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Preface

For many years, I have been teaching DSP (Digital Signal Processing) lab courses 
using various TI (Texas Instruments) DSP platforms. One question I have been get-
ting from students in a consistent way is, “Do we have to know C to take DSP lab 
courses?” Until last year, my response was, “Yes, C is a prerequisite for taking DSP 
lab courses.” However, last year for the first time, I provided a different response by 
saying, “Though preferred, it is not required to know C to take DSP lab courses.” 
This change in my response came about because I started using LabVIEW to teach 
students how to design and analyze DSP systems in our DSP courses.

The widely available graphical programming environments such as LabVIEW  
have now reached the level of maturity that allow students and engineers to design 
and analyze DSP systems with ease and in a relatively shorter time as compared 
to C and MATLAB. I have observed that many students taking DSP lab courses, 
in particular at the undergraduate level, often struggle and spend a fair amount of 
their time debugging C and MATLAB code instead of placing their efforts into 
understanding signal processing system design issues. The motivation behind writing 
this book has thus been to avoid this problem by adopting a graphical programming 
approach instead of the traditional and commonly used text-based programming 
approach in DSP lab courses. As a result, this book allows students to put most of 
their efforts into building DSP systems rather than debugging C code when taking 
DSP lab courses.

One important point that needs to be mentioned here is that in order to optimize 
signal processing algorithms on a DSP processor, it is still required to know and use 
C and/or assembly programming. The existing graphical programming environments 
are not meant to serve as optimizers when implementing signal processing algorithms 
on DSP processors or other hardware platforms. This point has been addressed 
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in this book by providing two chapters which are dedicated solely to algorithm 
implementation on the TI family of TMS320C6000 DSP processors.

It is envisioned that this alternative graphical programming approach to designing 
digital signal processing systems will allow more students to get exposed to the field 
of DSP. In addition, the book is written in such a way that it can be used as a self-
study guide by DSP engineers who wish to become familiar with LabVIEW and use it 
to design and analyze DSP systems.

I would like to express my gratitude to NI (National Instruments) for their support 
of this book. In particular, I wish to thank Jim Cahow, Academic Resources Manager 
at NI, and Ravi Marawar, Academic Program Manager at NI, for their valuable 
feedback. I am pleased to acknowledge Chuck Glaser, Senior Acquisition Editor at 
Elsevier, and Cathy Wicks, University Program Manager at TI, for their promotion 
of the book. Finally, I am grateful to my family who put up with my preoccupation on 
this book-writing project.

Nasser Kehtarnavaz
December 2004
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What’s on the CD-ROM?

• The accompanying CD-ROM includes all the lab files discussed throughout 
the book. These files are placed in corresponding folders as follows:

 o Lab01: Getting familiar with LabVIEW: Part I

 o Lab02: Getting familiar with LabVIEW: Part II

 o Lab03: Sampling, Quantization, and Reconstruction

 o Lab04: FIR/IIR Filtering System Design

 o Lab05: Data Type and Scaling

 o Lab06: Adaptive Filtering Systems

 o Lab07: FFT, STFT, and DWT

 o Lab08: Getting Familiar with Code Composer Studio

 o Lab09: DSP Integration Examples

 o Lab10: Building Dual Tone Multi Frequency System in LabVIEW

 o Lab11: Building 4-QAM Modem System in LabVIEW

 o Lab12: Building MP3 Player System in LabVIEW

• To run the lab files, the National Instruments LabVIEW 7.1 is required and 
assumed installed. The lab files need to be copied into the folder “C:\Lab-
VIEW Labs\”.



xii

What’s on the CD-ROM?

• For Lab 8 and Lab 9, the Texas Instruments Code Composer Studio 2.2 
(CCStudio) is required and assumed installed in the folder “C:\ti\”. The 
subfolders correspond to the following DSP platforms:

 o DSK 6416
 o DSK 6713
 o Simulator (configured as DSK6713 as shown below)
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Introduction

1C H A P T E R

The field of digital signal processing (DSP) has experienced a considerable growth 
in the last two decades, primarily due to the availability and advancements in digital 
signal processors (also called DSPs). Nowadays, DSP systems such as cell phones and 
high-speed modems have become an integral part of our lives. 

In general, sensors generate analog signals in response to various physical phenomena 
that occur in an analog manner (that is, in continuous time and amplitude). Pro-
cessing of signals can be done either in the analog or digital domain. To perform the 
processing of an analog signal in the digital domain, it is required that a digital signal 
is formed by sampling and quantizing (digitizing) the analog signal. Hence, in con-
trast to an analog signal, a digital signal is discrete in both time and amplitude. The 
digitization process is achieved via an analog-to-digital (A/D) converter. The field of 
DSP involves the manipulation of digital signals in order to extract useful informa-
tion from them.

There are many reasons why one might wish to process an analog signal in a digital 
fashion by converting it into a digital signal. The main reason is that digital pro-
cessing allows programmability. The same processor hardware can be used for many 
different applications by simply changing the code residing in memory. Another 
reason is that digital circuits provide a more stable and tolerant output than ana-
log circuits—for instance, when subjected to temperature changes. In addition, the 
advantage of operating in the digital domain may be intrinsic. For example, a linear 
phase filter or a steep-cutoff notch filter can easily be realized by using digital signal 
processing techniques, and many adaptive systems are achievable in a practical prod-
uct only via digital manipulation of signals. In essence, digital representation (zeroes 
and ones) allows voice, audio, image, and video data to be treated the same for error-
tolerant digital transmission and storage purposes.
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1.1 Digital Signal Processing Hands-On Lab Courses

Nearly all electrical engineering curricula include DSP courses. DSP lab or design 
courses are also being offered at many universities concurrently or as follow-ups to 
DSP theory courses. These hands-on lab courses have played a major role in student 
understanding of DSP concepts. A number of textbooks, such as [1-3], have been 
written to provide the teaching materials for DSP lab courses. The programming 
language used in these textbooks consists of either C, MATLAB®, or Assembly, that 
is text-based programming. In addition to these programming skills, it is becoming 
important for students to gain experience in a block-based or graphical (G) pro-
gramming language or environment for the purpose of designing DSP systems in a 
relatively short amount of time. Thus, the main objective of this book is to provide 
a block-based or system-level programming approach in DSP lab courses. The block-
based programming environment chosen is LabVIEW™.

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is a graphi-
cal programming environment developed by National Instruments (NI), which 
allows high-level or system-level designs. It uses a graphical programming language 
to create so-called Virtual Instruments (VI) blocks in an intuitive flowchart-like 
manner. A design is achieved by integrating different components or subsystems 
within a graphical framework. LabVIEW provides data acquisition, analysis, and 
visualization features well suited for DSP system-level design. It is also an open 
environment accommodating C and MATLAB code as well as various applications 
such as ActiveX and DLLs (Dynamic Link Libraries).

