopropyl alcohol (IPA) on monocrystalline silicon (Si)
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wafers. This instability is characterized by emission of liquid droplets ahead of the

front of deposited drop. Each of these droplets is followed by a cloud of smaller,

satellite drops which follow the trail of the initially emitted ones, and form the struc-

tures which are given a nickname “octopi” due to their appearance. These structures

are experimentally observed only for spreading of IPA on Si, while less volatile liq-

uid, or a substrate characterized by larger heat conductivity suppress this type of

instability. Depending on volatility, the configurations in which less volatile mixture

is deposited, and allowed to dry upon Si wafer, experience instabilities manifested

through appearance of either festoon-like structures, fingers or ridges.

The problems involving volatile drops and/or films have been considered previ-

ously by many authors, and variety of mathematical models have been derived. The

main difference between these models is the manner in which evaporation process

is treated. We argue that without appropriate evaporation model, proper under-

standing of described instabilities seems unlikely. The focus here is not solely on

developing a mathematical model which would govern evolution of volatile drops and

films, but also on connection to experiments, such as the one introduced above, and

other related ones, which are to be described in this thesis. The important ingredients

necessary for achievement of agreement between theory and experiments are hence

the careful examination of the experimental set-up and results, which in turn yield

correct identification of relevant physical effects and appropriate choice of parameter

values. Correct identification of relevant physical effects will ensure the complete-

ness of the mathematical model which is to be derived; the appropriate choice of

parameter values will ensure meaningful comparison to experimental results; it will

also help in pinning down the physical effects responsible for certain features of the

solution, and, provided this whole approach is successful, of particular experimental

result. It is therefore expected that the model is to include wide range of physical

effects, while the values of parameters to be used are strictly the ones corresponding
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to particular liquid/solid configuration and experimental setting. The resulting evo-

lution equations are expected to be highly nonlinear and quite complex, and so, in

order to compare to experimental observations, the numerical simulation are used for

solving these equations. Linear stability analysis is employed in order to shed light

on sensitivity of solution to particular physical effects.

This thesis is organized as follows. First, we examine various evaporation

models. We describe several approaches for simplifying this complex problem, and

focus on the two commonly used evaporation models: the diffusion-limited equilib-

rium model and the one-sided non-equilibrium model. Next, we derive a mathemat-

ical model, which includes all the relevant physical effects, including vapor recoil,

Marangoni effects, Van der Waals intermolecular forces, and thermal effects in two

phases (liquid and solid). The derivation of the governing equation for evolution of

liquid thickness is carried out in such a way that both evaporation models can be

used, and is appropriate for both the volatile drops and films. We proceed by pre-

senting computational methods for solving this governing equation in simplified 2d

and 3d geometries. The necessary components for the two evaporation models are

volatility parameters, which are estimated experimentally. Thus, we also describe

the experimental techniques and methods which we use for this purpose, and present

the results. Next, we perform numerical simulations for the two evaporation models

and indicate which model is more appropriate in some specific situations. We also

examine the influence of Marangoni forces on mobility of the contact line and the

rate of mass loss. The next step is the description of the experimental techniques

and results related to “octopus”-shaped instabilities. We present both the results

obtained by our collaborators from industry, involving mostly pure IPA drops, and

our own results for both the pure IPA drops and variety of IPA-water (DIW) mix-

tures. In particular, we examine the influence of IPA concentration in mixtures on

the shape and size of the instabilities. In addition, we study the sensitivity of the
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instability mechanism to the externally applied convection in the gas phase, as well

as saturation of the gas phase with the vapor. We focus on pure liquids, and proceed

by performing linear stability analysis (LSA) of the governing equation for the case

of volatile film and comparing these results to the results of numerical simulations.

After concluding that the IPA/Si configuration is most unstable, in agreement with

the experimental data, we continue by presenting the results of numerical simulations

for volatile drops. We first focus on 2d planar and radial geometries and show that

our model successfully captures the basic instability mechanism: the occurrence of

“octopus”-shaped instabilities ahead of the drop contact line. This is followed by

consideration of the quasi-3d problem, where we apply small azimuthal perturbations

of the contact line and examine the stability. We show numerical results which again

indicate that the IPA/Si configuration is most unstable. Furthermore, the instabili-

ties which we obtain in our numerical results are remarkably similar to “octopi” seen

in experiments. We conclude with summary and discussion.



CHAPTER 2

THEORETICAL FORMULATION: MODELING EVAPORATION

The phenomenon of drying liquid films and drops has been engaging scientific minds

for centuries. A renewed interest among both scientists and engineers has been evident

in past decade, and is largely due to the rapid advances in semiconductor technologies,

and micro- and nano-fluidics. Evaporative sessile drops are particularly interesting

because of nonuniform drop thickness and the presence of contact lines, which lead

to possibility of nonuniform evaporation along the liquid-gas interface. The resulting

temperature gradients and related Marangoni forces induce flow inside the drop and

lead to a number of interesting effects. These effects are essential in a number of

problems, including the so-called coffee-stain phenomenon which involves deposition

of solid particles close to a contact line ([14]), and its numerous applications ([6, 40]).

In addition, evaporation is crucial for variety of other processes, including coating,

fluid transport and cleaning of semiconductor wafer surfaces ([24]). Therefore, the

benefits of a thorough understanding of evaporation phenomenon are obvious.

At this stage, the primary focus of our attention is the problem of evapo-

rating drop, although the discussion in this chapter, for most part, applies also to

evaporating thin films. We start with a review of various evaporation models used

in literature, and describe the complex nature of the evaporation problem. Next,

we discuss several different strategies one can use in order to reduce the complex-

ity of the problem. We focus on two commonly used and fairly simple evaporation

models: the equilibrium diffusion-limited and the non-equilibrium one-sided model.

Finally, we develop a mathematical model based on Navier-Stokes equations and lu-

brication approximation, which includes all relevant physical effects. The resulting

5
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evolution equation for liquid thickness is derived in such a way that it can include

both evaporation models.

2.1 Review of Commonly Used Evaporation Models

The simplicity of the physical system in which a drop of pure liquid placed on a

solid surface evaporates is all but obvious. Yet, much is still unclear, and even such

seemingly trivial systems as drying water droplets are not well understood. The ex-

perimental work has been performed by numerous authors (see e.g [8, 9, 13, 14, 33]).

Theoretical models describing the phenomenon of drying drops and thin films have

appeared over the years in variety of flavors ([7, 8, 10, 14, 19, 20, 29, 33, 41, 48, 57, 70]).

The most important difference among these models is the manner in which evapo-

ration is introduced into the problem. In addition to usual difficulties in describing

motion of contact lines, evaporation induces complex interplay between thermal and

hydrodynamic effects. It is an endothermic process and as such it inevitably causes

cooling of the liquid-gas interface. Evidently, evaporation rate varies locally along

this interface ([14]), causing convection of liquid due to thermocapillary effects. In

turn, convection alters transport of heat in the liquid and in such a way it affects

the evaporation rate ([29]). Using appropriate model for evaporation is therefore the

paramount objective if one is to achieve agreement between theory and experiments.

In what follows, we discuss commonly used models.

The problem of an evaporating drop involves three phases: solid, liquid and

gas. Solving the full problem in all three phases would be much too complex, since

it involves the Navier-Stokes equations for both liquid and gas, energy equations for

all three phases, along with the equation for vapor mass fraction. In what follows,

we refer to the model including ‘full’ treatment of liquid and gas phase as two-sided

model. Before reviewing commonly used assumptions under which the two-sided

model can be reduced to less complex models, it is worthwhile to dedicate some
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thought to the state of the liquid-gas interface and the composition of the gas phase.

As it turns out, the manner in which liquid-gas interface and the gas phase itself are

treated is critical in determining which simplification path is to be taken.

In thermodynamic sense, the liquid-gas interface can be considered to be either

in equilibrium ([8, 9, 14, 15, 19, 26, 28, 29, 31, 33, 34, 48, 61]), or in non-equilibrium

([2, 3, 7, 10, 24, 30, 57, 70]). As far as the composition of the gas phase is concerned,

we can either assume that the gas phase is composed of vapor itself ([7, 24, 57]), or a

mixture of vapor and inert gas (e.g. air; see: [8, 9, 10, 14, 19, 29, 48, 70]). If we first

assume that the drop is in contact with its vapor only (no inert gas), and that the

interface is at thermodynamic equilibrium, the temperature and the pressure in the

gas are simply related through Clausius-Clapeyron law ([39])

ln

[
psat
p0

]
=
DHvap

R

[
1

T0

− 1

Tsat

]
, (2.1)

where DHvap and R are the enthalpy of vaporization and universal gas constant,

and psat and Tsat are saturation pressure and temperature. Further, the dynamic

viscosity of vapor is small, making pressure fluctuation in the gas phase limited, and

so, temperature fluctuations at the interface are small as well. Therefore, Marangoni

effects should not be expected for a drop in contact with its vapor only, unless non-

equilibrium is assumed at the interface ([29]). On the other hand, if the gas phase

is composed of vapor and inert gas, even though fluctuations of total pressure in the

gas are small, the fluctuations of partial pressure of vapor can be relatively large.

These large fluctuations, even under equilibrium assumption, may lead to significant

temperature fluctuations at the interface, making Marangoni effects possible ([29]).

Under non-equilibrium assumption at the interface, the mass flux J can be related

to interface quantities (pressure and temperature) through Hertz-Knudsen relation,

which has origins in kinetic theory of gases ([10])
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J = α

√
M

2πRTsat
[psat(Ti)− pv(Ti)] , (2.2)

where psat(Ti) is saturation pressure at the interface temperature Ti, and pv(Ti) is

vapor pressure just beyond the interface. The parameters α, M , and R are the ac-

commodation coefficient, molecular weight of vapor molecule and universal gas con-

stant respectively. Eq. (2.2) assumes continuity of temperature across the interface.

To conclude, any model which is to include Marangoni effects must either consider

a gas phase consisting of vapor/inert gas mixture (where equilibrium at the liquid-

gas interface could be assumed), or it must allow for non-equilibrium, if gas phase is

assumed to consist of vapor only.

In order to reduce the complexity of the two-sided model, it is recognized that

thermal conductivity of vapor is much smaller than that of liquid ([7, 57, 70]); this, in

turn, eliminates the energy equation for gas phase from consideration. We can further

simplify, by assuming that the gas phase is convection-free, and that the viscous

stresses in gas phase are negligible when compared to viscous stresses in liquid ([7,

48, 57]). As a consequence of these simplifications, the full two-sided model reduces

to the system of equations for the liquid phase (Navier-Stokes equations and energy

equation), and the equation for diffusion of vapor in the gas phase. Various models

which consider the problem in the liquid phase coupled with the vapor diffusion

problem in the gas phase are referred to as 1.5-sided models ([19, 29, 48]). We note

that the vapor diffusion problem is coupled to the problem in the liquid through

boundary conditions at the interface between the two phases.

The 1.5-sided models are still rather complex, and further simplifications are

often implemented. One commonly used model, to which from this point on we refer

as “lens” model, is formulated as follows. Consider diffusion equation for the vapor

mass fraction c, with D being vapor mass diffusivity ([15, 33, 58]), along with appro-
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priate boundary conditions. Scaling of the vapor mass diffusion problem is achieved

using an appropriate time-scale, tscale, and a length-scale, such as the extent of the gas

phase l. For tscale � tdiff−vap, where tdiff−vap = l2/D is vapor diffusion time-scale, the

transient term in the diffusion equation for the vapor mass fraction can be dropped

and the problem reduces to the Laplace’s equation: ∆c = 0. The typical value of D

for diffusion of water vapor into the air is 2.5 ·10−5m2/s. Using d0 = 0.5mm as a typi-

cal drop thickness and assuming that l ∼ d0, yields tdiff−vap ∼ O(10−2)s. For the sake

of comparison, a time-scale on which microliter water drops evaporate is ∼ O(103)s.

This indicates that, except in the case of a very thick gas phase, the reduction of

diffusion equation for vapor mass fraction to Laplace’s equation is plausible. Physical

interpretation of this mathematical simplification is that the evaporation rapidly at-

tains steady state and that the vapor mass fraction field adjusts quickly to the changes

of the shape of the liquid-gas interface ([33, 58]). We note that an ‘evaporation time-

scale’ introduced in [58], corresponding to time-scale for molecular transport across

liquid-gas interface, is much shorter (∼ 10−10s). Based on the comparison of this

short evaporation time-scale and previously introduced vapor mass diffusion time-

scale, it is concluded in [58] that the evaporation process is limited by mass diffusion

of vapor. Under certain assumptions, discussed in Section 2.3, this approach leads

to the evaporative flux of from J ∼ h−ψ, where h is drop thickness, and the value of

exponent ψ depends on the macroscopic contact angle Θ. We note that J diverges at

the contact line (h −→ 0). The analogy between evaporating drop and lens-shaped

conductor at a fixed potential has been suggested in [14, 15]. In their work, they

considered volatile drops of water with pinned contact line, and focused on solute

deposition patterns (the coffee-stain problem). In [33], it is shown how mass flux J ,

associated evaporation rate, and the expression for ψ can be found from numerically

calculated vapor mass fraction field. In particular, the dependence of ψ on contact

angle Θ is resolved by fitting the approximate expression for mass flux J (obtained
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through considering the “lens” problem) to their numerical solution for J . This work

was accompanied by subsequent resolution of the hydrodynamic flow inside the drop

([34]), inclusion of thermocapillary Marangoni effects and resolution of temperature

fields in both the liquid and the solid phase ([31]), and further experimental results

([32]). The “lens” evaporation model was subsequently extended to problems where

contact line is allowed to move freely. These problems involved volatile drops of wa-

ter, alkanes, PDMS oligomers and their mixtures on variety of surfaces on which the

complete wetting can be assumed ([8, 9, 25, 26, 27, 28, 59, 60, 61]). A regularization

procedure was employed in [26, 28] in order to relieve the singularity in the mass flux

which occurs at the contact line. The work presented in [13, 15] was further extended

to a problem involving solute deposition patterns for water drops and the peculiarities

of de-pinning process ([58]). Water drops evaporating on a heated solid, the resulting

temperature gradients and flow along the liquid-gas interface were examined in [22].

Finally, the recent work by [64] focuses on a wedge-shaped region in the close prox-

imity of the contact line. It involves the application of the “lens” evaporation model

and the use of asymptotic techniques in order to show how thermal properties of

solid and liquid, and the value of macroscopic contact angle qualitatively influence

the temperature gradient at the liquid-gas interface, and hence the direction of liquid

flow.

Another approach to simplify the model is to decouple the gas and the liquid

phase, and consider the liquid phase only. If it is assumed that the gas phase is com-

prised of vapor only, it is necessary to consider the interface at non-equilibrium, in

order to maintain the possibility of thermocapillary Marangoni effects at the liquid-

gas interface (e.g. see [2, 7, 57]). The decoupling is achieved formally by recognizing

that thermal conductivity, dynamic viscosity and density of vapor are small when

compared to their liquid counterparts. Such approach is generally referred to in the

literature as the one-sided model ([7, 10]). If the gas phase is a mixture of vapor and
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inert gas, the decoupling is achieved through assumption that vapor mass diffusion

time-scale is much shorter than evaporation time-scale. This non-equilibrium one-

sided model (NEOS) has been successfully used in theoretical exploration of stability

of volatile thin films on heated solid substrates ([7]), and has since been extended

to variety of problems. Perhaps the most comprehensive account of the applications

of NEOS model has been compiled in [57], where NEOS model has been applied to

evaporation of thin films on non-heated and differentially heated solid substrates,

to coating flows of volatile films on cylindrically shaped objects, and problems in

which physical parameters including viscosity of liquid may be temperature depen-

dent, among others. The NEOS model has also been used for modeling evaporation

of drops: in [3, 30], where the focus was on examining the effects of evaporation on

macroscopic contact angle; in [2], where disjoining pressure effects were used in order

to derive the thickness of stable adsorbed film, beyond which the liquid does not

evaporate. We have previously utilized it for studying curiously-shaped instabilities

appearing at the fronts of alcohol drops ([24]). More recently, an extension of work

by [7] to a problem of stability of volatile thin films can be found in [69], where addi-

tional effect of energy transport within the liquid-gas interface is considered and the

details of film rupture are examined. One-sided approach was used in [51] as well,

where the focus was on studying stationary meniscus of a volatile perfectly wetting

system, which, when temperature difference is applied, assumes non-zero apparent

contact angle. Under certain assumptions, discussed in Section 2.3, the use of NEOS

model leads to the evaporative flux of from J ∼ 1/(h+ const.). We note that in this

case J is bounded at the contact line (h −→ 0), in contrast to the expression for J

which corresponds to “lens” model.

The one-sided model in general introduces a Biot number, characterizing the

evaporation regime ([10]). For 1.5-sided model, non-local ‘modified’ Biot number Bi

can be defined ([48]). In case when vapor mass fraction field can be considered quasi-
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stationary, non-local contribution to Bi can be neglected, and reduction to one-sided

model is achieved. In a particular case when NEOS model is assumed to be valid,

the Biot number is defined as

Bi =
KpTLd0

ρvk
, (2.3)

where K = αρv(Ti)/
√

2πRgTsat and pT = Lpsat/(RgT
2
sat). Here, L is latent heat of va-

porization, d0 is liquid thickness, ρv is vapor density and k is liquid heat conductivity.

The limit Bi −→ 0 implies that liquid-gas interface temperature tends to the temper-

ature of the solid substrate, since the liquid heat conduction is rapid and it replenishes

quickly the heat lost at the interface. The evaporation proceeds in a reaction-limited

regime, while the liquid-gas interface is at non-equilibrium. On the other hand, the

limit Bi −→ ∞ indicates that the evaporation process is much quicker than diffu-

sion of heat through the liquid, and hence it leads to a (liquid heat) diffusion-limited

regime, while the liquid-gas interface is at equilibrium. Among other quantities, Bi

depends on the accommodation coefficient α, which describes probability of phase

change, and hence determines the volatility of liquid. Unfortunately, the value of

α is not well known. Review of literature reveals that the values of α in the range

O(10−6)−O(1) have been used ([7, 10, 24, 29, 39, 57, 67, 70]). Theoretical predictions

suggest that α ∈ [10−2, 1] for water ([47]). However, these estimates have been found

to grossly overestimate the volatility, and have repeatedly failed to agree with experi-

mental measurements. In fact, values of α as small as 10−6 have been experimentally

measured (e.g., see [5, 16, 47]). Vulnerability of water, in particular, to unintentional

contamination by surfactants has been identified as one of the main reasons for such

mismatch between theory and experiments ([16]). We note that the range [10−6, 1]

for α allows for a transition between Bi � 1 ((liquid heat) diffusion-limited regime,

and interface at equilibrium) and Bi � 1 (reaction-limited regime, and interface at
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non-equilibrium). For example, for α = 10−6, psat = 3.2MPa ([45]), and Ti = 295K

([24]), we find Bi = 0.025� 1. We note that one can also consider Bi as the ratio of

the heat diffusion time-scale in the liquid, tdiff−liq, to the evaporation time-scale teva.

Using tdiff−liq = d0
2/κ, where κ = k/(ρcp) is thermal diffusivity of liquid, and cp its

heat capacity, we find that tdiff−liq ≈ 2s for water (cp = 4180J/(kgK)). Using this

value of tdiff−liq and Bi = 0.025, we obtain teva ≈ 70s. The definition of evaporation

time-scale from [24], teva = (ρd02L)/(k∆T ), where ∆T is appropriate temperature

scale, gives a consistent value of teva ≈ 30s for (more volatile) isopropyl alcohol.

Next, let us compare teva, tdiff−liq, and tdiff−vap. As mentioned above, for

l ∼ d0, tdiff−vap ≈ 2.5 · 10−2s, which is significantly shorter than tdiff−liq, and even

more importantly, much shorter than teva. Therefore, it is safe to conclude that in

this case, vapor is indeed diffused rapidly away from the liquid-gas interface and that

we can safely neglect the gas phase and use the NEOS model.

On the other hand, if we assume that relevant l is much larger, e.g. l = 2.5cm,

tdiff−vap ≈ 60s, which is comparable to teva. At this point, the evaporation rate is

clearly being influenced by mass diffusion of vapor, and the use of NEOS model is

not appropriate.

The arguments given above, show that the choice of relevant thickness of the

gas phase is an important factor in determining the evaporation regime. Unfortu-

nately, for volatile systems which evaporate in open atmosphere, it is not easy to

determine the relevant thickness of the gas phase.

Before proceeding further, we note that the comparison of the teva, tdiff−liq,

and tdiff−vap may be used to establish that “lens” evaporation model implies equilib-

rium at the interface. If we assume that the thermal properties of the liquid are fixed

(i.e. tdiff−liq ≈ 2s) while Bi� 1 (e.g. Bi ≈ 800 as in [10]), we obtain teva ≈ 2 ·10−3s,

and the interface is at equilibrium. Since this teva is significantly smaller than tdiff−vap

for any reasonable l, evaporation is also limited by mass diffusion of vapor, which is
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Figure 2.1 The physical configuration: evaporating drop on a horizontal solid
surface.

typical for “lens” evaporation model. Therefore, we conclude that the interface in

“lens” evaporation model is expected to be at equilibrium.

