Chapter 2.5

Programming Languages in Education:
The Search for an Easy Start

Patrick Mendelsohn!, T.R.G. Green? and Paul Brna®

1 Faculty of Psychology and Educational Science University of Geneva,
Switzerland
2 MRC Applied Psychology Unit, Cambridge, UK
3 Department of Artificial Intelligence, University of Edinburgh, UK

Abstract

(i) We first discuss educational objectives in teaching programming, using Logo re-
search as a vehicle to report on versions of the ‘transfer of competence’ hypothesis.
This hypothesis has received limited support in a detailed sense, but not in its original
more grandiose conception of programming as a ‘menfal gymnasium’. (ii) Difficulties
in learning quickly abnegate educational objectives, so we next turn to Prolog, which
originally promised to be easy to learn since it reduces the amount of program con-
trol that the programmer needs to define, but which turned out to be very prone to
serious misconceptions. Recent work suggests that Prolog difficulties may be caused
- by an inability to see the program working. (iii) Does the remedy therefore lie in
starting learners on programmable devices that are low level, concrete and highly
visible? Research on this line has brought out another problem: learners find the
‘programming plans’ hard to master. (iv) Finally, we sketch a project designed to

Psychology of Programming Copyright © 1990 by Academic Press Limited
ISBN 0-12-350772-3 All rights of reproduction in any form reserved

176 P. Mendelsohn et al.

teach standard procedural programming via ‘natural plans’. Our conclusions stress
pragmatic approaches with much attention to ease of use, avoiding taking ‘economy’
and ‘elegance’ as virtues in their own right.

1 Introduction

For all the efforts of the computing fraternity, computing remains inaccessible to
many people, especially the old, the very young, the disabled, and those with low
educational achievements. In this chapter we shall outline some of the attempts to
open up computing for educational purposes, especially school children and ‘distant
learners’ — pupils learning without face-to-face contact with a tutor. For these pur-
poses one wants to avoid languages that enforce many new abstract ideas, or have
too many ‘programming tricks’ to be learnt, or give too little immediate concrete
feedback. So there has been much interest in new languages designed for children
that are friendlier and more concrete, such as Logo; and in languages like Prolog,
which appear to avoid some of the problems of abstractions and programming tricks.
We shall describe work with both of these languages. We shall also look at attempts
to break out of the ‘programming language’ mould and to create systems that are
more immediate than either Logo or Prolog.

At the same time as new languages have been developed, there has been much
discussion of whether the primary aim should be to teach children programming for
its own sake, or to use programming in the service of some other end or discipline —
‘programming to learn, or learning to program’. Different programming cultures have
emphasized different balances between the two polar positions. These educational
objectives are not, strictly speaking, within the scope of this volume, which takes
as its starting point the view that unless the programming language is adequately
matched to the abilities of its users, nothing else can be done and all objectives will
fail. Yet, as we shall quickly observe, these aspects tend to get themselves mixed
together.

Of course, choosing a language in school is not a free choice. The development
of educational computing is directly dependent on different sources of material con-
straints, both institutional and human. Teachers who decide to use a computer in
the classroom have, at least initially, only a limited influence on these constraints.
They passively follow developments in hardware and software and adapt to political
choices concerning computer equipment more than participating in decisions. They
accompany human transformations more than determining them. Nevertheless, there
are enough pedagogical alternatives remaining for any reflection on the adaptation
of computer languages to the goals of teaching to be useful and fruitful.

The rapid and spectacular progress made in computer and software performance
suggests that great care should be taken when deciding on which equipment to in-
troduce into the classroom for teaching programming. How and with what goals in
mind must programming languages be used at school such that this utilization and
teaching are not completely outdated in five years time? It quickly becomes clear
that even if organizational constraints can be put aside, language choices must be
based on many different criteria.

First, the language level will affect the level at which the pupils will work, and
will partly determine how much of their time is spent on learning to program and
how much on using that knowledge to aid other kinds of learning.

Programming Languages in Education i

Secondly, there is the transfer problem of making skills and knowledge learned
:n the context of programming available in a different context. Kurland et al. (1989)
point out that the degree of transfer depends on how close the domains are. ‘Near’
transfer effects can be obtained without too much difficulty (Littlefield et al., 1988),
but “far’ transfer is difficult to establish unless the analogy between domains of knowl-
edge is explicitly taught.

Finally, the teacher must choose a teaching style. The first applications of com-
puting in education were marked by a debate, often lively (Solomon, 1986), between
the defenders of programmed teaching and the partisans of learning through discov-
ery and self-teaching. For the first clan, computing is essentially an effective tool for
training and repeating teaching sequences (Suppes, 1979). For the others, computing
is more like a medium, a support for elaborating environments in which the child is
his or her own knowledge builder (Papert, 1980).

1.1 Language cultures and research questions

Given these complex interrelationships, it is hardly surprising that the choice of a
classroom language brings with it a particular culture. ‘If you weren’t interested in
the problems that Logo can deal with, you wouldn’t have chosen Logo’ — and thus,
further research on Logo tends to be dominated by the same set of questions. In
such a way does a culture perpetuate itself. And more: the Logo culture has always
emphasized interaction, either with real devices (‘turtles’) or else with virtual devices
(‘screen turtles ’); these crawling and drawing devices add amusement but also present
powerful challenges. Logo systems without graphics are unthinkable. Not so Prolog,
which has always emphasized reasoning about a database of assertions; many Prolog
systems have no graphics, or limited graphics that tend to subvert the declarative
style of Prolog with a procedural outlook.

Problems with the Logo language itself have not been a major discussion point.
There are some predictable difficulties, such as learning to tell the turtle which way
to go when it is facing south (when the turtle’s left is the viewer’s right), but, in
general, turtle graphics has been fairly successful. It is not surprising, then, that the
major research efforts in connection with Logo have dwelt on ‘the cognitive effects of
learning to program’, in Pea and Kurland’s phrase.

Prolog, on the other hand, has been a troublesome language, and fewer interesting
research results have come out of teaching children Prolog. The reasons appear to
be an emphasis on relational database querying, which is relatively unproblematic;
emphasis on teaching some other subject using Prolog simply as a means to represent
the knowledge; and the use of a ‘toolkit’ as a front end to give a simplified way in
which children can add knowledge to a ready-programmed computational mechanism.
These can all be seen as ways to get some benefits from Prolog while not having to -
teach children how to program in Prolog. '

Our first two sections, therefore, will deal with research in each of these traditions.
We then present some contrasting work in which the traditional, extremely abstract
concept of a programming language has been rejected in favour of far more concrete
devices, in one case a microprocessor with sensors and in the other, a model train.
Certain themes will recur throughout these treatments, such as the problem of helping
novice programmers to perceive programming plans, and we finish with a forward-
looking research project which aims to present plans more directly than has been
achieved before. '

178 P. Mendelsohn et al.

DEVELOF NEW WAYS TO HANDLE EXISTING KNOWLEDGE
r 3

TEACH SCHOOL CURRICULA -+ —» LEARN COMPUTING CONCEPTS

4
DEVELOP COGNITIVE SKILLS

Figure 1: Schematic representation of different objectives for programming activities
in school: vertical axis, transfer of competence hypothesis; horizontal axis, the learning of
content.

2 Programming to learn, or learning to program? Educational
objectives and Logo

Logo is the language that is predominantly used in general education in France and is
also widely used in Britain and North America. It has immediate appeal to children
because of its ‘turtle graphics’, which originally were instructions driving a small
device that crawled around the floor. The device could lower a pen to mark its
path and had sensors to record obstructions. Interest in the possibilities of Logo’s
graphics model gradually became one of the dominant themes of Logo work, and the
floor-based turtle is now less important than the screen turtle which draws lines on
the VDU. The same instructions are used, preserving the ‘turtlocentric’ view: the
turtle knows how to turn left or right by a stated number of degrees, and how to
go forwards or backwards by a given length. Logo is a procedural language with
provision for procedures (using parameters called by value), variables, conditionals,
recursion and graphics. Data structures include numbers, strings and lists.

