
Finite-Difference Approximations

to the Heat Equation

Gerald W. Recktenwald∗

March 6, 2011

Abstract
This article provides a practical overview of numerical solutions to

the heat equation using the finite difference method. The forward time,
centered space (FTCS), the backward time, centered space (BTCS), and
Crank-Nicolson schemes are developed, and applied to a simple problem
involving the one-dimensional heat equation. Complete, working Mat-
lab codes for each scheme are presented. The results of running the
codes on finer (one-dimensional) meshes, and with smaller time steps is
demonstrated. These sample calculations show that the schemes real-
ize theoretical predictions of how their truncation errors depend on mesh
spacing and time step. The Matlab codes are straightforward and al-
low the reader to see the differences in implementation between explicit
method (FTCS) and implicit methods (BTCS and Crank-Nicolson). The
codes also allow the reader to experiment with the stability limit of the
FTCS scheme.

1 The Heat Equation

The one dimensional heat equation is

∂φ

∂t
= α

∂2φ

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (1)

where φ = φ(x, t) is the dependent variable, and α is a constant coefficient.
Equation (1) is a model of transient heat conduction in a slab of material with
thickness L. The domain of the solution is a semi-infinite strip of width L that
continues indefinitely in time. The material property α is the thermal diffusivity.
In a practical computation, the solution is obtained only for a finite time, say
tmax.

Solution to Equation (1) requires specification of boundary conditions at
x = 0 and x = L, and initial conditions at t = 0. Simple boundary and initial
conditions are

φ(0, t) = φ0, φ(L, t) = φL φ(x, 0) = f0(x). (2)

Other boundary conditions, e.g. gradient (Neumann) or mixed conditions, can
be specified. To keep the presentation as simple as possible, only the conditions
in (2) are considered in this article.

∗Associate Professor, Mechanical Engineering Department Portland State University, Port-
land, Oregon, gerry@me.pdx.edu

2 FINITE DIFFERENCE METHOD 2

2 Finite Difference Method

The finite difference method is one of several techniques for obtaining numerical
solutions to Equation (1). In all numerical solutions the continuous partial
differential equation (PDE) is replaced with a discrete approximation. In this
context the word “discrete” means that the numerical solution is known only at
a finite number of points in the physical domain. The number of those points
can be selected by the user of the numerical method. In general, increasing the
number of points not only increases the resolution (i.e., detail), but also the
accuracy of the numerical solution.

The discrete approximation results in a set of algebraic equations that are
evaluated (or solved) for the values of the discrete unknowns. Figure 1 is a
schematic representation of the numerical solution.

The mesh is the set of locations where the discrete solution is computed.
These points are called nodes, and if one were to draw lines between adjacent
nodes in the domain the resulting image would resemble a net or mesh. Two
key parameters of the mesh are ∆x, the local distance between adjacent points
in space, and ∆t, the local distance between adjacent time steps. For the simple
examples considered in this article ∆x and ∆t are uniform throughout the mesh.
In Section 2.1 the mesh is defined.

The core idea of the finite-difference method is to replace continuous deriva-
tives with so-called difference formulas that involve only the discrete values
associated with positions on the mesh. In Section 2.2 a handful of difference
formulas are developed.

Applying the finite-difference method to a differential equation involves re-
placing all derivatives with difference formulas. In the heat equation there are
derivatives with respect to time, and derivatives with respect to space. Us-
ing different combinations of mesh points in the difference formulas results in
different schemes. In the limit as the mesh spacing (∆x and ∆t) go to zero,
the numerical solution obtained with any useful1 scheme will approach the true
solution to the original differential equation. However, the rate at which the
numerical solution approaches the true solution varies with the scheme. In ad-
dition, there are some practically useful schemes that can fail to yield a solution
for bad combinations of ∆x and ∆t. Three different schemes for the solution to
Equation (1) are developed in Section 3.

The numerical solution of the heat equation is discussed in many textbooks.
Ames [1], Morton and Mayers [3], and Cooper [2] provide a more mathematical
development of finite difference methods. See Cooper [2] for modern introduc-
tion to the theory of partial differential equations along with a brief coverage of
numerical methods. Fletcher [4], Golub and Ortega [5], and Hoffman [6] take
a more applied approach that also introduces implementation issues. Fletcher
provides Fortran code for several methods.

2.1 The Discrete Mesh

The finite difference method obtains an approximate solution for φ(x, t) at a
finite set of x and t. For the codes developed in this article the discrete x are

1There are plausible schemes that do not exhibit this important property of converging to
the true solution. Refer to discussions of consistency in references [1, 2].

2 FINITE DIFFERENCE METHOD 3

Continuous
PDE for
φ(x, t)

Finite
difference−−−−−−−−→

Discrete
Difference
Equation

Solution
method−−−−−−−−→ φmi approxi-

mation to φ(x, t)

Figure 1: Relationship between continuous and discrete problems.

uniformly spaced in the interval 0 ≤ x ≤ L such that

xi = (i− 1)∆x, i = 1, 2, . . . N

where N is the total number of spatial nodes, including those on the boundary.
Given L and N , the spacing between the xi is computed with

∆x =
L

N − 1
.

Similarly, the discrete t are uniformly spaced in 0 ≤ t ≤ tmax:

tm = (m− 1)∆t, m = 1, 2, . . .M

where M is the number of time steps and ∆t is the size of a time step2

∆t =
tmax

M − 1
.

The solution domain is depicted in Figure 2. Table 1 summarizes the notation
used to obtain the approximate solution to Equation (1) and to analyze the
result.

2.2 Finite Difference Approximations

The finite difference method involves using discrete approximations like

∂φ

∂x
≈ φi+1 − φi

∆x
(3)

2The first mesh lines in space and time are at i = 1 and m = 1 to be consistent with the
Matlab requirement that the first row or column index in a vector or matrix is one.

Table 1: Notation

Symbol Meaning

φ(x, t) Continuous solution (true solution).

φ(xi, tm) Continuous solution evaluated at the mesh points.

φmi Approximate numerical solution obtained by solving
the finite-difference equations.

2 FINITE DIFFERENCE METHOD 4

t

i i+1i–11 N

m+1

m

m–1

...
...

...
...

...
...

...

x=Lx=0

t=0

Figure 2: Mesh on a semi-infinite strip used for solution to the one-dimensional
heat equation. The solid squares indicate the location of the (known) initial
values. The open squares indicate the location of the (known) boundary values.
The open circles indicate the position of the interior points where the finite
difference approximation is computed.

where the quantities on the right hand side are defined on the finite difference
mesh. Approximations to the governing differential equation are obtained by
replacing all continuous derivatives by discrete formulas such as those in Equa-
tion (3). The relationship between the continuous (exact) solution and the
discrete approximation is shown in Figure 1. Note that computing φmi from the
finite difference model is a distinct step from translating the continuous problem
to the discrete problem.

