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Abstract. In this paper we answer to a question raised by Ambrosio and
Rigot [2] proving that any interior point of a Wasserstein geodesic in the
Heisenberg group is absolutely continuous if one of the end-points is. Since
our proof relies on the validity of the so-called Measure Contraction Property
and on the fact that the optimal transport map exists and the Wasserstein
geodesic is unique, the absolute continuity of Wasserstein geodesic also holds
for Alexandrov spaces with curvature bounded from below.

1. Introduction

The optimal transportation problem is nowadays a very active research domain.
After having being intensively studied in a Euclidean and a Riemannian setting by
many authors, it has been recently investigated also in a sub-Riemannian frame-
work. In particular, optimal transportation in the Heisenberg group Hn has been
first studied by Ambrosio and Rigot [2], where it is proved that the Monge problem
can been solved, and a Brenier-McCann representation holds (see Proposition 1.1).

The books by Villani [12, 13] provide an excellent presentation of optimal mass
transportation, while two general references about the Heisenberg group are the
books by Montgomery [6] and the one by Capogna, Danielli, Pauls and Tyson [4].
The reader is referred to these books for a detailed presentation on these two active
mathematical domains.

The aim of this paper is to study the absolute continuity of Wasserstein geodesics,
and answer to an open problem proposed by Ambrosio and Rigot [2, Section 7(c)].
Before stating our result in Theorem 1.2, we briefly introduce the concepts appear-
ing in this paper.

Let n be a non-negative integer. The Heisenberg group Hn can be written in the
form R2n+1 ' Cn × R, and an element of Hn is written as (z; t) = (z1, · · · , zn; t).
The group structure of Hn is given by

(z1, · · · , zn; t) · (z′1, · · · , z′n; t′) =
(

z1 + z′1, · · · , zn + z′n; t + t′ + 2
n∑

k=1

=(zkz′k)
)

,

where =(z) denotes the imaginary part of a complex number. With this structure,
Hn is a Lie group (with neutral element 0H = (0Cn ; 0)). As basis for the associated
Lie Algebra of left-invariant vector fields we take as usual

(
X1, · · · ,Xn,Y1, · · · ,Yn,T

)
,

where

Xk = ∂xk
+ 2yk∂t for k = 1, . . . , n,

Yk = ∂yk
− 2xk∂t for k = 1, . . . , n,

T = ∂t,

1
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with xk, yk ∈ R, xk+iyk = zk. The horizontal distribution (X1, · · · ,Xn,Y1, · · · ,Yn)
allows to define a sub-Riemannian distance, called Carnot-Carathéodory distance,
that we denote by dC . This distance is defined as

dC(x, y) := inf
γ

∫ 1

0

√√√√
n∑

k=1

[
a2

k(s) + b2
k(s)

]
ds

where the infimum is taken among all absolutely continuous curves γ from x to y
such that γ̇(s) =

∑n
k=1

[
ak(s)Xk(γ(s)) + bk(s)Yk(γ(s))

]
for a.e. s. We recall that

the Carnot-Carathéodory distance restricts to Euclidean lines l of R2n+1 as follows.
If for each point p ∈ l the direction of the line l at p is spanned by the horizontal
distribution, then the restriction of dC to l equals up to a constant the Euclidean
distance dEuc. If it is not, then there is a constant C and a real function F (s) =
Cs1/2 + o(s1/2) as s ↓ 0 such that dC(·, p)|l = F (dEuc(·, p)). In particular, the
restriction of dC on lines directed by T is

√
πd

1/2
Euc. Inspired by the exponential map

in Riemannian geometry, Ambrosio and Rigot introduced in [2] a special exponential
map expH, which differs from the isomorphism between the Lie algebra and the Lie
group: the numbers A + iB ∈ Cn and w ∈ [−π/2, π/2] parameterize the geodesics
starting from 0H which can be written as s 7→ expH(s(A + iB), sw).

The Monge-Kantorovich problem (with a quadratic cost) is the following: given
µ0 and µ1 two probability measures on a complete and separable metric space
(X, d), minimize

inf
π

∫

X×X

d(p, q)2 dπ(p, q)

among all couplings π of µ0 and µ1 (that is, among all probability measures π on
X × X whose marginals are µ0 and µ1). The square root of the above infimum
(which indeed is a minimun) gives rise to a distance on the so-called Wasserstein
space W2(X) = {µ | ∫

X
d2(x0, x) dµ(x) < ∞ for some x0 ∈ X}. It turns out that

if (X, d) is geodesic space, W2(X) is also geodesic space. In this paper we will
investigate the absolute continuity of measures staying in a geodesic path from an
absolutely continuous measure to an other measure of Hn. Proposition 1.1 proved
by Ambrosio and Rigot provides a nice representation of such geodesics using the
notion of approximate differential, see [1, Definition 5.5.1].