Following the guiding principles described in our introduction we shall devote
our attention to the central question raised by this choice of language, namely, the
problem of deciding upon educational objectives. Four types of project will be pre-
sented; we believe that the reflections proposed here can readily be generalized to
many different programming contexts.

The four approaches we shall describe can be represented on two axes (Figure 1).
The options that consist of using Logo, with the ‘transfer of competence’ hypothesis
as a guiding concept, are represented on the vertical axis. The research scientist is
more interested here in programming as the exercising of competence that can be
reinvested in other school situations, than programming as an activity of developing
programs.

Represented on the horizontal axis, on the other hand, are the practices of teach-
ers who use programming languages with the central idea that children learn, above
all, specific information and know-how related to programming.

Programming Languages in Education 179

Before going further into the details of this analysis we can already note that
what actually does happen in the classroom corresponds more to the horizontal axis,
whereas the vertical axis (transfer hypothesis) is generally called upon to justify these
practices!

2.1 The transfer of competence hypothesis

The general hypothesis of transfer covers, in fact, two quite different conceptions.
On the one hand there is the most classical position at the origin of the creation of
Logo. A programming language is considered as a medium that creates new ways
of dealing with existing knowledge. This perspective is supported by several authors
(Papert, 1980; O’Shea and Self, 1983; Solomon, 1986; Lawler, 1985). These authors
stress the role of self-training and the child’s discovery of his or her own problem-
solving strategies as well as in co-operative problem solving by learners exploring a
programming world that is shared between work stations. They also consider the
introduction of programming to be a revolution in teaching practice. Knowledge
is transformed and the classical competence taught at school is generally rendered
obsolete. Problems of evaluation are generally circumvented in that it is considered
that if one child can do something, other children can do the same if they are given
the means.

On the other hand there are those authors who support a more cognitivist per-
spective. Through programming practice children develop cognitive skills that are
identifiable and transferable to other situations. The most studied of these elemen-
tary aptitudes solicited by programming activity have been analogical and temporal
reasoning, mathematical operations (Ross and Howe, 1981), the planning of action
(Pea and Kurland, 1984; Lehrer et al., 1988), error correction (Klahr and Carver,
1988), and the development of logical and spatial operations (Mendelsohn, 1986).

2.2 Transfer of competence as new approaches to knowledge and learning

Within Papert’s perspective, Logo provides an easy approach to the art of heuristics.
The principal force of structured programming is that procedures can be created, like
separable blocks, to obtain a progressive construction of the solution or for solving
larger problems (an example of this is provided in the classical procedure HOUSE
given to beginners). It is therefore logically possible to know how each one of us
breaks down a problem into simple units and then co-ordinates these units into
macro-actions. :

Howe and O’Shea (1978) provide an illustration of this approach. These authors
attempted to test the hypothesis according to which the child learning to program
in Logo uses a system of strong metaphors to describe reality. These metaphors -
can be linked to the body schema (using Logo to add meaning to and describe
movements), to denomination (the fact that procedures have a name and can be
recalled in another part of the program), to the breaking down of a problem into
subproblems (structured programming). Why not therefore conclude that the child
can then use these metaphors to transmit knowledge to someone else in a different
context?

Howe and O’Shea designed the following experiment to test this hypothesis. One
group of children having learnt to program in Logo and another group with no pro-
gramming experience were placed in a situation similar to the game ‘battleships’ in

180 P. Mendelsohn et al,

front of a screen hiding a partner. The subjects have in front of them a figure com-
posed of small geometrical shapes like in a jigsaw puzzle and their partners have a set
of geometrical shapes, a subset of which is identical to those used in the figure. The
subjects have to explain to their partners, without showing them any of the shapes,
how to build the figure. :

Howe and O’Shea hypothesized that if the children with programming experience
in Logo have learnt anything relative to the metaphors of communication (modular-
ization, denomination, sequentiality, etc.), then they should be more capable of ex-
plaining how to build the figure than the children with no programming experience.
The authors expected the ‘programming’ children to break down the figure into rel-
evant subsets, give names to these subsets using suitable labels and only to propose
executable actions to their partner. The ‘non-programming’ children were expected
to enumerate the different pieces of the puzzle giving ambiguous instructions.

The results show that some children do seem to have recognized the analogy be-
tween this problem and the programming situation. The results must be considered
with caution, however, as the necessary methodological precautions were not taken
to allow a non-subjective interpretation of the data. Other similar experiments have
not shown such analogical transfer (Littlefield et al., 1988). Nevertheless, these con-
siderations and the pedagogical reflections associated with these experiments have a
non-negligible impact on teachers and can encourage them to re-evaluate some of the
pedagogical objectives of their classes.

2.3 Transfer of competence as the development of cognitive skills

The other perspective of the ‘transfer hypothesis axis’ is characterized by a more
rigorous experimental approach and by its explicit reference to cognitive psychology.
A ‘cognitive skill’ is a competence associated with the manipulation of identifiable
operators, not specific to programming. Moreover, this competence must be suffi-
ciently generalizable and exercised to be re-invested in other tasks. Pea and Kur-
land’s (1984) study on the development of aptitude for action planning is the most
representative of this type of research. This aptitude is evaluated by the capacity
for optimizing the representation of a string of actions that is too large to be man-
aged directly in working memory. These authors have experimented with seven- and
eleven-year-old children some of whom had one year of Logo instruction at the rate of
one hour a week. For Pea and Kurland, planning is only necessary if the situation im-
poses several constraints on the subject: (1) planning is the only means of solving the
problem; (2) the task must be sufficiently complex so that memorizing the subgoals
is impossible; and (3) the area of knowledge is familiar enough for the children to be
able to identify the elementary actions to be performed. The situation-problem used
by these authors was represented by a three-dimensional model of a classroom with
objects and furniture (chairs, tables, plants, etc.). The starting point was the door
of the classroom. The children had to carry out a number of concrete actions on the
model: water the plants, clean the blackboard, put the chairs in front of the tables,
wash the tables, move certain objects, etc. These different actions can be performed
in any order but the children were instructed to find the route that minimized the
number of movements necessary. Each subject had three trials at the beginning of
the school year (pre-test) and three more trials at the end of the year (post-test). A
measure of performance was calculated for each subject. The results provided little
support for the transfer hypothesis. The expected effects of age and order of trial

Programming Languages in Education 181

were observed but no significant difference was observed between children with Logo
experience or not (neither in terms of the types of strategy used nor the objective
measures of efficiency).

In a second experiment Pea and Kurland provided a further analysis of this
problem. As the transfer task in the first experiment may have been too different
from the type of task performed in programming situations, a computerized version
of this task was used in the second experiment. Thus, instead of being performed
on a scale model, the operations were simulated on a computer and the subjects had
to provide a list of commands. Even if this situation penalizes the control group the
results were no better than in the previous experiment. Similar results were obtained
by Littlefield et al. (1988) using the same planning situation.

These results, disappointing for those who defend the transfer of competence
hypothesis, lead to the formulation of at least three statements (for a detailed analysis
see Crahay, 1987; Mendelsohn, 1988; Kurland et al., 1989).

« Tt is unrealistic to think that one hour a week of programming Over a one-year
period will allow transfer of such a specialized competence as planning. Would
anyone have attempted a similar experiment for a less attractive activity, such
as the game of chess, where no programming language is involved?

+ One should perhaps be more realistic and take more time analysing what chil-
dren really do before hypothesizing about the expected form of transfer. Pea
and Kurland (1984) also stress the methodological problems associated with
inaccurate evaluation of the level of expertise that the ‘programming’ children
attain. To surmount this difficulty Klahr and Carver (1988) suggest that a
formal analysis be made of what is learnt and what is supposed to be transfer-
able. However, this costly precaution is rarely taken into considerations by the
researchers in this field.