Finite difference formulas are first developed with the dependent variable φ
as a function of only one independent variable, x, i.e. φ = φ(x). The resulting
formulas are then used to approximate derivatives with respect to either space
or time. By initially working with φ = φ(x), the notation is simplified without
any loss of generality in the result.

2.3 First Order Forward Difference

Consider a Taylor series expansion φ(x) about the point xi

φ(xi + δx) = φ(xi) + δx
∂φ

∂x

∣∣∣∣
xi

+
δx2

2

∂2φ

∂x2

∣∣∣∣
xi

+
δx3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · · (4)

where δx is a change in x relative to xi. Let δx = ∆x in Equation (4), i.e.,
consider the value of φ at the location of the xi+1 mesh line

φ(xi + ∆x) = φ(xi) + ∆x
∂φ

∂x

∣∣∣∣
xi

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
xi

+
∆x3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

Solve for (∂φ/∂x)xi

∂φ

∂x

∣∣∣∣
xi

=
φ(xi + ∆x)− φ(xi)

∆x
− ∆x

2

∂2φ

∂x2

∣∣∣∣
xi

− ∆x2

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

2 FINITE DIFFERENCE METHOD 5

Notice that the powers of ∆x multiplying the partial derivatives on the right
hand side have been reduced by one.

Substitute the approximate solution for the exact solution, i.e., use φi ≈
φ(xi) and φi+1 ≈ φ(xi + ∆x).

∂φ

∂x

∣∣∣∣
xi

≈ φi+1 − φi
∆x

− ∆x

2

∂2φ

∂x2

∣∣∣∣
xi

− ∆x2

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · · (5)

The mean value theorem can be used to replace the higher order derivatives
(exactly)

∆x2

2

∂2φ

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · · = ∆x2

2

∂2φ

∂x2

∣∣∣∣
ξ

where xi ≤ ξ ≤ xi+1. Thus

∂φ

∂x

∣∣∣∣
xi

≈ φi+1 − φi
∆x

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
ξ

or
∂φ

∂x

∣∣∣∣
xi

− φi+1 − φi
∆x

≈ ∆x2

2

∂2φ

∂x2

∣∣∣∣
ξ

(6)

The term on the right hand side of Equation (6) is called the truncation error of
the finite difference approximation. It is the error that results from truncating
the series in Equation (5).

In general, ξ is not known. Furthermore, since the function φ(x, t) is also
unknown, ∂2φ/∂x2 cannot be computed. Although the exact magnitude of the
truncation error cannot be known (unless the true solution φ(x, t) is available in
analytical form), the “big O” notation can be used to express the dependence
of the truncation error on the mesh spacing. Note that the right hand side of
Equation (6) contain the mesh parameter ∆x, which is chosen by the person
using the finite difference simulation. Since this is the only parameter under the
user’s control that determines the error, the truncation error is simply written

∆x2

2

∂2φ

∂x2

∣∣∣∣
ξ

= O(∆x2)

The equals sign in this expression is true in the order of magnitude sense. In
other words the “= O(∆x2)” on the right hand side of the expression is not a
strict equality. Rather, the expression means that the left hand side is a product
of an unknown constant and ∆x2. Although the expression does not give us the
exact magnitude of (∆x2)/2((∂2φ/∂x2)xi

)ξ, it tells us how quickly that term
approaches zero as ∆x is reduced.

Using big O notation, Equation (5) can be written

∂φ

∂x

∣∣∣∣
xi

=
φi+1 − φi

∆x
+O(∆x) (7)

Equation (7) is called the forward difference formula for (∂φ/∂x)xi
because

it involves nodes xi and xi+1. The forward difference approximation has a
truncation error that is O(∆x). The size of the truncation error is (mostly)
under our control because we can choose the mesh size ∆x. The part of the
truncation error that is not under our control is |∂φ/∂x|ξ.

2 FINITE DIFFERENCE METHOD 6

2.4 First Order Backward Difference

An alternative first order finite difference formula is obtained if the Taylor series
like that in Equation (4) is written with δx = −∆x. Using the discrete mesh
variables in place of all the unknowns, one obtains

φi−1 = φi −∆x
∂φ

∂x

∣∣∣∣
xi

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

Notice the alternating signs of terms on the right hand side. Solve for (∂φ/∂x)xi
to

get
∂φ

∂x

∣∣∣∣
xi

=
φi+1 − φi

∆x
+

∆x

2

∂2φ

∂x2

∣∣∣∣
xi

− ∆x)2

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

Or, using big O notation

∂φ

∂x

∣∣∣∣
xi

=
φi − φi−1

∆x
+O(∆x) (8)

This is called the backward difference formula because it involves the values of
φ at xi and xi−1.

The order of magnitude of the truncation error for the backward difference
approximation is the same as that of the forward difference approximation. Can
we obtain a first order difference formula for (∂φ/∂x)xi with a smaller truncation
error? The answer is yes.

2.5 First Order Central Difference

Write the Taylor series expansions for φi+1 and φi−1

φi+1 = φi + ∆x
∂φ

∂x

∣∣∣∣
xi

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · · (9)

φi−1 = φi −∆x
∂φ

∂x

∣∣∣∣
xi

+
∆x2

2

∂2φ

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · · (10)

Subtracting Equation (10) from Equation (9) yields

φi+1 − φi−1 = 2∆x
∂φ

∂x

∣∣∣∣
xi

+
2(δx)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

Solving for (∂φ/∂x)xi
gives

∂φ

∂x

∣∣∣∣
xi

=
φi+1 − φi−1

2∆x
− (δx)3

3!

∂3φ

∂x3

∣∣∣∣
xi

+ · · ·

or
∂φ

∂x

∣∣∣∣
xi

=
φi+1 − φi−1

2∆x
+O(∆x2) (11)

This is the central difference approximation to (∂φ/∂x)xi . To get good ap-
proximations to the continuous problem small ∆x is chosen. When ∆x � 1,

3 SCHEMES FOR THE HEAT EQUATION 7

the truncation error for the central difference approximation goes to zero much
faster than the truncation error in Equation (7) or Equation (8).

There is a complication with Equation (11) because it does not include the
value for φi. This may cause problems when the central difference approximation
is included in an approximation to a differential equation.

2.6 Second Order Central Difference

Finite difference approximations to higher order derivatives can be obtained
with the additional manipulations of the Taylor Series expansion about φ(xi).
Adding Equation (9) and Equation (10) yields

φi+1 + φi−1 = 2φi + (δx)2 ∂
2φ

∂x2

∣∣∣∣
xi

+
2(δx)4

4!