This book is written primarily for those who are already familiar with signal pro-
cessing concepts and are interested in designing signal processing systems without 
needing to be proficient C or MATLAB programmers. After familiarizing the reader 
with LabVIEW, the book covers a LabVIEW-based approach to generic experiments 
encountered in a typical DSP lab course. It brings together in one place the informa-
tion scattered in several NI LabVIEW manuals to provide the necessary tools and 
know-how for designing signal processing systems within a one-semester structured 
course. This book can also be used as a self-study guide to design signal processing 
systems using LabVIEW.

In addition, for those interested in DSP hardware implementation, two chapters 
in the book are dedicated to executing selected portions of a LabVIEW designed 
system on an actual DSP processor. The DSP processor chosen is TMS320C6000. 
This processor is manufactured by Texas Instruments (TI) for computationally 
intensive signal processing applications. The DSP hardware utilized to interface with 
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LabVIEW is the TI’s C6416 or C6713 DSK (DSP Starter Kit) board. It should be 
mentioned that since the DSP implementation aspect of the labs (which includes 
C programs) is independent of the LabVIEW implementation, those who are not 
interested in the DSP implementation may skip these two chapters. It is also worth 
pointing out that once the LabVIEW code generation utility becomes available, any 
portion of a LabVIEW designed system can be executed on this DSP processor with-
out requiring any C programming.

1.2 Organization

The book includes twelve chapters and twelve labs. After this introduction, the 
LabVIEW programming environment is presented in Chapter 2. Lab 1 and Lab 2 in 
Chapter 2 provide a tutorial on getting familiar with the LabVIEW programming 
environment. The topic of analog to digital signal conversion is presented in Chapter 
3, followed by Lab 3 covering signal sampling examples. Chapter 4 involves digital 
filtering. Lab 4 in Chapter 4 shows how to use LabVIEW to design FIR and IIR 
digital filters. In Chapter 5, fixed-point versus floating-point implementation issues 
are discussed followed by Lab 5 covering data type and fixed-point effect examples. 
In Chapter 6, the topic of adaptive filtering is discussed. Lab 6 in Chapter 6 covers 
two adaptive filtering systems consisting of system identification and noise cancella-
tion. Chapter 7 presents frequency domain processing followed by Lab 7 covering the 
three widely used transforms in signal processing: fast Fourier transform (FFT), short 
time Fourier transform (STFT), and discrete wavelet transform (DWT). Chapter 8 
discusses the implementation of a LabVIEW-designed system on the TMS320C6000 
DSP processor. First, an overview of the TMS320C6000 architecture is provided. 
Then, in Lab 8, a tutorial is presented to show how to use the Code Composer 
StudioTM (CCStudio) software development tool to achieve the DSP implementa-
tion. As a continuation of Chapter 8, Chapter 9 and Lab 9 discuss the issues related 
to the interfacing of LabVIEW and the DSP processor. Chapters 10 through 12, 
and Labs 10 through 12, respectively, discuss the following three DSP systems or 
project examples that are fully designed via LabVIEW: (i) dual-tone multi-frequency 
(DTMF) signaling, (ii) software-defined radio, and (iii) MP3 player. 

1.3 Software Installation

LabVIEW 7.1, which is the latest version at the time of this writing, is installed by 
running setup.exe on the LabVIEW 7.1 Installation CD. Some lab portions use the 
LabVIEW toolkits ‘Digital Filter Design,’ ‘Advanced Signal Processing,’ and ‘DSP 
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Test Integration for TI DSP.’ Each of these toolkits can be installed by running setup.
exe located on the corresponding toolset CD. 

If one desires to run parts of a LabVIEW designed system on a DSP processor, then it 
is necessary to install the Code Composer Studio software tool. This is done by run-
ning setup.exe on the CCStudio CD. The most updated version of CCStudio at the 
time of this writing, CCStudio 2.2, is used in the DSK-related labs.

The accompanying CD includes all the files necessary for running the labs covered 
throughout the book.

1.4 Updates

Considering that any programming environment goes through enhancements and 
updates, it is expected that there will be updates of LabVIEW and its toolkits. To 
accommodate for such updates and to make sure that the labs provided in the book 
can still be used in DSP lab courses, any new version of the labs will be posted at the 
website http://www.utdallas.edu/~kehtar/LabVIEW for easy access. It is recommend-
ed that this website be periodically checked to download any necessary updates.

1.5 Bibliography

[1]  N. Kehtarnavaz, Real-Time Digital Signal Processing Based on the 
TMS320C6000, Elsevier, 2005.

[2]  S. Kuo and W-S. Gan, Digital Signal Processors: Architectures, Implementations, 
and Applications, Prentice-Hall, 2005.

[3]  R. Chassaing, DSP Applications Using C and the TMS320C6x DSK, Wiley 
Inter-Science, 2002.
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2C H A P T E R

LabVIEW constitutes a graphical programming environment that allows one to 
design and analyze a DSP system in a shorter time as compared to text-based pro-
gramming environments. LabVIEW graphical programs are called virtual instruments 
(VIs). VIs run based on the concept of data flow programming. This means that 
execution of a block or a graphical component is dependent on the flow of data, or 
more specifically a block executes when data is made available at all of its inputs. 
Output data of the block are then sent to all other connected blocks. Data flow pro-
gramming allows multiple operations to be performed in parallel since its execution is 
determined by the flow of data and not by sequential lines of code.

2.1 Virtual Instruments (VIs)

A VI consists of two major components; a front panel (FP) and a block diagram 
(BD). An FP provides the user-interface of a program, while a BD incorporates its 
graphical code. When a VI is located within the block diagram of another VI, it is 
called a subVI. LabVIEW VIs are modular, meaning that any VI or subVI can be  
run by itself.

2.1.1 Front Panel and Block Diagram

An FP contains the user interfaces of a VI shown in a BD. Inputs to a VI are rep-
resented by so-called controls. Knobs, pushbuttons and dials are a few examples of 
controls. Outputs from a VI are represented by so-called indicators. Graphs, LEDs 
(light indicators) and meters are a few examples of indicators. As a VI runs, its FP 
provides a display or user interface of controls (inputs) and indicators (outputs).

A BD contains terminal icons, nodes, wires, and structures. Terminal icons are 
interfaces through which data are exchanged between an FP and a BD. Terminal icons 
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correspond to controls or indicators that appear on an FP. Whenever a control or indi-
cator is placed on an FP, a terminal icon gets added to the corresponding BD. A node 
represents an object which has input and/or output connectors and performs a certain 
function. SubVIs and functions are examples of nodes. Wires establish the flow of data 
in a BD. Structures such as repetitions or conditional executions are used to control 
the flow of a program. Figure 2-1 shows what an FP and a BD window look like.

Figure 2-1: LabVIEW windows: front panel and block diagram.