To summarize, the choice of relevant model for evaporation depends on the

values of quantities that cannot be estimated precisely, such as the relevant gas phase

thickness, l, or for which a range of results exists, such as the accommodation coeffi-

cient α. Chapter 4 concentrates on comparison between two relevant models (“lens”

and NEOS) by using parameters extracted directly from experiments. To the best of

our knowledge, such a comparison has not been carried out yet. We proceed by de-

veloping the mathematical model, in which the critical ingredient, evaporative flux, is

left undetermined, so that this approach is appropriate for both evaporation models.

2.2 Mathematical Model

The main building blocks of the model are as follows ([24]): (i) The spreading drop is

characterized by a small aspect ratio so that lubrication approximation is appropriate;

(ii) Marangoni forces, so that the dependence of surface tension on temperature is in-

cluded; (iii) Thermal and vapor recoil effects are included ([7, 57]); (iv) the solid-liquid
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interaction is modeled using disjoining pressure approach. A large body of literature

discussed the details of relevant microscopic physics in the vicinity of the contact line

([12, 35]). Here, we choose a simple model with both attractive and repulsive terms

which are often considered to result from van der Waals (vdW) intermolecular forces,

leading to a stable equilibrium liquid layer (precursor film).

Our theoretical model is based on Navier-Stokes equations, accompanied by

the energy equations, and in general, by the equation for diffusion of vapor into sur-

rounding gas. We derive the model in simplified geometry (2d Cartesian), but later

generalize the final equation to radial geometry, as well as quasi-3d geometry. Fig-

ure 2.1 shows physical setup with h(x, t) as drop thickness, and x, z as the coordinates

along, and normal to the substrate, respectively. The bottom of the solid layer is at

z = −d, the liquid-solid interface is at z = 0, while the liquid-gas interface is at

z = h(x, t). Here, n = (1 + hx
2)
−1/2

(−hx, 1) and t = (1 + hx
2)
−1/2

(1, hx) are the

outward unit normal and unit tangent vectors, respectively.

The Navier-Stokes equations for an incompressible viscous fluid subject to a

body force ∇φ are given as ([7])

ρ(vt + v · ∇v) = −∇p−∇φ+ µ∇2v, (2.4)

where p is pressure in the liquid, and v = (u,w) is the liquid velocity vector, with x-

and z- direction components given by u and w respectively. Here, ρ is liquid density,

while µ is dynamic viscosity, and φ(h) is a potential function, which represents gravity

and disjoining pressure effects. We note that the latter can instead be included

into the normal stress boundary condition at liquid-gas interface (e.g. see [2]). The

continuity equation is

∇ · v = 0. (2.5)
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Navier-Stokes equations are accompanied by the energy equation for the liquid

Tt + v · ∇T = κ∇2T , (2.6)

where T is liquid temperature. The energy equation for the solid is given as

[Ts]t = κs∇2 [Ts], (2.7)

where Ts denotes solid temperature and κs is solid heat diffusivity. Appropriately

modified Navier-Stokes equations, continuity, and energy equations hold for the gas

layer, in addition to an equation for vapor mass fraction.

Next, we introduce boundary conditions. The temperature at the bottom of

the solid layer is prescribed as Ts(−d, t) = T0, where T0 is the reference (room) tem-

perature. At the liquid-solid boundary (z = 0) we assume no-slip and no-penetration

boundary condition: v = 0, along with continuity of temperature and matching

heat fluxes between the liquid and the solid: T (0, t) = Ts(0, t) and −kTz(0, t) =

−ks [Ts]z (0, t).

More care is required when treating the boundary conditions at the liquid-gas

interface z = h(x, t). The mass balance gives

J = ρ(v − vi) · n = ρv(vv − vi) · n, (2.8)

where ρv and vv correspond to vapor, vi is the interface velocity, and J = J(x, t) is

the mass flux. The energy balance gives

k∇T · n− kv∇Tv · n + 2µ(v − vi) · (τ · n)− 2µv(vv − vi) · (τv · n) =

−J
(
L+

1

2
[(vv − vi) · n]2 − 1

2
[(v − vi) · n]2

)
, (2.9)
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where τ is the rate of deformation tensor in the liquid

τ =

∣∣∣∣∣∣∣
ux

1
2

(uz + wx)

1
2

(uz + wx) −ux

∣∣∣∣∣∣∣ .
Eq. (2.9) states that the energy available at the interface is used for phase transition

and impairing kinetic energy to the vapor molecules. The normal stress balance is

given by

(∇ · n)σ(T ) + (T−Tv) · n · n = J (v − vv) · n, (2.10)

where T = −pI + 2µτ is the stress tensor in the liquid, and I is the identity tensor.

The first term on the left-hand side of Eq. (2.10) is proportional to the product of

surface tension, σ, and the mean curvature, while the remaining terms represent the

jump in normal stress. The sole term on the right-hand side of Eq. (2.10) represents

the vapor recoil effect. The shear stress balance gives

−∇σ · t + (T−Tv) · n · t = J (v − vv) · t. (2.11)

Eq. (2.11) balances the jump in shear stress with the surface tension gradient. We

assume that surface tension is a function of the liquid temperature σ(T ) = σ0−γ(T −

T0), and note that γ = −dσ/dT is positive for most liquids.

In order to close the system, we need one more boundary condition at the

liquid-gas interface. Depending on the equilibrium state of the liquid-gas interface

and the assumptions about the gas phase, as discussed in Introduction, we consider

two possible closures for the system. These depend on considered evaporative flux

model, discussed next. The assumption that “lens” model is appropriate (evapora-

tion proceeds in a vapor mass diffusion-limited regime with interface at equilibrium)
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requires consideration of vapor mass fraction problem in the gas phase, and leads to

an expression for mass flux J in terms of drop thickness h (J ∼ h−ψ). If, on the other

hand, we assume that NEOS model is applicable, we neglect the gas phase and ob-

tain additional boundary condition which relates mass flux J and temperature of the

liquid-gas interface Ti, and allows to close the system. The details behind derivation

of both the expression for J (“lens” model) and the additional boundary condition

(NEOS model) are described next.

2.3 The Two Evaporation Models

In previous sections, we described the physical reasoning behind the theoretical model

for evaporating drop and the most important steps in the process of deriving the

governing system of equations. As it was described in the Introduction, the two

most commonly used evaporation models are, in fact, mutually exclusive. In [20],

the dependence of evaporation regime on the environment (e.g., drop surrounded

by liquid bath, or covered by a lid with an opening above the top of the drop) for

water drops was studied. It was argued that depending on evaporation regime, either

“lens” or NEOS evaporation model can be used, which was supported solely by the

results of extensive numerical simulations. Unfortunately, the technical challenges of

non-invasive measurements of vapor concentration in the vicinity of the liquid-gas

interface are difficult to overcome. Therefore, a governing equation for the evolution

of the drop thickness is derived and used as a test bed for validity checks of the two

evaporation models against the experimental results. We devote following paragraphs

to details behind these two evaporation models and the manner in which they are to

be included into governing system of equations (Eqs. (2.4)-(2.11)).
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2.3.1 “Lens” Evaporation Model

It has been discussed in Introduction that the “lens” model is consistent with the

liquid-gas interface being at equilibrium, while the evaporation process is limited by

diffusion of vapor into surrounding gas. The problem for vapor mass diffusion is

reduced to the Laplace’s equation for vapor mass fraction c, accompanied by the

boundary condition at the liquid-vapor interface (constant saturation concentration

at the evaporating interface) and some far-field condition for concentration, such as

ambient concentration. If the drop is assumed to be a spherical cap, this boundary

value problem has an electrostatic equivalent: the problem of finding an electric field

exterior to a lens-shaped conductor at a fixed potential, where vapor mass fraction c

is equivalent to electrostatic potential, while mass flux J is equivalent to electric field

([14]). Additional requirement, necessary in order to successfully map the evaporation

problem to the electrostatic problem, is that there should be no evaporation beyond

the contact line of the drop. Solving this electrostatic problem analytically involves

the use of toroidal coordinates and special functions ([15, 58]), and the resulting

expression for electric field (and hence mass flux J) is fairly complex ([33]), but can

be well approximated by

J(r) ∝ 1

(R2 − r2)λ
, (2.12)

where R is the radius of the drop, and r =
√
x2 + y2 is the radial distance from the

drop center. Regarding the exponent λ, [15] gives λ as λ = (π − 2Θ) / (2π − 2Θ) (see

also [36]). On the other hand, in [33], the validity of the expression for λ from [15] is

disputed; their claim is that the λ given in [15], would be correct only if J were given

as J(r) = const./(R− r)λ. The alternate expression for λ which would correspond to

the exponent in Eq. (2.12) is derived in [33] in a following fashion: i) it is assumed that

the approximation for J in a form of Eq. (2.12) holds; ii) the problem of solving for



20

Figure 2.2 The spherical cap approximation.

vapor mass fraction field in the gas phase, exterior to the drop, consists of Laplace’s

equation for vapor mass fraction c, and the appropriate boundary conditions; iii) the

problem in ii) is solved numerically using finite element methods, keeping in mind that

the drop surface (the boundary of the problem domain) changes shape as the drop

evaporates; iv) once the vapor mass fraction field is resolved numerically, the relation

J = D∇c, valid at the liquid-gas interface, is used to find J ; v) in order to find λ, the

expression for J given in Eq. (2.12) is fitted to the numerical solution. The resulting

expression for λ as a function of the contact angle Θ is given by λ = 1/2−π/Θ. When

complete wetting is considered (Θ = 0), the two expressions for λ are equivalent. We

note that the numerical results in [33] depend on the choice of relevant thickness of

gas phase l. We have shown in Introduction how this choice can affect the regime

in which evaporation proceeds. It is therefore possible that the use of different value

of l may result in different expression for λ than the one listed in [33]. Unable to

decide whether the expression for λ from [15], or the expression from [33] is more

appropriate, we will use both.
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In what follows, we assume that the surface of the drop is well approximated

by a spherical cap, as shown in Figure 2.2, so that we can write the thickness of the

drop h in terms of r as h =
√
R2 + d2 − r2 − d, where d =

(
R2 − h0

2
)
/ (2h0) and h0

is the thickness at the center of the drop (r = 0); also note that B = d+ h0. In view

of lubrication approximation (see Section 2.5), we assume that h0/R � 1. In order

to simplify the derivation, R and h0 are treated as constants. This can be justified

in part by the fact that the evaporation process, and therefore the changes in drop’s

shape, are slow.

Next, the Eq. (2.12) is scaled, using Jsc = (k∆T )/(d0L) (the value of mass

flux for linear temperature profile across flat liquid layer ([7, 57])) and d0 as scales

for mass flux and length respectively. We note that ∆T = T0−Tsat, where Tsat is the

saturation temperature at a given vapor pressure. Upon substituting the expression

for r in terms of h, we obtain the following expression for mass flux J , now as a

function of drop thickness h

J(h) =
Jvol

d0
2λ
(
h
(
(R/d0)

2 − 1 + h
))λ , (2.13)

where Jvol is an evaporation coefficient. For small values of contact angle Θ, the

dominant term in brackets of Eq. (2.13) is (R/d0)
2, and so Eq. (2.13) reduces to

J(h) =
χ

hψ
, (2.14)

where ψ = λ. For larger values of contact angle Θ (R ∼ d0), the dominant term in

brackets of Eq. (2.13) becomes h. The expression for J given by Eq. (2.14) is still valid

in this case, but with ψ = 2λ. The dimensionless volatility parameter χ is defined as

χ = Jexp/(d0
ψJsc), where Jexp = Jvol/d0

2λ will be determined experimentally.
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Finally, we note that in Eq. (2.14) J diverges as h −→ 0. While it is clear

that the evaporation rate at the contact line, where h is small, should be larger

than at the top of the drop ([13, 14, 15]), this divergence is non-physical. Methods

to regularize the expression for mass flux J were suggested by [28] and [66]. We

overcome this difficulty by considering a disjoining pressure model, which describes

long-range intermolecular (vdW) forces in the liquid, and introduces a thin precursor

film of thickness b. This approach regularizes the expression for J , since at small film

thicknesses evaporation stops due to attracting vdW forces (see Chapter 4).

2.3.2 NEOS Evaporation Model

The foundations of NEOS evaporation model have been described in Introduction.

This model corresponds to a limit of small Biot number Bi – reaction-limited evap-

oration, interface at non-equilibrium. Decoupling of liquid and gas phase allows to

solve the problem in the liquid phase only and ignore the vapor. Since the liquid-gas

interface is assumed to be at non-equilibrium, mass flux J satisfies Hertz-Knudsen

type relation (Eq. (2.2)). Clausis-Clapeyron law (Eq. (2.1)) can be used to relate

temperature and pressure at the interface, and this provides us with the required

boundary condition at the liquid-gas interface, necessary to close the system. This

boundary condition is an expression for mass flux J in terms of temperature at the

liquid-gas interface Ti

J = (Ti − Tsat)
(
αρvL

Tsat
3
2

)
(2πRg)

− 1
2 . (2.15)

Next, the Eq. (2.15) is scaled, using Jsc as scale for mass flux; the tempera-

ture difference T − Tsat is scaled against ∆T (see Section 2.4). Finally, we obtain a

boundary condition
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J =
T

K
, (2.16)

which relates mass flux and liquid temperature at the the liquid-gas interface (z = h).

The non-equilibrium parameter K is given by

K =
(2πRg)

1/2kT
3/2
sat

αd0ρvL2
. (2.17)

Note that under ideal gas assumption, parameter K relates to Biot number Bi, given

by Eq. (2.3), as K = 1/Bi. Under certain set of assumption (discussed in Sections 2.4

and 2.5), Eq. (2.16) leads to an expression for mass flux J as a function of drop

thickness h of form J ∝ 1/(h + K + const.). Hence, mass flux J is largest close to

the contact line and smallest at the top of the drop, but unlike J given by Eq. (2.14)

it remains finite as h −→ 0. The values of α for water listed by various authors vary

across several orders of magnitude: from α = 1 in [67] and [70], α = 0.83 in [7],

and α = 0.1 ([10]), to experimental measurements of α = 10−6 − 10−4 ([5, 16, 47]).

The theoretical predictions for α have been found to overestimate the volatility. This

particularly applies to water, due to its vulnerability to contamination by surfactants.

Since it is unclear which value to use, we carry out experiments to determine the

appropriate value of α. These experiments are discussed in Chapter 4.

2.4 The Scales

At this point, it is convenient to introduce the scales and nondimensionalize the

equations and the boundary conditions described in Section 2.2. Scaling has already

been applied in Section 2.3 in order to obtain Eqs. (2.14) and (2.16). The choice of

scales is as follows (all parameters are for liquid unless otherwise noted, e.g., see [24]):

the length-scale is typical drop thickness, d0 = 0.5mm; d2
0/ν, ν/d0, and ρν2/d2

0 are



24

viscous scales for time, velocity, and pressure respectively; the scale for φ is ρν2/d2
0;

the temperature and the mass flux scales have been introduced above.

For most liquids and vapors, it is safe to assume that thermal conductivity,

dynamic viscosity and density of vapor are small when compared to their liquid

counterparts ([7, 10]). Hence we apply limits ρv/ρ −→ 0, µv/µ −→ 0, and kv/k −→ 0

to Eqs. (2.4) - (2.11). The application of these limits results in elimination of Navier-

Stokes and energy equations for gas phase and simplification of boundary conditions

given by Eqs. (2.8) - (2.11). For “lens” evaporation model, the system is reduced

to the liquid problem coupled with the vapor mass fraction problem. For NEOS

evaporation model, the system is reduced to a single fluid problem (only liquid).

In addition, we assume that there is no slip at the liquid-gas interface, leading

to: (v − vv) · t = 0. Note that ρv is retained in Eq. (2.8), where it multiplies vv,

which can be large. This is done in the spirit similar to Boussinesq approximation

([7]). In addition, it is assumed that pv = 0, and that ∇Tv · n, τ · n · n, and τv · n · n

are all bounded.

Finally, Eqs. (2.4) - (2.7) are reduced to (in component form)

ut + uux + wuz = − (px + φx) + uxx + uzz (2.18)

wt + uwx + wwz = −pz + wxx + wzz (2.19)

ux + wz = 0 (2.20)

P (Tt + uTx + wTz) = Txx + Tzz (2.21)
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Ps [Ts]t = [Ts]xx + [Ts]zz, (2.22)

where P = ν/κ is the Prandtl number, and similarly Ps = ν/κs. The boundary

condition at the bottom of the solid substrate (z = −d/d0) is now given by Ts = 1.

The boundary conditions at z = 0 remain the same: u = w = 0, T = Ts and

kTz = ks [Ts]z. At the liquid-gas interface (z = h(x, t)), mass balance, energy balance,

and normal and shear stress balance are given as follows

EJ =
(
1 + hx

2
)− 1

2 (w − uhx − ht) (2.23)

(
1 + hx

2
)− 1

2 (Txhx − Tz) = J +

(
9E2ν2

8D2Ld0
2

)
J3 (2.24)

p− 3E2J2

2D
−

2
[
ux
(
hx

2 − 1
)
− hx (uz + wx)

](
1 + hx

2
) =

3Shxx (1− CT )(
1 + hx

2
) 3

2

(2.25)

−2M

P

(
1 + hx

2
) 1

2 (Tx + hxTz) =
(
1− hx2

)
(uz + wx)− 4hxux. (2.26)

If “lens” evaporation model is used, we also have expression for mass flux J in terms

of h, given by Eq. (2.14). On the other hand, for NEOS evaporation model, we have

additional boundary condition at z = h given by Eq. (2.16). We also note that φ(h)

from Eq. (2.18) is given by

φ(h) = −3A

[(
b

h

)n
−
(
b

h

)m]
− 3Gh, (2.27)
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Table 2.1 Table of Parameter Values for IPA and DIW ([45])

Parameter IPA DIW

Tsat(K) 248 250

ρv(kg/m
3) 2.0 0.9

ρ(kg/m3) 790 998

γ(N/Km) 0.25 · 10−3 0.18 · 10−3

σ0(N/m) 2.1 · 10−2 7.2 · 10−2

L(J/kg) 0.79 · 106 2.44 · 106

Rg(J/kgK) 138.35 461.92

µ(kg/ms) 2.04 · 10−3 0.9 · 10−3

k(W/Km) 1.35 · 10−1 6.05 · 10−1

ks(W/Km) (Si) 1.35 1.35

ks(W/Km) (Cu) 390 390

where the first term represents disjoining pressure effects (through (n,m)-type po-

tential, e.g. see [68]), while the second term is due to gravity.

The nondimensional parameters appearing here are defined as follows ([7]):

evaporation numberE = k∆T/(ρνL), nondimensional surface tension S = σ0d0/(3ρν
2),

thermocapillary Marangoni number M = γ∆Td0/(2ρνκ), D = 3ρv/(2ρ), and C =

γ∆T/σ0, such that SC = 2M/(3P ). In addition, A = Ωd0ρ/(3µ
2Nb) and G =

−d3
0ρ

2g/(3µ2). Here, b = dprec/d0, where dprec is the precursor film thickness. Note

that Ω = σ0(1− cosΘ), and N = (n−m)/((n− 1)(m− 1)), where (n,m) = (3, 2) is

used ([68]).

The Table 2.1 lists values of the most important material parameters. We

concentrate on two types of pure liquids: IPA (isopropyl alcohol) and DIW (de-ionized

water), and two types of solid substrates: silicon (Si) and copper (Cu). The values
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for Tsat are obtained from Clausius-Clapeyron law (Eq. (2.1)). We make use of the

tabulated values for DHvap, psat, and R ([45]), while T0 and p0 are room temperature

(298K) and pressure (1atm) respectively. The values of volatility parameters α and

χ are obtained through experiments, discussed in Section 4.

2.5 The Lubrication Approximation

Next, we employ the lubrication approximation to simplify the problem. We rescale

the independent variables and expand the dependent variables in asymptotic series in

small parameter ε (wavenumber); upon substituting these expansions into our system

Eqs. (2.18 - 2.26), we solve for p, u, and w. The original coordinates x, z and t

become ξ, ζ and θ respectively, where ξ = εx, ζ = z and θ = εt. It is assumed that

u, J , T , and Ts are all O(1). This implies that w is O(ε), in order for Eq. (2.20) to

be valid. In addition, we assume that p and φ are both O(1/ε) ([7]). Therefore, the

dependent variables are expanded as follows: u = u0 + εu1 + . . . , J = J0 + εJ1 + . . . ,

T = T0 + εT1 + . . . , Ts = Ts0 + εTs1 + . . . , w = εw0 + ε2w1 + . . . , p = ε−1p0 + p1 + . . . ,

and φ = ε−1φ0 + φ1 + . . . . The film thickness is the unknown (h = h(ξ, θ)), and it

is assumed to be O(1). Next, we assume that D is O(ε3), E is O(ε), M , A and G

are all O(ε−1), and S is O(ε−3). Both K and P are assumed to be O(1). As a result,

all of the physical effects that have been discussed thus far are retained. Formally,

we write: D = D̂ε3, E = Êε, M = M̂ε−1, A = Âε−1, G = Ĝε−1, and S = Ŝε−3,

where D̂, Ê, M̂ , Â, Ĝ and Ŝ are all O(1). We note that these assumptions lead to

ŜC = 2ε2M̂/(3P ). As a result, when the shear stress is balanced by the Marangoni

forces in Eq. (2.26), the normal stress balance (Eq. (2.25)) is free of thermocapillary

effects at leading order.