∂4φ

∂x4

∣∣∣∣
xi

+ · · ·

Solving for (∂2φ/∂x2)xi
gives

∂2φ

∂x2

∣∣∣∣
xi

=
φi+1 − 2φi + φi+1

∆x2
+

(δx)2

12

∂4φ

∂x4

∣∣∣∣
xi

+ · · ·

Or, using order notation,

∂2φ

∂x2

∣∣∣∣
xi

=
φi+1 − 2φi + φi+1

∆x2
+O(∆x2) (12)

This is also called the central difference approximation, but (obviously) it is the
approximation to the second derivative, whereas Equation (11) is the central
difference approximation to the first derivative.

3 Schemes for the Heat Equation

The finite difference approximations developed in the preceding section are now
assembled into a discrete approximation to Equation (1). Both the time and
space derivatives are replaced by finite differences. Doing so requires specifica-
tion both the time and spatial locations of the φ values in the finite difference
formulas. Therefore, we need to introduce superscript m to designate the time
step of the discrete solution. Though this seems like only is a bookkeeping
issue, we shall soon see that choosing the time step at which the spatial deriva-
tives are evaluated will have a large impact on the performance and ease of
implementation of the finite difference model.

3.1 Forward Time, Centered Space

Approximate the time derivative in Equation (1) with a forward difference

∂φ

∂t

∣∣∣∣
tm+1,xi

=
φm+1
i − φmi

∆t
+O(∆t) (13)

Note that terms on the right hand side only involve φ at x = xi.

3 SCHEMES FOR THE HEAT EQUATION 8

Use the central difference approximation to (∂2φ/∂x2)xi and evaluate all
terms at time m.

∂2φ

∂x2

∣∣∣∣
xi

=
φmi−1 − 2φmi + φmi+1

∆x2
+O(∆x2). (14)

Substitute Equation (13) into the left hand side of Equation (1); substitute
Equation (14) into the right hand side of Equation (1); and collect the truncation
error terms to get

φm+1
i − φmi

∆t
= α

φmi−1 − 2φmi + φmi+1

∆x2
+O(∆t) +O(∆x2) (15)

The temporal errors and the spatial errors have different orders. Also notice
that we can explicitly solve for φm+1

i in terms of the other values of φ. Drop
the truncation error terms from Equation (15) and solve for φm+1

i to get

φm+1
i = φmi +

α∆t

∆x2
(φmi+1 − 2φmi + φmi−1) (16)

Equation (16) is called the Forward Time, Centered Space or FTCS approxi-
mation to the heat equation. A slight improvement in computational efficiency
can be obtained with a small rearrangement of Equation (16)

φm+1
i = rφmi+1 + (1− 2r)φmi + rφmi−1 (17)

where r = α∆t/∆x2.
The FTCS scheme is easy to implement because the values of φm+1

i can be
updated independently of each other. The entire solution is contained in two
loops: an outer loop over all time steps, and an inner loop over all interior nodes.
The code fragment in Listing 1 shows how easy it is to implement the FTCS
scheme3.

Equation (16) can be represented by the computational molecule or stencil
in the left third of Figure 3. Notice that the value of φm+1

i does not depend
on φm+1

i−1 or φm+1
i+1 for the FTCS scheme. Thus, this scheme behaves more like

a the solution to a hyperbolic differential equation than a parabolic differential
equation.

The solutions to Equation (1) subject to the initial and boundary conditions
in Equation (2) are all bounded, decaying functions. In other words, the magni-
tude of the solution will decrease from the initial condition to a constant. The
FTCS can yield unstable solutions that oscillate and grow if ∆t is too large.
Stable solutions with the FTCS scheme are only obtained if

r =
α∆t

∆x2
<

1

2
. (18)

3The inner for loop could be vectorized by replacing it with

u(2:n-1) = r*uold(1:n-2) + r2*uold(2:nx-1) + r*uold(3:nx)

Furthermore, since the right hand side of this expression is evaluated in its entirety before
assigning it to the left hand side, the uold variable can be eliminated completely. Although
these code optimizations will reduce the execution time, the less efficient code makes the intent
of the loop more clear.

3 SCHEMES FOR THE HEAT EQUATION 9

% --- Define constants and initial condition

L = ... % length of domain in x direction

tmax = ... % end time

nx = ... % number of nodes in x direction

nt = ... % number of time steps

dx = L/(nx-1);

dt = tmax/(nt-1);

r = alpha*dt/dx^2; r2 = 1 - 2*r;

% --- Loop over time steps

t = 0

u = ... % initial condition

for m=1:nt

uold = u; % prepare for next step

t = t + dt;

for i=2:nx-1

u(i) = r*uold(i-1) + r2*uold(i) + r*uold(i+1);

end

end

Listing 1: Code snippet for Matlab implementation of the FTCS scheme for
solution to the heat equation. The u and uold variables are vectors.

See, e.g.,[3] or [5] for a proof that Equation (18) gives the stability limit for the
FTCS scheme.

Finally, we note that Equation (17) can be expressed as a matrix multipli-
cation.

φ(m+1) = Aφ(m)

where A is the tridiagonal matrix

A =



1 0 0 0 0 0
r (1− 2r) r 0 0 0
0 r (1− 2r) r 0 0

0 0
. . .

. . .
. . . 0

0 0 0 r (1− 2r) r
0 0 0 0 0 1


φ(m+1) is the vector of φ values of at time step m + 1, and φ(m) is the vector
of φ values at time step m. The first and last rows of A are adjusted so that
the boundary values of φ are not changed when the matrix-vector product is
computed.

3.2 Backward Time, Centered Space

In the derivation of Equation (16), the forward difference was used to approxi-
mate the time derivative on the left hand side of Equation (1). Now, choose the
backward difference,

∂φ

∂t

∣∣∣∣
tm+1,xi

=
φmi − φ

m−1
i

∆t
+O(∆t) (19)

3 SCHEMES FOR THE HEAT EQUATION 10

i i+1i 1

k+1

k
i i+1i 1

k+1

k
i i+1i 1

k+1

k

FTCS BTCS Crank-Nicolson

Figure 3: Computational molecules for finite-difference approximations to the
heat equation.

Substitute Equation (19) into the left hand side of Equation (1); substitute
Equation (14) into the right hand side of Equation (1); and collect the truncation
error terms to get

φmi − φ
m−1
i

∆t
= α

φmi−1 − 2φmi + φmi+1

∆x2
+O(∆t) +O(∆x2) (20)

The truncation errors in this approximation have the same order of magnitude
as the truncation errors in Equation (15). Unlike Equation (15), however, with
Equation (20) cannot be rearranged to obtain a simple algebraic formula for
computing for φmi in terms of its neighbors φmi+1, φmi−1, and φm−1

i . Developing
a similar equation for φmi+1 (or simply adding 1 to each spatial subscript in
Equation (20)) shows that φmi+1 depends on φmi+2 and φmi . Thus, Equation (20)
is one equation in a system of equations for the values of φ at the internal nodes
of the spatial mesh (i = 2, 3, . . . , N − 1).