2.1.2 Icon and Connector Pane

A VI icon is a graphical representation of a VI. It appears in the top right corner 
of a BD or an FP window. When a VI is inserted in a BD as a subVI, its icon gets 
displayed.

A connector pane defines inputs (controls) and outputs (indicators) of a VI. The 
number of inputs and outputs can be changed by using different connector pane 
patterns. In Figure 2-1, a VI icon is shown at the top right corner of the BD and its 
corresponding connector pane having two inputs and one output is shown at the top 
right corner of the FP.
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2.2 Graphical Environment

2.2.1 Functions Palette

The Functions palette, see Figure 2-2, provides various function VIs or blocks for 
building a system. This palette can be displayed by right-clicking on an open area of 
a BD. Note that this palette can only be displayed in a BD.

Figure 2-2: Functions palette.

2.2.2 Controls Palette 

The Controls palette, see Figure 2-3, provides controls and indicators of an FP. This 
palette can be displayed by right-clicking on an open area of an FP. Note that this 
palette can only be displayed in an FP. 

Figure 2-3: Controls palette.

2.2.3 Tools Palette 

The Tools palette provides various operation modes of the mouse cursor for build-
ing or debugging a VI. The Tools palette and the frequently-used tools are shown in 
Figure 2-4.

Each tool is utilized for a specific task. For example, the Wiring tool is used to wire 
objects in a BD. If the automatic tool selection mode is enabled by clicking the 
Automatic Tool Selection button, LabVIEW selects the best matching tool based on a 
current cursor position. 
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2.3 Building a Front Panel

In general, a VI is put together by going back and forth between an FP and a BD, 
placing inputs and outputs on the FP and building blocks on the BD. 

2.3.1 Controls

Controls make up the inputs 
to a VI. Controls grouped in 
the Numeric Controls palette 
are used for numerical inputs, 
grouped in the Buttons & 
Switches palette for Boolean inputs, 
and grouped in the Text Controls 
palette for text and enumeration 
inputs. These control options are 
displayed in Figure 2-5.

2.3.2 Indicators

Indicators make up the outputs 
of a VI. Indicators grouped in the 
Numeric Indicators palette are used 
for numerical outputs, grouped in 
the LEDs palette for Boolean out-
puts, grouped in the Text Indicators 

Figure 2-4: Tools palette.

Figure 2-5: Control palettes.



9

LabVIEW Programming Environment

Figure 2-6: Indicator palettes.

palette for text outputs, and grouped in the Graph Indicators palette for graphical 
outputs. These indicator options are displayed in Figure 2-6.

2.3.3 Align, Distribute and Resize Objects

The menu items on the toolbar of an FP, see Figure 2-7, provide options to align 
and distribute objects on the FP in an orderly manner. Normally, after controls and 
indicators are placed on an FP, one uses these options to tidy up their appearance. 

Figure 2-7: Menu for align, distribute, 
resize, and reorder objects.
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2.4 Building a Block Diagram

2.4.1 Express VI and Function

Express VIs denote higher-level VIs that have been configured to incorporate lower-
level VIs or functions. These VIs are displayed as expandable nodes with a blue 
background. Placing an Express VI in a BD brings up a configuration dialog window 
allowing adjustment of its parameters. As a result, Express VIs demand less wiring. A 
configuration window can be brought up by double-clicking on its Express VI.

Basic operations such as addition or subtraction are represented by functions. Figure 
2-8 shows three examples corresponding to three types of a BD object (VI, Express 
VI, and function). 

 (a) (b) (c)

Figure 2-8: Block Diagram objects: (a) VI, (b) Express VI, and (c) function.

Both subVI and Express VI can be displayed as icons or expandable nodes. If a subVI 
is displayed as an expandable node, the background appears yellow. Icons are used 
to save space in a BD, while expandable nodes are used to provide easier wiring or 
better readability. Expandable nodes can be resized to show their connection nodes 
more clearly. Three appearances of a VI/Express VI are shown in Figure 2-9.

Figure 2-9: Icon versus expandable node.
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2.4.2 Terminal Icons

FP objects are displayed as terminal icons in a BD. A terminal icon exhibits an input 
or output as well as its data type. Figure 2-10 shows two terminal icon examples 
consisting of a double precision numerical control and indicator. As shown in this 
figure, terminal icons can be displayed as data type terminal icons to conserve space 
in a BD.

Figure 2-10: Terminal icon examples displayed in a BD.

2.4.3 Wires

Wires transfer data from one node to another in a BD. Based on the data type of a 
data source, the color and thickness of its connecting wires change. 

Wires for the basic data types used in LabVIEW are shown in Figure 2-11. Other 
than the data types shown in this figure, there are some other specific data types. For 
example, the dynamic data type is always used for Express VIs, and the waveform 
data type, which corresponds to the output from a waveform generation VI, is a 
special cluster of waveform components incorporating trigger time, time interval, and 
data value.

Figure 2-11: Basic types of wires [2].
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2.4.4 Structures

A structure is represented by a graphical enclosure. The graphical code enclosed by 
a structure is repeated or executed conditionally. A loop structure is equivalent to a 
for loop or a while loop statement encountered in text-based programming languages, 
while a case structure is equivalent to an if-else statement.

2.4.4.1 For Loop

A For Loop structure is used to perform repetitions. As 
illustrated in Figure 2-12, the displayed border indicates a 
For Loop structure, where the count terminal  represents 
the number of times the loop is to be repeated. It is set by 
wiring a value from outside of the loop to it. The iteration 
terminal  denotes the number of completed iterations, 
which always starts at zero.

2.4.4.2 While Loop

A While Loop structure allows repetitions depending on 
a condition, see Figure 2-13. The conditional terminal  
initiates a stop if the condition is true. Similar to a For 
Loop, the iteration terminal  provides the number of 
completed iterations, always starting at zero.

2.4.4.3 Case Structure

A Case structure, see Figure 2-14, allows running different 
sets of operations depending on the value it receives through 
its selector terminal, which is indicated by . In addition to 
Boolean type, the input to a selector terminal can be of integer, 
string, or enumerated type. This input determines which case 
to execute. The case selector  shows the status being 
executed. Cases can be added or deleted as needed.

2.5 Grouping Data: Array and Cluster

An array represents a group of elements having the same data type. An array consists 
of data elements having a dimension up to 231 –1. For example, if a random number 
is generated in a loop, it makes sense to build the output as an array since the length 
of the data element is fixed at 1 and the data type is not changed during iterations. 

Figure 2-12: For Loop.

Figure 2-13: While Loop.

Figure 2-14: 
Case structure.



13

LabVIEW Programming Environment

A cluster consists of a collection of different data type elements, similar to the struc-
ture data type in text-based programming languages. Clusters allow one to reduce 
the number of wires on a BD by bundling different data type elements together 
and passing them to only one terminal. An individual element can be added to or 
extracted from a cluster by using the cluster functions such as Bundle by Name 
and Unbundle by Name.

