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Abstract 
 
Integrated reservoir characterization makes use of different 
varieties of data to construct detailed spatial distributions of 
petrophysical and fluid parameters. The benefit of data 
integration is the generation of consistent and accurate 
reservoir models that can be used for reservoir 
optimization, surveillance, and management. This paper 
describes a novel strategy for the static and dynamic 
characterization of hydrocarbon reservoirs based on the 
extensive use of 3D pre-stack seismic data, wireline logs, 
core data, geological information, and time records of fluid 
production measurements. A stochastic simulation 
procedure is used to extrapolate petrophysical variables 
laterally away from wells subject to honoring the existing 
3D pre-stack seismic data. This procedure yields high-
resolution estimates of inter-well petrophysical parameters 
(and of bulk density, compressional-, and shear-wave 
velocities as a by-product) associated with pre-stack 
seismic data. A numerical study in two dimensions is 
performed to evaluate the estimation algorithm applied to 
pre-stack seismic data, as well as to assess different 
strategies for the direct estimation of petrophysical 
properties related to elastic parameters. The same 
numerical study is used to quantify consistency of the 
estimated reservoir parameters with the time record of fluid 
production measurements. The inversion algorithm is CPU 
intensive and is based on a global optimization technique. 
Examples of applications show that the inversion algorithm 
lends itself to accurate estimation of petrophysical 
properties, such as porosity, that honor both the pre-stack 
seismic data and the well logs. Depending on the number of 
wells and the distance between them, the inversion 
algorithm can produce estimates of inter-well petrophysical 
properties with a resolution midway between that of 
seismic data and well logs. Models generated with this 
inversion scheme yield highly accurate predictions of 
reservoir dynamic behavior when compared to predictions 
performed with standard geostatistical techniques. 
 
Introduction 
 
Accurate and efficient reservoir management requires 
geological models amenable to numerical simulation of 
multiphase fluid-flow. These models are used to match 
production history data, if available, and to assess potential 
production schemes in light of time-dependent economic 
value of assets. Reservoir characterization allows one to 
build cellular spatial distributions of properties described 

by measurable petrophysical or geological parameters from 
different types of measurements such as seismic data, well 
logs, and ancillary information (e.g., stratigraphy). The 
main focus of this paper is to describe a novel algorithm to 
generate inter-well petrophysical properties that makes 
optimal use of the high-resolution of well logs and the 
lateral resolution of 3D pre-stack seismic data. 
 
Statistical modeling techniques, such as kriging, are widely 
used for data interpolation. The same techniques are at the 
heart of geostatistical methods used to simulate reservoir 
properties that honor the well-log data and a-priori 
measures of spatial continuity. Seismic data are sensitive to 
the entire reservoir and hence provide a realistic means to 
fill the spatial gap between sparse well locations. 
Amplitude variations of 3D seismic data have been 
traditionally used to delineate flow-units and in general to 
infer the geometrical properties of reservoirs (Brown, 
1999). More recent approaches make use of seismic 
attributes to guide, correlate, or constrain the estimation of 
inter-well parameters. The quantitative use of seismic 
amplitude variations offers a powerful tool to guide the 
simulation of inter-well reservoir properties. This approach 
is referred in the literature to as geostatistical seismic 
inversion (Haas and Dubrule, 1994) and makes use of post-
stack seismic data to constrain the geostatistical simulation 
of inter-well reservoir properties. Improvements and 
applications of this approach can be found in the technical 
literature (Torres-Verdín et al. 1999; Grijalba et al., 2000). 
The inversion algorithm presented in this paper is 
stochastic in nature, makes use of 3D pre-stack seismic 
data, and assumes the existence of quantitative 
relationships between petrophysical and elastic parameters. 
Well-log data are necessary to determine whether these 
relationships can be assumed of a deterministic or a 
stochastic nature. Spatial distributions of reservoir 
properties between existing wells are obtained by joint 
stochastic inversion of 3D pre-stack seismic data and well 
logs. The inversion is performed using a global 
optimization technique in which simulations of inter-well 
properties are obtained and subjected to an acceptance test 
that guaranties a reduction in the global misfit between the 
measured pre-stack seismic data and their numerical 
simulation. To the best of our knowledge, no such an 
algorithm has been reported in the open technical literature. 
The proposed algorithm is tested on a synthetic reservoir 
model. Static and dynamic results are compared between 
those associated with a benchmark reference model, models 
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constructed with standard geostatistical techniques, and the 
models obtained with the proposed algorithm. 
 