To the leading order in ε, Eqs. (2.18 - 2.22) become (subscript ‘0’ is dropped

for simplicity)
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uζζ = pξ + φξ, −pζ = 0, uξ + wζ = 0, Tζζ = 0, [Ts]ζζ = 0. (2.28a, b, c, d , e)

The boundary condition at ζ = −d/d0 (the bottom of the solid layer) remains un-

changed (Ts = 1), and so do the boundary conditions at ζ = 0 (liquid-solid interface)

u = w = 0, Ts = T, −kTζ = −ks [Ts]ζ . (2.29a, b, c)

Finally, Eqs. (2.23 - 2.26) reduce to the following boundary conditions at the liquid-

gas interface (ζ = h(ξ, θ))

ÊJ = w − uhξ − hθ, J + Tζ = 0, (2.30a, b)

p =
3

2

Ê2

D̂
J2 − 3Ŝhξξ, uζ + 2

M̂

P
(Tξ + Tζhξ) = 0. (2.31a, b)

In addition to these boundary conditions, Eq. (2.14) provides expression for J(h)

when “lens” evaporation model is used. On the other hand, if NEOS evaporation

model is used, Eq. (2.16) gives additional boundary condition at ζ = h(ξ, θ).

The Governing Equation for the Liquid Thickness

First, the energy equations for the liquid and solid (Eqs. (2.28d) and (2.28e)) are

solved subject to the boundary condition at ζ = −d/d0 (Ts = 1), the boundary

conditions at ζ = 0 (Eqs. (2.29b) and (2.29c)) and ζ = h (Eq. (2.30b)), and ei-

ther Eq. (2.14) or Eq. (2.16). This yields the expressions for the liquid and solid

temperature in terms of the mass flux J(h)
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T = 1− (ζ +W) J, Ts = 1−
(
ζ +

k

ks
W
)
J, (2.32a, b)

whereW describes thermal effects in the solid and is given asW = kd/(ksd0). We use

d = 0.75mm as relevant solid thickness and note that W ∼ O(1) for all considered

liquid/solid configurations. When “lens” evaporation model is used, the expression

for J(h) is given by Eq. (2.14). If NEOS evaporation model is considered, we obtain

([24])

J =
1

h+K +W
. (2.33)

Note that K+W is dominant in the denominator of Eq. (2.33). Therefore, as h −→ 0

(close to contact line of the drop), J given by Eq. (2.33) remains bounded. Further-

more, for DIW, K +W ∼ O(10), so that J given by Eq. (2.33) has only a weak

dependence on h. On the other hand, J given by Eq. (2.14) diverges as h −→ 0. We

will see in Section 3 that this feature of J for “lens” evaporation model affects the

temperature profiles at both the liquid-gas and liquid-solid interfaces.

We proceed by considering Eq. (2.28b), which suggests that p 6= p(ζ). Using

the boundary condition at ζ = h given by Eq. (2.31a), we obtain the expression for

pressure p

p =
3

2

Ê2

D̂
J2 − 3Ŝhξξ. (2.34)

This expression for p and the expression for φ(h) given by Eq. (2.27), are substituted

into Eq. (2.28a). The velocity u is obtained by integrating twice with respect to ζ

and making use of Eq. (2.32a), and boundary conditions given by Eqs. (2.29a) and

(2.31b). The expression for u is then substituted into Eq. (2.28c) in order to solve

for w, which is obtained by integrating Eq. (2.28c) with respect to ζ and making use
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of the boundary condition given by Eq. (2.29a). The final step is the substitution

of expressions for u, w, J , D̂, Ê, M̂ , Â, Ĝ and Ŝ into mass balance boundary con-

dition given by Eq. (2.30b). This leads to a single nondimensional nonlinear partial

differential equation for the thickness of the drop h as a function of time and in-plane

coordinate x ([24])

∂h

∂t
+ EJ + S(h3hxxx)x −

E2

D

[
h3JJx

]
x

+
M

P

[
h2 (h+W) Jx

]
x

+
M

P

[
h2Jhx

]
x

+ A

[
h3

((
b

h

)3

−
(
b

h

)2
)
x

]
x

+G
[
h3hx

]
x

= 0. (2.35)

Eq. (2.35) is written in Cartesian coordinates and it is the governing equation for

evaporation of a planar drop (cross-section of a cylindrical drop) or a film. In order

to include effects of azimuthal curvature and consider the cross-section of a circular

drop, we rewrite Eq. (2.35) in polar coordinates for h = h(r, t)

∂h

∂t
+ EJ +

S

r

[
rh3

(
hrrr +

1

r
hrr −

1

r2
hr

)]
r

− E2

rD

[
rh3JJr

]
r

+
M

rP

[
rh2 (h+W) Jr

]
r

+
M

rP

[
rh2Jhr

]
r

+
A

r

[
rh3

((
b

h

)3

−
(
b

h

)2
)
r

]
r

+
G

r

[
rh3hr

]
r

= 0. (2.36)

Following a procedure similar to the one used in the derivation of Eq. (2.35),

we derive the evolution equation for 3d problem. The governing equation for evolution

of liquid thickness h as a function of time and in-plane coordinates x and y is given

as

∂h

∂t
+ EJ +∇ ·

[
Sh3∇

(
∇2h

)]
−∇ ·

[
E2

D
h3J∇J

]
+∇ ·

[
M

P
h2 (h+W)∇J

]
+∇ ·

[
M

P
h2J∇h

]
+∇ ·

[
Ah3∇

((
b

h

)3

−
(
b

h

)2
)]

+∇ ·
[
Gh3∇h

]
= 0.(2.37)
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The consecutive terms in Eqs. (2.35) and (2.36) describe viscous dissipation, evapo-

ration, capillary effects, vapor recoil, thermocapillary Marangoni effects (two terms),

disjoining pressure effect and gravity respectively. The Eq. (2.36) is going to be

solved numerically. The results of our numerical simulations are discussed in Chap-

ters 3 and 4. We note that in addition to divergence of J for “lens” model when

h −→ 0, our numerical code breaks down for the same limit. We use a single reg-

ularization mechanism to deal with both of these difficulties: the precursor film of

thickness b. The details regarding the size of b are given in Chapters 3 and 4.

The Eqs. (2.35), (2.36) and (2.37) can be used for describing evolution of

thickness for thin volatile films. Clearly, thin film configuration is incompatible with

the “lens” evaporation model. Therefore, only NEOS evaporation model will be

considered in that case.



CHAPTER 3

COMPUTATIONAL METHODS FOR EVAPORATIVE FILMS AND

DROPS

In this chapter we discuss details of the numerical code which will be used for solv-

ing Eqs. (2.35) and (2.37) for evaporative film configuration, and Eqs. (2.35), (2.36)

and (2.37) for evaporating drops. The numerical simulations of evaporating drops

will allow us to compare the two evaporation models with the experimental data.

First, we describe a finite difference-based numerical code, which we use for solv-

ing Eq. (2.35). We present details regarding space discretization of each term in

Eq. (2.35), boundary conditions, time discretization, and time step control. An ex-

tension of this code to cylindrical geometry is used for solving Eq. (2.36). Next, we

describe the 3d numerical code, which is used for solving Eq. (2.37). We list only

few details regarding space and time discretization for this code, and mainly focus on

describing ADI scheme which is used to handle the additional complexity introduced

by considering the second space coordinate, y. Finally, we conclude this chapter with

code validation, where we employ several tests in order to verify the validity of our

codes for non-volatile configurations.

As it has been described in Chapter 2, our theoretical model requires the use of

regularization mechanism in order to relieve both the usual difficulty in describing the

contact line motion, and the mass flux singularity which occurs for “lens” evaporation

model when h −→ 0. It is also apparent that Eqs. (2.35), (2.36) and (2.37) are

degenerate, in a sense that diffusivity h3 in the highest order term in each of the

equations vanishes as h −→ 0 ([18]). Therefore, our numerical method also requires

a regularization mechanism. This mechanism consists of introducing a thin precursor

32
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film which covers the numerical domain – a method which results naturally from the

disjoining pressure model used to describe solid-liquid interaction.

3.1 Numerical Codes for 2d Geometry

We first focus on a numerical code for solving Eq. (2.35). We recognize that aside

for the time derivative of thickness h, the highest-order term (capillary) and the

evaporation term, all other terms in Eq. (2.35) are similar in structure, and can be

written as

∂

∂x

[
Cdiff (h)

∂

∂x
F (h)

]
. (3.1)

For instance, Cdiff = Gh3 and F = h for the gravity term, while for the vapor recoil

term Cdiff = −(E2/D)h3J(h) and F = J(h). In order to simplify the description of

the numerical code, we consider a simplified version of Eq. (2.35)

∂h

∂t
= −S(h3hxxx)x −G

[
h3hx

]
x
. (3.2)

The approach identical to the one which we use for treating the gravity term in

Eq. (3.2) will be used for treating the rest of the lower order terms in Eq. (2.35).

3.1.1 Spatial Discretization

The numerical domain is defined as 0 ≤ x ≤ xmax. We use an uniform grid, where

constant ∆x is prescribed in view of precursor thickness b (∆x < b). The kth grid

point is denoted by xk, with 1 ≤ k ≤ N + 1. The method which we use for spatial

discretization of terms in Eq. (3.2) is second-order accurate finite-difference based

method. In particular we use central differences, which leads to the following system

of ordinary differential equations
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∂hk
∂t

= −fk, (3.3)

where fk is the discretization of the right-hand side of the Eq. (3.2).

First, we focus on the discretization of the capillary term, which is performed

in the following manner

∂

∂x

[
h3∂

3h

∂x3

]∣∣∣
k
≈ Sk+1sk+1 − Sksk

∆x
, (3.4)

where Sk is the discretization of the nonlinear diffusivity (h3), and sk is the discretiza-

tion of the third derivative term (hxxx). Both are centered in the middle of the element

[xk, xk−1]. The discretization of nonlinear diffusivity deserves closer attention. The

reason for this is following. Eq. (3.2) has an interesting property: it does not satisfy

the maximum principle ([17, 18, 42]). Hence, an initially positive data may lead to

a negative solution (h < 0). We note that even in problems where positivity of the

solution is guaranteed analytically, the computations may still produce ‘false’ singu-

larities (h ≤ 0). The occurrence of non-positive solutions is to be avoided, since it

introduces artificial instability and inaccuracy into the system. The standard finite

difference scheme yields the following expression for Sk

Sk =
hk

3 + hk−1
3

2
. (3.5)

Usually, the conventional finite difference schemes are ill-equipped for maintaining

the positivity of the solution. Therefore, we use a particular positivity-preserving

scheme (PPS), described in [18], which utilizes the idea of Lyapunov dissipation. In

particular, one can use the so-called Lyapunov ‘entropy’ dissipation

d
∫
LE(h) dx

dt
= −

∫
|∇2h|2 dx, (3.6)
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where LE(h)′′ = 1/h3, and therefore LE(h) ∼ 1/h, in order to show that positive

initial condition always yields a positive solution, at least for the planar case in one

space dimension ([18]). Hence, we use the discretized version of Eq. (3.6) to obtain

the expression for Sk

Sk =


hk−hk−1

ek−ek−1
= 2hk

2hk−1
2

hk+hk−1
if hk 6= hk−1,

hk
3+hk−1

3

2
if hk = hk−1,

(3.7)

where e(h) =
∫
h−3 dh = 1/(2h2). The expression for sk is given as ([17, 18, 42])

sk =
hk+1 − 3hk + 3hk−1 − hk−2

(∆x)3 . (3.8)

Next, we turn to the gravity term, which is discretized as

∂

∂x

[
h3∂h

∂x

]∣∣∣
k
≈ Gk+1gk+1 − Gkgk

∆x
. (3.9)

Here, Gk is the discretization of h3 term, for which we use averaging instead of the

positivity-preserving scheme

Gk =
hk

3 + hk−1
3

2
. (3.10)

The discretization of the first derivative term (hx) is given by

gk =
hk − hk−1

∆x
. (3.11)

The Marangoni, vapor recoil and disjoining pressure terms in Eq. (2.35) are

discretized using the same procedure as the one used for the gravity term. For exam-

ple, Cdiff = h3J(h) is discretized as
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h3J(h) ≈ hk
3J(hk) + hk−1

3J(hk−1)

2
, (3.12)

and F = J(h) as

∂J(h)

∂x
≈ J(hk)− J(hk−1)

∆x
. (3.13)

3.1.2 Boundary Conditions

In our work, we concentrate on problems for which it is convenient to assume no-flow

conditions at the boundaries of the numerical domain. These boundary conditions are

of Neumann type. They are implemented by requiring that the normal component

of the fluid flux hv vanishes at the boundaries of the numerical domain (x1 = 0 and

xN+1 = xmax). This requirement is satisfied when ([17, 18, 42])

∂h

∂x
=
∂3h

∂x3
= 0 (3.14)

at both x = x1 and x = xN+1. It is obvious that the discretization scheme which

we have described in Section 3.1.1 requires the use of a pair of fictitious grid points

outside the numerical domain at each boundary. The boundary condition given by

Eq. (3.14) provides the values of h at those ‘ghost’ points. In particular, these values

are mirror images of values of h at two interior adjacent grid points

h−1 = h3, h0 = h2, hN+2 = hN , hN+3 = hN−1. (3.15a, b, c, d)

The boundary conditions given by Eq. (3.15) ensure no net flux through the bound-

aries of of the numerical domain, which implies that the total liquid volume
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Vtotal =

∫ xmax

0

h(x, t) dx =
N+1∑
k=1

hk
n∆x (3.16)

remains constant in time for non-volatile case. In practice, the requirement of con-

stancy of liquid volume serves as a valuable tool for estimating the accuracy of the

solution ([17, 18, 42]). The numerical results which we present in this chapter (non-

volatile configuration only), preserve Vtotal with a relative error less than 10−11.

3.1.3 Time Discretization

The time discretization of Eq. (3.2) is performed using a θ-weighted scheme

hk
n+1 − hkn

∆tn
= −θfkn+1 − (1− θ) fkn, (3.17)

where hk
n stands for discretization of solution at time tn, ∆tn is the time step at time

tn, and fk
n is the discretization of the right-hand side of the Eq. (3.2) at time tn. Here,

θ = 0 corresponds to the forward Euler scheme (explicit and O(∆tn)), while θ = 1

corresponds to the backward Euler scheme, (implicit and O(∆tn)). Our approach

consists of using θ = 1/2 (Crank-Nicholson scheme), which is implicit and O((∆tn)2).

The Crank-Nicholson scheme adds to the complexity of the numerical code, with the

benefits of being O((∆tn)2) and numerical stability (it is unconditionally stable). We

note that Eq. (3.17) yields a system of N + 1 algebraic equations, which are to be

solved simultaneously. The difficulty is in the fact that these equations are highly

non-linear, due to the nature of right-hand side terms fk. Therefore, it is necessary to

linearize these equations, and they are solved using an iterative Newton-Kantorovich’s

method ([17, 18, 42]).

We briefly describe this iterative process next. The solution of Eq. (3.2) at

time tn+1 is given as
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hk
n+1 = hk

∗ + ck, (3.18)

where hk
∗ is a guess for solution at time tn+1, and ck is the correction. There are

several different approaches for choosing the guess hk
∗, and we use the simplest:

hk
∗ = hk

n (the solution at time tn). Upon substituting Eq. (3.18) into Eq. (3.17), we

obtain

ck + ∆tθf̃k = hk
n −∆t (1− θ) fkn − hk∗ −∆tθfk

∗, (3.19)

where f̃k and fk
∗ are fk’s calculated using ck and hk

∗ respectively. The linearization

of the non-linear terms in Eq. (3.19) is achieved in the following manner. We expand

these terms in Taylor series around the guess hk
∗

fk
n+1 = fk

∗ +
∂fk
∂hj

∣∣∣
hj
∗
cj, (3.20)

where summation over repeated index j is understood, and the derivative is calculated

using the guess hk
∗. After substituting Eq. (3.20) into Eq. (3.19), we obtain

[
δk,l + ∆tnθ

∂fk
∂hl
∗

∣∣∣∗] cl = Rk, (3.21)

where δk,l is Kronecker delta, and the right-hand side is

Rk = hk
n −∆t (1− θ) fkn − hk∗ −∆tθfk

∗. (3.22)

The iterations proceed in the following manner. Eq. (3.21) yieldsN+1 linear algebraic

equations, which are solved for the correction ck. If Q = maxk(ck) ≥ Qtol, where

Qtol ∼ O(10−10) is prescribed tolerance for the Newton-Kantorovich’s method, the
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guess hk
∗ is updated by ck. A new guess now becomes hk

∗ + ck and this procedure is

iteratively performed until Q < Qtol. At this stage, the Newton-Kantorovich’s method

has converged, and the guess used in the last iteration is taken as a candidate for

the solution at new time (hk
n+1). A set of checks, which are being performed on this

candidate solution before it is accepted as hk
n+1, are described in the next section. It

is important to note that the first two terms which comprise Rk in Eq. (3.22) involve

the ‘old’ solution hk
n only, and in the iterative process these terms are calculated only

once (at the first iteration). On the other hand, the last two terms on the right-hand

side (RHS) of Eq. (3.22) are calculated using the guess hk
∗, and hence they are being

re-calculated after every iteration, using the updated guess.

3.1.4 Error Control

The unconditional stability of the Crank-Nicholson scheme when applied to linear

second- and fourth-order parabolic problems is well known. However, for our non-

linear problem, with additional lower order terms, this is not clear. Therefore, one

needs to be careful when it comes to deciding the size of time step ∆t. There are

several issues which need to be considered.

The first requirement is accuracy related. Once the iterative method converges,

the obtained solution must satisfy the accuracy requirements. These requirements for

Crank-Nicholson scheme are formulated in the following manner ([17]). Keeping in

mind that the scheme is O((∆t)2), the relative error of the numerical solution at a

grid point xk is

Erk =
(∆tn)2

hk
n

∣∣∣∣d2hk
n

dt2

∣∣∣∣. (3.23)
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The expression for maximum error is obtained from Eq. (3.23) by multiplying the

expansions around hk
n and hk

n−1 by the time steps which have been used before and

after time tn (∆tn−1 and ∆tn) respectively, and finally summing ([17])

Ermax = max
1≤k≤N+1

[
2

∆tn

∆tn−1

∆tn−1hk
n+1 + ∆tnhk

n−1 − (∆tn−1 + ∆tn)hk
n

(∆tn−1 + ∆tn)hk
n

]
. (3.24)

It is required that Ermax < Tol, where Tol ∼ 10−3 is prescribed, in order for the

solution hk
n+1 (calculated using time step ∆tn) to be acceptable. If this requirement

is not satisfied, time step is halved and the iteration process is repeated.

The second requirement is concerning preservation of the positivity of the

solution. Since the solution has to be strictly positive, the time step is halved and

the iteration process is repeated if the hk
n+1 calculated using time step ∆tn is smaller

than some prescribed tolerance. Finally, we recognize that the guess for solution at

time tn+1 may not be close to the correct solution hk
n+1, possibly causing previously

described Newton-Kantorovich’s method to fail to converge in a reasonable number

of iterations, and hence, hampering the efficiency of the code. In such a case, time

step is again halved and the iteration process is repeated.

We use these three criteria to dynamically determine the size of the time

step. This process includes an additional time step recovery mechanism, which allows

for increase of time step after prescribed number of consecutive iterations converge

successfully.

3.1.5 Extension to Cylindrical Geometry

The focus of discussion in Sections 3.1.1- 3.1.4 has been on numerical code for solving

Eq. (2.35) for both films and drops. Identical approach regarding spatial and time

discretization, as well as boundary conditions and error control is used for deriving

a numerical code for solving Eq. (2.36) for drops. The only subtlety of this code is
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concerning the numerical domain and the positioning of the grid, which is required to

be shifted by ∆r/2 to the interior of the domain in order to avoid the consideration

of the grid point r = 0 (origin), for which the Eq. (2.36) is ill-posed. We note that

only minor modifications of the no-flux boundary conditions given by Eq. (3.16) are

required, which amount to keeping track of the new grid positioning.

In particular, the modified grid is given by: r1 = (1/2)∆r, r2 = (3/2)∆r,...,

rN = (N − 1/2)∆r. Note that rN+1 = (N + 1/2)∆r is outside of the numerical

domain. The no-flux boundary condition is enforced by ensuring that the flux at the

boundaries of the domain vanishes

h3 ∂

∂r

[
∂2h

∂r2
+

1

r

∂h

∂r

]∣∣∣
r=0

= 0, h3 ∂

∂r

[
∂2h

∂r2
+

1

r

∂h

∂r

]∣∣∣
r=rmax

= 0. (3.25a, b)

Eq. (3.25) leads to the boundary conditions

h−1 = h2, h0 = h1, hN+1 = hN , hN+2 =
(2N2 −N − 1)hN−1 + 2NhN

2N2 +N − 1
.

(3.26a, b, c, d)

3.1.6 Code Validation

The next step is the validation of our numerical codes for solving Eqs. (2.35) and (2.36).

An obvious way to achieve this is by comparing our numerical results with an ana-

lytical solution. However, known analytical solutions correspond to scenarios which

are much simpler than the ones modeled by Eqs. (2.35) and (2.36) in their full form.