We recall that f : R2n+1 → R has an approximate differential at x ∈ R2n+1

if there exists a function h : R2n+1 → R differentiable at x such that the set
{f = h} has density 1 at x with respect to the Lebesgue measure. In this case the
approximate derivatives of f at x are defined as

(X̃f(x) + iỸf(x), T̃f(x)) := (Xh(x) + iYh(x),Th(x))

= (X1h(x) + iY1h(x), . . . ,Xnh(x) + iYnh(x),Th(x)).

It is not difficult to show that this definition makes sense.

Proposition 1.1. [2, Theorem 5.1 and Remark 5.9] Let µ0 and µ1 be two Borel
probability measures on Hn. Assume that µ0 is absolutely continuous with respect
to L2n+1 and that

∫

Hn

dC(0H, x)2dµ0(x) +
∫

Hn

dC(0H, y)2dµ1(y) < +∞.
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Then there exists a unique optimal transport plan from µ0 to µ1. Moreover, there
exists a function ϕ which is approximately differentiable µ0-a.e. such that the opti-
mal transport plan is concentrated on the graph of

T (x) := x · expH(−X̃ϕ(x)− iỸϕ(x),−T̃ϕ(x)).

As a consequence of this theorem, it is observed in [2, Section 7 (c)] that the
family of measures

µs := Ts#µ with Ts(x) := x · expH(−sX̃ϕ(x)− isỸϕ(x),−sT̃ϕ(x))

with s ∈ [0, 1] is a constant-speed geodesic in W2(Hn) between µ0 and µ1. Moreover,
since ϕ is approximately differentiable µ0-a.e., a simple variant of the proof of
[2, Lemma 4.7] shows that for µ0-a.e x there exists a unique minimizing geodesic
between x and T (x). In particular this implies that the geodesic in W2(Hn) between
µ0 and µ1 is unique.

In [2, Section 7 (c)] the following open problem is raised: are all measures µs

absolutely continuous for s ∈ [0, 1)?
This question is motivated by the fact that the above property holds in the

Euclidean and the Riemannian setting (see [13, Chapter 8]). The aim of this paper
is to give a positive answer to the above question.

Since the Heisenberg group is non-branching, by [13, Theorem 7.29] we know
that for any time s ∈ [0, 1) the map Ts is µ0-essentially injective (i.e. its restriction
to a set with full µ0-measure is injective), and there exists an inverse transport map
Ss uniquely defined up to µs-negligible sets such that Ss ◦ Ts = Id µ0-a.e. (and so
Ss#µs = µ0).

Our main result is the following:

Theorem 1.2. Let (µs)s∈[0,1] be a geodesic of the Wasserstein space W2(Hn) and
assume that µ0 has density ρ with respect to L2n+1. Then for any s ∈ [0, 1) the
measure µs is absolutely continuous with respect to the Lebesgue measure L2n+1,
and its density is bounded by

(1)
1

(1− s)2n+3
ρ ◦ T−1

s |Ts(A),

where Ts is the (µ0-almost uniquely defined) optimal transport map from µ0 to µs,
and A is any set of full µ0-measure on which Ts is injective.

We remark that the usual way to prove the absolute continuity of the interme-
diate measures is to use the Monge-Mather shortening principle (see [13, Chapter
8]). In Section 2 we will see that this approach cannot work for the Heisenberg
group. We will also give an example of an optimal transport (µt)t∈[0,1] such that
the measure at time 1/2 is concentrated on a set of Hausdorff dimension 1, while
the sets of dimension 1 are negligible for µ0 and µ1. These “bad” results show that
strange phenomena can occour in the Heisenberg case, and this made less clear the
answer to the absolute continuity question.

However, in Section 3 we will see that the absolutely continuity is a consequence
of the following two properties: the so-called MCP (Measure Contraction Prop-
erty), which is indeed true in the Heisenberg group [5], and the fact that the optimal
transport map exists and the Wasserstein geodesic is unique.