+ The principal interest of Logo in the classroom is perhaps not to be found in
this direction. A programming language is above all a system of representation
and the interest of such a system lies in its capacity to highlight new properties
of the manipulated objects while allowing the automatic execution of complex
processing. Learning arithmetic benefits the child more by proposing a formal
language that facilitates the symbolic processing of complex numerical problems
than by developing hypothetical aptitudes for reasoning. The same is perhaps
true for learning to program. This point of view characterizes the second axis
of Figure 1.

2.4 The acquisition of new knowledge

With respect to the axis that represents the learning of content hypothesis (the
horizontal axis of Figure 1), it is also possible to oppose two approaches with very
different goals. On the one hand there is the idea that programming helps children
learn, above all, concepts of computing: programming operations, data structures,
variables (reference to the term learn). On the other hand, there are those who
stress the teaching of specific courses (programming is always applied to particular
content). Thus programming is used as a back-up for teaching geometry, arithmetic,
or even grammar.

182 P. Mendelsohn et al,

2.5 Knowledge acquisition as mastering computer concepts

The teaching of programming at school is not aimed at producing computer program-
mers but rather computer users. One can nevertheless think that basic computer
concepts are an integral part of computer culture. Because of this, the learning of
these concepts has received much attention from psychologists who have considered
this to be a particularly rich field for fundamental research. The development of
these concepts in children, the cognitive difficulties involved in their acquisition, and
their origin, are the main themes of research that interest computer educationalists
(Rogalski and Vergnaud, 1987). Some examples of the operations studied here are
iteration (Soloway et al., 1983; Kessler and Anderson, 1986), conditional branching
(Rogalski, 1987) and recursion (Anzai and Uesato, 1982; Rouchier, 1987; Mendel-
sohn, 1985; Pirolli, 1986; Kahney, 1983). Some more-simple concepts can be added
to this list: sequentiality, modularity, and the notion of computer variable. These
have been studied less since they are implicitly linked to the former.

Recursion interests many researchers because of its particular status in program-
ming. It is a powerful operation which is trivial in its definition yet raises many
problems when it comes to teaching it in its most complex forms. Hofstadter (1979)
describes recursion as a mode of reasoning characterized by self-reference and the
nesting of processing (“This sentence has five words’). Roberts (1986) stresses the
algorithmic point of view. Recursion is thus a means of solving a problem by re-
ducing it into one or several subproblems which are (1) structurally identical to the
original problem, and (2) more simple to solve. Finally, strictly from a computing
point of view, recursion is a program control structure (its written form depending
on the language used). Kurland et al. (1989) stress the fact that it is important for
the learner to have a good representation of what is going on inside the ‘black box’
when running recursive procedures in order to be able to make good use of them.

With a similar aim, we wanted to combat children’s difficulties in understanding
recursive procedures: we developed (Mendelsohn, 1985; Rouchier, 1987) a teaching
technique that involves recognizing the specific figural characteristics that allow a
graph to be described by recursion. The model of reference chosen for this is central
recursion, which can be described formally as follows:

TO PROCEDURE-NAME :VAR

IF predicate [ACTION3 STOP]
ACTION1

PROCEDURE-NAME : VAR
ACTION2

END

(with ACTION2 non-null in order to rule out tail recursion).

The prototypical example used to help children understand the functioning of this
recursive procedure is the example of the ski tow. It is possible to imagine a series of
ski tows that take the skier to the top of the slopes. Each time the skier takes a ski
tow (ACTION1) a ski down (ACTION2) is potentially accumulated, the parameters
of which are related to ACTION1 (difference in height, for example). Performing
ACTION2 is suspended and only carried out once the skier decides to stop climbing.
At the top of the slopes the skier can perform any other kind of action such as rest
or eat (ACTION3) and then ski down the slopes in the opposite order in which they

Programming Languages in Educa tion 183

were climbed. Using this model one can vary during learning both the existence,
content and structure of the procedures ACTION x, and the number and nature of
the transformation functions associated with the variables. The teaching is therefore
centred on the conceptualizing of regularities observed during these variations (Figure
2).

In this way the child learns to use recursion as a means of describing objects
with very precise characteristics. In the examples provided one can underline the
initial symmetry and the order in which the figure is constructed. The teacher can
progressively introduce sources of variation that slowly add to the diagram until
it is formally complete. This teaching technique is the same as used with other
operations such as addition and multiplication in arithmetic. Teaching of computer
programming can be seen in this way as a laboratory that allows testing relative
effects of various instruction methods on student’s mental models. This topic is now
starting to be explored in the direction of guided discovery learning (Lehrer et al.,
1988).

2.6 Knowledge acquisition as teaching school curricula

This last theme deals with the use of Logo for teaching school curricula. It is the
course content that is stressed here, the programming language being considered
as a support for the representation of original properties concerning contents and
transformations (Hoyles and Noss, 1987). For many teachers this is often the only
project that incites them to use Logo in the classroom. Several original examples of
this have been provided by Bourbion (1986). These are educational applications in
which the control of the subject’s performance is centred on the course being taught
(mostly arithmetic and geometry). Programming thus becomes an implicit activity,
mastery of which is often considered as an introduction to the main work.

The problem that has been chosen as an example here consists, first of all, in
editing a small graphics program. With this program, two walls the same height can
be built with bricks of different thickness in two places P1 and P2 (Figure 3, first
phase). The algorithm places a brick at P1 then checks if the height of the wall is
lower at P2. If this is not the case another brick must be added at P1 and the relative
height checked again. If this is the case then a brick must be added to P2 and then
a check made to see if the height at P1 is lower, and so on.

The second step (Figure 3, second phase) involves subtly transforming this pro-
gram by removing all graphic aspects from the procedures. In this way we obtain
an isomorphic program which by generalization becomes a procedure for calculating
the lowest common denominator.

With this technique, arithmetic conceptualization re-adopts its principal aim,
that is the progressive pruning of the actions that one is led to perform in reality in
‘order to conserve only the essential transformations. The programming language thus
acquires the status of a formal language and can even become, as such, an object of
teaching (see also Vitale, 1987). Many other examples involving geometry concepts,
physics or language could be mentioned. The recurrent idea remains that of using
a programming language to represent specific components of the subject discipline
and throw light on new links between different domains (mediated learning).

184

TO PROCEDURE1 :LENGTH
IF LENGTH < 0 [STOP]
ACTION1 :LENGTH
PROCEDURE1 :LENGTH - 10
END

TO ACTION1 :LENGTH

FD (LENGTH BK :LENGTH
PU RT 80 FD 20 LT 90 PD
END

PROCEDURE1 70

This is a standard procedure with terminal (tail) recursion.

P. Mendelsohn et al

“ll.

TO PROCEDURE2 :LENGTH
IF :.LENGTH > 70 [STOP]
ACTION1 :LENGTH
PROCEDURE2 :LENGTH + 10
ACTION1 :LENGTH
END
PROCEDURE2 0

This procedure, which uses ACTION1 before and after the recursion, introduces the
idea of an apparent symmetry with opposite orders of evaluation for the two parts.

|I|H“|lu.

TO PROCEDURES :LENGTH
IF :LENGTH < 0 [STOP]
ACTION1 :LENGTH
PROCEDURE3 :LENGTH — 10
ACTION2 :LENGTH
END
PROCEDURE3 70
TO ACTION2 :LENGTH
FD :LENGTH BK :LENGTH * 2 FD LENGTH
PURT 90 FD 20 LT 90 PD
END

This procedura adds the idea that the two halves can relate
to different forms (ACTION1 and ACTIONZ are different).

’“'"l‘

TO PROCEDURE4 :LENGTH

IF :.LENGTH < 0 [ACTION3 STOP]
ACTION1 :LENGTH
PROCEDURE4 LENGTH - 10
ACTION1 :LENGTH

END PROCEDURE4 70
TO ACTION3

RT 180

PU RT 90 FD 20 LT 90 FT 20 PD
END

In this last procedure the two parts of the figure can be disassociated. The

procedure now controls two traces in parallel at any position on the screen.