To see the system of equations more clearly, drop the truncation error terms
from Equation (20) and rearrange the resulting equation to get

− α

∆x2
φmi−1 +

(
1

∆t
+

2α

∆x2

)
φmi −

α

∆x2
φmi+1 =

1

∆t
φm−1
i (21)

The system of equations can be represented in matrix form as

b1 c1 0 0 0 0
a2 b2 c2 0 0 0
0 a3 b3 c3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 aN−1 bN−1 cN−1

0 0 0 0 aN bN





φ1

φ2

φ3

...
φN−1

φN


=



d1

d2

d3

...
dN−1

dN


(22)

where the coefficients of the interior nodes are

ai = −α/∆x2, i = 2, 3, . . . , N − 1

bi = (1/∆t) + (2α/∆x2),

ci = −α/∆x2,

di = (1/∆t)φm−1
i .

For the Dirichlet boundary conditions in Equation (2)

b1 = 1, c1 = 0, d1 = φ0

aN = 0, bN = 1, dn = φL

3 SCHEMES FOR THE HEAT EQUATION 11

Implementation of the BTCS scheme requires solving a system of equations
at each time step. In addition to the complication of developing the code, the
computational effort per time step for the BTCS scheme is greater than the
computational effort per time step of the FTCS scheme4. The BTCS scheme
has one huge advantage over the FTCS scheme: it is unconditional stable (for
solutions to the heat equation). The BTCS scheme is just as accurate as the
FTCS scheme. Therefore, with some extra effort, the BTCS scheme yields a
computational model that is robust to choices of ∆t and ∆x. This advantage
is not always overwhelming, however, and the FTCS scheme is still useful for
some problems.

3.3 Crank-Nicolson

The FTCS and BTCS schemes have a temporal truncation error of O(∆t).
When time-accurate solutions are important, the Crank-Nicolson scheme has
significant advantages. The Crank-Nicolson scheme is not significantly more
difficult to implement than the BTCS scheme, and it has a temporal truncation
error that is O(∆t2). The Crank-Nicolson scheme is implicit, like BTCS, it is
also unconditional stable [1, 7, 8].

The left hand side of the heat equation is approximated with the backward
time difference used in the BTCS scheme, i.e. Equation (19). The right hand
side of the heat equation is approximated with the average of the central dif-
ference scheme evaluated at the current and the previous time step. Thus,
Equation (1) is approximated with

φmi − φ
m−1
i

∆t
=
α

2

[
φmi−1 − 2φmi + φmi+1

∆x2
+
φm−1
i−1 − 2φm−1

i + φm−1
i+1

∆x2

]
(23)

Notice that values of φ from time step m and time step m − 1 appear on the
right hand side. Equation (23) is used to predict the values of φ at time m, so all
values of φ at time m− 1 are assumed to be known. Rearranging Equation (23)
so that values of φ at time m are on the left, and values of φ at time m− 1 are
on the right gives.

− α

2∆x2
φmi−1 +

(
1

∆t
+

α

∆x2

)
φmi −

α

2∆x2
φmi+1 =

α

2∆x2
φm−1
i−1 +

(
1

∆t
− α

∆x2

)
φm−1
i +

α

2∆x2
φm−1
i+1 (24)

The Crank-Nicolson scheme is implicit, and as a result a system of equations
for the φ must be solved at each time step. The system of equations is identical

4For transient problems in one space dimension, the computation cost difference is not
too important. For transient problems with two or three space dimensions, however, the
computational effort per time step for BTCS is much greater than the computational effort
per time step of FTCS. Nonetheless, the superior stability of BTCS usually provides an overall
computational advantage.

4 IMPLEMENTATION AND VERIFICATION 12

in form to Equation (22) but with different coefficients:

ai = −α/(2∆x2), i = 2, 3, . . . , N − 1

bi = (1/∆t) + (α/∆x2),

ci = −α/(2∆x2),

di = aiφ
m−1
i−1 + (1/∆t+ ai + ci)φ

m−1
i + ciφ

m−1
i+1 .

Note that ai, bi, and ci for the Crank-Nicolson scheme differ from their counter-
parts in the BTCS scheme by a factor of two. Apart from this minor difference,
the only significant implementation difference between the BTCS and Crank-
Nicolson scheme is the appearance of the extra φm−1 terms in the di.

Algorithmically, the BTCS and Crank-Nicholson scheme are very similar.
The Crank-Nicolson scheme has a truncation error of O(∆t2)+O(∆x2), i.e., the
temporal truncation error is significantly smaller than the temporal truncation
error of the BTCS scheme.

4 Implementation and Verification

Matlab versions of the FTCS, BTCS, and Crank-Nicolson schemes are pre-
sented and demonstrated in this section.

4.1 Test Problem

The finite difference codes are tested by solving the heat equation with boundary
conditions φ(0, t) = φ(L, t) = 0, and initial condition f0(x) = sin (πx/L). The
exact solution for this problem (which is derived in Appendix B) is

φ(x, t) = sin
(πx
L

)
exp

(
−απ

2t

L2

)
.

4.2 Implementation

The FTCS and BTCS schemes are implemented in the Matlab functions
heatFTCS and heatBTCS in Listing 2 and Listing 3, respectively. The sys-
tem of equations for the BTCS method is solved with the tridiagLU and
tridiagLUsolve functions in Listing 6 and Listing 7. Appendix C gives a
brief derivation of the solution method for a tridiagonal system of equations.

Running heatFTCS with the default parameters gives

>> heatFTCS

Norm of error = 2.404e-002 at t = 0.500

dt, dx, r = 5.556e-002 5.263e-002 2.006

and the plot in Figure 4. Note that the plot only shows the last time step in
the solution for φ(x, t).

Similar results are obtained with the heatBTCS and heatFTCS codes

>> heatBTCS

Norm of error = 2.676e-002 at t = 0.500

dt, dx, r = 5.556e-002 5.263e-002 2.006

4 IMPLEMENTATION AND VERIFICATION 13

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u

FTCS

Exact

Figure 4: FTCS solution to the heat equation at t = 0.5 obtained with r = 2.
The solution seems to be stable, but only because the duration of the simulation
is not long enough for the instability to become apparent.

>> heatCN

Norm of error = 1.883e-003 at t = 0.500

dt, dx, r = 5.556e-002 5.263e-002 2.006

Note that the L2 norm of the error for the FTCS scheme and BTCS scheme
are comparable: 0.024 and 0.027. The error of the Crank-Nicolson scheme is
0.0018, which is more than an order of magnitude smaller than either the FTCS
and BTCS schemes. In § 4.4 below, the variation of the errors with ∆x and ∆t
is explored.