Methodology for reservoir characterization 
 
Construction of a reference model. A synthetic model 
representing a fluvial depositional environment was 
constructed to perform the numerical experiments 
described in this paper. Such a model was designed to 
assess seismic resolution in the presence of wavelet tuning. 
It consists of two sands in a background shale. The upper 
sand is water filled whereas the lower sand is oil-saturated. 
A mechanical compaction trend is taken into account in this 
subsurface model. Petrophysical properties such as porosity 
were populated into the reservoir using stochastic 
algorithms with a prescribed degree of spatial correlation. 
Initial fluid distributions in the oil-saturated sand were 
calculated by means of correlations. Both determination of 
elastic properties and numerical simulation of pre-
production pre-stack seismic data were performed 
following the methodology described by Varela (2003). A 
Ricker wavelet (central frequency of 35 Hz) was used in 
both simulation and inversion of pre-stack seismic data. 
Ten percent, zero-mean, random Gaussian noise was added 
to the pre-stack seismic data in an effort to replicate 
acquisition and processing errors. Ten pre-stack seismic 
offsets per CDP gather were considered in this study. 
 
Figure 1 shows a cross-section of the simulated pre-stack 
seismic data across the center of the subsurface model 
described above. This cross-section is considered the 
reference model (single true distribution of petrophysical 
and elastic properties), has 71 CPD gathers (~23 m between 
CDPs and time sampling interval of 2 ms), and is used to 
perform the numerical experiments reported in this paper. 
Two wells were located along this cross-section. Panel (a) 
in this figure shows both the well locations and the first 
(nearest) offset seismic trace whereas panel (b) shows the 
last (farthest) offset seismic trace. 
 
Geostatistical modeling. Geostatistical simulation 
techniques are commonly used in the construction of 3D 
distributions of reservoir properties. Kriging is a 
deterministic interpolation method that allows the inclusion 
of secondary variables (i.e., cokriging) and additional 
constraints. This technique is used to generate models that 
honor well log data and yield a smooth spatial distribution 
of properties, thereby dismissing local detail in place of a 
good average. If each known point in an interpolation 
process is considered to have a local probability 
distribution function (PDF), then the outcome of the 
kriging interpolation is still unique but this solution (i.e., 
field of local PDFs) allows the generation of multiple 
realizations. Such a geostatistical approach is used in this 
paper to generate initial distributions of reservoir properties 
for the proposed inversion algorithm as well as for 

comparison purposes. Generation of multiple realizations 
allows the assessment of uncertainty of the spatial 
distribution of properties and of their associated effects on 
dynamic predictions of reservoir behavior. 
 
Seismic inversion. The physical process of reflection, 
transmission, and mode conversion of plane waves at a 
horizontal boundary as a function of angle has been 
extensively applied in seismic prospecting (Aki and 
Richards, 2002). Estimation of elastic parameters such as 
compressional-wave acoustic impedance or compressional- 
(vp), shear-wave velocity (vs), and bulk density (ρb) of rock 
formations can be accomplished by means of inversion of 
post- or pre-stack seismic data, respectively. These results 
are usually related to petrophysical properties through an 
empirical correlation. A significant amount of work is 
currently underway to estimate quantitative indicators of 
fluid and lithology from 3D pre-stack seismic data. The 
inversion algorithm described in this paper yields estimates 
of petrophysical properties in one step. Moreover these 
estimates honor both multiple-offsets of pre-stack seismic 
data and existing well log data. 
 
Proposed joint stochastic inversion algorithm. The 
estimation of inter-well petrophysical parameters (and 
elastic parameter as a by-product) from pre-stack seismic 
data, well logs, and geological description and 
interpretation, is cast into a global optimization problem. 
Different factors such as optimization technique, selection 
of an objective function, selection of an initial model, 
sampling strategy, and smoothing criterion, among others, 
contribute to the resolution of the results and to the 
efficiency of the inversion algorithm. Varela et al. (2003) 
performed a detailed assessment of 1D stochastic inversion 
of pre-stack seismic data to quantify the influence of all of 
the above-mentioned inversion parameters. Based on those 
results, the pre-stack stochastic inversion algorithm 
described in this paper makes use of a very fast simulated 
annealing as a global optimization technique. It also makes 
use of the reflectivity method (Kennett, 1983) to simulate 
pre-stack seismic data. The inversion algorithm also 
enforces a harmonic objective function (see Appendix A), 
initial models constrained by well information, a sampling 
strategy from local PDFs, and a global target property 
histogram. Different random seeds are used to generate 
multiple realizations. If the purpose of the inversion is to 
estimate elastic properties, the initial models of these 
properties are drawn from local PDFs that are calculated at 
each point using a kriging estimator on the well log data. 
On the other hand, if the objective of the inversion is to 
estimate a petrophysical property (and elastic parameters as 
a by-product), the initial model of such a property is drawn 
from local PDFs that are calculated at each point using a 
kriging estimator on the well log data. Perturbations of 
properties are performed directly in the petrophysical 
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domain through a random walk in space and time. Because 
the pre-stack stochastic inversion operates on elastic 
parameters, a joint PDF is used to establish a quantitative 
link between the petrophysical and elastic properties.  
 
Numerical experiments 
 
Three different types of experiments were performed to 
validate the proposed inversion algorithm: (a) pre-stack 
stochastic inversion resolution, (b) static, and (c) dynamic 
reservoir characterization. 
 