We therefore consider non-volatile scenario, which eliminates evaporation, Marangoni

and vapor recoil terms from these equations. In addition, we also neglect disjoining

pressure effects, and consider a drop configuration. This leaves us with only the

fourth-order capillary term and the gravity term, and allows us to model spreading

of 2d planar (Eq. (2.35)) or radial (Eq. (2.36)) drops of completely wetting liquids

(Θ = 0) under the influence of surface tension and gravity.
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The analytical solution which we use for validation of our numerical codes is

the so-called Barenblatt solution ([4]). This is a self-similar solution, which models

the radial spreading of drops under influence of gravity only. We note that this

solution does not assume the presence of a precursor film, and hence we expect that

our numerical results approach the Barenblatt solution as thickness of the precursor

film used in our applications vanishes (b −→ 0). The numerical results presented

are obtained using a precursor film of thickness d0b ≤ 0.625µm. This choice will be

explained in more detail in Chapter 4. The Barenblatt solution gives the asymptotic

flow for any choice of initial condition. Here, we consider a spherical cap initial

condition, with volume of 5µl. Using length and time scales described in Chapter 2,

the Barenblatt solution is given by

R(t) = 2.37 (t)1/8, (3.27)

where R denotes the position of the contact line of the drop. We expect that our

numerical results should asymptotically approach the Barenblatt solution for R� lc,

where lc =
√
σ/(ρg) is the capillary length ([18]). We also expect that for precursor

thickness b which we use, our numerical results should exhibit an asymptotic behavior

with exponent 1/8 as in Eq. (3.27).

Figure 3.1 shows comparison of our numerical results for both planar and

radial drops and compares them against the Barenblatt solution (Eq. (3.27)). We

note that the asymptotic behavior of our numerical results in general agrees well with

the Barenblatt solution. The agreement between numerical results for radial drop

and Barenblatt solution are excellent: the asymptotic behavior for radial case follows

exactly exponent 1/8. This is not surprising, since this exponent is direct consequence

of global volume conservation ([18]). The exponent for planar drop is bit larger than

1/8. Furthermore, we note that even for large values of R, capillary effects may still
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Figure 3.1 The comparison of numerical results for spreading of 2d planar and
radial drops against the Barenblatt solution (Eq. (3.27)).

be quite relevant in the region close to the contact line. This is manifested especially

in planar case through an increase of exponent at late times, as seen in Figure 3.1.

3.2 Quasi-3d Numerical Code

In order to develop a numerical code for solving Eq. (2.37), we use methods which are

similar to those described in Section 3.1. The time discretization and error control are

identical to those for 2d codes, while the space discretization and boundary conditions

are extended to include an additional in-plane coordinate y. We omit those details

here to avoid repetition. Instead, we focus on the alternating direction implicit (ADI)

scheme, the use of which significantly reduces the complexity of the code. Our ADI

scheme is based on a similar scheme developed in [71] for non-linear fourth-order

parabolic problems.

We first explain in some detail the construction of the code for the case when

only the fourth-order term is considered

∂h

∂t
= −∇ ·

[
Sh3∇

(
∇2h

)]
, (3.28)
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where h = h(x, y, t). We follow closely [71]. The fourth-order term now contains

mixed derivatives, which further increase the complexity of the problem. Upon us-

ing θ-weighted scheme for time discretization of Eq. (3.28), we obtain the following

equation

[
I + θ∆t∇ ·

[
Sk,ln+1∇∇2

]]
hk,l

n+1 =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2

]]
hk,l

n, (3.29)

where we use the notation equivalent to the one in Section 3.1. We note that I is

an identity operator, while superscripts n and n + 1 denote times tn and tn+1. The

subscripts denote space discretization. Next, we make use of a factorization of the

operator on the LHS of Eq. (3.29), which has been derived in [71]

[
I + θ∆t∇ ·

[
Sk,ln+1∇∇2

]]
=[

I + θ∆t∂x
[
Sk,ln+1∂xxx

]] [
I + θ∆t∂y

[
Sk,ln+1∂yyy

]]
+

θ∆t∂x
[
Sk,ln+1∂xyy

]
+ θ∆t∂y

[
Sk,ln+1∂yxx

]
−

θ2∆t2∂x
[
Sk,ln+1∂xxx

]
∂y
[
Sk,ln+1∂yyy

]
, (3.30)

and write the solution at new time tn+1 as a sum of a guess (solution at time tn) and

the correction: hk,l
n+1 = hk,l

∗ + ck,l. Finally, we obtain

[I + θ∆t∂x [Sk,l∗∂xxx]] [I + θ∆t∂y [Sk,l∗∂yyy]] ck,l =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2

]]
hk,l

n −[
I + θ∆t∇ ·

[
Sk,l∗∇∇2

]]
hk,l
∗. (3.31)

The operator on the LHS of Eq. (3.31) can now be split into two: one which operates

exclusively in the x-direction and the other which operates in the y-direction only.
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Hence, Eq. (3.31) can be rewritten as a 2-step process

[I + θ∆t∂x [Sk,l∗∂xxx]]wk,l =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2

]]
hk,l

n −[
I + θ∆t∇ ·

[
Sk,l∗∇∇2

]]
hk,l
∗, (3.32)

and

[I + θ∆t∂y [Sk,l∗∂yyy]] ck,l = wk,l. (3.33)

We note that both the x-step (Eq. (3.32)) and the y-step (Eq. (3.33)) require lineariza-

tion of non-linear terms. For this purpose, we use Newton-Kantorovich’s method,

which has been described in Section 3.1. Both x- and y- steps involve this iterative

procedure. Once the iterative procedure converges to wk,l in the x-step, the wk,l

is used as a RHS for the y-step. Once the iterative procedure in the y-step con-

verges to correction ck,l, the guess hk,l
∗ is updated. This procedure continues until

Q = maxk,l(ck,l) < Qtol, when the candidate for solution hk,l
n+1 is checked against

the three criteria described in Section 3.1.4.

We use similar procedure to construct the 3d code for the case when gravity is

taken into account along with the fourth-order term. The equation which we consider

is the 3d equivalent of Eq. (3.2)

∂h

∂t
= −∇ ·

[
Sh3∇

(
∇2h

)]
−∇ ·

[
Gh3∇h

]
. (3.34)

Using a θ-weighted scheme for time discretization yields

[
I + θ∆t∇ ·

[
Sk,ln+1∇∇2 + Gk,ln+1∇

]]
hk,l

n+1 =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2 + Gk,ln∇

]]
hk,l

n. (3.35)
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We modify the factorization of the LHS given in Eq. (3.30) in order to allow for

consideration of any lower order term (e.g. gravity)

[
I + θ∆t∇ ·

[
Sk,ln+1∇∇2 + Gk,ln+1∇

]]
=[

I + θ∆t∂x
[
Sk,ln+1∂xxx + Gk,ln+1∂x

]] [
I + θ∆t∂y

[
Sk,ln+1∂yyy + Gk,ln+1∂y

]]
+

θ∆t∂x
[
Sk,ln+1∂xyy

]
+ θ∆t∂y

[
Sk,ln+1∂yxx

]
−

θ2∆t2∂x
[
Sk,ln+1∂xxx + Gk,ln+1∂x

]
∂y
[
Sk,ln+1∂yyy + Gk,ln+1∂y

]
. (3.36)

Upon using this factorization and writing the solution at new time tn+1 as a sum of

a guess (solution at time tn) and the correction: hk,l
n+1 = hk,l

∗ + ck,l, we obtain

[I + θ∆t∂x [Sk,l∗∂xxx + Gk,l∗∂x]] [I + θ∆t∂y [Sk,l∗∂yyy + Gk,l∗∂y]] ck,l =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2 + Gk,ln∇

]]
hk,l

n −[
I + θ∆t∇ ·

[
Sk,l∗∇∇2 + Gk,l∗∇

]]
hk,l
∗. (3.37)

After splitting the operator on the LHS of Eq. (3.37) into one which operates ex-

clusively in the x-direction and the other which operates in the y-direction only, we

obtain a 2-step process

[I + θ∆t∂x [Sk,l∗∂xxx + Gk,l∗∂x]]wk,l =[
I − (1− θ) ∆t∇ ·

[
Sk,ln∇∇2 + Gk,ln∇

]]
hk,l

n −[
I + θ∆t∇ ·

[
Sk,l∗∇∇2 + Gk,l∗∇

]]
hk,l
∗, (3.38)

and

[I + θ∆t∂y [Sk,l∗∂yyy + Gk,l∗∂y]] ck,l = wk,l. (3.39)

We omit further details since they are identical to the ones listed for Eqs. (3.32)

and (3.33).
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Figure 3.2 Spreading of a non-volatile circular drop (numerical results). (a) t = 0;
(b) t = 0.3; (c) t = 0.7; (d) t = 1. Note that the circular symmetry of the drop is
preserved as the spreading proceeds.

Finally, we note that the rest of the lower order terms in Eq. (2.37) are treated

using the same approach as the one we have described here for the gravity term. We

note that the factorization of the LHS of Eq. (3.35) does not allow for inclusion of

terms which have no derivatives. Hence, the evaporation term is treated explicitly.

Code Validation

We validate our 3d numerical code by considering spreading of non-volatile drops.

For efficiency, we use precursor films of larger thickness (d0b = 10µm).

The first test to which we subject our code is radial spreading of a circular

drop. The initial condition is a spherical cap of volume 5µl, while the contact angle

is Θ = π/30. The numerical results are shown in Figure 3.2, and they confirm that

our code maintains the circular symmetry of the drop in addition to preserving mass.
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Figure 3.3 Spreading of an initially elliptic drop (numerical results). The initial
condition (t = 0) is shown in (a); the final state (t = 0.01) is shown in (d); the circular
symmetry is already achieved at t = 0.003 in (b).

Next, we examine the elliptical spreading problem, where a non-volatile drop

with initially elliptical symmetry ([17]) spreads subject to gravity, surface tension

and disjoining pressure. The results are shown in Figure 3.3, which indicates that, in

addition to preserving mass, the code confirms the expected transition from elliptical

to circular symmetry.

Finally, we use our code to simulate the coalescence of two non-volatile sessile

drops, which spread simultaneously on a horizontal solid substrate. This exercise pro-

vides an excellent test for capabilities of our 3d code: it considers both the spreading

process and the phenomena of coalescence. We consider a completely wetting fluid,

which corresponds to choosing contact angle Θ = 0. Similar test has been performed

in [17]. The initial condition consists of two identical spherical caps, positioned in

the numerical domain such that their respective centers are at (0, 0) and (0, yM+1).
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Figure 3.4 Coalescence of non-volatile sessile drops (numerical results). (a) t =
0: the initial condition; (b) t = 0.0033: the spreading stage; (c) t = 0.0066: the
configuration during coalescence; (d) t = 0.01: after coalescence.

The initial radius of each drop is R ≈ 0.9, and the size of the computational domain

is chosen so that the spreading phase occurs before coalescence (yM+1 > 2).

The numerical results are shown in Figure 3.4. The spreading phase is shown

in Figure 3.4(b), as it precedes the actual coalescence, which is shown in (c). The

contact between two drops breaches the radial symmetry of each drop. We note

that in this case, as in [17], the mirror symmetry with respect to the line x = 0 is

preserved. In addition, the symmetry with respect to the lines y = 0 and y = yM+1

is also preserved. Therefore, we can use this set-up to simulate the coalescence of an

infinite array of equidistant drops, which are located along the x = 0 line, with centers

at ..., −2yM+1, −yM+1, 0, yM+1, 2yM+1,.... Since in that case each drop coalesces with

only two neighboring drops, it is sufficient to carry out the simulations in the first

quadrant only ([17]). In addition, our code can also handle the situation where two
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isolated drops collide, but in that case the size of the computational domain cannot

be reduced using the symmetry argument.



CHAPTER 4

EVAPORATIVE DROPS: EXPERIMENTS AND NUMERICAL

SIMULATIONS

The volatility parameters are the final pieces of our modeling puzzle which we have

started assembling in Chapter 2. The tools which we have developed in Chapter 3

will allow for comparison of numerical results for the two evaporation models against

the experimental data. We first focus on goniometer experiments and present the

techniques which we use for capturing the dynamics of volatile drops. Next, we discuss

methods for calculating the volatility coefficients from the experimental data. Finally,

we perform numerical simulations of Eq. (2.36) for the two evaporation models and

compare these results against numerical data in order to decide which evaporation

model is more appropriate in a particular physical situation.

4.1 The Experimental Procedure

The main goal of the experiments is twofold: first, they provide data regarding the

rate of mass loss and allow to estimate the values of volatility parameters χ and

Figure 4.1 The goniometer: camera, syringe and the deposition platform.

51
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α; second, the experimental data regarding evolution of the drop volume and the

position of the contact line will provide benchmark for the two theoretical models.

We carry out the experiments using a goniometer (KSV CAM 200), which

consist of a camera, light source, static deposition platform, and a Hamilton 1001 Gas-

Tight syringe, all of which are shown in Figure 4.1. The experiments are performed at

room temperature and in open atmosphere, making precautionary measures to shield

the experiment from possible sources of air convection. The syringe is used to deposit

a drop of desired volume onto a solid substrate. We perform a series of experiments

with DIW drops evaporating on Si and Cu solid substrates. Pure liquid and solids

with semiconductor grade smoothness are used. The camera records series of images

of drop’s profile at pre-set time instants. The software analyzes each image and, using

spherical cap approximation, yields height and radius of a drop. Using these data,

we monitor variation of surface area and volume of the drop as evaporation proceeds.

Figure 4.2 shows four such images recorded during evaporation of a ∼ 4.9µl drop of

DIW on a Si substrate.

The images are recorded at time instances t1, t2, ..., tN , which are 8s apart. The

data consists of radius of the drop R(tk) = Rk, height of the drop H(tk) = Hk, and

the contact angle Θ(tk) = Θk for any time instant tk, where k = 1, ..., N . Figure 4.3

shows the resulting radius and volume of evaporating DIW drop on Si substrate as a

function of time. In agreement with other works, we find linear decrease of volume

for the considered time interval ([13, 15, 22, 33, 40]). We note that the experimental

data that we have obtained, show no contact line pinning for any of the solid/liquid

configurations considered. This confirms our modeling assumption that the drop

contact line moves freely. It has been reported by other authors (e.g. [33, 40]) that

pinning of the contact line of evaporating drops of water is to be expected. There

are several possible explanations for this difference. First, in [33], each drop contains

small tracer particles, which are deliberately injected in order to allow for visualization
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Figure 4.2 Snapshots of evaporating DIW drop on Si substrate, as recorded by the
experimental setup at 56s (top left) , 256s (top right), 440s (bottom left), and 536s
(bottom right).

of the drop profiles as evaporation proceeds. While these tracers are unlikely to affect

the drop shape, they may enhance the pinning of contact line. Second, in [33] plain

glass substrate is used, and therefore surface roughness is significantly larger than the

one of solid substrates we have used (both Si and Cu wafers are semi-conductor grade

of maximum surface roughness of 0.5nm). Increased surface roughness is known to

induce pinning of the contact line. In any case, our experiments support the argument

that contact line pinning is not a generic feature of problems involving evaporating

drops, and therefore, contact line should be allowed to move.

Using the collected data, we calculate the evaporation flux J totk valid for each

time interval [tk, tk+1]

J totk =
ρ∆Vk

Savgk∆tk
, (4.1)
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Figure 4.3 Evolution of volume and radius of a drop of DIW on a Si substrate.

where ∆Vk = Vk − Vk+1, ∆tk = tk+1 − tk, and Savgk = (Sk + Sk+1) /2. The sequence

[J totk] is used to estimate the values of volatility coefficients χ and α, as discussed

next.

4.2 From Experimental Data to Volatility Coefficients

The volatility coefficients χ and α are crucial ingredients, without which comparison

between experimental results and simulations of Eq. (2.36) cannot be undertaken. The

estimation of the values of χ and α from experimental data is achieved in the following

manner. The evaporation rate Jratek (for time interval [tk, tk+1]), which is estimated

from experimental data (Jratek = SavgkJ
tot
k), corresponds to the surface integral of

J(h) for particular evaporation model. We note that the integral is calculated over the

surface recorded in the experiment at time instant tk+1 (the experimentally recorded

values for Hk+1 and Rk+1 describe the spherical cap surface at time tk+1). The validity

of the spherical cap approximation has been confirmed by analyzing the experimental

images.

The surface integrals of mass flux J(h) are calculated using either expression

for J(h) given by Eq. (2.14) in case of “lens” model, or by Eq. (2.33) in case of

NEOS model. We note that the divergence of expression for J given by Eq. (2.14)

as h −→ 0 (or equivalently as r −→ R(tk+1)), causes singularity of the corresponding
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surface integrals. Since we make use of precursor film for our theoretical (numerical)

solution of the problem, the use of precursor film of same thickness in calculations of

surface integrals of mass flux remedies not only the singularity of integrals for “lens”

model, but also ensures that volatility coefficients correspond exactly to the set-up in

numerical simulations of Eq. (2.36). In our choice of appropriate value for b, we are

guided by the requirement that the mobility of the contact line and the rate of mass

loss should not depend on b in any significant manner. We have found that for d0b ≤

0.625µm this requirement is satisfied. Coincidentally or not, this value is consistent

with the equilibrium adsorbed film thickness d0be for which evaporation stops due to

attracting solid-liquid forces ([2]). For the appropriate parameters, we find d0be ≈

0.5µm. We note that consideration of attractive solid-liquid forces automatically

regularizes otherwise singular expression for J in the “lens” model ([66]). Without

inclusion of these effects, an additional externally added regularization of J has to be

included in order to correctly compute the total mass flux. We capture the presence of

the adsorbed film in our experiments using the microscope/high-speed camera set-up,

but we do not study its thickness.

The surface integral of the mass flux J(h) (dimensional form) is given as

Jratek =

∫
Sk+1

J dS =

∫ ∫
Tk+1

J(ρ)

[
∂ρ

∂x
× ∂ρ

∂y

]
dx dy. (4.2)

Here, Sk is the surface of the drop at time tk. The quantity multiplying J(ρ) in the

double integral is a Jacobian, where ρ = (x, y, z) and z = fk(x, y) =
√
Bk

2 − (x2 + y2)−

dk + b is the spherical cap at time tk. Eq. (4.2) can be rewritten in the following form

Jratek =

∫ ∫
Tk+1

J(fk+1)

√
1 +

(
∂fk+1

∂x

)2

+

(
∂fk+1

∂y

)2

dx dy. (4.3)
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Similar expression for evaporation rate, involving surface integral of mass flux J has

been used previously by other authors (e.g., see [15, 33]). On the other hand, in [8, 9,

25, 26, 27, 28, 59] and [61], volatility parameter is calculated from experimental data

without using surface integrals of J ; they consider only integrals over circular base of

the drop, which are non-singular.

For “lens” evaporation model, Eq. (2.14) is substituted into Eq. (4.3), which

is then rewritten in polar coordinates as follows

Jratek =∫ 2π

0

∫ Rk+1

0

Jexpkr(√
Bk+1

2 − r2 − dk+1 + b
)ψ
√

1 +
r2

Bk+1
2 − r2

dr dϑ. (4.4)

We note that a different approach is used in [33] in order to overcome the singularity

of the integrand: instead of using a precursor film, the kernel
√

1 + r2/(Bk+1
2 − r2) is

approximated by an expansion, on a semi-empirical basis. We treat Jexpk as constant

for each time interval [tk, tk+1] and finally arrive at expression for Jexpk

Jexpk =
SavgkJ

tot
k

2πBk+1Ik+1

, (4.5)

where Ik+1 is the following integral

Ik+1 =

∫ Rk+1

0

r√
Bk+1

2 − r2
(√

Bk+1
2 − r2 − dk+1 + b

)ψ dr, (4.6)

which is calculated numerically for each k = 1, ..., N − 1. We can therefore cal-

culate the value of volatility coefficient χ, valid for time interval [tk, tk+1]: χk =

Jexpk/(d0
ψJsc). In order to obtain the value of χ valid for time interval [tk, tk+l], we

simply consider the average of values χk, ...χk+l−1. Finally, since ψ is a function of

contact angle Θ, the value of contact angle used in calculating χ is the same as the
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value which will be used for solving the Eq. (2.36) numerically. More details regarding

the value of Θ are given in Section 4.3.

In the case when NEOS evaporation model is used, Eq. (2.33) is the appropri-

ate expression for J(h). We use a procedure similar to the one described for “lens”

evaporation model, and obtain the following surface integral of J (dimensional form)

Jratek =∫ 2π

0

∫ Rk+1

0

Jscd0r
√

1 + r2

Bk+1
2−r2√

Bk+1
2 − r2 − dk+1 + b+ (d0 (K(αk) +W))

dr dϑ, (4.7)

where Jsc is the mass flux scale for the problem, defined in Section 2.3, and K is given

by Eq. (2.17). While it was easy to factor Jexpk out of the integral in Eq. (4.4), the

same does not hold for K(αk) in Eq. (4.7), making the calculation of αk a bit more

complex. A simple manipulation of terms in Eq. (4.7) yields

SavgkJ
tot
k = 2πd0JscBk+1Ξk+1(αk), (4.8)

where Ξk+1(α) is the following integral

Ξk+1(αk) =

∫ Rk+1

0

r√
Bk+1

2 − r2(d0 (K(αk) +W)− dk+1 + b) +Bk+1
2 − r2

dr. (4.9)

The problem of solving for αk is recast into a minimization problem, where αk mini-

mizes the function

Γ(αk) =

∣∣∣∣ SavgkJ totk2πd0JscBk+1

− Ξk+1(αk)

∣∣∣∣, (4.10)
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Figure 4.4 Time variation of volatility coefficients for the DIW/Si and DIW/Cu
configurations for the first 106.7s. Stars indicate calculated values, dashed lines indi-
cate corresponding average value. (a) DIW/Si, “lens” model: χ = (1.3± 0.2) · 10−2;
(b) DIW/Si, NEOS model: α = (0.8± 0.1) · 10−6; (c) DIW/Cu, “lens” model:
χ = (1.5± 0.4) · 10−2; (d) DIW/Cu, NEOS model: α = (0.8± 0.2) · 10−6.

which is solved numerically. Just as it has been the case with χk, αk is valid for the

interval [tk, tk+1]. In order to obtain the value of α valid for the time interval [tk, tk+l],

we simply consider the average of values αk, ..., αk+l−1.