4.3 Stability

The heat equation is a model of diffusive systems. For all problems with constant
boundary values, the solutions of the heat equation decay from an initial state to
a non-varying steady state condition. The transient behavior of these solutions
are smooth and bounded: the solution does not develop local or global maxima
that are outside the range of the initial data.

In section 3.1 it was asserted that the FTCS scheme can exhibit instability.
An unstable numerical solution is one in which the values of φ at the nodes may
oscillate or the magnitude grow outside the bounds of the initial and bound-
ary conditions. According to Equation (18) the solution in Figure 4 should be
unstable because the value of r = 2 for this simulation, an r value that is signif-
icantly higher than the stability limit of 0.5. The FTCS scheme is unstable for
r > 0.5. By increasing the length of the simulation time to 1.0 (and correspond-
ingly increasing nt to maintain the same value of ∆t), the unstable behavior
is made apparent. In the next Matlab session, the values of nt and tmax are
both increased by a factor of two, and the solution from the heatFTCS is saved
in the x, t, and T variables. function

4 IMPLEMENTATION AND VERIFICATION 14

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

T
(x

,t
)

t = 0.00
t = 0.21
t = 0.47
t = 0.74
t = 1.00

Figure 5: FTCS solution to the heat equation at t = 1 obtained with r = 2.
The instability in the solution is now obvious.

>> [err,x,t,Phi] = heatFTCS(20,20,0.1,1,1);

Norm of error = 1.069e-001 at t = 1.000

dt, dx, r = 5.263e-002 5.263e-002 1.900

The error at the end of the simulation has increased significantly. The showTheat
function can be used to plot the T fields at selected time steps.

>> showTheat(x,t([1 5 10 15 20]),Phi(:,[1 5 10 15 20]))

The expression t([1 5 10 15 20]) selects the values of ti for i = 1, 5, 10, 15, 20.
The expression Phi(:,[1 5 10 15 20]) selects columns 1, 5, 10, 15, and 20
from the Phi matrix.

The plot created by showTheat is shown in Figure 5. Note that the solution
appears smooth as late as t = 0.74. However, by t = 1 significant oscillation in
the solution is evidence of instability in the FTCS scheme.

In contrast to the FTCS scheme, the BTCS and Crank-Nicholson schemes
are unconditionally stable. Repeating the preceding calculations with the BTCS
scheme gives this text output

>> [err,x,t,Phi] = heatBTCS(20,20,0.1,1,1);

Norm of error = 3.134e-002 at t = 1.000

dt, dx, r = 5.263e-002 5.263e-002 1.900

To view curves of φ(x, t) use the showTheat command
>> showTheat(x,t([1 5 10 15 20]),Phi(:,[1 5 10 15 20]))

which produces the plot in Figure 6. Repeating the calculations with the Crank-
Nicolson scheme would give qualitatively similar results, but with much greater
absolute accuracy (smaller errors).

4.4 Verifying Truncation Error Estimates

The truncation error for the FTCS or BTCS schemes is O(∆t) +O(∆x2). The
big O notation expresses the rate at which the truncation error goes to zero.

4 IMPLEMENTATION AND VERIFICATION 15

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

T
(x

,t
)

t = 0.00
t = 0.21
t = 0.47
t = 0.74
t = 1.00

Figure 6: Stable BTCS solution to the heat equation at t = 1 obtained with
r = 2.

Usually we are only interested in the order of magnitude of the truncation
error. For code validation, however, we need to work with the magnitude of the
truncation error. Let TE denote the true magnitude of the truncation error for
a given ∆t, ∆x, and other problem parameters (α, L, f0, etc.). As ∆t→ 0 and
∆x→ 0, the true magnitude of the truncation error is

TE = Kt∆t+Kx∆x2 (25)

where Kt and Kx are constants that depend on the accuracy of the finite dif-
ference approximations and the problem being solved5. To make TE arbitrarily
small, both ∆t and ∆x must approach zero.

To verify that a FTCS or BTCS code is working properly, we wish to deter-
mine whether a linear reduction in ∆t causes a linear reduction in TE. Similarly,
we wish to determine whether a linear reduction in ∆x causes a quadratic re-
duction in TE. To perform these tests, we must vary only ∆t or ∆x. The
Crank-Nicolson scheme should show a quadratic reduction in TE with ∆t.

Suppose two numerical solutions are obtained: one with ∆t1 and ∆x1, and
the other with ∆t2 and ∆x2. The ratio of truncation errors for the two solutions
is

TE2

TE1
=
Kt∆t2 +Kx∆x2

2

Kt∆t1 +Kx∆x2
1

(26)

To measure the dependence of TE on ∆t, choose a small value of ∆x, and
hold it constant as ∆t is systematically reduced. If ∆x is small enough, i.e. if
Kx∆x2 � Kt∆t1 and Kx∆x2 � Kt∆t2 then

TE2

TE1

∣∣∣∣
∆x = constant

≈ Kt∆t2
Kt∆t1

=
∆t2
∆t1

(27)

5The Kt and Kx for FTCS are different from the Kt and Kx for BTCS.

REFERENCES 16

Given the numerical solution φmi , i = 1, . . . , N at time step m, one scalar
measure of the truncation error as

e = ‖φmi − φ(xi, tm)‖2. (28)

One could also use the L1 or L∞ norms. The value of e is used to verify
that the FTCS and BTCS solutions have truncation errors that decrease as
O(∆t) +O(∆x2). In other words, e can be used as TE in Equations (25), (26),
or (27).

4.5 Truncation Error Measurements

Figure 7 shows how the truncation error of the FTCS and BTCS codes varies
when ∆t is reduced and ∆x is fixed. The solutions were obtained for α = 0.1,
L = 1, tmax = 0.5. The dashed line shows e ∼ ∆t, which is the theoretically
predicted variation of the truncation error with ∆t for the FTCS and BTCS
schemes. The BTCS scheme can obtain solutions for much larger ∆t than
the FTCS scheme because the BTCS scheme is unconditionally stable. For
∆x = 3.448 × 10−2 and α = 0.1, the stability limit for the FTCS scheme is
∆t = 5.94 × 10−3. As ∆t → 0, the truncation errors for the FTCS and BTCS
schemes approach constant values. Further reduction in ∆t do not reduce the
error because the contribution of the spatial error is fixed (when ∆x is fixed). In
other words, as ∆t→ 0, Equation (27) does not hold because the constantKx∆x
terms in the numerator and denominator of Equation (26) are not negligible.
Thus, as ∆t→ 0 for finite ∆x, the TE of BTCS and FTCS approach constants.
For intermediate ∆t, Equation (27) holds.