2.6 Debugging and Profiling VIs

2.6.1 Probe Tool

The Probe tool is used for debugging VIs as they run. The value on a wire can be 
checked while a VI is running. Note that the Probe tool can only be accessed in a 
BD window.

The Probe tool can be used together with breakpoints and execution highlighting to 
identify the source of an incorrect or an unexpected outcome. A breakpoint is used 
to pause the execution of a VI at a specific location, while execution highlighting 
helps one to visualize the flow of data during program execution.

2.6.2 Profile Tool

The Profile tool can be used to gather timing and memory usage information, in 
other words, how long a VI takes to run and how much memory it consumes. It is 
necessary to make sure a VI is stopped before setting up a Profile window.

An effective way to become familiar with LabVIEW programming is by going 
through examples. Thus, in the two labs that follow in this chapter, most of the key 
programming features of LabVIEW are presented by building some simple VIs. More 
detailed information on LabVIEW programming can be found in [1-5]. 
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Lab 1: Getting Familiar  
with LabVIEW: Part I

The objective of this first lab is to provide an initial hands-on experience in building 
a VI. For detailed explanations of the LabVIEW features mentioned here, the reader 
is referred to [1]. LabVIEW7.1 can get launched by double-clicking on the LabVIEW 
7.1 icon. The dialog window shown in Figure 2-15 should appear.

Figure 2-15: Starting LabVIEW.

L1.1 Building a Simple VI

To become familiar with the LabVIEW programming environment, it is more effec-
tive if one goes through a simple example. The example presented here consists of 
calculating the sum and average of two input values. This example is described in a 
step-by-step fashion below.

L1.1.1 VI Creation

To create a new VI, click on the arrow next to New… and choose Blank VI from the 
pull down menu. This step can also be done by choosing File → New VI from the 
menu. As a result, a blank FP and a blank BD window appear, as shown in Figure  
2-16. It should be remembered that an FP and a BD coexist when building a VI. 
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Clearly, the number of inputs and outputs to a VI is dependent on its function. In 
this example, two inputs and two outputs are needed, one output generating the 
sum and the other the average of two input values. The inputs are created by locat-
ing two Numeric Controls on the FP. This is done by right-clicking on an 
open area of the FP to bring up the Controls palette, followed by choosing Controls 
→ Numeric Controls → Numeric Control. Each numeric control automatically places 
a corresponding terminal icon on the BD. Double-clicking on a numeric control 
highlights its counterpart on the BD, and vice versa.

Next, let us label the two inputs as x and y. This is achieved by using the Labeling 
tool from the Tools palette, which can be displayed by choosing Window → Show Tools 
Palette from the menu bar. Choose the Labeling tool and click on the default labels, 
Numeric and Numeric 2, in order to edit them. Alternatively, if the automatic 
tool selection mode is enabled by clicking Automatic Tool Selection in the Tools palette, 
the labels can be edited by simply double-clicking on the default labels. Editing a label 
on the FP changes its corresponding terminal icon label on the BD, and vice versa.

Similarly, the outputs are created by locating two Numeric Indicators 
(Controls → Numeric Indicators → Numeric Indicator) on the FP. Each numeric indicator 
automatically places a corresponding terminal icon on the BD. Edit the labels of the 
indicators to read Sum and Average.

For a better visual appearance, objects on an FP window can be aligned, distributed, 
and resized using the appropriate buttons appearing on the FP toolbar. To do this, 

Figure 2-16: Blank VI.
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select the objects to be aligned or distributed and apply the appropriate option from 
the toolbar menu. Figure 2-17 shows the configuration of the FP just created.

Figure 2-17: FP configuration.

Now, let us build a graphical program on the BD to perform the summation and 
averaging operations. Note that <Ctrl + E> toggles between an FP and a BD win-
dow. If one finds the objects on a BD are too close to insert other functions or VIs in 
between, a horizontal or vertical space can be inserted by holding down the <Ctrl> 
key to create space horizontally and/or vertically. As an example, Figure 2-18 (b) 
illustrates a horizontal space inserted between the objects shown in Figure 2-18 (a).

 (a) (b)
Figure 2-18: Inserting horizontal/vertical space: (a) creating space while holding 

down the <Ctrl> key, and (b) inserted horizontal space.
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Next, place an Add function (Functions → Arithmetic & Comparison → Express Numeric 
→ Add) and a Divide function (Functions → Arithmetic & Comparison → Express 
Numeric → Divide) on the BD. The divisor, in our case 2, needs to be entered in a 
Numeric Constant (Functions → Arithmetic & Comparison → Express Numeric → 
Numeric Constant) and connected to the y terminal of the Divide function using the 
Wiring tool.

To have a proper data flow, functions, structures and terminal icons on a BD need to 
be wired. The Wiring tool is used for this purpose. To wire these objects, point the 
Wiring tool at a terminal of a function or a subVI to be wired, left click on the termi-
nal, drag the mouse to a destination terminal and left click once again. Figure 2-19 
illustrates the wires placed between the terminals of the numeric controls and the 
input terminals of the add function. Notice that the label of a terminal is displayed 
whenever the cursor is moved over it if the automatic tool selection mode is enabled. 
Also, note that the Run button  on the toolbar remains broken until the wiring 
process is completed.

Figure 2-19: Wiring BD objects.

For better readability of a BD, wires which are hidden behind objects or crossed over 
other wires can be cleaned up by right-clicking on them and choosing Clean Up Wire 
from the shortcut menu. Any broken wires can be cleared by pressing <Ctrl + B> or 
Edit → Remove Broken Wires.

The label of a BD object, such as a function, can be shown (or hidden) by right-
clicking on the object and checking (or unchecking) Visible Items → Label from the 
shortcut menu. Also, a terminal icon corresponding to a numeric control or indicator 
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can be shown as a data type terminal icon. This is done by right-clicking on the ter-
minal icon and unchecking View As Icon from the shortcut menu. Figure 2-20 shows 
an example where the numeric controls and indicators are shown as data type termi-
nal icons. The notation DBL represents double precision data type.

Figure 2-20: Completed BD.

It is worth pointing out that there exists a shortcut to build the above VI. Instead 
of choosing the numeric controls, indicators or constants from the Controls or 
Functions palette, the shortcut menu Create, activated by right-clicking on a 
terminal of a BD object such as a function or a subVI, can be used. As an example 
of this approach, create a blank VI and locate an Add function. Right-click on its 
x terminal and choose Create → Control from the shortcut menu to create and wire 
a numeric control or input. This locates a numeric control on the FP as well as a 
corresponding terminal icon on the BD. The label is automatically set to x. Create 
a second numeric control by right-clicking on the y terminal of the Add function. 
Next, right-click on the output terminal of the Add function and choose Create 
→ Indicator from the shortcut menu. A data type terminal icon, labeled as x+y, is 
created on the BD as well as a corresponding numeric indicator on the FP.