In view of arguments in Section 2.3 regarding ψ, we use ψ = λ for DIW/Si

configuration, and ψ = 2λ for DIW/Cu. Note that the calculation of values of χ for

both DIW/Si and DIW/Cu configurations is performed using the expression for λ

given in [33].

We expect that the method for calculating volatility coefficients χ and α out-

lined in this Section is more accurate than simply using the measured dryout time

to estimate the mass flux, since at late stages of evolution, evaporation rate may be

reduced ([13, 40]).
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Figure 4.4 shows the volatility parameters χ and α for DIW/Si and DIW/Cu

configurations over a time interval of 106.7s (stars). We note that Figure 4.4 shows

that, while there is some noise in our experimental data, the values of both volatility

coefficients do not exhibit tendency for growth or decay as evaporation proceeds,

and remain close to their respective mean values. Small values of α’s are consistent

with the values given in [16] and [47], taking into account reasonable possibility of

contamination of DIW by surfactants ([47]). The possibility of having very small

accommodation coefficient α has also been suggested by other authors (see, e.g. [10]).

Therefore, such small values are not surprising, although they are very different from

some recent works (e.g. [70]). we note that the values of volatility coefficient χ which

we have calculated are consistent with the ones obtained in [27]. The comparison of

the calculated values of volatility coefficients for DIW/Si and DIW/Cu configurations

indicates good agreement with recent experimental results reported in [11], which

suggest that a liquid (DIW) experiences increased volatility on a solid characterized

by larger heat conductivity (Cu).

Finally, we ensure the quality of our experimental data through comparison

with the experimental results from [33]. In particular, we consider data regarding

evaporation of a small water drop on a glass cover slip, with pinned contact line.

We apply the same procedure to these experimental data and obtain χ = 1.2 · 10−2

and α = 0.7 · 10−6. These values are in excellent agreement with the results for χ

and α obtained from our own experimental data. Therefore, we have independent

confirmation that our experimental results are reasonably accurate.

4.3 Numerical Simulations, Comparison with the Experimental Results

and Discussion

In order to compare the two evaporation models with the experimental results, we

perform numerical simulations of Eq. (2.36). We utilize the numerical code developed
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in Chapter 3. It is an extension of the one used in [24] to cylindrical geometry. All

numerical simulations are performed using thin precursor film of thickness d0b =

0.625µm.

The main goal of the present discussion is to point out differences between

numerical results for the two evaporation models. Furthermore, by comparing the

results to experimental data, we are able to indicate situations in which one evapora-

tion model is more favorable than the other. First, we focus on DIW configurations

and perform numerical simulations using volatility coefficients calculated in Section 4.

We implement the expressions for λ from both [15] and [33]. Numerical results for

evolution of contact line position and volume are compared directly to experimental

data, while the results for interface temperatures are compared directly between the

two models. Next, we consider IPA configurations and briefly describe the methods

used to calculate corresponding volatility coefficients.

4.3.1 DIW Configurations

We perform numerical simulations for DIW/Si configuration using both “lens” and

NEOS evaporation model. The simulations are carried out for the time interval for

which we have calculated χ and α in Section 4.2 ([0, 106.7s]). First, we compare nu-

merical results for evolution of volume and contact line position with the experimental

data, in order to establish which evaporation model is more appropriate. Only at this

stage, we use both available expressions for λ. We note that the value of χ calculated

in Section 4.2 corresponds to use of λ from [33]. In order to utilize the expression

from [15], it is necessary to use corresponding value of volatility coefficient. We apply

the approach from Section 4.2 and obtain χ = 1.16 · 10−2.

The initial condition for each simulation has the same radius and height as

the experimentally measured data for corresponding drop at time t = 0 (R(0) =

2.0695mm and H(0) = 0.692mm). The initial condition is developed from a spherical
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Figure 4.5 Comparison of numerical and experimental results for evaporating drop
of DIW on Si substrate. “Lens 1” refers to case when λ from [15] is used; “Lens 2”
when λ from [33] is used. (a) Evolution of drop volume; (b) Evolution of contact line
position.

cap profile, which has been evolved for a short time with non-volatile version of our

code (J set to 0), in order to insure smoothness of the initial profile. The volume

corresponding to the initial condition developed in such a way is identical to the

experimental volume at time t = 0 (4.828µl), while the contact angle is slightly larger

than the experimental value at time t = 0 (Θ(0) = 42o compared to experimentally

measured 39o). Our numerical code makes use of the value for Θ which is identical to

the contact angle of the initial profile (Θ(0) = 42o). Same value of Θ has been used

in calculating volatility coefficient for “lens” model (χ). The validity of lubrication

approximation even for such large values of contact angle Θ has been confirmed in [33].

Figure 4.5(a) shows results for volume of the evaporating drop as a function of

time. We find very good agreement between experimental results and NEOS model,

while the “lens” model overestimates the volume loss. In fact, it turns out that

numerical result for volume of the drop at t = 106.7s using NEOS model is within 0.4%

of experimentally measured volume at the same time. Next, we find that the version

of “lens” model which uses λ from [33] does better than the one which uses λ from [15]

(within 10.4% compared to within 17.7% from the experimental data for volume at

the final time, respectively). In Figure 4.5(b), we present the results for evolution of
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contact line position for the three evaporation models and the experimental results for

the first 106.7s. This time, the differences between evaporation models are smaller

than in Figure 4.5(a). The NEOS model is still in much better agreement with

experimental results compared to both variants of “lens” model, but all considered

models overestimate the mobility of the contact line. As before, “lens” evaporation

model based on [33] does better than the one based on [15]. Judging by the results

shown in Figure 4.5, we conclude that at least for the DIW/Si configuration, NEOS

model predicts better the volume loss compared to the “lens” model. The same is true

for prediction of contact line position, but to a lesser degree. The reason why “lens”

model performs worse than NEOS model can be connected to former’s tendency to

predict increased mobility of the contact line. Calculation of volatility coefficients in

Section 4.2 relies on assumption that the drop maintains spherical cap shape. We

suspect that for “lens” evaporation model this assumption may not hold as well as

for the NEOS model, due to increased mobility of contact line. This argument will be

reexamined later in this section, when we compare temperature profiles for the two

models. The results in Figure 4.5 also show that, at least for DIW/Si configuration,

“lens” model based on [33] performs better than the one based on [15]. Hence, from

this point on, we use only the model based on [33].

We proceed by offering further evidence of significant difference between “lens”

and NEOS models. Figure 4.6 shows variation of the drop profile, where identical

initial condition is evolved until t = 106.7s using the two evaporation models. It is

also of interest to examine the temperature distributions at the liquid-gas interface.

Figure 4.7 shows numerical results for temperature profiles at the liquid-gas interface

at t = 106.7s for DIW/Si configuration. These results are obtained under the same

conditions as the results shown in Figure 4.6. Clearly, the two evaporation models

predict qualitatively different temperature profiles at the liquid-gas interface. We re-

call that the temperature of the liquid-gas interface is determined by the competition
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Figure 4.6 Numerical results for evaporating drop of DIW on Si substrate: evolu-
tion of drop profile during time interval [0, 106.7s]. The initial condition is indicated
by a dashed line, while the profile at t = 106.7s is indicated by a full line. (a) “Lens”
evaporation model; (b) NEOS evaporation model.

Figure 4.7 Numerical results for DIW/Si configuration: the temperature of liquid-
gas interface at t = 106.7s for “lens” and NEOS evaporation models.
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Figure 4.8 DIW/Si configuration: mass flux J as a function of radial coordinate r
at t = 106.7s. Full lines represent J , dotted lines represent corresponding drop profile
t = 106.7s. Note that vertical axes correspond to J only. (a) “Lens” evaporation
model; (b) NEOS evaporation model.

between thermal conductivity through the liquid and solid, and evaporative cooling.

Figure 4.7 shows that the outcome of this competition is very different for the two

considered evaporation models. An increase of temperature as one moves from the

center of the drop toward the contact line in the NEOS model is the consequence of

the fact that the heat supplied from the solid in the contact line region exceeds the

heat lost due to evaporation. We note that this result is supported by experimental re-

sults reported in [11], where miniature thermocouple was used for measuring interface

temperature, and it was found that it is possible for temperature to be highest in the

contact line region. Similar conclusion was drawn from experimental data reported

in [49], where infra-red imaging technique was used for measuring interface tempera-

ture. The “lens” model, on the other hand, predicts significantly larger evaporative

flux in the contact line region, leading to a sharp decrease of temperature there. This

argument is supported by Figure 4.8, which shows mass flux J at t = 106.7s as a

function of radial coordinate r.

An increase of temperature as one moves away from the center of the drop

toward the contact line is consistent with the results in [22, 31] and [64], obtained

using “lens” evaporation model, and similar values of Θ, and liquid and solid thermal
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conductivities, although under the assumption of pinned contact line (and in case

of [22], heated solid substrate). However, the results presented in Figure 4.7 for

“lens” model predict a ‘stagnation point’ at which temperature gradient changes

sign. Although based on different physical grounds, the presence of a stagnation

point was discussed in [15] as one of the necessary factors for formation of ring-like

deposits occurring during evaporation of colloidal drops. We note that stagnation

point in temperature profile disappears as contact angle Θ is decreased. Numerical

simulations for “lens” evaporation model for smaller values of Θ lead to monotonically

decreasing temperatures along the liquid-gas interface as one moves away from the

drop center, in full agreement with the results in [31] and [64]. However, we note that

the temperature drop for “lens” evaporation model in Figure 4.7 is ∼ 1oC, which

is much larger than 0.02oC, reported in [31]. We expect that the reason for such a

difference is in the size of drops. From [31] and [33], one finds that at the time when

the temperature is reported the volume of the drops is ≈ 0.59µl, therefore much

smaller than the volume here. The difference in size translates to significantly larger

surface area in our case, leading to larger overall mass loss. In addition, a larger

drop implies larger variation in drop thickness between the center of the drop and the

contact line, and hence results in larger temperature drop, in view of the dependence

of the mass flux J on drop thickness h described by Eq. (2.14). Combination of

these factors leads to a possibility that in [31], where the cooling is already smaller

than in our case, the liquid thermal conductivity effect starts seriously hampering the

cooling effects due to evaporation, to the point where top of the drop (which is further

away from the liquid-solid interface) is cooler than the region close to the contact line

(closer to the liquid-solid interface), even though the cooling due to evaporation is

larger at the contact line. Finally, we note that in Section 2.3, where Eq. (2.14) has

been derived, an assumption of small contact angle has been used in order to simplify
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Figure 4.9 Numerical results for DIW/Si configuration: the temperature of liquid-
solid interface at t = 106.7s. (a) “Lens” evaporation model; (b) NEOS evaporation
model.

the complex expression in Eq. (2.13). The fact that we use Θ ∼ 40o here, possibly

has some effect on our numerical results.

Figure 4.9 shows numerical results for temperature profiles at the liquid-solid

interface for the two evaporation models. We note that the temperature gradients for

these two models are in the same direction at this interface. This is in contrast to

the liquid-gas interface, where they were oppositely directed (see Figure 4.7).

In order to further analyze the influence of the gas phase on evaporation, we

have carried out additional experiments where mild air current is applied externally.

Figure 4.10 shows the comparison of experimental results for evolution of J tot and

Jrate during the time interval [0, 350s] for convection-free ((a) and (b)) and convected

((c) and (d)) configuration. The results shown in Figure 4.10 do not indicate any

statistically significant increase in mass flux nor evaporation rate when convection

of air is externally applied. This suggests that air convection in the gas does not

affect strongly the regime in which evaporation proceeds, at least for the considered

configuration. It is clear that convection could increase the rate at which vapor

is being removed away from the liquid-gas interface, and as such, it is expected

that the evaporation rate should increase if convection is significant. In light of
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Figure 4.10 Influence of convection on experimentally measured evaporation fluxes
J tot and evaporation rates Jrate for DIW/Si configuration during the time interval
[0, 350s]. Stars indicate experimental measurements, dashed lines indicate corre-
sponding average values. (a) convection-free: J tot = 0.4±0.1g/(m2s); (b) convection-
free: Jrate = 5.1 ± 1.4µg/s; (c) convected: J tot = 0.7 ± 0.4g/(m2s); (d) convected:
Jrate = 9.5± 5.9µg/s.
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Figure 4.11 Numerical results for DIW/Cu configuration using “lens” evaporation
model for the time interval [0, 106.7s]. (a) Contact line position R and volume V of
the drop as functions of time; (b) Evolution of drop thickness; (c) Liquid-gas interface
temperature at t = 106.7s; (d) Liquid-solid interface temperature at t = 106.7s.

the results shown in Figure 4.10, we conclude that the evaporation rate is rather

insensitive to manner in which vapor moves away from the interface, and therefore,

that vapor motion (diffusion, convection or combination of the two) is not limiting

the evaporation process. Hence, it appears that the NEOS model is more appropriate

to describe evaporation of DIW drops on silicon solid wafers ([53]).

Finally, in Figure 4.11, we present numerical results for evolution of drop

thickness for for DIW/Cu configuration during the time interval [0, 106.7s]. In light

of results for DIW/Si, we focus on NEOS evaporation model exclusively. We use

the corresponding volatility coefficient α calculated in Section 4.2, while the initial

condition is obtained from experimental data for DIW/Cu configuration. We note

that the temperature gradients at both interfaces are qualitatively similar to the ones

for DIW/Si configuration. The temperature drop at the liquid-gas interface is slightly

larger than for DIW/Si, due to increased thermal conductivity of Cu compared to Si
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solid. Hence, the inward flow (from the contact line toward the center of the drop) is

somewhat more pronounced in the case of DIW/Cu, resulting in decrease in rate of

mass loss when compared to DIW/Si.

4.3.2 IPA Configurations

Next, we apply these two evaporation models to a more volatile IPA drop, evaporating

on a Si solid substrate. This configuration is characterized by a small contact angle

(Θ ∼ 6o). Since the two available expressions for λ become identical as Θ −→

0, it does not matter which expression we use here. For simplicity, we continue

using expression from [33]. Due to small contact angle, in our experiments we are

unable to accurately follow the evolution in the manner it was possible for DIW/Si

configuration, since the drop quickly becomes very thin. However, we can extract

initial profiles and the dryout time with reasonable accuracy. For V0 = 3.2µl, we find

tdry = 135s. We use this dryout time to obtain the required volatility coefficients:

χ = 4.65 · 10−2 and α = 2.5 · 10−6. As expected, the volatility coefficients in this case

are larger than their counterparts for DIW, due to increased volatility of IPA. Similar

values of χ were obtained in experiments with pure alkanes in [27]. Implementing

these values of χ and α, we perform numerical simulations of Eq. (2.36) using the

parameters appropriate for IPA/Si configuration ([24, 44]). The results of numerical

simulations are compared qualitatively with experimental results from [9, 25, 27]

and [61] for alkanes (hexane through nonane).

The initial condition for our simulations corresponds to an experimentally mea-

sured profile soon after the deposition (R = 3.723mm, H = 0.147mm and Θ = 6o).

Smooth initial condition is developed in the same manner as for DIW/Si configura-

tion. The initial volume in the simulations corresponds to the volume measured in

the experiment immediately after the deposition (3.2µl).



70

Figure 4.12 Comparison of numerical results for evaporating drop of IPA on Si
substrate for “lens” and NEOS evaporation model. Time interval: [0, 106.7s]. (a)
Evolution of drop volume; (b) Evolution of contact line position.

Figure 4.12(a) shows numerical results for the evolution of volume for the

two evaporation models. The agreement between “lens” and NEOS model does not

surprise, since volatility coefficients χ and α have been estimated from experimentally

measured dryout time. On the other hand, Figure 4.12(b) shows dramatically different

evolution of the contact line position R(t) for the two models, which is discussed

below. First, we note that the results for “lens” model in Figure 4.12(b) suggest

two distinct phases in the evolution of the contact line position: swift spreading

motion initially, followed by even more pronounced receding motion. Qualitatively

similar behavior was seen previously in experiments with hexane, heptane, octane and

nonane drops ([9]). In addition, in [25] and [61], series of experiments were performed

with hexane, heptane and octane drops in order to examine dependence of maximum

extent of spreading (Rmax) on initial volume of the drop (V0). Initial volumes in the

range [0.01µl, 10µl] were examined, and it was found that this dependence follows

a power law of form Rmax = CaV0
Cb , where Ca ≈ 3 and Cb = 0.4 for all considered

alkanes. In order to compare our evaporation models against these experimental data,

we perform numerical simulation using the same parameter values as before, but now

with hemispherical initial conditions (Θ(0) = 90o) of volume 1µl, 3.2µl, 6µl and 8µl,

and measure the maximum extent of spreading. The hemispherical initial conditions
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Figure 4.13 Numerical results for IPA drops: Maximum extent of spreading Rmax

as a function of initial drop volume V0. Line “Slope 0.4” corresponds to Rmax = 3V0
0.4.

are used in order to simulate more realistically the profiles at time t = 0 when the

drops are deposited onto the solid substrate. Figure 4.13 compares our numerical

results against a power law (the “Slope 0.4” line). It shows that both evaporation

models exhibit a power law behavior with exponent ≈ 0.4. In addition, the results

for “lens” model can be fitted almost exactly to Rmax = 3V0
0.4, which is in excellent

agreement with the experimental results in [25] and [61].

Motivated by the experimental results in [25] and [61], we use the microscope

and high-speed camera set-up (see Chapter 5) to measure the diameter of IPA drops

during the spreading stage. A syringe is used to manually deposit≈ 7.9µl drops of IPA

onto a Si solid, and the position of the contact line during the subsequent spreading

motion is being tracked. Our experimental data indicates that the maximum diameter

of ≈ 14mm is achieved 25s after the deposition. We perform numerical simulations

for IPA/Si configuration, using the two evaporation models, in order to compare the

numerical results with the experimental data. In order to realistically simulate the

spreading motion from the moment of deposition, the initial condition is a hemisphere

of volume 7.9µl. The results are shown in Figure 4.14. The maximum radius Rmax =

6.72mm is achieved in 27s for “lens” model, which is in excellent agreement with the

experimental data. On the other hand, NEOS model underestimates the mobility of

the contact line.
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Figure 4.14 The contact line position R as a function of time for IPA/Si configu-
ration using the two evaporation models. The initial condition is a 7.9µl hemisphere.
Rmax = 6.72mm is achieved in 27s for “lens” model.

Figure 4.15 IPA/Si: evolution of drop profile during time interval [0, 106.7s]. The
initial condition is indicated by a dashed line, while the profile at t = 106.7s is
indicated by a full line. (a) “Lens” evaporation model; (b) NEOS evaporation model.

Based on the results in Figure 4.12(b), it is clear that the drop profiles for the

two evaporation models are very different. Figure 4.15 shows corresponding results.

Figure 4.16 shows temperature profiles at the liquid-gas interface for the two

evaporation models, and provides immediate understanding of the results in Fig-

ure 4.12(b). The Marangoni forces act in opposing directions for “lens” and NEOS

models, leading to a very different evolution, as seen in Figures 4.12(b) and 4.15.

The Marangoni forces for “lens” model act outwards, leading to initial spreading (see

Figure 4.12(b)), in spite of the mass loss due to evaporation. The difference between

the temperature profiles for the two evaporation models is much more pronounced
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Figure 4.16 IPA/Si: the temperature of liquid-gas interface at t = 106.7s for “lens”
and NEOS evaporation model.

Figure 4.17 IPA/Si: the temperature of liquid-solid interface at t = 106.7s. (a)
“Lens” evaporation model; (b) NEOS evaporation model.

in the case of IPA compared to DIW, due to its larger volatility. We also note that

unlike for DIW, “lens” model for IPA exhibits monotonically decreasing temperatures

along the liquid-gas interface. This is due to increased volatility of IPA and smaller

value of contact angle Θ, in agreement with [31].

Figure 4.17 shows temperature profiles at the liquid-solid interface for the two

evaporation models at t = 106.7s. Similarly to DIW configurations, we find that

the temperature gradients for the two models are qualitatively alike at this interface,

which is in contrast to the gradients at the liquid-gas interface (see Figure 4.16). In

addition, Figure 4.17 indicates that the temperature gradient for the “lens” model is

much larger than the one for NEOS model.
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Figure 4.18 Volume evolution for IPA/Si configuration with and without
Marangoni forces for time interval [0, 106.7s]. (a) “Lens” model; (b) NEOS model.

Next, we examine more precisely the influence of Marangoni forces on the

evolution. For this purpose, we carry out simulations where Marangoni number is

M = 0. Figures 4.18 and 4.19 show results for time evolution of volume and radius

for the two models with and without Marangoni forces. The results in Figure 4.18

confirm that Marangoni forces have significant effect on mass loss for both models.