Figure 2:

centrally recursive procedures in Logo.

An example of progression baséd on a starting diagram for the writing of

Programming Languages in Education 185

First phase: Developing a procedure for building two walls of equal height from bricks of different
thicknesses

TO CONSTRUCT
IFELSE :H1 < :H2 [WALL1] [WALL2]
IF :H1 = :H2 [STOP]

CONSTRUCT

END

TO WALL1 TO WALL2

SETPOS [0 0] FD:H1 SETPOS [0 0] FD :H2

MAKE "THICKNESS :Ef MAKE "THICKNESS :E2

PLACE.BRICK PLACE.BRICKadd 1 brick of given thickness (code not shown)
MAKE "H1 :H1+:E1 MAKE "H2 :H2 + :E2

END END

TO WALLS :A B

[EA——————— MAKE "Hi 0 MAKE "H2 0 MAKE “E1:A MAKE "E2 :B
CONSTRUCT

[21=17 0] By pURT—— PRINT SENTENCE "Height: :H1

END ’

5
©
=

? WALLS 12 18 Graphics output ~———=—
Height: 36

Quitput

Second phase: The graphics instructions and semantic references are removed from the
program, leaving only the calculations.

TO PART1 TO PART2 TO RESULT
MAKE "H1 :H1i + :E1 MAKE "H2 :H2 + :E2 PRINT :H1
END END - END

The procedure for building two walls becomes a procedure for least common
multiple:

TO LCMuorrireereereesesssssnansensenees(LOWESt Common Muitiple)
INIT

CONSTRUCT

RESULT

END

Figure 3: An example of teaching school curricula through Logo: ‘Procedure for building
two walls’ (after Bourbion, 1986).

186 P. Mendelsohn et al.

3 The misconception problem: Prolog

The unfortunate novice is prey to misconceptions when meeting any programming
language. There have been excellent studies of misconceptions about even so ‘small’ a
topic as assignment (Mayer, 1979; Putnam et al., 1986; du Boulay, 1986). Intensive
studies of misconceptions were made by the group working with Solo, a language
designed for distance teaching of adult learners in the Open University (Eisenstadt,
1979): some of their work was put into analysing error messages and how these
were misunderstood (Eisenstadt and Lewis, 1985), and other work was devoted to
analysing faulty mental models of recursion and conditionality (Kahney, 1983).

All programming languages found in the classroom are prone to a wide range of
misconceptions — but arguably, the language that has been found to engender the
greatest number of problems is Prolog. The idea behind Prolog is that to build a
program, the programmer just writes down true statements that capture some logical
relations, and the Prolog interpreter can draw on these as needed to discover whether
they imply the truth of some arbitrary proposition. The original shining hope was
that there would be no need to understand what the Prolog interpreter did — or even
that it did anything at all: the programmer would just write down the conditions
that defined the required answer, and out it would pop.

For example, the logic of the ancestor relation can easily be described in words
as ‘somebody is your ancestor either (1) if that somebody is one of your parents, or
(2) if that same person is the ancestor of one of your parents’. It can be written in
Prolog as two distinct propositions, or clauses, as:

1. ancestor(X,Y) :- parent(X,Y).
2., ancestor(X,Y):- parent(X,2), ancestor(Z,Y).

where ancestor(X,Y) is read as Y is the ancestor of X’, the symbol :- is read as ‘if
the following is true’, and parent(X,Y) is read as ‘Y is the parent of X’. The comma
symbol has the logical reading of ‘and the following is true’ so that the second clause
means ‘there is a third person Z who is a parent of X, and Y is an ancestor of Z’.

This definition of ancestor would be used in conjunction with a database of facts
about who is the parent of whom:

parent(abel, adam).

parent(abel, eve).

parent(cain, adam).

parent(cain, eve).

parent(enoch, cain).
etc. ..

Prolog is then able to deduce whether or not one person is the ancestor of the other.
The programmer needs to know no ‘programming tricks’ about searching data bases:
those are all built into the interpreter. By setting the query

7ancestor(enoch, eve)

Programming Languages in Education 187

Prolog will correctly state that ‘eve’ is an ancestor of ‘enoch’.

Of course, the Prolog interpreter is not gifted with foresight or special knowledge:
it simply performs conventional depth-first search over the database. Ideally, that
should mean that the programmer need only worry about the ‘logical’ meaning of
a program and not about the way that Prolog evaluates a program. This is to say
that the logical reading of a program is supposed to coincide with the behaviour of the
Prolog system. Unfortunately this is not the case — and the discrepancy between the
logical reading and Prolog’s behaviour in executing the program is one fairly well-
known source of problems. (Example: if the subgoals of clause 2 are reversed, so that

ancestor is tried before parent, the logical meaning may well appear unchanged —
but Prolog will eventually enter an unending recursion.)

Until about 1980, the use of Prolog was restricted to a small number of research
groups around the world. Prolog first became known to the primary and secondary
educational communities through the work of Kowalski and Ennals (see Nichol et al.,
1988, for a recent account of this group’s work). For the next few years, the advocates
of Prolog made much of the possibilities inherent in a language in which it was fairly
easy to describe logical relationships without having to worry quite so much about
how to control computation. But, although the language is very powerful and can be
used with great effect by some students, other students seem to become tremendously
confused. One problem was that there were inconsistencies present in the teaching
materials and some major conceptual problems with the language (Bundy, 1984). In
fact, Pain and Bundy (1987) outlined over six different, partial accounts which were
then in use!

Evidence relating to misconceptions associated with Prolog began to accumulate.
For example, students had problems with backtracking, which is what Prolog does
when a query fails. Students were also known to have problems with the way Prolog
tries to match two data structures. This form of pattern matching is special to
Prolog and is known as unification. For example, matching ancestor(enoch, X)
with ancestor(Y, eve) would result in the variable X being bound to eve and
the variable Y being bound to enoch. Coombs and Alty (1984) were quick to note
these difficulties, and more-detailed work demonstrating particular misconceptions
was reported by a variety of researchers (Ormerod et al., 1986; Fung et al., 1987,
Taylor, 1987; van Someren, 1985).

In due course a lengthy taxonomy based on collected reports was produced by
Fung et al. (1987). Many misconceptions were particular to Prolog and its control
structure; others were more general, such as the ‘meta-analysis’ documented by many.
researchers — i.e. the belief that Prolog is able to ‘foresee’ which goals will and will not
succeed, and can choose its behaviour accordingly. This was especially noted in the
context of extremely familiar relationships, such as kinship relations (parent, cousin,
aunt/uncle, etc.). Such relationships are frequently used in introducing Prolog — as

. we have done here, in fact — but their very familiarity can make trouble for some
students.

We need to consider three questions: Where do misconceptions come from?
Should they be avoided at all costs, or are they part of learning? Can they be
avoided, or at least reduced?

188 . P. Mendelsohn et al

3.1 Where do misconceptions come from?

Taylor (1987) has provided a detailed analysis of constructing a Prolog program in
terms of a three-level discourse model, distinguishing between the general, logical
and mechanistic levels. Each type of discourse has its own appropriate components
to deal with inputting data, reasoning about the data, outputting the results, and
doing ‘reflective evaluation’ (the process of reconsidering what one did and whethex
it could be different). This model allows her to categorize various pathways through
the framework in terms of the discourse level adopted at each stage. She considers
the activity of learning to program as beginning with the general problem-solving
discourse level. The student then has to come to terms with the formal problem-
solving discourse level. This formal level requires students to come to terms with
both the level of logical discourse and also the level of mechanistic discourse. Not
surprisingly, when an alternative discourse path offers itself, by performing reasoning
at the ‘real-world’ level, students will be tempted to adopt it, leading themselves to
ignore the actual behaviour of the program. One of the attractive features of Taylor’s
model is that it emphasizes that certain problems arise only because Prolog is so
close to the general discourse level. If it were further removed, such ‘meta-analytic’
problems would arise less often.