Next, right-click on the y terminal of the Divide function to choose Create → 
Constant from the shortcut menu. This creates a Numeric Constant as the divi-
sor and wires its y terminal. Type the value 2 in the numeric constant. Right-click on 
the output terminal of the Divide function, labeled as x/y, and choose Create → 
Indicator from the shortcut menu. If a wrong option is chosen, the terminal does not 
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get wired. A wrong terminal option can easily be changed by right-clicking on the 
terminal and choosing Change to Control or Change to Constant from the shortcut menu. 

To save the created VI for later use, choose File → Save from the menu or press  
<Ctrl + S> to bring up a dialog window to enter a name. Type Sum and Average 
as the VI name and click Save.

To test the functionality of the VI, enter some sample values in the numeric controls 
on the FP and run the VI by choosing Operate → Run, by pressing <Ctrl + R>, or 
by clicking the Run button on the toolbar. From the displayed output values in the 
numeric indicators, the functionality of the VI can be verified. Figure 2-21 illustrates 
the outcome after running the VI with two inputs 10 and 30.

Figure 2-21: VI verification.

L1.1.2 SubVI Creation

If a VI is to be used as part of a higher level VI, its connector pane needs to be 
configured. A connector pane assigns inputs and outputs of a subVI to its terminals 
through which data are exchanged. A connector pane can be displayed by right-
clicking on the top right corner icon of an FP and selecting Show Connector from the 
shortcut menu.

The default pattern of a connector pane is determined based on the number of 
controls and indicators. In general, the terminals on the left side of a connector pane 
pattern are used for inputs, and the ones on the right side for outputs. Terminals can 
be added to or removed from a connector pane by right-clicking and choosing Add 
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Terminal or Remove Terminal from the shortcut menu. If a change is to be made to the 
number of inputs/outputs or to the distribution of terminals, a connector pane pat-
tern can be replaced with a new one by right-clicking and choosing Patterns from the 
shortcut menu. Once a pattern is selected, each terminal needs to be reassigned to a 
control or an indicator by using the Wiring tool, or by enabling the automatic tool 
selection mode.

Figure 2-22(a) illustrates assigning a terminal of the Sum and Average VI to a 
numeric control. The completed connector pane is shown in Figure 2-22(b). Notice 
that the output terminals have thicker borders. The color of a terminal reflects its 
data type.

 (a) (b)

Figure 2-22: Connector pane: (a) assigning a terminal 
to a control, and (b) terminal assignment completed.

Considering that a subVI icon is displayed on the BD of a higher level VI, it is 
important to edit the subVI icon for it to be explicitly identified. Double-clicking on 
the top right corner icon of a BD brings up the Icon Editor. The tools provided in 
the Icon Editor are very similar to those encountered in other graphical editors, such 
as Microsoft Paint. An edited icon for the Sum and Average VI is illustrated in 
Figure 2-23.

A subVI can also be created from a section of a VI. To do so, select the nodes on the 
BD to be included in the subVI, as shown in Figure 2-24(a). Then, choose Edit → 
Create SubVI. This inserts a new subVI icon. Figure 2-24(b) illustrates the BD with an 



22

Lab 1

inserted subVI. This subVI can be opened and edited by double-clicking on its icon 
on the BD. Save this subVI as Sum and Average.vi. This subVI performs the same 
function as the original Sum and Average VI.

Figure 2-23: Editing subVI icon.

 (a) (b)

Figure 2-24: Creating a subVI: (a) selecting nodes to make 
a subVI, and (b) inserted subVI icon.

In Figure 2-25, the completed FP and BD of the Sum and Average VI are shown. 
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L1.2 Using Structures and SubVIs

Let us now consider another example to demonstrate the use of structures and subVIs. 
In this example, a VI is used to show the sum and average of two input values in a 
continuous fashion. The two inputs can be altered by the user. If the average of the 
two inputs becomes greater than a preset threshold value, a LED warning light is lit.

As the first step towards building such a VI, build an FP as shown in Figure 2-26(a). 
For the inputs, use two Knobs (Controls → Numeric Controls → Knob). Adjust the size 
of the knobs by using the Positioning tool. Properties of knobs such as precision and 
data type can be modified by right-clicking and choosing Properties from the shortcut 
menu. A Knob Properties dialog box is brought up and an Appearance tab is shown by 
default. Edit the label of one of the knobs to read Input 1. Select the Data Range 
tab, and click Representation to change the data type from double precision to byte by 
selecting Byte among the displayed data types. This can also be achieved by right-
clicking on the knob and choosing Representation → Byte from the shortcut menu. In 
the Data Range tab, a default value needs to be specified. In this example, the default 
value is considered to be 0. The default value can be set by right-clicking on the 
control and choosing Data Operations → Make Current Value Default from the shortcut 
menu. Also, this control can be set to a default value by right-clicking and choosing 
Data Operations → Reinitialize to Default Value from the shortcut menu.

Figure 2-25: Sum and Average VI.
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Label the second knob as Input 2 and repeat all the adjustments as done for the 
first knob except for the data representation part. The data type of the second knob is 
specified to be double precision in order to demonstrate the difference in the out-
come. As the final step of configuring the FP, align and distribute the objects using 
the appropriate buttons on the FP toolbar.

To set the outputs, locate and place a Numeric Indicator, a Rounded LED 
(Controls → LEDs → Rounded LED), and a Gauge (Controls → Numeric Indicators → 
Gauge). Edit the labels of the indicators as shown in Figure 2-26(a).

 (a) (b)

Figure 2-26: Example of structure and subVI: (a) FP, and (b) BD.

Now, let us build the BD. There are five control and indicator icons already 
appearing on the BD. Right-click on an open area of the BD to bring up the Func-
tions palette and then choose All functions → Select a VI…. This brings up a file dialog 
box. Navigate to the Sum and Average VI in order to place it on the BD. This 
subVI is displayed as an icon on the BD. Wire the numeric controls, Input 1 and 
Input 2, to the x and y terminals, respectively. Also, wire the Sum terminal of 
the subVI to the numeric indicator labeled Sum, and the Average terminal to the 
gauge indicator labeled Average.

A Greater or Equal? function is located from Functions → Arithmetic & 
Comparisons → Comparison → Greater or Equal? in order to compare the average 
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output of the subVI with a threshold value. Create a wire branch on the wire 
between the Average terminal of the subVI and its indicator via the Wiring tool. 
Then, extend this wire to the x terminal of the Greater or Equal? function. 
Right-click on the y terminal of the Greater or Equal? function and choose 
Create → Constant in order to place a Numeric Constant. Enter 9 in the numeric 
constant. Then, wire the Rounded LED, labeled as Warning, to the x>=y? 
terminal of this function to provide a Boolean value.