Figure 4.18(a) shows that when M = 0 for “lens” model, the rate of mass loss is sig-

nificantly decreased. On the other hand, for NEOS model, M = 0 causes the increase

of evaporation rate, as shown in Figure 4.18(b). Exclusion of Marangoni forces, in

general, reduces mobility of the contact line for “lens” model (Figure 4.19(a)): it

completely suppresses initial spreading, and reduces the amount of receding motion.

Figure 4.19(b) shows that for NEOS model, exclusion of Marangoni forces prevents

initially swift receding motion.

For “lens” model, Marangoni forces enhance initial spreading, with the par-

ticularly strong outward flow in the region close to the contact line, due to large

temperature gradient there (see Figure 4.16). The Marangoni induced outward flow

in a region closer to the center of the drop is less pronounced and therefore cannot

keep up with the fast flow close to the contact line. As a result, the liquid in the

vicinity of the contact line is being propelled outward, forming a thin ‘stretching’

layer, which spreads faster than the bulk drop and ‘extends’ the contact line region.
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Figure 4.19 Radius evolution for IPA/Si configuration with and without Marangoni
forces for time interval [0, 106.7s]. (a) “Lens” model; (b) NEOS model.

Figure 4.20 shows several drop profiles for the early (spreading) stage of the evolution

([0, 10.67s]) for “lens” evaporation model with M 6= 0. The stretching of the contact

line region, which enhances mass loss, is clearly visible. Initially, the liquid lost from

the ‘super’-volatile thin zone is being successfully replenished by the liquid from the

bulk, and the spreading continues. At some stage of spreading, the liquid being lost in

the stretching zone cannot be replenished any more, and due to ensuing mass loss, the

receding phase sets in. When Marangoni forces are neglected, no spreading occurs, as

shown in Figure 4.19(a). Without the described thin stretching layer, which accounts

for the largest portion of mass loss, evaporation rate declines sharply, as shown in

Figure 4.18(a). The receding motion is entirely due to mass loss, and therefore the

decrease in evaporation rate causes slower receding motion.

For NEOS model, the Marangoni forces act in the opposing direction compared

to the “lens” model (see Figure 4.16). Also, the temperature gradient is uniform, un-

like for “lens” model, where it is compressed to a region close to the contact line.

Therefore, the Marangoni induced flow along liquid-gas interface is inward and uni-

form. It causes rapid receding motion shown in Figure 4.19(b). As a result, the

surface area of the drop is decreased, while the drop thickness is increased. The rate

of mass loss is therefore smaller, due to dependence of the mass flux J on drop thick-

ness h (see Eq. (2.33)). We note that this dependence is rather weak, as discussed in
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Figure 4.20 IPA/Si: the evolution of the drop thickness for time interval [0, 10.67s]
for “lens” evaporation model.

Figure 4.21 Liquid-gas interface temperature for IPA/Si configuration with and
without Marangoni forces. (a) “Lens” evaporation model at t = 106.7s; (b) NEOS
evaporation model at t = 86.7s (≈ dryout time for NEOS model with M = 0).

Section 2.3. When M = 0, the swift initial receding motion is suppressed, as shown

in Figure 4.19(b). This prevents the decrease of surface area and the increase in drop

thickness. The resulting evaporation rate is increased compared to M 6= 0. The main

driving mechanism for receding motion of contact line is mass loss, and therefore,

when M = 0, the overall extent of receding motion is larger compared to M 6= 0.

Figure 4.21 shows temperature profiles at the liquid-gas interface for the two

models with and without Marangoni forces. Qualitatively, the temperature gradients

are not affected by exclusion of Marangoni effects. The quantitative differences,

which are especially pronounced in Figure 4.21(b), are simply due to the effects that

Marangoni forces have on both the contact line motion and the evaporation rate.
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Figure 4.22 Numerical results for IPA/Cu configuration using “lens” evaporation
model for the time interval [0, 106.7s]. (a) Contact line position R and volume V of
the drop as functions of time; (b) Evolution of drop thickness; (c) Liquid-gas interface
temperature at t = 106.7s; (d) Liquid-solid interface temperature at t = 106.7s.

In view of results presented thus far, we conclude that “lens” evaporation

model performs better than NEOS model in situations when more volatile liquid (e.g.

IPA) is considered. Such a conclusion is not surprising. First, Biot number for IPA/Si

(Bi ∼ 10−1) is an order of magnitude larger than the one corresponding to DIW/Si

case (Bi ∼ 10−2), making the Bi → 0 limit (reaction-limited regime) less applicable

for IPA/Si ([53]). Furthermore, increased volatility in case of IPA translates into

increased vapor production. Finally, the density of IPA vapor is twice larger than

the one for DIW, possibly hampering the rate at which vapor is being removed away

from the evaporating interface. Combination of these factors may lead to evaporation

which proceeds in the diffusion-limited regime instead of reaction-limited one, typical

for NEOS model.

Finally, we also show results of numerical simulations for the IPA/Cu config-

uration in Figure 4.22. We focus on the “lens” model, which has been shown so far
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to be more appropriate for IPA/Si case. The volatility parameter χ = 0.6 · 10−2 and

the contact angle Θ = 9o which we use here are estimated from our experiments with

the IPA/Cu configuration. The initial condition is obtained using the same proce-

dure as in the case of IPA/Si configuration, and the simulations are performed for

the time interval [0, 106.7s]. Figure 4.22(a) shows the time evolution of drop radius

R and volume V . We find that the motion of the contact line is strictly receding,

in contrast to the results obtained for IPA/Si-“lens” configuration. In addition, the

overall mass loss during the given time interval is smaller than for the IPA/Si case

(see Figure 4.12). Figure 4.22(b) shows how these two factors influence the drop

profile at time t = 106.7s. The explanation for such a behavior is supplied by Fig-

ure 4.22(c), which shows that the temperature gradient at the liquid-gas interface is

directed in the opposing direction when compared to IPA/Si configuration (see Fig-

ure 4.16). This change is caused by increased thermal conductivity of Cu substrate

when compared to Si: (ks/k)IPA/Cu ∼ 103 compared to (ks/k)IPA/Si ∼ 10. Therefore,

our results are in agreement with the results in [64], where a study of the contact line

region was performed using asymptotic methods, and it was found that the drop is

warmest at the contact line when the ratio ks/k is large. As a result, the Marangoni

flow along the liquid-gas interface is directed from the contact line toward the center

of the drop. This enhances receding motion of the contact line, reduces the surface

area of the interface, and hence, reduces the rate of mass loss.



CHAPTER 5

INSTABILITIES OF EVAPORATING FILMS AND DROPS

We devote this chapter to “octopus”-shaped instabilities which occur ahead of the

contact line of evaporating IPA drops on Si solids substrates, and related instabil-

ities which occur for volatile IPA-DIW mixtures. We start with the description of

“octopi” experiments which have been performed by our collaborators and served as

a motivation for this work. We proceed by presenting our own experimental data

concerning “octopi” and other interesting instabilities. Finally, we conclude with

theoretical exploration, involving linear stability analysis (LSA) and numerical simu-

lations of Eqs. (2.35), (2.36) and (2.37) using the numerical codes from Chapter 3 and

the evaporation models from Chapters 2 and 4, with an intention of gaining a bet-

ter understanding of the mechanism responsible for these instabilities and recovering

their main features.

5.1 Octopus-shaped Instabilities: Initial Experiments

The initial experiments were conducted at KLA-Tencor, San Jose, California. The

drops of IPA or IPA-DIW mixtures of a typical size of 30− 50mm3 are deposited on

wafers of monocrystalline Si of thickness 0.75mm ([24]). The wafer surface is either

bare or coated with copper (Cu) film. All of the materials used are of semiconductor

grade quality. The solid surfaces are treated by chemical-mechanical polishing, pro-

ducing surface roughness (rms) of 0.5nm for Si and 1nm for Cu surfaces ([24, 54]).

The measurements were performed under clean room conditions at 25◦C, using a

Sony AL 100M microscope with a video camera attached to it. It has been verified

that possible heating of the surface by microscope illumination does not influence the

results ([24, 54]). Additionally, the presence of the microscope does not influence the

79
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Figure 5.1 Formation of “octopi” during spreading of IPA on Si surface ([24]). The
bands on the right-hand side are due to Newton interference fringes. White arrows
indicate the path of the satellites. On the scale shown (≈ 200×300µm) the azimuthal
curvature of the (mother) drop is invisible. The insets show uniformity of the “octopi”
(top inset) and synchronous pulse-like emission of satellites (bottom inset).

state of the gas phase in the vicinity of liquid-gas interface. The temperature of the

solid is not set, and is allowed to vary during the drying process.

Figure 5.1 illustrates the experimental observation, which is one of the moti-

vations for this work. As a (mother) drop of IPA is deposited on a surface, it expands

and ejects fluid ahead of its front. This material nucleates into smaller (head) drops

all around its perimeter, followed by smaller (satellite) drops which travel along the

paths already traversed by the head drops. These structures (nicknamed “octopi”

since the head drop appears as an octopus body and streams of satellite drops as sev-

eral tentacle arms) occur just for a particular liquid-solid configuration and belong in

turn to a wider family of patterns which may form in evaporative systems ([24]). The

octopi appear to be separated from the mother drop, bear no similarity to phenom-

ena of droplet formation by re-condensation, and occur only for a pure surfactant-free
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Figure 5.2 Spreading of 1:1 mix of DIW and IPA ([24]). Drop size is approximately
5mm. The darker color indicates increased fluid thickness. Time progresses left to
right and top to bottom, with the interval between the images≈ 1.5s. The bottom row
illustrates the merge of individual cells just prior to wave generation (close to image
10). Note formation of radial ridges during early stages of instability development.

liquid. What further distances these instabilities from previously described types and

makes them unique thus far, are features such as complexity of the octopi and the fact

that they appear to function as a single object while actually consisting of multiple

but disconnected parts.

Figure 5.1 shows “octopi” formation, which occurs (only) for one of the four

configurations considered (two liquid and two solid types), and that is an IPA drop on

Si surface. The “octopus”-shaped patterns are robust and have occurred consistently

in all experiments involving this liquid-solid combination ([24]). During the initial

period after deposition, the drop front spreads, the drop quickly reaches the thickness

of few fractions of a millimeter, and the fluid is ejected through the front, forming the

head drops spaced regularly around the perimeter. Behind the head drops, satellites

propagate, which are either emitted by the front itself or nucleated at some distance
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ahead. These satellites increase in size by merging and/or picking up some material

from the prewetted trail left by the head drops. This prewetted trail leads to faster

motion of satellites and to their focusing toward the head drops. It seems likely that

both effects are due to enhanced satellite motion on this prewetted trail. Eventually,

the satellites catch up with the head drops and merge, returning the mass and kinetic

energy lost to the interaction with the substrate, formation of prewetted trail, and

evaporation ([24]). This eventually leads to perhaps surprising fact that the head

drops move with exactly the same speed as the drop front itself. Therefore, the

structures shown in Figure 5.1 are steady in the moving frame translating with the

speed of the front ([24]). Note that the satellites are often generated in temporal

pulses during which a radial wave of satellites is emitted all around the perimeter

(viz. Figure 5.1, lower inset). A possible explanation of this effect can be reached by

considering IPA-DIW mixture, discussed in what follows.

So far, the attention has been focused on the first, expanding part of the drop

evolution. This part, which lasts≈ 40−50s, is followed by contraction phase (≈ 5−7s)

during which the remaining film quickly retracts toward the center, evaporating and

disintegrating into multitude of swiftly evaporating micro-droplets. The head drops

move forward for a while longer, and then stop. The fact that the “octopi” do not

retreat together with the film edge additionally shows that there is no physical link

between the “octopi” and the mother drop.

The spreading of IPA-DIW mixture drops also leads to instabilities, but of

different types. Figure 5.2 shows that in case of 1 : 1 mixture, the drop front develops

unsteady patterns (cells). At some stage of evolution, the individual cells start to

converge and form a peripheral ridge (viz. the bottom row of Figure 5.2). This ridge

propagates or collapses toward the center of the drop and then rebounds inducing

global oscillatory motion. A similar effect is expected to be responsible for global

synchronous emission of satellites for pure IPA drop. It is important to note that



83

propagation of the waves across the drop surface may lead to a variety of effects,

including formation of dry spots.

5.2 Literature Review

The problem of stability of evaporating thin films has been under continuous attention

of scientific community for the past three decades, with abundance of experimental

results becoming available only recently due to the advancement of nano-technology,

and other areas of possible application. It has become apparent that certain advanced

nano-devices are very sensitive to the residues, called watermarks, which appear on

the semiconductor wafer surfaces when liquid micro-drops or thin films are left to

dry. The formation of watermarks has been analyzed (e.g. see [14, 23]), however the

clarification of their origin is still lacking. This particularly refers to settings which are

relevant to industrial applications ([62]). Additional features, such as the formation

of dry spots resulting from film integrity breakage, are of considerable relevance as

well, and these have often been connected to various hydrodynamic instabilities which

occur in evaporative films ([23]).

Curiously shaped instabilities, appearing close to the contact line of volatile

drops, have been reported previously. Note that the “octopus” shapes, which are the

focus of the attention, appear to be separated from the mother drop. In contrast,

most previously observed patterns, such as “festoons” ([63]), “fingers” ([8, 23]), or

the drops in electric fields ([52]), are connected to the main fluid body. Furthermore,

the instabilities reported here are clearly very different from the droplet formation

which results in re-condensation ([59]). Also notice that “octopus” shapes appear for

pure liquids, in contrast to instabilities in the presence of surfactants ([50]).

Possible mechanism which explains the early phase of the drop evolution,

where satellites are accelerating along the prewetted trail and focusing toward the

head drops has been introduced in connection to controlling instabilities arising in
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thin film flows ([43]). The formation of ridges which is observed for configurations

involving both IPA and its mixtures, has been reported in connection to thermally

driven thin films, where temperature difference along the solid has been imposed

([37]). The ridges have been reported to collapse toward the center of the drop and

then rebound, inducing global oscillatory motion ([38]).

5.3 Experiments Carried Out at NJIT

Motivated by the experiments described in Section 5.1, we set out to perform simi-

lar experiments, using solid wafers supplied by our collaborators. The experiments

are carried out in the Capstone Laboratory of the Department of Mathematical Sci-

ences, NJIT. The recording equipment consists of Photron 1024PCI high-speed cam-

era mounted on top of Nikon Eclipse LV100P polarizing microscope, so that a view

from the top is established and microscope’s mobile stage allows for accurate track-

ing of the contact line. Two different magnifications are used: 20x which provides a

2.5mm x 1.75mm viewing window, and 40x which provides a 0.6mm x 0.4mm view.

All experiments are performed in room conditions (1atm, 50% relative humidity,

25oC). Volatile drops of initial volume of ≈ 8µl are deposited onto a solid substrate

manually, using a Hamilton gas-tight syringe. The set up is shown in Figure 5.3.

Series of experiments are performed in a short time span of only a few hours,

with each experiment repeated multiple times. Various liquid-solid combinations were

examined. The liquids used were either aqueous solution of IPA, with varying IPA

content (70% IPA or 91% IPA), or pure semiconductor grade IPA. The substrates

which we use are either semiconductor grade silicon wafers (thickness 0.5mm, surface

roughness 0.5nm) or plain microscope glass slides (thickness 1.1mm, pre-cleaned).

The temperature of the substrate is not controlled.
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Figure 5.3 The microscope/high-speed camera set-up.

A collage of movie files presenting the most interesting features of these ex-

periments has been showcased in [55]. We note that a larger collection of movie files

of the experiments, along with numerous images can be viewed at [1].

First, we show several results where the solid type is fixed, while IPA-DIW

mixtures of varying IPA content are used. We intend to show how change in concen-

tration of the more volatile component in the mixture influences the size and shape

of instabilities which occur at the contact line. The solid is a glass slide.

Figure 5.4 shows the beautiful mushroom-shaped instabilities which occur

when a drop of 70% IPA mixture spreads on a glass slide. The view is 2.5mm x

1.75mm. The mushroom-like features appear uniformly (both in size and shape) along

drop’s perimeter. Figure 5.4 shows an early stage in evolution. As the drop spreads,

neighboring mushroom-like features coarsen and form larger and larger mushroom

heads. Eventually, as spreading subdues, remaining large mushroom heads collide to

form a perimeter ring. Figure 5.5 shows the typical instability which occurs when con-

centration of IPA in the mixture is increased to 91%. The size of the features which
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Figure 5.4 2.5mm x 1.75mm viewing window: spreading of a drop of 70% IPA
mixture on a glass slide.

Figure 5.5 0.6mm x 0.4mm view: three distinct stages in spreading of a drop of
91% IPA mixture on a glass slide. The time progress is shown left to right and top
to bottom.
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appear at the contact line is now significantly smaller when compared to mushroom-

shaped instabilities in Figure 5.4. The view in Figure 5.5 is hence reduced to 0.6mm

x 0.4mm. In addition, the increase of IPA content causes more rapid spreading. At

first, bumps of various sizes appear on (and not ahead of) the contact line, as can

be seen on the top left picture in Figure 5.5. Soon, as the spreading continues, the

film between neighboring bumps ruptures, which is seen in the top right picture in

Figure 5.5. These bumps then break away ahead of the contact line, becoming either

mushroom-like (bottom picture in Figure 5.5) or finger-like patterns of wide range of

sizes, all smaller than the features seen in Figure 5.4. Neighboring patterns do not

coarsen as before, but instead a ridge forms along the perimeter of the drop, some dis-

tance behind. As the spreading of the main body of drop stops, the patterns continue

their forward motion for a short while. Eventually, as this forward motion subdues,

rupture occurs in the thin valley behind the ridge, leaving the patterns stranded as

the main body of the drop recedes in a dramatic fashion.

Finally, as concentration of IPA increases to 100% (Figure 5.6), the nature

of the instability changes yet again. The size of the features is similar to those in

Figure 5.5 and smaller than those in Figure 5.4. The view is 0.6mm x 0.4mm. Small

comet-like circular objects appear ahead of the spreading contact line (top pictures

in Figure 5.6). These are mostly uniform in shape and size along the perimeter, and,

from the very start, each appears to be connected to the main body of the drop only

through a very narrow tail, which becomes less visible as spreading motion proceeds.

Eventually, as the spreading of the main drop stops, the comet-like objects are pushed

some distance ahead of the contact line (bottom picture in Figure 5.6), loose their tails

completely, and remain stranded as the main body of the drop shrinks to complete

dry-out.

The recording of images in figures shown in this section requires tracking of the

contact line position. Although this tracking is performed with an utmost care, we
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Figure 5.6 0.6mm x 0.4mm view: the spreading of a drop of pure IPA on a glass
slide. The time progress is shown left to right and top to bottom.
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Figure 5.7 2.5mm x 1.75mm viewing window: spreading of a drop of 70% IPA
mixture on a glass slide, with externally induced convection in the gas phase.

are concerned that the motion of the microscope stage in order to follow the spreading

motion of a drop disturbs the gas phase above. Therefore, we perform an experiment

with 70% IPA mixture on a glass slide, where we introduce external air current in order

to examine the sensitivity of the size and shape of the instabilities on convection in the

gas phase. Mild air current is provided using a ventilator. The results are shown in

Figure 5.7. Even though the convection is applied, the evolution proceeds in a manner

similar to the situation where no external convection is considered. The mushroom-

shaped instabilities which occur are identical in size, shape and distribution to the

instabilities shown in Figure 5.4. In addition, the evaporation rate is not altered in

any significant manner. We conclude that, at least for this specific configuration (70%
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Figure 5.8 2.5mm x 1.75mm viewing window: spreading of a drop of 70% IPA
mixture on a Si wafer.

IPA mixture on a glass slide), convection in the gas phase does not play a significant

role on the dynamics of drop spreading.

Next, we focus on Si solid and perform a similar study, where influence of IPA

concentration in mixtures on the size and shape of the instabilities is examined. The

most significant difference between Si wafers and glass slides is surface roughness. We

begin with 70% IPA mixture. The results are shown in Figure 5.8. The spreading

of the drop is less rapid then in case when glass slide is considered, and we are able

to capture the early stage of instability formation. This fascinating beading process

(pictures on top in Figure 5.8) occurs in isolated zones ahead of the expanding contact

line. The beads appear simultaneously in quartets, quintets or sextets and eventually

grow into mushroom-like features, resembling those from Figure 5.4 (bottom picture
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Figure 5.9 0.6mm x 0.4mm viewing window: spreading of a drop of pure IPA
mixture on a Si wafer. Notice the “octopus” shaped instabilities similar to the ones
in Figure 5.1.

in Figure 5.8). These mushrooms are not uniform and grow in a variety of shapes

and sizes. Neighboring mushrooms interact and coarsen to form larger mushrooms,

making the late stages of this process similar to those for the case when glass slide

is used. Next, we increase the IPA content in the mixture to 91%. The evolution

proceeds in a manner which is indistinguishable to the one described for same liquid

on a glass slide. Hence, we omit these results and move on to pure IPA drops spreading

on Si wafers. The results are shown in Figure 5.9. Elliptical objects appear ahead

of the contact line of a spreading drop. These object are smaller than the ones seen

in other figures in this section, and appear to be perfectly uniform in both size and

shape. A steady stream of smaller satellite drops (several tentacle arms) connects

each elliptical head to the main body of the drop. The appearance of these objects is

identical to “octopi” captured in the experiments described in Section 5.1, showing

the robustness of this instability process. As before, the neighboring “octopi” do not

coarsen, and, as spreading continues, they maintain uniform distance ahead of the

contact line (the picture on the left in Figure 5.9). As the spreading motion of the

main drop is brought to a halt, the “octopi” continue spreading ahead of the contact

line a while longer (the picture on the right in Figure 5.9).
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Figure 5.10 0.6mm x 0.4mm viewing window: spreading of a drop of pure IPA
mixture on a Si wafer in an enclosed environment (saturated gas phase).