Negative transfer from previous programming experience has been frequently
put forward as an explanation for learners’ difficulties. Van Someren (1988) found
that many students seemed to have a simple algorithm for converting a Pascal-based
program into a Prolog form. Their algorithm, which was faulty, appeared to account
for several errors, Pascal assignment being a particular problem. White (1988) also
followed this claim up in an attempt to find statistical evidence that some such effect
exists. His results were strongly suggestive but fell short of statistical significance.

Yet a third possible origin for misconceptions is to be found in the unification
process. Van Someren (1990) suggests that many of the errors made by students in
connection with the unification process can be explained by a ‘damaged’ version of
the correct algorithm together with a ‘repair’ mechanism for handling impasses, an
explanation similar in style to certain accounts of children’s problems with subtrac-
tion (Brown and Burton, 1978).

It is possible, of course, that misconceptions are not always harmful to learning.
Indeed, Hook et al. (1990) ask whether gaining (and losing) misconceptions actually
plays a vital part in the learning process. Making use of Taylor’s discourse model,
they were able to group the subjects of a small empirical study into three classes:
those who produced an account for Prolog’s behaviour without straying from this
mechanistic level; those who solved an impasse in their understanding of the mech-
anistic level via a temporary excursion to some other domain in which to reason;
and those who abandoned an attempt to provide a mechanistic explanation in favour
of some other discourse levels. Learners in the first group often seemed unaware
when they had a misconception. In the other groups, there was some evidence that
students used their ‘misconceptions’ to help them, but it is not clear how.

3.2 Reducing misconceptions by exhibiting behaviours

The fact that Prolog’s execution-time behaviour is not ‘on show’ is clearly likely
to create misconceptions about what it does. There have therefore heen several
attempts to construct tools to make Prolog’s computational mechanisms more visible

(I—-

Programming Languages in Education 189

to novices. One approach has been to make data flow more visible (Dichev and du
Boulay, 1988), but in general attention has been focused on the problem of exhibiting
control flow.

Rajan (1986) has outlined a principled design for dynamic tracing environments
and created the APT (animated program tracer) system. Among his principles are
the following. The code seen in the tracer is to be a direct copy of the code prepared
by the novice. (This is fiercer than it sounds: Prolog tracers generally replace variable
names with internal representations, making the trace very hard to match up to the
original code.) No extraneous symbols are to be inserted, and the code is to be
evaluated in the debugging environment in exactly the same order that it would
be evaluated in the normal environment. Side-effects are to be made visible, and
novices are not to be compelled to learn new command sets and display formats, nor
to understand unnecessary multiple viewpoints. In general, Rajan’s principles are
built round ‘What You See Is What Happens’, and a respect for the cognitive load
experienced by the learner.

In a slightly different approach to the same end, Brayshaw and Eisenstadt (1989)
have provided a fine-grained account of Prolog execution that is useful both for teach-
ing and debugging, supported by a graphical tracer/debugger, TPM (the transpar-
ent Prolog machine), that allows the execution of a program to be displayed as an
‘AORTA’ structure (AND-OR tree, augmented). One of the most important aspects
of their work is that their goal is a system that is simple enough to be useful to
novices, yet powerful enough to be used by professional programmers working with
big programs. This means that graphical techniques have to be designed with great
care — otherwise they will run out of screen space. At the same time, they wanted
to tell the user far more than is available from conventional Prolog tracers, which do
little beyond reporting success, failure, and trying again to satisfy a goal. Part of
the secret in the AORTA notation is to differentiate between no less than nineteen
different types of behaviour by the Prolog interpreter — ‘about to attempt new goal’,
‘system primitive’, three types of success, six types of failure, and so on. Each of
these has its own compact marking on the tree. Even so, screen space is at a pre-
mium. To cope with this, the output has an overall view, with detail suppressed, and
a window that can be used to zoom in on any part of the trace that is of interest.

3.3 Supporting plan-level program construction

Evidence on ‘programming plans’ or schemas is presented elsewhere in this volume,
showing that the knowledge of experienced programmers includes knowing sets of
instructions to achieve certain familiar small tasks, such as forming a sum over a list.
For an excellent account of the programming plans approach to learning program---
ming, see Rist (1989). Although little is yet known about the repertoire of Prolog
plans (see Brna et al., 1990, for a review of progress), much can be achieved in this
area by armchair consideration of plan structures. Gegg-Harrison (1990) has detailed
an approach to teaching students how to build list processing programs from schemas.

' To have some idea of the complexity of the Prolog world, it is instructive to consider

his classification: six simple schemas and eight complex schemas grouped into two
different parallel hierarchies according to different viewpoints, with secondary dimen-
sions as well, such as whether the program is a function or a predicate.

The would-be Prolog programmer evidently has a good deal to learn. Learning
through a schema-based system may enable much better learning, or it may over-

190 P. Mendelsohn et al.

whelm the learner in fine distinctions which are not yet comprehensible at an early
stage of learning. This will be an interesting area of development.

4 Programming as the control of real devices: DESMOND and
HyperTechnic

All the languages mentioned so far, Logo, Prolog and Solo, enforce new and difficult
abstract ideas, such as procedure, parameter and recursion. In response to the re-
sulting problems one school of thought is to move away from the abstract towards
the programming of concrete devices. This, indeed, was part of the original Logo
platform, the physical turtle that crawled slowly around the floor and could be made
to draw lines as it crawled; but Logo still has a high content of syntactic abstractions.
The two projects we shall mention have very clearly tried to avoid syntactic load, and
have equally clearly tried to supply a very concrete picture so that the user’s mental
model would be very likely to be highly accurate. Both projects use genuine, physi-
cal devices. Unfortunately we have no space to describe explorations in the direction
of using highly realistic simulated worlds, such as the ‘alternate reality kit’ (Smith,
1986) or the ‘interactive book’ where physics experiments can be programmed by an
author and reprogrammed by a user (separately proposed in the ‘Boxer’ language by
diSessa and Abelson, 1986, and in ‘Thinglab’ by Borning, 1985).

The first project, Desmond, is only one step removed from a good electronics kit -
‘Desmond’ stands for ‘digital electronic system made of nifty devices’, and the project
was developed at the Open University in association with the ‘Microelectronics in
Schools’ initiative. The kit comprised a small microprocessor, a small touch-sensitive
keypad, several sensors (for light, temperature, tilt, etc.) and several output devices
(coloured LEDs, a buzzer, a small stepping motor, and a small LCD screen). The
microprocessor was programmed in a very conventional single-address assembly code
to read sensors and respond to them. Although the maximum program length was
quite short, at about 100 steps, a good deal could be achieved. A simple example of
a Desmond program fragment is:

LDA 91 load accumulator from address 91
ADI 01 add 1 to accumulator
STA 91 store accumulator in address 91

This small fragment adds 1 to the value held in location 91.

It can be seen that Desmond code is very much lower level than the other lan-
guages considered. There are no special abstractions, such as ‘formal parameter’, tc
be mastered; no unexpected syntactic complexities, such as Logo’s use of colons and
square brackets; no semantic complexities, such as unification; no hidden states of
the machine — the entire machine state can be inspected via the LCD screen, which
shows the contents of any address in binary, denary and instruction code format.
Every instruction has a clear and simple meaning which is unambiguously described
in concrete terms of changes to the machine state. How could it fail? .

Jones (1989) studied a group of adults learning to use Desmond. They reported
many different types of difficulty, some with the teaching materials and some with the
device (e.g. expectations that memory-mapped devices, such as the lights, would have
the least-significant bit at the left-hand end, whereas it was actually at the right)

Programming Languages in Education 191

Outstanding among their problems were confusions between contents and location —
especially in the context of indirect addressing — and difficulties in comprehending
the behaviour of a computer address, as something containing a value that is readily
overwritten but less-easily put aside. This problem, of course, has afflicted many
generations of computer novices. Evidently semantic complexities have not been
banished, after all!