Figure 8 shows that the dependence of the truncation error for both schemes
is nearly identical except at very small ∆x. As ∆x becomes very small, the Kt∆t
terms in the numerator and denominator of Equation (26) become important.

References

[1] William F. Ames. Numerical Methods for Partial Differential Equations.
Academic Press, Inc., Boston, third edition, 1992.

[2] Jeffery Cooper. Introductin to Partial Differential Equations with Matlab.
Birkhäuser, Boston, 1998.

[3] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differen-
tial Equations: An Introduction. Cambridge University Press, Cambridge,
England, 1994.

[4] Clive A.J. Fletcher. Computational Techniquess for Fluid Dynamics.
Springer-Verlag, Berlin, 1988.

[5] Gene Golub and James M. Ortega. Scientific Computing: An Introduction
with Parallel Computing. Academic Press, Inc., Boston, 1993.

[6] Joe D. Hoffman. Numerical Methods for Engineers and Scientists. McGraw-
Hill, New York, 1992.

REFERENCES 17

[7] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole Publishing
Co., New York, sixth edition, 1997.

[8] Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods.
Dover, New York, 1994.

[9] Erwin Kreyszig. Advanced Engineering Mathematics. Wiley, New York,
seventh edition, 1993.

REFERENCES 18

10
−4

10
−3

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆ t

E
rr

o
r:

||
u
−

u
e
||

2

∆ x = 5.0e−4 (constant)

FTCS
BTCS
CN
ideal

Figure 7: Comparison of truncation errors for the FTCS, BTCS, and Crank-
Nicolson schemes as a function of ∆t for fixed ∆x.

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

∆ x

E
rr

o
r:

||
u
−

u
e
||

2

∆ t = 5.0e−6 (constant)

FTCS
BTCS
CN
ideal

Figure 8: Comparison of truncation errors for FTCS, BTCS, and Crank-
Nicolson schemes as a function of ∆x for fixed ∆t.

REFERENCES 19

Appendix A: Order Notation

The formal definition of O() is as follows. We say that some function f(s) is
O(ψ(s)) for s ∈ Ω if

|f(s)| ≤ C|ψ(s)| ∀ s ∈ Ω

Suppose for concreteness that we have an approximation with a truncation error
that is O(∆x2). By this we mean that the upper limit for the truncation error
is C∆x2 where C is an unknown constant.

The value of C does not need to be known for us to make good use of the
truncation error estimate. For the particular case where the truncation error is
O(∆x2) we have

Error for ∆x2

Error for ∆x1
=
C|(∆x2)2|
C|(∆x1)2|

=

[
∆x2

∆x1

]2

So as long as we work with the ratio of errors, the value of the constant does
not matter.

Appendix B: Exact Solution

The general solution of Equation (1) with the boundary and initial conditions

φ(0, t) = φ(L, t) = 0, φ(x, 0) = f0(x) (29)

is (See e.g., Kreyszig [9, §11.5].)

φ(x, t) =

∞∑
n=1

bn sin
(nπx
L

)
exp

(
−αn

2π2t

L2

)
(30)

where the bn are obtained from

bn =
2

L

∫ L

0

f0(x) sin
(nπx
L

)
dx (31)

Example: f0(x) = sin (πx/L).
Compute

bn =
2

L

∫ L

0

sin
(πx
L

)
sin
(nπx
L

)
dx

but ∫ L

0

sin
(πx
L

)
sin
(nπx
L

)
dx =

{
L/2 if n = 1

0 otherwise

Therefore,

b1 = 1,

bn = 0, n = 2, 3, . . .

The exact solution to Equation (1) subject to initial and bound conditions in
Equation (29), and with f0(x) = sin ((πx)/(L)) is

φ(x, t) = sin
(πx
L

)
exp

(
−απ

2t

L2

)
.

REFERENCES 20

Appendix C: Solving a Tridiagonal System

The system of equations for the BTCS scheme can be represented in matrix
form as Av = d where

A =



b1 c1 0 0 0 0
a2 b2 c2 0 0 0
0 a3 b3 c3 0 0

0 0
. . .

. . .
. . . 0

0 0 0 aN−1 bN−1 cN−1

0 0 0 0 aN bN


, v =



φ1

φ2

φ3

...
φN−1

φN


, d =



d1

d2

d3

...
dN−1

dN


This system can be efficiently solved using LU factorization with backward
substitution. Since the coefficient matrix is known to by positive definite (and
symmetric in the case of conduction or diffusion without convection), we can
use LU factorization without pivoting.

If the coefficient matrix is A, we wish to find L and U such that A = LU .
It turns out that L and U have the form

L =



e1

a2 e2

a3 e3

. . .
. . .

an−1 en−1

an en


U =



1 f1

1 f2

1 f3

. . .
. . .

1 fn−1

1


Evaluating each nonzero term in the product LU and setting it equal to the
corresponding entry in A gives

e1 = b1

e1f1 = c1

a2 = a2

a2f1 + e2 = b2

e2f2 = c2

ai = ai

aifi−1 + ei = bi

eifi = ci

...
...

an = an

anfn−1 + en = bn

REFERENCES 21

Solving for the unknown ei and fi gives

f1 = c1/e1 = c1/b1

e2 = b2 − a2/f1

f2 = c2/e2

ei = bi − aifi−1

fi = ci/ei

en = bn − anfn−1

The equivalent Matlab code is (with a, b, c given, and n = length(a) =
length(b) = length(c))

e(1) = b(1);

f(1) = c(1)/b(1);

for i=2:n

e(i) = b(i) - a(i)*f(i-1);

f(i) = c(i)/e(i);

end

Since A = LU , the system Av = d is equivalent to (LU)v = d or L(Uv) = d.
Introducing the w vector defined as w = Uv the system of equations becomes
Lw = d. Since L is a lower triangular matrix, w can easily6 be obtained by
solving Lw = d. Then with w known, v is computed (again, easily because U
is triangular) by solving Uv = w. Thus, once L and U have been found, the v
vector can be computed in the two step process

solve Lw = d

solve Uv = w

Since L is lower triangular, the first solve is a forward substitution. Since U is
upper triangular, the second solve is a backward substitution.

Applying the BTCS scheme to (the constant coefficient) heat equation yields
a coefficient matrix that does not change from time step to time step. Thus,
the L and U factors need to be obtained only once at the beginning of the
simulation. The triangular solves are performed only once per time step. Given
the a, e, and f vectors that define the L and U matrices, the solution algorithm
can be embodied in two loops.

% --- Forward substitution to solve L*w = d

w(1) = d(1)/e(1);

for i=2:n

w(i) = (d(i) - a(i)*w(i-1))/e(i);

end

% --- Backward substitution to solve U*v = w

v(n) = w(n);

for i=n-1:-1:1

v(i) = w(i) - f(i)*w(i+1);

end

6Recall that the solution of a lower triangular systems is easy to compute because it only
requires a forward substitution loop.