Thanks to this fact, we observe that the same proof of the absolute continuity can
be done in Alexandrov spaces with a lower curvature bound. Indeed, in this case
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the existence of an optimal transport map and the uniqueness of the Wasserstein
geodesic were proved by Bertrand [3] under the assumption that µ0 is compactly
supported and absolutely continuous with respect to the Hausdorff measure. More-
over, the MCP property holds, see [7, Lemma 2.3 and Proposition 2.8]. Therefore
we obtain the following result (see also Remark 2.1):

Theorem 1.3. Let (X, d) be an n-dimensional, complete Alexandrov space with
curvature ≥ K. Let µ0 and µ1 be two compactly supported probability measures,
with µ0 absolutely continuous with respect to the n-dimensional Hausdorff measure
Hn

d . Denote by µs the unique Wasserstein geodesic between µ0 and µ1. Then, for
any s ∈ [0, 1), the measure µs is absolutely continuous with respect to Hn

d , and its
density is bounded by

1
1− s

(
sK(n−1)

(
d(x,T−1

s (x))

s
√

n−1

)

sK(n−1)

(
(1− s)d(x,T−1

s (x))

s
√

n−1

)
)n−1

ρ ◦ T−1
s (x)|Ts(A).

Here Ts is the (µ0-almost uniquely defined) optimal transport map from µ0 to µs,
A is any set of full µ0-measure on which Ts is injective, and the function sR(t) is
given by

sR(t) :=





1√
R

sin(
√

Rt) if R > 0,

t if R = 0,
1√−R

sinh(
√−Rt) if R < 0.

2. Failure of the Monge-Mather shortening principle

A good presentation of the Monge-Mather shortening principle can be found in
[13, Chapter 8]. We give here a simplified picture of it in the particular case of
geodesic spaces.

Let (X, d) be a geodesic space, and denote by Hd the Hausdorff measure (here,
we do not care about the dimension of the Hausdorff measure). The idea of the
shortening lemma is the following: fix a Borel set K, and take 4 points a, b, p, q ∈ K.
Suppose that we want to transport a and b on p and q (this is an informal way to
say that we want to transport the measure 1

2 (δa + δb) onto 1
2 (δp + δq)), and assume

that for the quadratic cost it is optimal to send a on p and b on q, that is

d2(a, p) + d2(b, q) ≤ d2(a, q) + d2(b, p).

Consider now two constant-speed geodesics α, β : [0, 1] → X from a to p and from
b to q respectively, and suppose that we can prove the following estimate: there is
a constant C(K, s) (depending only on K and on the time s ∈ [0, 1]) such that

C(K, s)d(α(s), β(s)) ≥ d(a, b).

Then, given any Wasserstein geodesic (µs)s∈[0,1] such that µ0(K) = µ1(K) = 1, if
µ0 is absolutely continuous with respect to Hd one can easily prove that also µs is
absolutely continuous with respect to Hd.

The Heisenberg group (Hn, dC) with the Lebesgue measure can be put in the
above framework.
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2.1. Horizontal right translations as optimal transport. The Lebesgue mea-
sure L2n+1 is the Haar measure of the Heisenberg group because the left translations
of Hn are affine transformation with determinant 1. The (2n+2)-dimensional Haus-
dorff measure is also a Haar measure because dC is left-invariant and 2n + 2 is the
correct dimension. Then by uniqueness, both measures are equal up to a constant.

We recall that right translations by an horizontal vector provide an optimal
transport in the Heisenberg group. This can be proved projecting everything on
Cn and comparing any transport with the optimal Euclidean transport (which
indeed is a translation), see also [2, Example 5.7].

Let µ0 be the restriction of L2n+1 to (0, 1)2n+1, and consider the horizontal
vector u = (1, 0, . . . , 0; 0). With the notation of the introduction, Ts is given for
any s ∈ [0, 1] by the map a 7→ a · (s, 0, . . . , 0; 0). More precisely, writing a as
(x + iy, z2, . . . , zn; t), we have

Ts(a) = ((x + s) + iy, z2, . . . , zn; t + 2sy).(2)

We observe that Ts is affine on R2n+1 with Jacobian determinant 1, so the measure
µs = Ts#µ0 is absolutely continuous. However, as we will show, the shortening
principle does not hold.

Fix a ∈ (0, 1)2n+1, and let

aε := a + ε(i, 0, . . . , 0;−2x− 4s) = (x + i(y + ε), z2, . . . , zn; t− 2εx− 4εs)

with ε small enough so that aε ∈ (0, 1)2n+1. Then, using (2) twice,

Ts(aε) = aε · (s, . . . , 0; 0)

= ((x + s) + i(y + ε), z2, . . . , zn; (t− 2εx− 4εs) + 2s(y + ε))

= ((x + s) + i(y + ε), z2, . . . , zn; (t + 2sy)− 2ε(x + s))

= Ts(a) · vε

where vε is the horizontal vector (iε, 0, . . . , 0; 0). Therefore

dC(a, aε) = dC(0H, a−1 · aε) = dC (0H, (iε, 0, . . . , 0;−4εs)) ∼ 2
√

π|ε|s
as ε → 0, while

dC(Ts(a), Ts(aε)) = dC(0, vε) = |ε|.
Thus we see that the shortening principle cannot hold. Moreover from this example
one can also see that there is no hope to find a decomposition of (0, 1)2n+1 into a
family of countable Borel sets such that on each set the shortening principle holds,
possibly with a different constant (if such weaker condition holds, one can still prove
quite easily the absolute continuity of the interpolation).