Jones’s studies also pointed to another type of problem: users could see no plans.
The role of ‘programming plans’ in novice learning has been mentioned above; here,
the importance of comprehending programs at the functional level of goals and plans
was again demonstrated, but this time at the lowest possible language level. Her
analysis picks out a number of plans used by implication in the teaching materials.
The fragment above adds 1 to an address. Other plans that she identified as being
used by implication, but not explicitly described, included plans to operate one of the
on-board devices, using one device (e.g. switches) to control another (e.g. lamps),
adding two numbers, delay loop, test for non-zero numbers (this gave the learners
great trouble), bit masking, etc. Readers familiar with assembly code working will
recognize many of these from their own experience. But these higher-level plans were
not taught as such, and of course the Desmond device contained no tools to identify
plans. Learners were left to discover them for themselves, which in some cases was far
from easy. Failing to do so meant that program construction became very arduous.

Finally, the Desmond work also points up the importance of visibility and ‘vis-
cosity’ in programming. The LCD screen gave information about only one program
location at a time: minimal visibility, making it hard to gain an overview of the
program. Similarly, the editor allowed one program location to be changed at a time,
and the means for doing so somewhat long-winded: finding the location to be changed
and making the change could require many keystrokes. Thus program modification
was labour intensive. In the terms used by Green (Chapter 2.2), the poor visibility
and high viscosity did not make opportunistic programming possible. Desmond was
designed for the ‘errorless transcription’ view of programming.

As technology improves, so do the opportunities for solving the problems of
viscosity and visibility. In an interesting new approach, the resources of HyperCard
on the Apple Macintosh are being exploited. Whalley (1990) has adapted the Lego
building kits for children, which can be used to make up concrete microworlds such as
train lines with level crossings. In his HyperTechnic system, described as ‘a graphic
object-orientated control environment’, a sensor can detect the approach of a train
towards the level crossing. The children can tell the sensor what to do when it hears
a train coming, such as send a message “Train coming’ to the level crossing. The
children can also tell the level crossing what to do when it hears the message ‘Train
coming’: instructions available include go up, go down, wait (which leads to a prompt '
asking how many seconds), and send a message (sée Figure 4).

Whalley reports that ‘Trials have shown that children as young as seven can learn
to use the train system, and are then able to teach others. An interesting, and as yet
unresolved issue, is whether this success is due to the intuitively accessible graphic
interface, or to the easy comprehension of the underlying actor language’.

Work of this sort is well ahead of what can be put into the average school.
(The trains system requires an Apple Macintosh and an Apple II; and even so the
microworld is still very limited.) But as a foretaste of the future possibilities, it is
startling to see how responsive a system can be built. And yet, one has to apply the

192 P. Mendelsohn et a,

When the [evel crolssmg hears

train coming

what do you want it to do next?

go up wait
go down send a message
go down
wait for How many seconds

should it wait for?

EERESNER

130 IIO l60

Figure 4: The HyperTechnic programming interface (redrawn from Whalley, 1990).

same criteria. Are global structures visible? No. As HyperTechnic programs grow
they will require some better system to make visible the structures of the program
Moreover, although programming any individual device has been made unbelievabl:
easy, reprogramming the whole structure will remain difficult. But perhaps that i
what learning to program is partly about: learning to manage increasing amounts o
complexity in a partly abstract system, anticipating as many future contingencies a
possible.

5 Matching ‘natural plans’: BridgeTalk

In this section we present the latest reported version of ‘Bridge’ and its successo
‘BridgeTalk’, developed by Bonar and associates (Bomar et al., 1987; Bonar anc
Liffick, 1990). First we describe the rationale behind their novel and possibly ver:
fruitful approach.

Bonar’s thinking starts from programming plans, which have been introducec
elsewhere in this volume. Programming plans are exactly what novice programmer
lack, according to some authors, and therefore what they need to learn. It is no
that novice programmers — even children — are planless; they have perfectly gooc
informal plans for counting sheep, adding up totals, etc. But they do not knov
how to translate those into programming languages. Conventional programming

Programming Languages in Education 193

languages hide programming plans by dispersing them throughout the text, and so
novices, instead of learning how to move from informal plans to formalized plans,
instead spend time on purely surface features. ‘In our video protocols of novice
programmers, we see novices working linearly through a program, choosing each
statement based on syntactic features of the problem text or program code’ (Bonar
and Liffick, 1990, p. 330, our italics).

On the other hand, Bonar and Liffick argue, the target of teaching programming
should be the ability to understand and use a conventional programming language.
So we should not seek to evade this responsibility by teaching a simplified program-
ming language which merely postpones the problem of getting to grips with real pro-
gramming. Instead, the solution is to use an intermediate representation, one which
minimizes initial difficulty but which leads into real programming. What should that
intermediate representation be?

BridgeTalk boldly sets out to encourage plan-level programming in Pascal. It
is intended to encourage novices to recognize how their informal plans fit into a
programming environment, to support them in learning a vocabulary of programming
plans, to teach them how to implement those plans in a standard programming
language, and to support plan-like composition of programs.

The version of BridgeTalk that we shall describe is no less than the sixth gener-
ation. (Readers interested in seeing how the ideas developed should consult Bonar
and Liffick, 1990.) Each particular plan has its own icon, which fit together like a
jigsaw. Slots in the icons can hold smaller icons for values and constants. Figure 5
shows a program for finding the average of a data set using plan icons; the flow of
control is handled by an icon for a loop ‘that repeatedly gets a new value until that
new value equals a specified sentinel value’, a new-value controlled loop plan. ‘The
key idea with [this plan] is to hide all the syntactic and control flow complexity that
a student would need to confront [in order to] implement such a loop in a standard
language’ (Bonar and Liffick, 1990, p. 338).

One of the most attractive features of BridgeTalk is that it uses graphical
representations and mouse dragging to provide a radically new information display,
in marked contrast to many ventures into graphics programming (see Chapter 1.2).
This representation not only makes both data flow and control flow information
available in a well-balanced way, it also appears to present plan-level information in
a usable manner. Moreover, the environment allows program development to take
place in a natural, unforced way. Whereas many tutorial environments use a syntax-
based editor to impose a rigid, top-down development on the novice, in order to teach
him or her how to ‘think properly’ (see, for instance, the ‘Struedi’ Lisp editor for
novices described in Chapter 1.2), BridgeTalk eschews such authoritarian pedagogy
and allows free construction:

We have become increasingly suspicious of the glif:) discussion of ‘top-down design’
found in most programming textbooks. In particular, the design of BridgeTalk shows
that programming design involves many different mappings, including informal to for-
mal, declarative to procedural, goals to plans and processes, natural language to Pas-
cal, linear structure to tree structure, and weakly constrained to strongly constrained.
We believe that programming texts do their students a disservice by presenting a de-
sign model that at best ignores the differences between novices and experts and at
worst is completely unrelated to actual programming practice. (Bonar and Liffick,
1990, p. 363).

We agree.

194 P. Mendelsohn et al,

Running Total

Constant

Counter Plan

Increment

N L
Compute Plan

R W B e W e
W W e ¥ W wow
e W
G))(>)",&:‘r’y J-:’,r 3
. MR
o W hf)‘.-'-;_‘-

e

Figure 5: BridgeTalk icons that express a sequence of values, compute new values, and
operate on values.

6 Conclusions

This chapter on how to make computing more accessible for educational purposes
started with a view of programming as the ‘great white hope’ of education. Klahr
and Carver (1988, p. 363) speak of ‘the possibility that it [computer programming)
may be the long-sought mental exercise that enables its practitioners to increase
their general thinking abilities’. Perhaps there really is such a mental exercise, and
Just possibly programming is it. But neither anecdotal nor laboratory evidence gives
strong support to this hope.