Finally, we examine the influence of the saturation of the gas phase on the

appearance of “octopi”. For this purpose, we perform experiments with spreading

drops of pure IPA on a Si wafer in an enclosed environment heavily doped with IPA

vapor. The results are shown in Figure 5.10. Although the saturation of the gas

phase has some influence on the evaporation rate, the “octopi” still appear, and their

dynamics are in many ways identical to the case when experiment is performed in

open air. One noticeable difference is in the size of “octopi”, which appear to be

somewhat larger than before, and exhibit slight non-uniformity in shape and size (see

picture on the right in Figure 5.10). Our discussion in Chapter 4 suggests that the

“lens” evaporation model is more appropriate for IPA/Si configuration. The situation

where gas phase is saturated with vapor certainly makes the evaporation process lean

toward the diffusion-limited regime.

The experimental results presented in this section provide an excellent moti-

vation to consider the combination of thermal and ‘solutal’ Marangoni effects, such

that surface tension depends both on temperature and concentration gradients. This

approach may provide explanation for the transition in the shape and size of the

instability as the concentration of IPA in the mixture is varied.
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5.4 Theory and Computations

In this section, we use our evaporation models developed in Chapter 2, and employ

the numerical codes from Chapter 3 and volatility coefficients from Chapter 4 in order

to perform numerical simulations of Eqs. (2.35), (2.36) and (2.37) for pure liquid films

and drops. We wish to recover the main features of the “octopus”-shaped instability

seen in experiments and described in Sections 5.1 and 5.3. First, we start with linear

stability analysis (LSA) of Eq. (2.35) for thin film configuration to determine which

liquid-solid set-up is most vulnerable to perturbations. We proceed by confirming the

LSA predictions with numerical results for both 2d and 3d films. Next, we consider

simulations for 2d planar and radial volatile drops and obtain instabilities, which are

compared with the experimental data. Finally, we perform quasi-3d simulation of

volatile drops, and explore the stability of a particular liquid-solid configuration to

azimuthal perturbations.

5.4.1 Linear Stability Analysis

The analysis of the governing equation is to continue in two different directions. In the

first direction, the linear stability analysis (LSA) of a flat infinite film is considered,

exploring whether instability can be expected for the relevant physical parameters in

this simplified geometry. In second, the focus switches to fully nonlinear numerical

simulations, which are discussed in the following section. Even though the governing

equation (2.35) is strongly nonlinear, the hope is that the use of linear theory will

clarify the influence of different physical mechanisms on the stability of the interface.

We note that only NEOS evaporation model is appropriate here. The values of

parameters are in accordance with the discussion in Chapter 4.

The scaling is employed before proceeding any further, in order to simplify

Eq. (2.35) by removing parameters A and S: X = (A/S)1/2x and T = (A2/S)t ([7]).

The rescaled Eq. (2.35) becomes
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∂h

∂T
+

E
h+K +W

+ (h3hXXX)X

+

[(
Dh3

(h+K +W)3
+

KMh2

(h+K +W)2

)
hX

]
X

+
[
h3
(
(b/h)3 − (b/h)2)

X

]
X

+ G(h3hX)X = 0, (5.1)

where E = ES/A2, D = E2/(DA), M = M/(PA), and G = G/A. The LSA is

performed by perturbing a flat film by a harmonic perturbation of a given wavelength

λ, i.e., the disturbance h′ will be assumed to have normal modes of the form h′ =

H(T )eikX , where k is disturbance wavenumber (not to be confused with thermal

conductivity), and H(T ) is assumed to be of form H(T ) = δeωT , where δ is a small

number, and ω is referred to as the growth rate of the disturbance; λ is given by

(2π)/k. It is of interest to obtain the expression for ω(k). Positive (negative) growth

rate will result in instability (stability). The value of k for which ω(k) = 0 will be

referred to as a critical wavenumber kc. Corresponding critical wavelength will be

denoted as λc.

Due to the presence of the evaporation, the base state is a thinning liquid

layer. Therefore, it is necessary to consider small perturbations of a base sate, which

depends on T , but is X-independent ([7])

h = −(K +W) +
[
(K + 1)2 − 2ET

] 1
2 . (5.2)

Next, h = h+ h′ is substituted into Eq. (5.1) and linearized, neglecting all but linear

terms in h′. The resulting expression for ω(k) is
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, (5.3)

where R = (K + 1)2−2ET . We note that according to Eq. (5.3), ω(0) > 0, indicating

instability at zero wavenumber. This is an artifact arising due to consideration of

an unsteady base state (Eq. (5.2)). In particular, the mass loss effect enters the

right-hand side of Eq. (5.3) algebraically through term E/R. The comparison of the

perturbation growth rate with the rate of change of the unsteady base state (e.g.,

see [7]) allows us to neglect this spurious term in further discussion.

In order to verify the complicated growth rate expression (Eq. (5.3)), it is cast

into different forms corresponding to special regimes, which will be described in what

follows. This will allow for comparison of the results which have been obtained so far

with those from the previous works (e.g. [7]). Note that Eq. (5.3) is a growth rate

expression which incorporates the influences of all relevant physical effects.

First, we consider the isothermal regime. The corresponding expression for

growth rate ω is obtained from Eq. (5.3) by letting K = 0 and neglecting evaporation

(E = 0). Furthermore, gravity effects and substrate heat conduction effects are

ignored as well. The expression for growth rate is thus greatly simplified: the thin
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liquid layer is now subject to capillary and disjoining pressure effects only. Hence,

the base state is simply h = 1. The resulting expression for growth rate ω is

ω(k) = −k4 + b2(2− 3b)k2. (5.4)

Maintaining the non-dimensionality, kc
2 = 1.97 · 10−4 is obtained, corresponding to

kc
2 = 1.97 if scaling used in [7] is employed here. This is close to kc

2 = 1, obtained

in [7]. The results differ slightly due to different disjoining pressure model.

The quasi-equilibrium evaporation regime is is obtained by setting K = 0

in Eq. (5.3), while maintaining evaporation effect. As before, gravity effects and

substrate heat conduction effects are neglected. In this case the time-dependent base

state of the form h = (1− 2ET )
1
2 is obtained. The growth rate is now given by

ω(k) = −k4(1− 2ET )
3
2 + k2

[
D + 2b2 − 3b3

(1− 2ET )
1
2

]
. (5.5)

Note once more that the growth rate is time-dependent. Therefore, further investi-

gation of this expression is performed in two limits: ‘early times’ (ET −→ 0), and

‘late times’ (ET −→ ETd), where Td is dryout time (such that h(Td) = 0) , given by

Td = 1/(2E).

Applying early time limit to Eq. (5.5), yields the following expression for the

growth rate

ω(k) = −k4 + k2(D + 2b2 − 3b3). (5.6)

From here, the critical wavenumber is calculated as kc
2 ≈ 1.97·10−4. This corresponds

to kc
2 ≈ 1.97, when scaling as in [7] is used. This result agrees well with kc

2 = 1 +D ≈

1 from [7]. Once more, we note that the slight difference is due to different disjoining
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pressure model. The value of kc obtained here is approximately equal to the one for

the isothermal case. This is due to the fact that D is small, which reduces Eq. (5.6)

to Eq. (5.4).

Applying the formal limit ET −→ ETd to Eq. (5.5) is more involved: some

terms in Eq. (5.5) become large in this limit. Therefore, we resort to integrating

Eq. (5.5) with respect to T . This procedure yields the expression for the average

growth rate

ωavg(k) = k2(−2

5
k2 +D + 2b2 − 6b3). (5.7)

This results (after absorbing the factor b2 into the definition of A) in kc
2 = 4.85,

which is again very close to the result in [7]: kc
2 = 5(1 + 1

2
D) ≈ 5.

Therefore, we conclude that the growth rate ω given by Eq. (5.3) agrees well

with the previous results in the considered regimes.

Clearly, the fact that the growth rate given by Eq. (5.3) is time dependent

makes the analysis difficult. In order to simplify, we use the quasi-steady linear

stability theory, also known as ‘frozen base state’ approach, where it is supposed

that even though the base state is time-dependent, it varies slowly compared with

the growth rate of the perturbations. Therefore, we are allowed to ‘freeze’ the base

state at a particular time instant and analyze its stability as it were a steady state

(e.g., see [7]). Since the early stages of the evolution of the instability are of particular

interest, the limit ET −→ 0 is considered. Formal application of this limit to Eq. (5.3)

yields
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Figure 5.11 Growth rates versus k2 for four considered configurations.

ω(k) = k2
[
k2
[
3(K + 1)2(K +W) + (K +W)3 − (K + 1)3

−3(K + 1)(K +W)2]+D +KM− G(K +W)3 + (K + 1)3G

−3(K + 1)2G(K +W) + 3(K + 1)G(K +W)2 − (K +W)
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+
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b2
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2(K + 1)3

−6(K + 1)2(K +W) + 6(K + 1)(K +W)2 − 2(K +W)3 − 3b(K + 1)3

1−W

+
9b(K + 1)2(K +W)

1−W
− 9b(K + 1)(K +W)2

1−W
+

3b(K +W)3

1−W

)]
. (5.8)

Using Eq. (5.8) with parameter values corresponding to four liquid-solid config-

urations (IPA/Si, IPA/Cu, DIW/Si, and DIW/Cu), we plot the growth rate ω vs. k2

in Figure 5.11. Note, that even though the LSA was performed in scaled coordinates

X and T , these results represent growth rate ω vs. k2 in original unscaled coordinates

x and t from Eq. (2.35). The critical wavenumber kc for each configuration is found,

such that the flow is unstable for k < kc. For Si substrate, λc ≈ 7.4mm for IPA is

obtained, and a larger value λc ≈ 1.19 cm for DIW. On a Cu substrate, λc ≈ 8.8mm

for IPA; DIW on Cu is stable. Although the values of λc’s are larger than the patterns



99

Figure 5.12 Growth rates versus k2 for IPA/Si configuration with heated solid for
several different values of Theater. The configuration is stable when Theater = 375K.
As Theater is increased, the transition to unstable regime is achieved.

occurring in the experiments, the results are encouraging since they show that the

resulting λc’s are much smaller for IPA compared to DWI, and the corresponding

growth rates are larger. Also, LSA results suggest that the instability is more likely

to take place for IPA on Si than on Cu, again in agreement with the experiments.

Finally, we note that Eq. (2.35) can easily be modified to model a case when

solid substrate is maintained at a prescribed temperature, instead of being thermally

conductive. This is achieved by lettingW = 0, and using the solid temperature Theater

and the boiling temperature Tboil instead of T0 and Tsat respectively in the definition

of the temperature scale (see Chapter 2). We perform LSA for IPA/Si configuration,

for which we use Tboil = 355K. We examine the variation of the the growth rate ω

and critical wavenumber k as Theater is varied. The results for Theater = 375K, 395K

and 415K are shown in Figure 5.12. The configuration is stable when Theater = 375K,

but it becomes unstable as Theater is increased. Further increase in Theater results in

increase of both kc and ωmax.
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Figure 5.13 Time evolution of perturbed thin films for DIW/Cu and DIW/Si
configurations. Dashed lines indicate the initial conditions, the full lines indicate
the final profile, while dotted lines indicate the film profiles for times between t = 0
and the final time tfinal. (a) DIW/Cu, k = 0.08: stable (tfinal = 2); (b) DIW/Cu,
k = 0.63: stable (tfinal = 10−3); (c) DIW/Si, k = 0.3 > kc: stable (tfinal = 2); (d)
DIW/Si, k = 0.2 < kc: unstable (tfinal = 1).

5.4.2 Verification of the Linear Stability Analysis Predictions

Next, we perform series of simulations of Eqs. (2.35) and (2.37) using our numerical

code developed in Chapter 3, in order to verify LSA predictions. We numerically study

the stability of thin films of pure liquid subject to perturbations of given wavenumber

k. As in Section 5.4.1 we only use NEOS evaporation model.

First, we consider 2d films and perform numerical simulations of Eq. (2.35).

The initial condition considered here is a thin film of thickness h = 1 − W , with

a small perturbation of prescribed wavenumber k applied. The parameter values

used correspond to four liquid-solid configurations (DIW/Cu, DIW/Si, IPA/Cu and

IPA/Si). The values of the wavenumbers k are chosen such that for each configuration

the numerical simulations are performed with both k < kc and k > kc, where kc is

the critical wavenumber (if it exists) for the particular configuration, predicted by the

LSA in Section 5.4.1. In particular, LSA gives: kc ≈ 0.26 for DIW/Si, kc ≈ 0.37 for
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Figure 5.14 Time evolution of perturbed thin films for IPA/Cu and IPA/Si con-
figurations. Dashed lines indicate the initial conditions, the full lines indicate the
final profile, while dotted lines indicate the film profiles for times between t = 0
and the final time tfinal. (a) IPA/Cu, k = 0.4 > kc: stable (tfinal = 0.73); (b)
IPA/Cu, k = 0.3 < kc: unstable (tfinal = 0.75); (c) IPA/Si, k = 0.48 > kc: stable
(tfinal = 0.75); (d) IPA/Si, k = 0.38 < kc: unstable (tfinal = 0.75).

IPA/Cu, kc ≈ 0.42 for IPA/Si, while DIW/Cu is stable to perturbations of all wave

numbers. Figures 5.13 and 5.14 show the results of numerical simulations, which are in

full agreement with the LSA predictions for all considered liquid-solid configurations.

Figure 5.15 shows the comparison of the numerical results and the LSA pre-

diction for maximum growth rate for the IPA/Si configuration (kmax = 0.297 and

ωmax = 3.148). The dashed-and-dotted line is the LSA prediction (slope ωmax); the

solid line is the numerical result: ln[(hmax(t)− h)/δ] vs. time t. Figure 5.15 implies

excellent agreement between the numerical results and the LSA prediction. Similar

agreement has been confirmed for the other two, potentially unstable configurations

(IPA/Cu and DIW/Si).

Before we proceed further, we examine the long-time evolution of the same

IPA/Si thin film configuration disturbed by the perturbation with k = kmax. The

goal here is to capture the moment when the film ruptures, as well as the subsequent
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Figure 5.15 Maximum growth rate of perturbation: the comparison of numerical
results and LSA prediction for IPA/Si configuration; kmax = 0.297, ωmax = 3.148,
h = 1−W = 0.85, and δ = 10−3.

dewetting dynamics. Figure 5.16 shows the results of these simulations. Note that the

initial disturbance is not clearly visible on the scale shown. The disturbance grows

rapidly, eventually leading to film ‘rupture’, which is clearly seen. The film collapses

into several smaller drops in the center of the domain, while the bulk of the film

recedes (left and right). We note that this is not a true rupture: due to the presence

of disjoining pressure, stable film remains and it connects the individual drops and

the bulk of the film. The results shown in Figure 5.16 are reminiscent of the results

obtained by other researchers for similar set-ups (see, e.g. [56]).

Next, we perform numerical simulations to confirm the LSA predictions for

the case when the solid is maintained at a fixed temperature. We focus on the IPA/Si

configuration with Theater = 415K. Thin film of thickness h = 1 is perturbed by a

small perturbations with either k < kc, or k > kc, where kc ≈ 0.4 has been obtained

by LSA in Section 5.4.1. The results of these simulations are shown in Figure 5.17.

We conclude that the numerical results are in excellent agreement with the LSA

predictions for the heated solid configuration.
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Figure 5.16 The longer-time evolution, thin film ‘rupture’ and subsequent dewet-
ting: IPA/Si thin film configuration disturbed by a small perturbation (δ = 10−3)
with k = kmax; tfinal = 30

Figure 5.17 Time evolution of perturbed thin films for IPA/Cu and IPA/Si config-
urations for heated solid case, where Theater = 415K. Dashed lines indicate the initial
conditions, the full lines indicate the final profile, while dotted lines indicate the film
profiles for times between t = 0 and the final time tfinal. (a) IPA/Si, k = 0.45 > kc:
stable (tfinal = 0.6); (b) IPA/Si, k = 0.35 < kc: unstable (tfinal = 0.75).
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Figure 5.18 Time evolution of IPA/Si thin film disturbed by perturbation with
k = 0.48 > kc. Time evolves left to right, and top to bottom: (a) t = 0; (b) t = 0.15;
(c) t = 0.3; (d) t = 0.45; (e) t = 0.6; (f) t = 0.75. The configuration is stable.

Finally, we perform 3d numerical simulations for film, using similar approach

as the one used for 2d films: a flat film is perturbed (in both x- and y- direction)

using perturbations with wavelengths suggested by LSA and its subsequent stability

is examined. We focus only on the IPA/Si configuration with thermally conductive

solid. The numerical results for k = 0.48 > kc and k = 0.38 < kc are shown in

Figures 5.18 and 5.19 respectively, and are in excellent agreement with the LSA

predictions.
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Figure 5.19 Time evolution of IPA/Si thin film disturbed by perturbation with
k = 0.38 < kc. Time evolves left to right, and top to bottom: (a) t = 0; (b) t = 0.15;
(c) t = 0.3; (d) t = 0.45; (e) t = 0.6; (f) t = 0.75. The configuration is unstable.
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Figure 5.20 Planar drop profiles at t = 1 for 4 considered configurations (IC is
not shown). Notice the instability which occurs ahead of the contact line for IPA/Si
configuration.

5.4.3 Numerical Simulations for Volatile 2d Planar and Radial Drops

Next, we perform numerical simulations of drops, considering only the thermally con-

ductive solid case. We first solve Eq. (2.35) for a spherical cap initial condition. In

this case, we are focusing on a cross section of a planar drop. The simulations are

performed using NEOS evaporation model and material parameters corresponding to

4 liquid-solid configurations (IPA/Si, IPA/Cu, DIW/Si and DIW/Cu). Figure 5.20

shows numerical results for all considered cases at dimensionless time t = 1 (corre-

sponding to t = 0.3s). The most interesting result in Figure 5.20 is the instability

which appears for IPA/Si configuration just ahead of the contact line. The shape

of the instability resembles the “octopi” which we see in the experiments. It is es-

pecially important to note that instability occurs only for IPA/Si configuration. A

configuration with the solid characterized by larger heat conductivity (Cu), or less

volatile but more (heat) conductive liquid (DIW) is stable. Therefore, we conclude

that thermal properties of the particular liquid-solid configuration, and the resulting

temperature gradients which induce Marangoni forces, are responsible for occurrence

of “octopus”-shaped instabilities.

Keeping this conclusion in mind, we proceed by considering evaporation of 2d

radial drops. We perform numerical simulations of Eq. (2.36) for IPA/Si configuration.

The initial condition for all simulations is obtained in a manner similar to the one
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Figure 5.21 IPA/Si: numerical results for a 2d radial drop using “lens” evaporation
model. (a) Evolution of drop thickness from t = 0 (dashed line) to t = 5 (solid line):
note stretching of the contact line region; (b) Temperature profile at the liquid-gas
interface at t = 5: notice the temperature maximum.

used to produce the initial profile for IPA/Si simulations discussed in Chapter 4: it

is a smooth spherical cap with volume 3.2µl. Both “lens” and NEOS models are

considered. The physical parameters correspond to IPA/Si configuration, with the

exception of volatility parameters α and χ: larger values α = 8 ·10−5 and χ = 3 ·10−1

are used here, in order to make the main features of the dynamics more obvious.

In particular, the increase in volatility results in larger temperature gradients when

compared to the ones shown in Chapter 4 for IPA/Si configuration. As a result,

Marangoni forces, which act in opposing directions for “lens” and NEOS models, are

going to be stronger. Therefore, we expect more pronounced stretching of the contact

line region for “lens” model, and more pronounced receding motion for NEOS model.

Figure 5.21 shows numerical result for evolution of drop thickness (a) and the

temperature at liquid-gas interface (b) for IPA/Si configuration using “lens” evapo-

ration model. The stretching of the contact line is clearly visible in Figure 5.21(a).

At the same time, the drop remains relatively thick at the center. This behavior has

been expected, and the reason for it lies in Marangoni forces. Figure 5.21(b) provides

immediate support for such a claim. It indicates that there is a temperature max-

imum some distance away from the contact line. The Marangoni forces associated

with the outer temperature gradient induce outward flow along the interface, which

tends to stretch the contact line region and enhances spreading. On the other hand,
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Figure 5.22 IPA/Si: numerical results for a 2d radial drop using NEOS evaporation
model. (a) Evolution of drop thickness from t = 0 (dashed line) to t = 0.7 (solid
line): notice the instability which occurs ahead of the contact line and resembles the
“octopus”-shaped instability; (b) Temperature profile at the liquid-gas interface at
t = 0.7.

the Marangoni forces associated with the inner temperature gradient result in inward

flow, responsible for maintaining relatively large thickness of the drop at the center.

The outward flow is clearly more pronounced at the stage shown in Figure 5.21.

Figure 5.22 shows numerical result for evolution of drop thickness (a) and the

temperature at liquid-gas interface (b) for IPA/Si configuration using NEOS evapo-

ration model. The most interesting detail in Figure 5.22(a) is the instability which

occurs during the receding motion of the drop. The appearance of this instability is

reminiscent of the “octopi” which we see in experiments. We note that “octopi” occur

during the spreading stage of the evolution, in contrast to the results in Figure 5.22(a).