2.2. An instructive optimal transport. We consider the following transporta-
tion problem: the two measures µ0 and µ1 are concentrated on the vertical line

L := {(z; t) ∈ Hn | z = 0Cn)},
with µ0 concentrated on the negative part L− = L∩{t ≤ 0} and µ1 on the positive
one L+ = L ∩ {t ≥ 0}. We remark that the restriction of the quadratic cost d2

C on
L is linear in the real coordinate, that is

d2
C ((0Cn ; t), (0Cn ; t′)) = π|t− t′|.
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We can then reduce the transportation problem to a L1-Monge-Kantorovich prob-
lem on the real line R. This situation is quite particular because all couplings of
µ0 and µ1 are optimal (see [12, Chapter 2]).

Let us investigate a concrete example: identifying L = {0Cn}×R with R, let µ0

and µ1 be L1b[−1, 0] and L1b[0, 1] respectively. A (optimal) coupling is given by
(Id, T )#µ0, where the transport map is T : (0Cn ; t) 7→ (0Cn ;−t).

There is a multiple choice of geodesics between (0Cn ; t) and T (0Cn ; t) (actually the
cut-locus of a point p ∈ L is exactly L \ {p}). To construct a Wasserstein geodesic,
we select the (unique) geodesic between (0Cn ; t) and (0Cn ;−t) whose midpoint is
on the horizontal half-line {(r, 0, . . . , 0; 0) | r ∈ [0,+∞)}. This midpoint is exactly

(
√

2|t|
π , 0, . . . , 0; 0).

Using these geodesics, we define a Wasserstein geodesic (µs)s∈[0,1] between µ0

and µ1 which satisfies the following property: although µ0 and µ1 are absolutely
continuous with respect to the 2-dimensional Hausdorff measure (induced by the
distance dC), the intermediate measure µ1/2 is concentrated on the horizontal line
{(r, 0, . . . , 0; 0) | r ∈ R} whose dimension is 1. This observation could suggest
that one can find a measure µ0 absolutely continuous with respect to the Lebesgue
measure such that µ1/2 is not absolutely continuous because concentrated on a set
of lower dimension. As announced in the introduction, we will prove in Section 3
that this cannot happen.

Remark 2.1. As explained in the book by Villani [13, Notes on Chapter 8], it can
be proved that the shortening lemma holds for non-negatively curved Alexandrov
spaces (this follows from an estimate found by the first author, see [13, Equation
(8.45)]). It is not known if the property is also true for Alexandrov spaces with
curvature bounded from below, see [13, Open Problem 8.21].

3. Proof of Theorem 1.2

The starting point for the proof of the theorem is an estimate of the second
author on the size of a set when contracted along geodesics to a point [5]. Given
x, y ∈ Hn and s ∈ (0, 1), let us denote by Ms(x, y) the set of points m such that

dC(x,m) = sdC(x, y), dC(m, y) = (1− s)dC(x, y).

For E ⊂ Hn, we denote by Ms(E, y) the set

Ms(E, y) :=
⋃

x∈E

Ms(x, y).

We remark that, for fixed y, for L2n+1-a.e. x the set Ms(x, y) is a single point and
the curve s 7→ Ms(x, y) is the unique constant-speed geodesic between x and y.

Proposition 3.1. [5, Section 2] Let y ∈ Hn and E a measurable set. Then
Ms(E, y) is measurable and for any s ∈ [0, 1],

L2n+1
(Ms(E, y)

) ≥ (1− s)2n+3L2n+1(E).

Remark 3.2. This estimate, in a more elaborate form, is known as MCP (0, 2n +
3). On Riemannian manifolds this property is shown to be equivalent to a Ricci
curvature bound, and it can be regarded as a generalized notion of a lower Ricci
curvature bound for metric measure spaces [7, 11]. This notion is however different
from the Curvature-Dimension condition CD(K, N) introduced by Lott-Villani [8,
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9] and Sturm [10, 11], and is weaker if the metric space is non-branching. In
particular CD(K, N) does not hold in Hn for any curvature K and any dimension
N (see [5]).