A lot of the learner’s time is spent learning the repertoire of programming tricks
and techniques, and so our next topic was the comparative lack of success of Prolog,
a language that seemingly promised to free the learner of much of that baggage.
Experience now suggests that while removing the syntactic apparatus of control flow

Programming Languages in Education 195

and data declaration is perhaps a benefit, it also takes away the information about
how the program works and thereby mystifies the learner. Contemporary research in
Prolog is therefore aiming to create environments that will supply the information
about execution which comes freely available with traditional languages.

Also, we glanced briefly at two very different projects which both aim to provide
a more concrete learning world for programming, thereby overcoming the difficulties
of abstraction and high-level conceptualization in other programming environments.
Research on the first of these two, the Desmond system, has shown that despite
the concreteness, learners still have problems, and that many of their problems are
caused by inability to discover the high-level plans and how to put them together.

The last topic, therefore, was a plan-based system, which consciously attempted
to help learners understand the target language, Pascal, in terms of ‘everyday plans’,
via a bridging representation, BridgeTalk. It is far too early to evaluate this system,
but the goal is impressive, and so is the care in designing the interface for maximum
visibility of important components and for supporting opportunistic planning.

So, where does all this leave us? We present our conclusions in terms of slogans.

Forget about the transfer of competence dispute ...

Disputes about educational objectives are unnecessary and (in the current state of
language design) premature. We contrasted ‘learning to program’ and ‘programming
to learn’; within the ‘learning to program’ choice, a programming language is above
all a new language to be learnt. Eventually it can serve in the teaching of conventional
curricula. Within the alternative choice, ‘programming to learn’, a language like Logo
acts as a medium for the practising of specific skills, such as geometric planning;
and it can also be a source of self-knowledge, a mirror for watching oneself solve
problems. A language like Prolog can also successfully be used as a ‘knowledge bank’
in teaching history or ecology — topics where many detailed facts need to be available

(e.g. Rasmussen, 1988).

. and go for programming in context.

Alternatively, programming can be used as a step in understanding the world that
is coming into being around us, the world of computer applications and computer
methods. Soon we shall be living in a world where knowing how to choose, learn
and use a computer application will be of the first importance —a world where many
of the tasks will be either quite new, or else greatly affected by the existence of
computer systems. By programming even the most elementary versions of some of .
these applications, whether a word processor, a database management system, or a
circuit design package, an inside view will have been obtained.

‘Make it easy to comprehend ...

Not many educational objectives can be accomplished if would-be learners are frus-
trated by unnecessary difficulties with the programming language and environment.
It seems to the authors that far too much attention has been given to the debate on
transfer of competence, and far too little to attacking the problems of ease of learning
and ease of use.

196 P. Mendelsohn et al.

Back in 1981, du Boulay et al. described the difficulties in presenting computing
concepts to novices. They introduce the concept of the ‘notional machine’, ‘... an
idealized, conceptual computer whose properties are implied by the constructs in the
programming language employed’. This notional machine should be kept Junctionally
simple by giving it a small set of what they call ‘transactions’ (after Mayer, 1979);
it should be kept logically simple, so that problems of interest to the novice can be
tackled by short, simple programs; and it should be syntactically simple, i.e. the
rules for writing instructions should be uniform and have well-chosen names. But
simplicity is not enough. The notional machine must also be visible in its own terms.
This is the crux of the problem in many cases — novices cannot see what the notional
machine is doing.

~ Today it is clear that comprehensibility requires more than simplicity and vis-
ibility. Jones (1990), in her study of Desmond, Logo, Solo, and a microprocessor
language not described here, showed that even in systems meeting those criteria,
problems still arose. She demonstrated the existence of unexpected semantic com-
plexities and the need to help learners understand at the functional level, the level
of plans and overviews.

. and easy to use ...

It must be obvious to anybody that systems for novices should be easy to use. Yet
novices are still struggling with inadequate systems! Too much typing, with no
spelling correction; too much syntax, with poor error messages and no error correction
or ‘Do What I Mean’; poor visibility of different parts of the program, and poor
display of execution behaviour — these are still typical. Perhaps one reason has been
the habit of treating the programming language and its operating environment in
very separate ways. Basic, for all its faults, supplied a seamless environment for
learners; one wishes every innovator had done the same. DiSessa and Abelson (1986)
observe that ‘User interfaces are often considered to be separable from programming
language semantics and almost an afterthought in language design. Worse, most
present languages assume only character-stream input and output. A useful medium
must be much more flexibly interactive’.

This persistent separation of language and environment reflects slow acceptance
of the ideas of opportunistic planning and exploratory programming. Exploratory
programming requires a suitable support environment, of course. Chapter 2.2 (‘Pro-
gramming languages as information structures’) shows how recently this idea has

displaced previous views, notably the view of programming as ‘errorless transcrip-
tion’.

. and avoid the dogmas of economy.

Finally, it must be remembered at all times that the users are learners. Their needs,
their knowledge and their abilities are different from those of experienced program-
mers, who may well have been self-selected for some rather special attributes. Bonar
and Liffick (1990) say in some detail why they think current programming languages
are unsuitable for novices. They point out that their ‘emphasis in economy of expres-
sion ... is misplaced in designing languages for novice programmers. By looking for
ever more abstracted ways to express similar procedural behavior, modern languages

Programming Languages in Education 197

have excised most clues to goal and purpose that are essential to novice understand-
ing of a program’. They suggest that students would prefer a language in which each
plan was expressed by a different construct. Conversely, modern languages emphasize
tools for abstraction, which novices are not yet ready to use.

Once again, we agree with Bonar and Liffick. We look forward to seeing the next
generation of languages and environments for easy access by learners.

References

Anzai, Y. and Uesato, Y. (1982). Learning recursive procedures by middleschool children.
Proceedings of the Fourth Annual Conference of the Cognitive Science Society. Ann
Arbor.

Borning, A. (1985). A prototype electronic encyclopaedia. EACM Transactions on Office
Information Systems, 3, 63-88.

Bonar, J. and Liffick, B. W. (1990). A visual programming language for novices. In
S.-K. Chang (Ed.), Principles of Visual Programming Systems. Englewood Cliffs:
Prentice-Hall.

Bonar, J., Cunningham, R., Beatty, P. and Riggs, P. (1987). Bridge: intelligent tutoring
with intermediate representations. Technical Report, Learning Research and Devel-
opment Center, University of Pittsburgh.

Bourbion, M. (1986). Le choiz Logo. Paris: Armand Colin Editeur.

Brayshaw, M. and Eisenstadt, M. (1989). A practical tracer for Prolog. Technical Re-
port no 42, Human Cognition Research Laboratory, Open University, Milton Keynes.
International Journal of Man-Machine Studies, in press.

Brown, J.S. and Burton, R. (1978). Diagnostic models for procedural bugs in basic math-
ematical skills. Cognitive Science, 2, 155-192.

Bundy, A. (1984). What stories should we tell Prolog students? Working Paper 156,
Department of Artificial Intelligence, Edinburgh.

Coombs, M. J. and Alty, J. (1984). Expert systems: an alternative paradigm. In M. J.
Coombs (Ed.), Developments in Expert Systems. London: Academic Press.

Crahay, M. (1987). Logo, un environnement propice a la pensée procédurale. Revue
Francaise de Pédagogie, 80, 37-56.

Dichev, C. and du Boulay, B. (1988). A data tracing system for Prolog novices. In
T. O’Shea and V. Sgurev (Eds), Artificial Intelligence III: Methodology, Systems,
Applications. Amsterdam: North-Holland. :

diSessa, A. A. and Abelson, H. (1986). Boxer: a reconstructible computational medium.
Communications of the ACM, 29, 859-868.

du Boulay, B., O’Shea, T. and Monk, J. (1981). The glass box inside the black box:
presenting computing concepts to novices. International Journal of Man-Machine
Studies, 14, 237-249.