In order to run the VI continuously, a While Loop structure is used. Choose Functions 
→ Execution Control → While Loop to create a While Loop. Change the size by 
dragging the mouse to enclose the objects in the While Loop as illustrated in 
Figure 2-27.

Figure 2-27: While Loop enclosure.

Once this structure is created, its boundary together with the loop iteration terminal 
, and conditional terminal  are shown on the BD. If the While Loop is cre-

ated by using Functions → All Functions → Structures → While Loop, then the Stop 
Button is not included as part of the structure. This button can be created by right-
clicking on the conditional terminal and choosing Create → Control from the shortcut 
menu. A Boolean condition can be wired to a conditional terminal, instead of a stop 
button, in order to stop the loop programmatically.
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As the final step, tidy up the wires, nodes and terminals on the BD using the Align 
object and Distribute object options on the BD toolbar. Then, save the VI in a file 
named Strucure and SubVI.vi.

Now run the VI to verify its functionality. After clicking the Run button on the 
toolbar, adjust the knobs to alter the inputs. Verify whether the average and sum 
are displayed correctly in the gauge and numeric indicators. Note that only integer 
values can be entered via the Input 1 knob while real values can be entered via 
the Input 2 knob. This is due to the data types associated with these knobs. The 
Input 1 knob is set to byte type, that is, I8 or 8 bit signed integer. As a result, only 
integer values within the range –128 and 127 can be entered. Considering that the 
minimum and maximum value of this knob are set to 0 and 10 respectively, only 
integer values from 0 to 10 can thus be entered for this input. 

Figure 2-28: FP as VI runs.

When the average value of the two inputs becomes greater than the preset threshold 
value of 9, the warning LED will light up, see Figure 2-28. Click the stop button 
on the FP to stop the VI. Otherwise, the VI keeps running until the conditional 
terminal of the While Loop becomes true. 
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L1.3 Create an Array with Indexing

Auto-indexing enables one to read/write each element from/to a data array in a loop 
structure. That feature is covered in this section. 

Let us first locate a For Loop (Functions → All Functions → Structures → For Loop). 
Right-click on its count terminal and choose Create → Constant from the shortcut 
menu to set the number of iterations. Enter 10 so that the code inside it gets repeated 
ten times. Note that the current loop iteration count, which is read from the 
iteration terminal, starts at index 0 and ends at index 9.

Place a Random Number (0-1) function (Functions → Arithmetic & Comparison → 
Express Numeric → Random Number (0-1)) inside the For Loop and wire the output 
terminal of this function, number (0 to 1), to the border of the For Loop to 
create an output tunnel. The tunnel appears as a box with the array symbol [ ] inside 
it. For a For Loop, auto-indexing is enabled by default whereas for a While Loop, 
it is disabled by default. Create an indicator on the tunnel by right-clicking and 
choosing Create → Indicator from the shortcut menu. This creates an array indicator 
icon outside the loop structure on the BD. Its wire appears thicker due to its array 
data type. Also, another indicator representing the array index gets displayed on the 
FP. This indicator is of array data type and can be resized as desired. In this example, 
the size of the array is specified as 10 to display all the values, considering that the 
number of iterations of the For Loop is set to be ten.

Create a second output tunnel by wiring the output of the Random Number (0-1) 
function to the border of the loop structure, then right-click on the tunnel and choose 
Disable indexing from the shortcut menu to disable auto-indexing. By doing this, the 
tunnel becomes a filled box representing a scalar value. Create an indicator on the 
tunnel by right-clicking and choosing Create → Indicator from the shortcut menu. This 
sets up an indicator of scalar data type outside the loop structure on the BD.

Next, create a third indicator on the Number (0 to 1) terminal of the Random 
Number (0-1) function located in the For Loop to observe the values coming 
out. To do this, right-click on the output terminal or on the wire connected to this 
terminal and choose Create → Indicator from the shortcut menu. 

Place a Time Delay Express VI (Functions → Execution Contol → Time Delay) to 
delay the execution in order to have enough time to observe a current value. A con-
figuration window is brought up to specify the delay time in seconds. Enter the value 
0.1 to wait 0.1 seconds at each iteration. Note that the Time Delay Express VI is 
shown as an icon in Figure 2-29 in order to have a more compact display.
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Save the VI as Indexing Example.vi and run it to observe its functionality. From  
the output displayed on the FP, a new random number should be displayed every  
0.1 seconds on the indicator residing inside the loop structure. However, no data 
should be available from the indicators outside the loop structure until the loop 
iterations end. An array of 10 elements should be generated from the indexing-
enabled tunnel while only one output, the last element of the array, should be passed 
from the indexing-disabled tunnel.

L1.4 Debugging VIs: Probe Tool

The Probe tool is used to observe data that are being passed while a VI is running.  
A probe can be placed on a wire by using the Probe tool or by right-clicking on a 
wire and choosing Probe from the shortcut menu. Probes can also be placed while a 
VI is running.

Placing probes on wires creates probe windows through which intermediate values 
can be observed. A probe window can be customized. For example, showing data of 
array data type via a graph makes debugging easier. To do this, right-click on the wire 
where an array is being passed and choose Custom Probe → Controls → Graph Indicators 
→ Waveform Graphs from the shortcut menu.

Figure 2-29: Creating array with indexing.
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As an example of using custom probes, a Waveform Chart is used here to track  
the scalar values at probe location 1, a Waveform Graph to monitor the array at 
probe location 2, and a regular probe window at probe location 3 to see the values 
of the Indexing Example VI. These probes and their locations are illustrated in 
Figure 2-30.

Figure 2-30: Probe tool.



30

Lab 1

L1.5 Bibliography

[1] National Instruments, LabVIEW User Manual, Part Number 320999E-01, 
2003.



31

Lab 2: Getting Familiar  
with LabVIEW: Part II

Now that an initial familiarity with the LabVIEW programming environment has 
been acquired in Lab 1, this second lab covers an example where a simple DSP 
system is built, thus enhancing the familiarity of the reader with LabVIEW. This 
example involves a signal generation and amplification system. The shape of the 
input signal (sine, square, triangle, or sawtooth), as well as its frequency and gain, are 
altered by using appropriate FP controls.

The system is built with Express VIs first, then the same system is built with regular 
VIs. This is done in order to illustrate the advantages and disadvantages of Express 
VIs versus regular VIs for building a system.

L2.1 Building a System VI with Express VIs

The use of Express VIs allows less wiring on a BD. Also, it provides an interactive 
user-interface by which parameter values can be adjusted on the fly. The BD of the 
signal generation system using Express VIs is shown in Figure 2-31.