REFERENCES 22

Careful examination of the two preceding loops shows that v is used only after
w is created, and that v(i) is obtained only after v(i+1) is found. These facts
enable us to eliminate the w vector entirely and use v in its place. This saves
us the task of creating the temporary w vector. The revised algorithm is in
Listing 7.

Appendix D: Code Listings

heatBTCS Use the BTCS scheme to solve the problem defined in § 4.1.

heatCN Use the Crank-Nicolson scheme to solve the problem de-
fined in § 4.1.

heatFTCS Use the FTCS scheme to solve the problem defined in § 4.1.

showTheat Plot the results of solving the heat equation with either
heatFTCS, heatBTCS or heatCN.

tridiagLU Obtain the LU factorization of a tridiagonal system of equa-
tions if the coefficient matrix that is positive definite.

tridiagLUsolve Solve a tridiagonal system of equations when the LU fac-
torization of that system is available. tridiagLUsolve is
used by heatBTCS.

REFERENCES 23

function [errout,xo,to,Uo] = heatFTCS(nt,nx,alpha,L,tmax,errPlots)

% heatBTCS Solve 1D heat equation with the BTCS scheme

%

% Synopsis: heatFTCS

% heatFTCS(nt)

% heatFTCS(nt,nx)

% heatFTCS(nt,nx,alpha)

% heatFTCS(nt,nx,alpha,L)

% heatFTCS(nt,nx,alpha,L,tmax)

% heatFTCS(nt,nx,alpha,L,tmax,errPlots)

% err = heatFTCS(...)

% [err,x,t,U] = heatFTCS(...)

%

% Input: nt = number of steps. Default: nt = 10;

% nx = number of mesh points in x direction. Default: nx=20

% alpha = diffusivity. Default: alpha = 0.1

% L = length of the domain. Default: L = 1;

% tmax = maximum time for the simulation. Default: tmax = 0.5

% errPlots = flag (1 or 0) to control whether plots of the solution

% and the error at the last time step are created.

% Default: errPlots = 1 (make the plots)

%

% Output: err = L2 norm of error evaluated at spatial nodes on last time step

% x = location of finite difference nodes

% t = values of time at which solution is obtained (time nodes)

% U = matrix of solutions: U(:,j) is U(x) at t = t(j)

if nargin<1, nt = 10; end

if nargin<2, nx = 20; end

if nargin<3, alpha = 0.1; end

if nargin<4, L = 1; end

if nargin<5, tmax = 0.5; end

if nargin<6, errPlots=1; end

% --- Compute mesh spacing and time step

dx = L/(nx-1);

dt = tmax/(nt-1);

r = alpha*dt/dx^2; r2 = 1 - 2*r;

% --- Create arrays to save data for export

x = linspace(0,L,nx)’;

t = linspace(0,tmax,nt);

U = zeros(nx,nt);

% --- Set IC and BC

U(:,1) = sin(pi*x/L); % implies u0 = 0; uL = 0;

u0 = 0; uL = 0; % needed to apply BC inside time step loop

% --- Loop over time steps

for m=2:nt

for i=2:nx-1

U(i,m) = r*U(i-1,m-1) + r2*U(i,m-1) + r*U(i+1,m-1);

end

end

% --- Compare with exact solution at end of simulation

ue = sin(pi*x/L)*exp(-t(nt)*alpha*(pi/L)^2);

err = norm(U(:,nt)-ue);

% ... Remainder of code to plot result in full listing of heatFTCS.m

Listing 2: The heatFTCS function solves the one-dimensional heat equation with
the FTCS scheme.

REFERENCES 24

function [errout,xo,to,Uo] = heatBTCS(nt,nx,alpha,L,tmax,errPlots)

% heatBTCS Solve 1D heat equation with the BTCS scheme

%

% Synopsis: heatBTCS

% heatBTCS(nt)

% heatBTCS(nt,nx)

% heatBTCS(nt,nx,alpha)

% heatBTCS(nt,nx,alpha,L)

% heatBTCS(nt,nx,alpha,L,tmax)

% heatBTCS(nt,nx,alpha,L,tmax,errPlots)

% err = heatBTCS(...)

% [err,x,t,U] = heatBTCS(...)

%

% Input: nt = number of steps. Default: nt = 10;

% nx = number of mesh points in x direction. Default: nx=20

% alpha = diffusion coefficient. Default: alpha = 0.1

% L = length of the domain. Default: L = 1;

% tmax = maximum time for the simulation. Default: tmax = 0.5

% errPlots = flag (1 or 0) to control whether plots of the solution

% and the error at the last time step are created.

% Default: errPlots = 1 (make the plots)

%

% Output: err = L2 norm of error evaluated at spatial nodes on last time step

% x = location of finite difference nodes

% t = values of time at which solution is obtained (time nodes)

% U = matrix of solutions: U(:,j) is U(x) at t = t(j)

if nargin<1, nt = 10; end

if nargin<2, nx = 20; end

if nargin<3, alpha = 0.1; end % diffusivity

if nargin<4, L = 1; end

if nargin<5, tmax = 0.5; end

if nargin<6, errPlots=1; end % flag: no error plots if errPlots=0

% --- Compute mesh spacing and time step

dx = L/(nx-1);

dt = tmax/(nt-1);

% --- Create arrays to save data for export

x = linspace(0,L,nx)’;

t = linspace(0,tmax,nt);

U = zeros(nx,nt);

% --- Set IC and BC

U(:,1) = sin(pi*x/L); % implies u0 = 0; uL = 0;

u0 = 0; uL = 0;

% --- Coefficients of the tridiagonal system

a = (-alpha/dx^2)*ones(nx,1); % subdiagonal a: coefficients of phi(i-1)

c = a; % superdiagonal c: coefficients of phi(i+1)

b = (1/dt)*ones(nx,1) - 2*a; % diagonal b: coefficients of phi(i)

b(1) = 1; c(1) = 0; % Fix coefficients of boundary nodes

b(end) = 1; a(end) = 0;

[e,f] = tridiagLU(a,b,c); % Get LU factorization of coefficient matrix

% --- Loop over time steps

for m=2:nt

d = U(:,m-1)/dt; % update right hand side

d(1) = u0; d(end) = uL; % overwrite BC values

U(:,m) = tridiagLUSolve(d,a,e,f,U(:,m-1)); % solve the system

end

% --- Compare with exact solution at end of simulation

% ... Remainder of code is the same as heatFTCS

Listing 3: The heatBTCS function solves the one-dimensional heat equation with
the BTCS scheme.