The idea of the proof is now the following: first we approximate the target
measure µ1 by a sequence of discrete measures, and using Proposition 3.1 we prove
the absolute continuity of the interpolation in the case of a discrete target measure.
Then we pass to the limit, and we finally get the upper bound on the density of
the interpolation.

Let µk
1 = 1

k

∑k
i=1 δyi

be a sequence weakly converging to µ1, and denote by T k

the optimal transport map between µ0 = ρL2n+1 and µk
1 . As in the introduction,

(µk
s)s∈[0,1] denotes the unique Wasserstein geodesic between µ0 and µk

1 , and T k
s is

the transport map from µ0 to µk
s .

We remark that, if we prove the estimate in (1) with a certain set A of full
µ0-measure, then the bound will obviously be true also for any set containing A.
Thus, up to a replacement of A with A∩{ρ > 0}, we can assume that A ⊂ {ρ > 0},
so that µ0 and L2n+1 are equivalent on A.

For each i = 1, . . . , k, let Ai ⊂ A be the set of points x ∈ A such that T k(x) = yi.
The sets Ai are mutually disjoint and µ0

(
Hn\ ∪k

i=1 Ai

)
= 0.

Let us fix i. Since T k(Ai) = yi, the curve s 7→ T k
s (x) is the unique geodesic

from x to yi for L2n+1-a.e. x ∈ Ai. Therefore there exists Bi ⊂ Ai such that
L2n+1(Ai \ Bi) = 0 and s 7→ T k

s (x) is the unique geodesic from x to yi for all
x ∈ Bi. Consider now E ⊂ Bi. By the uniqueness of the geodesics from E to yi we
have

Ms(E, yi) = T k
s (E).

We can therefore apply Proposition 3.1 to obtain that, for any E ⊂ Bi

L2n+1
(
T k

s (E)
) ≥ (1− s)2n+3L2n+1(E).

Since L2n+1(Ai \Bi) = 0, the above estimate is still true if E ⊂ Ai. Recalling now
that the sets Ai are disjoint and T k

s is essentially injective, we easily obtain

∀E ⊂ A, L2n+1
(
T k

s (E)
) ≥ (1− s)2n+3L2n+1(E).

Indeed it suffices to take E ⊂ A, split it as Ei = E ∩ Ai, write the estimate for Ei

and add all the estimates for i = 1, . . . , k. The above property can also be stated
by saying that, for any F ⊂ T k

s (A),

L2n+1
(
F

) ≥ (1− s)2n+3L2n+1((T k
s )−1(F ) ∩A),

or equivalently

(3)
∫

A

g(T k
s (x)) dL2n+1(x) ≤ 1

(1− s)2n+3

∫

Hn

g(y) dL2n+1(y)

for all g ∈ Cc(Hn), with g ≥ 0. Since the Wasserstein geodesic between µ0 and µ1

is unique, by the stability of the optimal transport we have that, for any fixed s, the
sequence µk

s weakly converges to µs, and the optimal transport maps T k
s from µ0

to µk
s converge in µ0-measure to Ts from µ0 to µs (see [13, Chapter 7 and Corollary

5.21]).
Thus, up to a subsequence, we can assume that T k

s → Ts µ0-a.e., which in
particular implies that T k

s → Ts for L2n+1-a.e. x ∈ A. We can therefore pass to



8 A.FIGALLI AND N.JUILLET

the limit in (3), obtaining

(4)
∫

A

g(Ts(x)) dL2n+1(x) ≤ 1
(1− s)2n+3

∫

Hn

g(y) dL2n+1(y)

for all g ∈ Cc(Hn), g ≥ 0. Moreover, arguing by approximation and using the mono-
tone convergence theorem, we obtain that (4) holds for any measurable function
g ≥ 0 (in this case, both sides of the equation can be infinite).

From this fact we can directly conclude that Ts sends a set with positive Lebesgue
measure into a set with positive Lebesgue measure, which implies that µs is abso-
lutely continuous.

In order to prove the bound on the density of µs, we consider in (4)

g(y) := χTs(A)(y)h(y)ρ ◦ T−1
s (y),

with h ≥ 0. In this way we get∫

Ts(A)

h(y) dµs(y) =
∫

A

h(Ts(x)) dµ0(x)

=
∫

A

h(Ts(x))ρ(x) dL2n+1(x)

≤ 1
(1− s)2n+3

∫

Hn

h(y)ρ ◦ T−1
s (y)) dL2n+1(y).

From the arbitrariness of h and the fact that µs is concentrated on Ts(A) the bound
follows.
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