Figure 2-31: BD of signal generation and 
amplification system using Express VIs [1].
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To build this BD, locate the Simulate Signal Express VI (Functions → Input → 
Simulate Signal) to generate a signal source. This brings up a configuration dialog 
as shown in Figure 2-32. Different types of signals including sine, square, triangle, 
sawtooth, or DC can be generated with this VI. Enter and adjust the parameters as 
indicated in Figure 2-32 to simulate a sinewave having a frequency of 200 Hz and 
an amplitude swinging between –100 and 100. Set the sampling frequency to 8000 
Hz. A total of 128 samples spanning a time duration of 15.875 milliseconds (ms) are 
generated. Note that when the parameters are changed, the modified signal is dis-
played instantly in the Result Preview graph window.

Figure 2-32: Configuration of Simulate Signal Express VI.

Next, place a Scaling and Mapping Express VI (Functions → Arithmetic & 
Comparison → Scaling and Mapping) to amplify or scale this simulated signal. When its 
configuration dialog is brought up, see Figure 2-33, choose Linear (Y=mx+b) and enter 
5 in Slope (m) to scale the input signal 5 times. 
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Wire the Sine terminal of the Simulate Signal Express VI to the Signals 
terminal of the Scaling and Mapping Express VI. Note that a wire having a 
dynamic data type is created.

Figure 2-33: Configuration of Scaling and Mapping Express VI.

To display the output signal, place a Waveform Graph (Controls → Graph Indicators 
→ Waveform Graph) on the FP. The Waveform Graph can also be created by right-
clicking on the Scaled Signals terminal and choosing Create → Graph Indicator 
from the shortcut menu.

Now, in order to observe the original and the scaled signal together in the same 
graph, wire the Sine terminal of the Simulate Signal Express VI to the 
Waveform Graph. This inserts a Merge Signals function on the wire 
automatically. An automatic insertion of the Merge Signals function occurs 
when a signal having a dynamic data type is wired to other signals having the same 
or other data types. The Merge Signals function combines multiple inputs, thus 
allowing two signals, consisting of the original and scaled signals, to be handled by 
one wire. Since both the original and scaled signals are displayed in the same graph, 
resize the plot legend to display the two labels and markers. The use of the dynamic 
data type sets the signal labels automatically. 

To run the VI continuously, place a While Loop. Position the While Loop to 
enclose all the Express VIs and the graph. Now the VI is ready to be run.
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Run the VI and observe the Waveform Graph. The output should appear as 
shown in Figure 2-34. To extend the plot to the right end of the plotting area, right-
click on the Waveform Graph and choose X Scale, then uncheck Loose Fit from 
the shortcut menu. The graph shown in Figure 2-35 should appear.

Figure 2-35: Plot with Loose Fit.

Figure 2-34: FP of signal generation and amplification system.
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If the plot runs too fast, a delay can be placed in the While Loop. To do this, place 
a Time Delay Express VI (Functions → Execution Control → Time Delay) and set 
the delay time to 0.2 in the configuration window. This way, the loop execution is 
delayed by 0.2 seconds in the BD shown in Figure 2-31.
Although this system runs successfully, no control of the signal frequency and gain 
is available during its execution since all the parameters are set in the configuration 
dialogs of the Express VIs. To gain such flexibility, some modifications need to be made.
To change the frequency at run time, place a Vertical Pointer Slide con-
trol (Controls → Numeric Controls → Vertical Pointer Slide) on the FP and wire it to 
the Frequency terminal of the Simulate Signal Express VI. The control is 
labeled as Frequency. The Express VI can be resized to show more terminals at the 
bottom of the expandable node. Resize the VI to show an additional terminal below 
the Sine terminal. Then, click on this new terminal, error out by default, to 
select Frequency from the list of the displayed terminals.
Next, replace the Scaling and Mapping Express VI with a Multiply 
function (Functions → Arithmetic & Comparison → Express Numeric → Multiply). Place 
another Vertical Pointer Slide control and wire it to the y terminal of 
the Multiply function to adjust the gain. This control is labeled as Gain. These 
modifications are illustrated in Figure 2-36.

Figure 2-36: BD of signal generation and amplification system with controls.
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Now on the FP, set the maximum range of each slide control to 1000 for the Fre-
quency control and 5 for the Gain control, respectively. Also, set the default 
values for these controls to 200 and 2, respectively.

By running this modified VI, it can be observed that the two signals are displayed 
with the same label since the source of these signals, that is, the Sine terminal of 
the Simulate Signal Express VI, is the same. Also, due to the autoscale feature 
of the Waveform Graph, the scaled signal appears unchanged while the Y axis of 
the Waveform Graph changes appropriately. This is illustrated in Figure 2-37.

Figure 2-37: Autoscaled graph of two signals shown together.

Let us now modify the properties of the Waveform Graph. In order to disable 
the autoscale feature, right-click on the Waveform Graph and uncheck Y Axis → 
AutoScale Y. The maximum and minimum scale can also be adjusted. In this example 
–600 and 600 are used as the minimum and maximum values, respectively. This is 
done by modifying the maximum and minimum scale values of the Y axis with the 
Labeling tool. If the automatic tool selection mode is enabled, just click on the maxi-
mum or minimum scale of the Y axis to enter any desired scale value. To modify the 
labels displayed in the plot legend, right-click and choose Ignore Attributes. Then, edit 
the labels to read Original and Scaled using the Labeling tool. Changing the 
properties of the Waveform Graph can also be accomplished by using its proper-
ties dialog box. This box is brought up by right-clicking on the Waveform Graph 
and choosing Properties from the shortcut menu. 
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Figure 2-38: FP of signal generation and amplification system with controls.

L2.2 Building a System with Regular VIs
In this section, the implementation of the same system discussed above is achieved 
by using regular VIs.

After creating a blank VI, place a While Loop (Functions → Execution Control → 
While Loop) on the BD, which may need to be resized later. To provide the signal 
source of the system, place a Basic Function Generator VI (Functions → 
All Functions → Analyze → Waveform Generation → Basic Function Generator) inside 
the While Loop. To configure the parameters of the signal, appropriate controls 
and constants need to be wired. To create a control for the signal type, right-click 
on the signal type terminal of the Basic Function Generator VI and 
choose Create → Control from the shortcut menu. Note that an enumerated (Enum) 
type control for the signal gets located on the FP. Four items including sine, triangle, 
square and sawtooth are listed in this control.

The completed FP is shown in Figure 2-38. With this version of the VI, the frequen-
cy of the input signal and the gain of the output signal can be controlled using the 
controls on the FP.
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Next, right-click on the amplitude terminal, and choose Create → Constant 
from the shortcut menu to create an amplitude constant. Enter 100 in the numeric 
constant box to set the amplitude of the signal. In order to configure the sam-
pling frequency and the number of samples, create a constant on the sampling 
information terminal by right-clicking and choosing Create → Constant from 
the shortcut menu. This creates a cluster constant which includes two numeric 
constants. The first element of the cluster shown in the upper box represents the 
sampling frequency and the second element shown in the lower box represents the 
number of samples. Enter 8000 for the sampling frequency and 128 for the number of 
samples. Note that the same parameters were used in the previous section.