Strong Marangoni forces (Figure 5.22(b)), which induce inward flow along the inter-

face from the contact line toward the center of the drop, are responsible for such a

behavior. This flow enhances rapid receding motion of the drop, which destabilizes

the contact line region and results in the instability seen in Figure 5.22(a).

We note that the temperature gradient in Figure 5.22(b) is significantly larger

then the one in Figure 5.21(b) for “lens” model, making the (inward) Marangoni

force for NEOS much larger than the (outward) one for “lens” model. Hence, the

simulations for “lens” model have been carried out until t = 5 in order to obtain
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Figure 5.23 IPA/Si: evolution of a 3d drop using “lens” evaporation model. (a)
t = 0: the initial condition; (b) t = 1.5: the onset of the spreading motion; (c) t = 3.5:
the stretching of the contact line region is evident; (d) t = 5: the final state.

clearly visible traits of the dynamics, while for NEOS model much shorter simulations

(t = 0.7) have been sufficient.

5.4.4 Numerical Simulations for Volatile 3d Drops

We conclude this Chapter with the results of quasi-3d simulations for drops. We

solve Eqs. (2.37) using the code developed in Chapter 3 for IPA/Si configuration,

using both evaporation models. We consider only the case where solid is thermally

conductive. The parameter values are identical to those used in Section 5.4.3 for 2d

radial drops. We also use the same procedure for creating the initial condition for

our simulations as the one used for 2d radial drops.

Figure 5.23 shows the numerical result for “lens” model. These results are 3d

equivalent of the 2d results which have been shown in Figure 5.21(a): the Marangoni

forces act outward in the narrow region close to the contact line, and inward for the

rest of the liquid-gas interface, which leads to stretching of the contact line region

into a thin layer. Figure 5.24 shows results for NEOS model, and these are equivalent
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Figure 5.24 IPA/Si: evolution of a 3d drop using NEOS evaporation model. (a)
t = 0: the initial condition; (b) t = 0.1: receding motion; (c) t = 0.3: the ‘ring’
appears; (d) t = 0.7: the final state – full blown ‘ring’ ahead of the contact line.

to the results which have been shown in Figure 5.22(a) for 2d radial drop with NEOS

model: due to strong inward Marangoni forces, the contact line recedes swiftly and

the interface becomes unstable, leaving a thin ring of fluid behind.

5.4.5 Azimuthal Perturbations of 3d Drops

Encouraged by the results in Figures 5.23 and 5.24, we examine the stability of IPA/Si

drops using both evaporation models to azimuthal perturbations of the contact line

region. The parameters and the basic initial profile are identical to those used in

Section 5.4.4. The basic initial condition is perturbed using a harmonic perturbation

of a given wavelength λ, i.e., the disturbance is of the form δeikϕ, where k is the

disturbance wavenumber (λ = 2π/k), δ is the magnitude of the perturbation (we

use 5 · 10−3), and ϕ is the azimuthal angle (0 ≤ ϕ ≤ π/2 in the first quadrant).

The azimuthal perturbations considered here amount to displacing the contact line

position of the basic initial profile by a small amount. We note that the number of

full periods of the perturbation which are visible in the first quadrant is k/4.
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Figure 5.25 Evolution of azimuthal perturbation for IPA/Si configuration using
“lens” model. (a) t = 0: the contact line region is perturbed using an azimuthal
perturbation with k = 8 (2 full wavelengths are visible); (b) t = 0.1: the perturbation
decays, and is not visible in (c) at t = 0.3; (d) t = 0.5: the spreading proceeds in a
manner similar to that seen in Figure 5.23. The configuration is stable.

In Figure 5.25 we show the results for the “lens” model with azimuthal pertur-

bation with k = 8. The drop spreads and the perturbation rapidly decays. Almost

identical evolution occurs when perturbation with k = 12 is used (Figure 5.26).

Furthermore, Figure 5.27 shows that the configuration is also stable when k = 64

is considered; the profile stabilizes even faster than for k = 8 and k = 12 cases.

Finally, we have confirmed the stability for the case when k = 4 is used (the results

are omitted), and are confident that the configuration is stable to perturbations with

shorter wavelengths than the ones considered here (k > 64). The stability of the

configuration which uses “lens” model to azimuthal perturbations of all wavelengths

is explained as follows. As discussed in Sections 5.4.3 and 5.4.4, Marangoni forces are

responsible for both the rapid spreading motion of the drop and the ‘stretching’ of the

contact line region when “lens” model is considered. Therefore, if the perturbation

with wavenumber k is applied, and if two cross-sections of the drop are considered,
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Figure 5.26 IPA/Si configuration using “lens” model: evolution of azimuthal per-
turbations. (a) t = 0: the contact line region is perturbed using an azimuthal per-
turbation with k = 12 (3 full wavelengths are visible), which decays (t = 0.1 in (b)),
until it is no longer visible at t = 0.2 in (c); (d) t = 0.5: the spreading proceeds in a
manner similar to that seen in Figure 5.23. The configuration is stable.

Figure 5.27 Evolution of azimuthal perturbation for IPA/Si configuration using
“lens” model. (a) t = 0: the contact line region is perturbed using an azimuthal
perturbation with k = 64 (16 full wavelengths are visible); (b) the decay is so rapid
that the perturbation is no longer visible at t = 0.05. The spreading proceeds in
a manner similar to that seen in Figure 5.23 (t = 0.5 in (d)). The configuration is
stable.
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Figure 5.28 Evolution of azimuthal perturbation for IPA/Si configuration using
NEOS model. The contact line region is perturbed at t = 0 (a), using an azimuthal
perturbation with k = 8 (2 full wavelengths are visible in (a)). The drop recedes
and the ‘ring’ seen in Figure 5.24 begins to take shape immediately (t = 0.07 in
(b)); the ‘ring’ rapidly destabilizes and its dissolution into drops ensues (t = 0.21
in (c)); eventually, the ‘ring’ collapses into individual drops (t = 0.7 in (d)). The
configuration is unstable; note the resemblance of the instability to the “octopi” seen
in experiments.

e.g. one for ϕ = ϕ1, and the other for ϕ = ϕ2 (such that coskϕ1 6= coskϕ2), one finds

that they have the same thickness at the center, but different radii. As a result, the

temperature drop between the center and the contact line for these two cross-sections

is identical. However, the temperature gradient and the resulting Marangoni force

are larger for the cross-section with smaller radius. This causes faster spreading for

this cross-section when compared to the one with larger radius, and inevitably, the

decay of the perturbation.

Next, we focus on the NEOS evaporation model. Figure 5.28 shows the results

for k = 8. The drop recedes as in Figure 5.24, and the ring instability develops (b).

However, the azimuthal perturbation leads to destabilization of the ring, so that its

collapse into individual drops begins in (c). Finally, as the receding motion continues,
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Figure 5.29 Evolution of the azimuthal perturbation for IPA/Si configuration using
NEOS model with M = 0 (Marangoni forces are neglected). (a) t = 0: the contact
line region is perturbed using an azimuthal perturbation with k = 8 as in Figure 5.28;
(b) t = 0.07: the drop spreads and the perturbation decays rapidly; (c) t = 0.21 and
(d) t = 0.7: the spreading continues – there is no ‘ring’ ahead of the contact line.
The configuration is stable.

the ring evolves into isolated drops, which remain ahead of the contact line (d). This

development bears similarity to the “octopi” which we see in the experiments. The

mechanism, however, appears to be different, since the “octopi” in Figure 5.28 are

associated with dewetting. As described in Sections 5.4.3 and 5.4.4, the instability in

Figure 5.28 is due to receding motion caused by Marangoni forces which act inward

(from the contact line toward the drop center) along the liquid-gas interface. To

confirm this statement, we perform a simulation using the same parameters and

perturbation as in Figure 5.28, but now with M = 0 (Marangoni forces are neglected).

The results of this simulation are shown in Figure 5.29. We find, as expected, that

with the Marangoni forces neglected, the drop spreads under gravity and surface

tension, and the perturbation decays. In addition, with the absence of Marangoni

forces, the ‘ring’ instability seen in Figure 5.24 is also eliminated.
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It is of interest to compare the wavelength λ of the perturbation which we

use in Figure 5.28, with the predictions of LSA for the film configuration, discussed

in Section 5.4.1. We note that for IPA/Si configuration, the critical (dimensionless)

wavelength predicted by LSA is λc = 14.8, where the length scale is the typical film

thickness d0 = 0.5mm (corresponding to h = 1). The length scale relevant to the

destabilization process in Figure 5.28 is clearly shorter – some thickness between the

drop thickness at the center, h = hmax = 0.5, and h = 0 at the contact line seems

more appropriate. We calculate the wavelength of the perturbation in Figure 5.28

using hmax/2 as the relevant length scale, and obtain λ ≈ 20.4, which, according to

the LSA results, is in the unstable range. Therefore, it appears that the result in

Figure 5.28 is in agreement with the LSA prediction for the film configuration. To

test this agreement further, we also consider perturbations with k = 4, k = 12 and

k = 64, with corresponding wavelengths λ ≈ 40.8, λ ≈ 15.6 and λ ≈ 2.8 respectively.

First, the configuration with k = 4 has been found to be unstable (we omit the

results). Further, we find that the configuration with k = 12 is also unstable, as

shown in Figure 5.30. The evolution proceeds in a manner similar to the one when

k = 12; however, now the number of drops to which the ‘ring’ collapses is increased

accordingly. Finally, the configuration with k = 64 is found to be stable and the

results are shown in Figure 5.31.

In summary, we have found that the configuration using “lens” model is stable

to all considered azimuthal perturbations. We have explained this behavior using an

argument based on Marangoni forces. In addition, for the NEOS model, we have

found interesting instabilities, which occur when azimuthal perturbations of certain

wavelengths are applied. The unstable wavelengths are in good agreement with the

predictions of the linear stability analysis. The instabilities bear strong resemblance

to the “octopi” seen in the experiments. However, the details of the instability de-

velopment are different: in our simulations, these develop during the receding part of
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Figure 5.30 Evolution of azimuthal perturbation for IPA/Si configuration using
NEOS model. (a) t = 0: the contact line region is perturbed with azimuthal pertur-
bation with k = 12 (3 full wavelengths are visible); (b) t = 0.07: the drop recedes and
the ‘ring’ forms; (c) t = 0.21: the ‘ring’ destabilizes; (d) t = 0.7: finally, the ‘ring’
collapses into individual drops. The configuration is unstable.

Figure 5.31 Evolution of azimuthal perturbation for IPA/Si configuration using
NEOS model. (a) t = 0: the contact line region is perturbed with azimuthal pertur-
bation with k = 64 (16 full wavelengths are visible); (b) t = 0.07: the drop recedes,
the perturbation decays, and the ‘ring’ forms; (c) t = 0.21: the ‘ring’ becomes larger
as the receding motion continues; (d) t = 0.7: the ‘ring’ remains intact. The config-
uration is stable.
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the droplet motion, while in the experiments the instabilities are observed during the

spreading stage.

There are few possible explanation for the differences between the simulations

and experiments. For example, the initial condition that we use in the simulations

presented here is clearly different from the experimental one: in the experiment, the

initial drop profile is characterized by large gradients where lubrication approxima-

tion may not apply. In addition, we have considered only one family of azimuthal

perturbations. Other types of perturbations could be justified on physical grounds,

such as perturbations of the thickness of a drop, or of the wetting properties of the

substrate. We hope that future work will resolve the questions which are still left

open. The results presented here show clearly how important are the evaporation

models in determining the stability of evaporating drops.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The experiments, in which an interesting “octopus”-shaped instability was observed

during the evaporation of sessile drops, have served as the motivation for this work.

The instability was found to appear only for pure drops of volatile isopropyl alcohol

(IPA) evaporating on silicon (Si) solid substrate. A liquid with larger thermal con-

ductivity and decreased volatility, e.g. water (DIW), or a solid with larger thermal

conductivity, e.g. copper (Cu), were found to suppress the “octopi”. We have set

out to explain this instability, and soon discovered that the critical component nec-

essary for achievement of this goal is the use of evaporation model most appropriate

for the physical situation considered. The variety of evaporation models which have

been used previously by other researchers, and in particular, the sometimes ques-

tionable physical arguments on which certain choice of a model was based, have led

us to consider a couple of commonly used ones. We have derived the corresponding

mathematical models for evaporation of drops and films, resulting in governing equa-

tions for liquid thickness. We have also developed a numerical code for solving these

equations, and used it to compare our theoretical results directly to our experimental

data, in order to identify the evaporation model appropriate for a particular physical

situation. Using these evaporation models, we have performed quasi-3d simulations

for both drops and films and examined their stability. In addition, we have carried

out experiments with volatile mixtures and examined the influence of the state of the

gas phase and the composition of the mixture, among other factors, on the shape and

the size of instabilities which occur.

First, we have reviewed various models used for describing evaporation of liq-

uid drops from solid substrates. We have also reviewed various assumptions one can

118
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make in order to simplify the complicated two-sided model to various less complex

ones. The critical difference between these models is the manner in which evaporation

process is included. Finally, we focus on two relatively simple and commonly used

models: the “lens” evaporation model and the non-equilibrium one-sided (NEOS)

evaporation model. The physical arguments which lead to each model are discussed.

We have stressed the fact that these two models are mutually exclusive. The pa-

rameters which determine which model is more appropriate are difficult to measure

experimentally. Therefore, we have developed a mathematical model which includes

both evaporation models and compared the results against our experimental data.

The critical volatility parameters are estimated directly from the experimental re-

sults. The governing equation for drop thickness includes the mass flux J explicitly

(Eq. (2.36)). Therefore, either evaporation model can be used, simply by substitut-

ing the appropriate expression for J . We have also developed a finite-difference based

numerical code for solving the governing equation for both drops and films. The time

discretization has been handled using the Crank-Nicholson scheme, and the 3d code

has been developed using the ADI scheme. The governing equation is solved numer-

ically and the results are compared to the experimental data. Two different liquids

have been considered, DIW and IPA. For the case of DIW, it has been found that

NEOS evaporation model performs better than the “lens” model. This is additionally

supported by further experiments in which external convection has been applied to the

gas phase, and which have shown that the evaporation process is mostly insensitive

to the manner in which vapor is being removed from the evaporating interface. In the

case of IPA, the volatility coefficients have been estimated from the experimentally

measured dryout time. The comparison of our numerical results for the two models

against the experimental data ([9, 25, 27, 61]) has revealed that in the case of IPA,

“lens” model performs better than NEOS model. The factors which contribute to a

change in evaporation regime from reaction-limited (NEOS) in the case of DIW, to
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diffusion-limited (“lens”) in case of IPA, are increased volatility and vapor density for

IPA when compared to DIW. Finally, we have examined the influence of Marangoni

forces on evolution of contact line position and evaporation rate for the case of IPA.

We conclude that for “lens” model, Marangoni forces induce spreading and increase

the evaporation rate. We also note the prospects of using these two evaporation

models for resolving an interesting problem of “octopus”-shaped instabilities, which

appear ahead of the contact line of spreading IPA drops.

Having compared the performance of the two evaporation models against

the experimental data, and having made conclusions regarding appropriateness of

these models for a particular physical situation, we have performed experiments with

volatile drops of IPA-DIW mixtures evaporating on Si wafers and glass slides. These

experiments have been geared toward better understanding of the “octopi” instability,

its robustness and sensitivity to state of the gas phase in the experimental set-up, as

well as the concentration of IPA in the mixtures. We have found that the instability is

very robust – we have been able to obtain the “octopus”-shaped instabilities for pure

IPA drops in our lab. Furthermore, we have found that this instability is mostly in-

sensitive to the state of the gas phase: the “octopi” have been seen readily even when

the gas phase has been saturated by the vapor, or when externally applied convection

of air has been introduced. Finally, we have found curiously shaped instabilities for

all liquid mixtures evaporating on both considered solid substrates; we have examined

the dependence of the shape and the size of the instabilities on the IPA concentration,

and the transition from relatively large mushroom-shaped instabilities (70% IPA) to

“octopi” (pure IPA).

Next, we have focused on the “octopi” instability and performed linear stabil-

ity analysis (LSA) for the thin film configuration using the NEOS model in order to

determine which one of several considered liquid-solid configurations is most likely to

become unstable. We have found that IPA/Si is most unstable, in direct agreement
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with the experiments. In addition, we have used our numerical code to confirm the

LSA predictions for both 2d and 3d cases. After obtaining these results, we have

performed a series of numerical simulations for volatile drops in various geometries:

2d planar and radial, as well as 3d simulations. The results of our simulations for 2d

planar drops using NEOS model have indicated that IPA/Si configuration is the only

unstable one among 4 liquid-solid configurations considered, again in agreement with

the experiments. Next, we have performed the numerical simulations for 2d radial

drops for IPA/Si configuration only, using both evaporation models. We have found

spreading motion and ‘stretching’ of the contact line region for “lens” model, and re-

ceding motion for NEOS model, which is so rapid that it destabilizes the contact line

region and leads to occurrence of a ‘ring’ of fluid which remains ahead of the contact

as the drop recedes. In order to further examine these results, we have carried out

the 3d simulations of volatile drops of IPA on Si solid using both evaporation models,

and have found good agreement with our results for 2d radial drops. Finally, we

have applied azimuthal perturbations to the contact line region for both evaporation

models, in order to determine the stability. We have found that when “lens” model

is used, the configuration is stable to all considered azimuthal perturbations. This

behavior has been explained using an argument based on Marangoni forces, which

(in the contact line region) act outward for “lens” model. Next, we have found that

when NEOS model is used, the instability occurs for azimuthal perturbations of cer-

tain wavelengths – the ‘ring’ of liquid which forms ahead of the contact line becomes

unstable and collapses into individual drops. We have noted the strong resemblance

between this instability and the “octopi” seen in experiments. Finally, we have com-

pared the wavelengths used for azimuthal perturbations for NEOS model with the

LSA predictions for volatile films and found qualitative agreement.



122

Future Work

The fact that two commonly used evaporation models, such as “lens” and NEOS,

produce results which are so qualitatively different is intriguing. In particular, the

difference in temperature profiles at the liquid-gas interface for the two models, im-

plies that the resulting Marangoni forces may be oppositely directed. For particular

situations considered, we find that NEOS model is more appropriate for DIW, while

“lens” model is more appropriate for IPA configurations. More elaborate experiments,

involving measurement of the temperature at the liquid-gas interface, are therefore

necessary, as they will provide an ultimate criterion for selection of appropriate evap-

oration model.

Next, our experimental results regarding instabilities which occur for IPA-DIW

mixtures of varying IPA concentration (Chapter 5) provide an excellent motivation for

future theoretical work: it is of interest to pursue the understanding of the transition

of the instability types as the IPA concentration is increased. In order to achieve

this, one may modify the mathematical model we have developed in order to include

the ‘solutal’ Marangoni effects, which introduces the dependence of surface tension

on the concentration of the more volatile component in the mixture. In particular,

the surface tension becomes function of both temperature T and IPA concentration

in the mixture Υ: σ(T,Υ) = σ0 − γ(T − T0)− γs(Υ−Υ0), where γs = −dσ/dΥ. We

note that γs > 0, since σ decreases with IPA concentration in the mixture. Only few

details concerning the inclusion of ‘solutal’ Marangoni effect into our mathematical

model are described here. The parameter values which may be used correspond to a

particular mixture of interest at time t = 0. The scale for IPA concentration in the

mixture which one may employ follows the same logic as the temperature scale we

have used so far: the difference between Υ and some reference concentration Υref may

be scaled against ∆Υ = Υ0−Υref . This approach leads to ‘solutal’ Marangoni number

Ms, which accompanies the (thermocapillary) Marangoni number M and is defined
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as Ms = γs∆Υd0/(2ρνκ). The complexity of the model will be further increased

since it would also be necessary to solve the problem for Υ in the liquid phase. This

would involve a convection-diffusion equation for Υ, along with appropriate boundary

conditions (no flux at the liquid-solid interface, and a relation between mass flux J

and the IPA concentration flux at the liquid-gas interface). As we have done for

temperature T , one may solve for Υ as a function of J , and hence, incorporate the

additional term corresponding to the ‘solutal’ Marangoni forces into the governing

equation (e.g. Eq. (2.36)) while maintaining the current framework (J is explicit). We

expect an interesting outcome of this project, since our preliminary estimates indicate

the possibility that the two Marangoni effects may operate in synergy for certain

configurations/initial values of Υ, while competition between them is anticipated for

other situations. We hope that this variation of regime will provide explanation for

our experimental result.

In addition, the understanding of the phenomena of deposit formation for

evaporative drops, and the manner in which it affects the contact line pinning is

also of great interest. This field of research is particularly inviting, due to numerous

applications for which this phenomena is essential, such as semi-conductor fabrication

and the analysis of DNA/RNA arrays, among others. It is clear that the deposit

patterns are consequences of Marangoni forces. Both experiments and theoretical

modeling are required in order to achieve better understanding of the phenomena of

deposit formation. We anticipate that the antecedent conclusions regarding which

evaporation model is appropriate for a particular physical situation may be of critical

importance for understanding of this phenomena.

Finally, one may also examine the mesoscopic structures which develop during

the process of drying of highly volatile very thin films. Such films are used as resist

films in lithographic applications and they develop both surface instabilities (stria-

tions and polygonal cells) and internal structuring. These instabilities are connected
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to performance degradation, and hence, their understanding would be of significant

practical importance.
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