REFERENCES 25

function [errout,xo,to,Uo] = heatCN(nt,nx,alpha,L,tmax,errPlots)

% heatBTCS Solve 1D heat equation with the Crank-Nicolson scheme

%

% Synopsis: heatCN

% heatCN(nt)

% heatCN(nt,nx)

% heatCN(nt,nx,alpha)

% heatCN(nt,nx,alpha,L)

% heatCN(nt,nx,alpha,L,tmax)

% heatCN(nt,nx,alpha,L,tmax,errPlots)

% err = heatCN(...)

% [err,x,t,U] = heatCN(...)

%

% Input: nt = number of steps. Default: nt = 10;

% nx = number of mesh points in x direction. Default: nx=20

% alpha = diffusion coefficient. Default: alpha = 0.1

% L = length of the domain. Default: L = 1;

% tmax = maximum time for the simulation. Default: tmax = 0.5

% errPlots = flag (1 or 0) to control whether plots of the solution

% and the error at the last time step are created.

% Default: errPlots = 1 (make the plots)

%

% Output: err = L2 norm of error evaluated at spatial nodes on last time step

% x = location of finite difference nodes

% t = values of time at which solution is obtained (time nodes)

% U = matrix of solutions: U(:,j) is U(x) at t = t(j)

if nargin<1, nt = 10; end

if nargin<2, nx = 20; end

if nargin<3, alpha = 0.1; end % diffusivity

if nargin<4, L = 1; end

if nargin<5, tmax = 0.5; end

if nargin<6, errPlots=1; end % flag: no error plots if errPlots=0

% --- Compute mesh spacing and time step

dx = L/(nx-1); dt = tmax/(nt-1);

% --- Create arrays to save data for export

x = linspace(0,L,nx)’; t = linspace(0,tmax,nt); U = zeros(nx,nt);

% --- Set IC and BC

U(:,1) = sin(pi*x/L); % implies u0 = 0; uL = 0;

u0 = 0; uL = 0; % needed to apply BC inside time step loop

% --- Coefficients of the tridiagonal system

a = (-alpha/2/dx^2)*ones(nx,1); % subdiagonal a: coefficients of phi(i-1)

c = a; % superdiagonal c: coefficients of phi(i+1)

b = (1/dt)*ones(nx,1) - (a+c); % diagonal b: coefficients of phi(i)

b(1) = 1; c(1) = 0; % Fix coefficients of boundary nodes

b(end) = 1; a(end) = 0;

[e,f] = tridiagLU(a,b,c); % Get LU factorization of coefficient matrix

% --- Loop over time steps

for m=2:nt

% Right hand side includes time derivative and CN terms

d = U(:,m-1)/dt - [0; a(2:end-1).*U(1:end-2,m-1); 0] ...

+ [0; (a(2:end-1)+c(2:end-1)).*U(2:end-1,m-1); 0] ...

- [0; c(2:end-1).*U(3:end,m-1); 0];

d(1) = u0; d(end) = uL; % overwrite BC values

U(:,m) = tridiagLUSolve(d,a,e,f,U(:,m-1)); % solve the system

end

% --- Compare with exact solution at end of simulation

% ... Remainder of code is the same as heatFTCS

Listing 4: The heatCN function solves the one-dimensional heat equation with
the Crank-Nicolson scheme.

REFERENCES 26

function showTheat(x,t,T,pflag)

% showTheat Plot and print solutions to the heat equation

%

% Synopsis: showTheat(x,t,T)

% showTheat(x,t,T,pflag)

%

% Input: x = vector of positions at which temperature is known

% t = vector of times at which solution is to be evaluated

% T = matrix of T(x,t) values. T(:,t(j)) is T(x) at time t(j)

% pflag = flag to control printing of results.

% Default: pflag = 0, do not print results

% --- Define string matrix of line styles that can be reused.

% nsymb is the total number of line style strings (plot symbols)

% In plot loop the statement isymb = 1 + rem(j-1,nsymb) is an

% index in the range 1 <= isymb <= nsymb

lineSymb = strvcat(’b-.’,’k-o’,’m-v’,’b-s’,’k*-’,’m-d’,’b-+’,’k-<’,’m-h’);

nsymb = size(lineSymb,1);

% --- Plot T(x,t): each time is a different curve with different symbol

for j=1:length(t)

hold on

isymb = 1 + rem(j-1,nsymb); % cyclic index for line styles.

plot(x,T(:,j),lineSymb(isymb,:));

% --- Build string matrix for legend. Each row is a legend string.

s = sprintf(’t = %-4.2f’,t(j));

if j==1

legstr = s;

else

legstr = strvcat(legstr,s);

end

end

hold off

legend(legstr,2); xlabel(’x’); ylabel(’T(x,t)’);

Listing 5: The showTheat plots the φ(x, t) curves from solutions of the heat
equation.

REFERENCES 27

function [e,f] = tridiagLU(a,b,c)

% tridiagLU Obtain the LU factorization of a tridiagonal matrix

%

% Synopsis: [e,f] = tridiag(a,b,c)

%

% Input: a,b,c = vectors defining the tridiagonal matrix. a is the

% subdiagonal, b is the main diagonal, and c is the superdiagonal

%

% Output: e,f = vectors defining the L and U factors of the tridiagonal matrix

n = length(a);

e = zeros(n,1); f = e;

e(1) = b(1);

f(1) = c(1)/b(1);

for i=2:n

e(i) = b(i) - a(i)*f(i-1);

f(i) = c(i)/e(i);

end

Listing 6: The tridiagLU function obtains the LU factorization of a tridiagonal
system of equations if the coefficient matrix is positive definite.

function v = tridiagLUsolve(d,a,e,f,v)

% tridiagLUsolve Solve (LU)*v = d where L and U are LU factors of a tridiagonal

% matrix

%

% Synopsis: v = tridiagLUsolve(d,e,f)

% v = tridiagLUsolve(d,e,f,v)

%

% Input: d = right hand side vector of the system of equatoins

% e,f = vectors defining the L and U factors of the tridiagonal matrix.

% e and f are obtained with the tridiagLU function

% v = solution vector. If v is supplied, the elements of v are over-

% written (thereby saving the memory allocation step). If v is not

% supplied, it is created. v is used as a scratch vector in the

% forward solve.

%

% Output: v = solution vector

n = length(d);

if nargin<5, v = zeros(n,1); end

% --- Forward substitution to solve L*w = d

v(1) = d(1)/e(1);

for i=2:n

v(i) = (d(i) - a(i)*v(i-1))/e(i);

end

% --- Backward substitution to solve U*v = w

for i=n-1:-1:1

v(i) = v(i) - f(i)*v(i+1);

end

Listing 7: The tridiagLUSolve function solves a tridiagonal system of equa-
tions when the LU factorization of that system is available.