Eisenstadt, M. (1979). A friendly software environment for psychology students. AISB
Quarterly, 34.

198 P. Mendelsohn et al.

Eisenstadt, M. and Lewis, M. (1985). Errors in an interactive programming environment;
causes and cures. Technical Report No. 4, Human Cognition Research Laboratory,
The Open University, Milron Keynes.

Fung, P., du Boulay, B. and Elsom-Cook, M. (1987). An initial taxonomy of novices’
misconceptions of the Prolog interpreter. CITE Report 27, Centre for Information
Technology in Education, Institute for Educational Technology, The Open University.

Gegg-Harrison, T. S. (1990). Learning Prolog in a schema-based environment. Instruc-
tional Science, in press.

Hofstadter, D. (1979). Gédel, Escher, Bach: an Eternal Golden Braid. New York: Basic
Books.

Hook, K., Taylor, J. and du Boulay, B. (1990). Redo ‘try once and pass’ the influence of
complexity and graphical notation on novices’ understanding of Prolog. Instructional
Science, in press.

Howe, J.A.M. and O’Shea, T. (1978). Computational metaphors for children. In F. Klix
(Ed.), Human and Artificial Intelligence. Berlin: Deutscher Verlag.

Hoyles, C. and Noss R. (1987). Synthesising mathematical conceptions and their for-
malisation through the construction of a Logo based school mathematics curriculum.
International Journal of Mathematics Education in Science and Technology, 18.

Jones, A. (1989). Empirical studies of novices learning programming. Ph.D. thesis, Insti-
tute of Educational Technology, The Open University, Milton Keynes.

Kahney, H. (1983). Problem solving by novice programmers. In T.R.G. Green, S.J.
Payne and G.C. van der Veer (Eds), The Psychology of Computer Use. London:
Academic Press. Reprinted in E. Soloway, and J. C. Spohrer, (Eds), Studying the
Novice Programmer. Hillsdale, NJ: Erlbaum.

Kessler, C.M. and Anderson, J.R. (1986). Learning flow of control: recursive and iterative
procedures. Human Computer Interaction, 2, 135-166.

Klahr, D. and Carver, S. M. (1988). Cognitive objectives in a Logo debugging curriculum:
instruction, learning, and transfer. Cognitive Psychology, 20, 362-404.

Kurland, D.M., Pea, R.D., Clement, C. and Mawby, R. (1989). A study of the development
of programming ability and thinking skills in high school students. In E. Soloway
and J.C. Spohrer (Eds), Studying the Novice Programmer. Hillsdale, NJ: Erlbaum.

Lawler, R.W. (1985). Computer Experience and Cognitive Development: A Child’s Learn-
ing in a Computer Culture. Chichester: Ellis Horwood.

Lehrer, R., Guckenberg, T. and Sancilio, L. (1988). Influences of Logo on children’s
intellectual development. In R.E. Mayer (Ed.), Teaching and Learning Computer
Programming. Hillsdale, NI: Erlbaum.

Littlefield, J., Delclos, V.R., Lever, S., Clayton, K.N., Brandsford, J.D. and Franks J.J.
(1988). Learning Logo: method of teaching, transfer of general skills, and attitudes to-
ward school and computers. In R.E. Mayer (Ed.), Teaching and Learning Computer
Programming. Hillsdale, NJ: Erlbaum.

|

Programming Languages in Education 199

Mayer, R.E. (1979). A psychology of learning Basic. Communications of the ACM, 22,
589-593.

Mendelsohn, P. (1985). Learning recursive procedures throngh Logo programming. Pro-

ceedings of the Second Logo and Mathematics Education Conference. University of
London.

1 Mendelsohn, P. (1988). Les activités de programmation chez enfant: le point de vue de
la psychologie cognitive. Technique et Science Informatiques, T, 47-58.

Nichol, J., Briggs, J. and Dean, J. (Eds) (1988). Prolog, Children and Students. London:
Kogan Page.

Ormerod, T. C., Manktelow, K. I., Robson, E. H. and Steward, A. P. (1986). Content and
representation effects in reasoning tasks in Prolog form. Behaviour and Information
Technology, 5, 157-168.

O’Shea, T. and Self, J. (1983). Learning and Teaching with Computers: Artificial Intel-
ligence in Education. Brighton: The Harvester Press.

! Pain, H. and Bundy, A. (1987). What stories should we tell novice Prolog programmers.
In R. Hawley (Ed.), Artificial Intelligence Programming Environments. Chichester:
Ellis Horwood.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York:
Basic Books.

Pea, R.D. and Kurland, D.M. (1984). On the cognitive effects of learning computer pro-
gramming. New Ideas in Psychology, 2, 137-168.

i Pirolli, P. (1986). A cognitive model and computer tutor for programming recursion.
Human-Computer Interaction, 2, 319-355.

Putnam, R.T., Sleeman, D., Baxter, J.A. and Kuspa, L.K. (1986). A summary of mis-
conceptions of high school Basic programmers. Journal of Educational Computing
Research, 2, 57-73.

Rajan, T. (1986). APT: A principled design for an animated view of program execution for
novice programmers. Technical Report 19, Human Cognition Research Laboratory,
The Open University.

Rasmussen, J. (1988). Using Prolog in the teaching of ecology. In J. Nichol, J. Briggs
f and J. Dean (Eds), Prolog, Children and Students. London: Kogan Page.

Rist, R. (1989). Schema creation in programming. Cognitive Science, 13, 389-414.
Roberts, E.S. (1986). Thinking Recursively. New York: Wiley.

Rogalski, J. (1987). Acquisition et didactique des structures conditionnelles en program-
mation informatique. Psychologie Frangaise, 32, 275-280.

Rogalski, J. and Vergnaud, G. (1987). Didactique de I'informatique et acquisitions cogni-
= tives en programmation. Psychologie Frangaise, 32, 267-274.

Ross, P. and Howe, J. (1981). Teaching mathematics through programming: ten years
i on. In R. Lewis and D. Tagg (Eds), Computers in Education. Amsterdam: North-
Holland.

200 P. Mendelsohn et al.

Rouchier, A. (1987). L’écriture et I'interprétation de procédures récursives en Logo Psy-
chologie Frangaise, 32, 281-285.

Smith, R. (1986). The alternate reality kit: an animated environment for creating inter-
active simulations. Proceedings of the 1986 IEEE Computer Society Workshop on
Visual Languages, Dallas. IEEE.

Solomon, C. (1986). Computer Environments for Children: A Reflection on Theorses of
Learning and Education. MIT Press.

Soloway, E., Bonar, J. and Ehrlich, K. (1983). Cognitive strategies and looping constructs:
an empirical study. Communications of the ACM, 26, 853-860.

Suppes, P. (1979). Current trends in computer-assisted instruction. In M.C. Yovits (Ed.),
Advances in Computers, vol. 18, New York: Academic Press.

Taylor, J. (1987). Programming in Prolog: an in-depth study of problems for beginners
learning to program in Prolog. Unpublished Ph.D. thesis, School of Cognitive Studies,
University of Sussex.

van Someren, M. W. (1985). Beginners’ problems in learning Prolog. Memorandum 54,
Department of Experimental Psychology, University of Amsterdam.

van Someren, M. W. (1988). What’s wrong? Understanding beginners’ problems with
Prolog. VF Memo 89, Department of Social Science Informatics, University of Ams-
terdam.

van Someren, M.W. (1990). Understanding students’ errors with Prolog unification. In-
structional Science, in press.

Vitale, B. (1987). Epistemology and pedagogy of children’s approach to informatics. Pro-
ceedings of the International Conference on Education. Bilbao.

Whalley, P. (1990). HyperTechnic - a graphic object-orientated control language. Pro-
ceedings of the 7th Conference on Technology and Education. Brussels, 1990.

White, R.H. (1988). Effects of Pascal knowledge on novice Prolog programmers. Research
Paper 399, Department of Artificial Intelligence, Edinburgh.