Spatial resolution of pre-stack stochastic inversion. A 
number of experiments were performed to evaluate the 
resolution of the pre-stack stochastic inversion algorithm 
when used to estimate compressional-wave velocity, shear-
wave velocity, and bulk density. Figure 2 shows cross-
sections of the mean of inverted compressional- and shear-
wave velocities and bulk density for ten independent 
realizations. All ten realizations have the same global 
similarity in data space. These cross-sections identify the 
background shale and oil-saturated sand. Global correlation 
coefficients (r2) were calculated between initial and actual 
values of elastic properties (r2

vp = 0.25, r2
vs = 0.68, and r2

ρb 
= 0.64, respectively) and between mean values of inverted 
and actual values of elastic properties (r2

vp = 0.67, r2
vs = 

0.98, and r2
ρb = 0.98, respectively). Further analysis of 

these inversion results shows that the estimated elastic 
properties of the sand exhibit more variability than the 
elastic properties of shales. Compressional-wave velocity 
in the oil saturated sand exhibits the most variability as per 
standard deviation calculations. Compressional-wave 
velocity also exhibits the lowest global correlation 
coefficient compared to those of the remaining elastic 
properties. This low value for compressional-wave velocity 
is due to (a) the large boundary constraints used in the 
inversion, (b) small contrast in velocity between the oil-
saturated sand and background shale, and (c) the effect of a 
non-optimal seismic signal-to-noise ratio. 
 
Static reservoir characterization. Figure 3 shows a cross-
section of the mean of ten independent realizations of 
inverted porosity distributions. Realizations obtained with 
the proposed algorithm exhibit the same global similarity in 
data space. When calculating the global correlation 
coefficient between the mean of porosity (mean of ten 
realizations) and the actual porosity, an average value of 
0.96 was obtained for the proposed inversion algorithm 
whereas an average value of 0.54 was obtained for the 
initial models. Further analysis of the inversion results 
show that because the proposed algorithm honors the 
multiple offsets of pre-stack seismic data, the variability of 
porosity is smaller than that of initial models. Values of 
porosity estimated within the sand exhibit more variability 
than those estimated within the shale background. 
 

Dynamic reservoir characterization. Quantifying the 
impact of spatial distributions of reservoir properties on 
production is used for the appraisal of reservoir uncertainty. 
A simple injection/production scheme was designed to 
compare the dynamic results of the static model shown in 
Figure 3. The same production, fluid, and rock properties 
and constraints were applied to the fluid production 
scheme. The permeability field was determined using a 
simple porosity-permeability transformation. Figure 4 
shows a cross-plot of the cumulative oil recovery as a 
function of time for the reference case, initial model, and 
proposed inversion algorithm. Results shown in this figure 
represent a global dynamic response and clearly indicate 
that more accurate predictions are obtained from reservoir 
models generated with the proposed inversion algorithm. 
 
Conclusions 
 
Estimation of petrophysical properties (and elastic 
properties as a by-product) from 3D pre-stack seismic data 
and well logs provides reservoir property distributions that 
honor not only the well logs but also the multiple offsets of 
pre-stack seismic data. The inversion algorithm described 
in this paper yields estimates of inter-well petrophysical 
properties with a resolution midway between that of 
seismic data and well logs. Using seismic data to fill the 
spatial gap between wells can reduce the uncertainty in the 
petrophysical property models being estimated and their 
associated dynamic predictions. The stochastic nature of 
the algorithm also allows the assessment of reservoir 
property uncertainty and of their associated effect on 
dynamic behavior. This approach can significantly shorten 
the reservoir appraisal cycle and provide more flexibility to 
quantitatively evaluate different conceptual geological 
models and production schemes. 
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Appendix A. Objective function 
 
The following harmonic objective function is adopted from 
the work of Sen and Stoffa (1995) to quantify the misfit in 
data space: 
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In the above equation, x is position, f is frequency, NCDP is 
number of CDP gathers, Noff is number of source-receiver 
offsets, α is offset weight factor, Nf is the number of 
frequencies in each trace for a given offset, [S(x,t)]est is 
synthetic and [S(x,t)]data is measured pre-stack seismic data, 
and the superscript (*) is used to designate the conjugate 
operator. 
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Figure 1. Graphical description of the subsurface model 
and well locations used to validate the inversion algorithm 
described in this paper. Panels (a) and (b) show the first 
(nearest) and last (farthest) traces of pre-stack seismic 
gathers, respectively. 
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Figure 2. Cross-sections of the mean of inverted 
compressional-, shear-wave velocities, and bulk density for 
ten independent realizations obtained with the proposed 
inversion algorithm. Global correlation coefficients (r2) are 
calculated with respect to the reference model of elastic 
properties. 
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Figure 3. Comparison of static results. Cross-section of the 
mean of ten independent realizations of inverted porosity 
distributions obtained with the proposed inversion 
algorithm. Global correlation coefficients (r2) are calculated 
with respect to the reference porosity model. 
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Figure 4. Comparison of dynamic results. Plot of 
cumulative oil recovery as a function of time for (a) the 
true or reference case (ref), (b) mean of initial models (m0), 
and (c) mean of proposed inversion algorithm (prestin). 