Now, toggle to the FP by pressing <Ctrl + E> and place two Vertical Pointer 
Slide controls on the FP by choosing Controls → Numeric Controls → Vertical Pointer 
Slide. Rename the controls Frequency and Gain, respectively. Set the maximum 
scale values to 1000 for the Frequency control and 5 for the Gain control. The 
Vertical Pointer Slide controls create corresponding icons on the BD. 
Make sure that the icons are located inside the While Loop. If not, select the icons 
and drag them inside the While Loop. The Frequency control should be wired 
to the frequency terminal of the Basic Function Generator VI in order to 
be able to adjust the frequency at run time. The Gain control is used at a later stage.

The output of the Basic Function Generator VI appears in the waveform 
data type. The waveform data type is a special cluster which bundles three components 
(t0, dt, and Y) together. The component t0 represents the trigger time of the wave-
form, dt the time interval between two samples, and Y data values of the waveform.

Next, the generated signal needs to be scaled based on a gain factor. This is done by 
using a Multiply function (Functions → Arithmetic & Comparison → Express Numeric 
→ Multiply) and a second Vertical Pointer Slide control, named Gain. 
Wire the generated waveform out of the signal out terminal of the Basic 
Function Generator VI to the x terminal of the Multiply function. Also, 
wire the Gain control to the y terminal of the Multiply function.

Recall that the Merge Signals function is used to combine two signals having 
dynamic data types into the same wire. To achieve the same outcome with regular 
VIs, place a Build Array function (Functions → All Functions → Array → Build 
Array) to build a 2D array, that is, two rows (or columns) of one dimensional signal. 
Resize the Build Array function to have two input terminals. Wire the original 
signal to the upper terminal of the Build Array function, and the output of the 
Multiply function to the lower terminal. Remember that the Build Array 
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Figure 2-39: BD of signal generation and 
amplification system using regular VIs.

function is used to concatenate arrays or build n-dimensional arrays. Since the 
Build Array function is used for comparing the two signals, make sure that the 
Concatenate Inputs option is unchecked from the shortcut menu. More details on the 
use of the Build Array function can be found in [2].

A Waveform Graph (Controls → Graph Indicators → Waveform Graph) is then 
placed on the FP. Wire the output of the Build Array function to the input of 
the Waveform Graph. Resize the plot legend to display the labels and edit them. 
Similar to the example in the previous section, the AutoScale feature of the Y axis 
should be disabled and the Loose Fit option should be unchecked along the X axis.

Place a Wait (ms) function (Functions → All Functions → Time & Dialog → Wait) 
inside the While Loop to delay the execution in case the VI runs too fast. Right-
click on the milliseconds to wait terminal and choose Create → Constant 
from the shortcut menu to create and wire a Numeric Constant. Enter 200 in 
the box created.

Figure 2-39 and Figure 2-40 illustrate the BD and FP of the designed signal genera-
tion system, respectively. Save the VI as Lab02_Regular_Waveform.vi and run it. 
Change the signal type, gain and frequency values to see the original and scaled 
signal in the Waveform Graph.

The waveform data type is not accepted by all of the functions or subVIs. To cope 
with this issue, the Y component (data value) of the waveform data type is extracted 
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Figure 2-41: Matching data types.

to obtain the output signal as an array of data samples. This is done by placing a 
Get Waveform Components function (Functions → All Functions → Waveform 
→ Get Waveform Components). Then, wire the signal out terminal of the Basic 
Function Generator VI to the waveform terminal of the Get Waveform 
Components function. Click on t0, the default terminal, of the Get Waveform 
Components function 
and choose Y as the out-
put to extract data values 
from the waveform data 
type, see Figure 2-41. The 
remaining steps are the 
same as those for the ver-
sion shown in Figure 2-39. 
In this version, however, 
the processed signal is an 
array of double precision 
samples.

Figure 2-40: Original and scaled output signals.
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Figure 2-42: Profile window after running Lab02_Regular VI.

L2.3 Profile VI

The Profile tool is used to gather timing and memory usage information. Make sure 
the VI is stopped before setting up a Profile window. Select Tool → Advanced → Profile 
VIs… to bring up a Profile window.

Place a checkmark in the Timing Statistics checkbox to display timing statistics of 
the VI. The Timing Details option provides more detailed statistics of the VI such as 
drawing time. To profile memory usage as well as timing, check the Memory Usage 
checkbox after checking the Profile Memory Usage checkbox. Note that this op-
tion can slow down the execution of the VI. Start profiling by clicking the Start 
button on the profiler, then run the VI. A snapshot of the profiler information can 
be obtained by clicking on the Snapshot button. After viewing the timing infor-
mation, click the Stop button. The profile statistics can be stored into a text file by 
clicking the Save button.

An outcome of the profiler is exhibited in Figure 2-42 after running the Lab02_
Regular VI. More details on the use of the Profile tool can be found in [3].
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3C H A P T E R

The process of analog-to-digital signal conversion consists of converting a continu-
ous time and amplitude signal into discrete time and amplitude values. Sampling 
and quantization constitute the steps needed to achieve analog-to-digital signal 
conversion. To minimize any loss of information that may occur as a result of this 
conversion, it is important to understand the underlying principles behind sampling 
and quantization. 

3.1 Sampling

Sampling is the process of generating discrete time samples from an analog signal. 
First, it is helpful to mention the relationship between analog and digital frequencies. 
Let us consider an analog sinusoidal signal x(t) = Acos(ωt + φ). Sampling this signal 
at t = nTs, with the sampling time interval of Ts, generates the discrete time signal

(3.1)

where θ ω π= =T
f

fs
s

2
 denotes digital frequency with units being radians (as compared 

to analog frequency ω with units being radians/sec).

The difference between analog and digital frequencies is more evident by observing 
that the same discrete time signal is obtained from different continuous time signals 
if the product ωTs remains the same. (An example is shown in Figure 3-1.) Likewise, 
different discrete time signals are obtained from the same analog or continuous time 
signal when the sampling frequency is changed. (An example is shown in Figure 
3-2.) In other words, both the frequency of an analog signal f and the sampling fre-
quency fs define the frequency of the corresponding digital signal θ.

x n A nT A n ns[ ] = +( ) = +( ) =cos cos , , , , ,ω φ θ φ 0 1 2…
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Figure 3-1: Sampling of two different analog 
signals leading to the same digital signal.
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Figure 3-2: Sampling of the same analog signal 
leading to two different digital signals.
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It helps to understand the constraints associated with the above sampling process by 
examining signals in the frequency domain. The Fourier transform pairs in the ana-
log and digital domains are given by

X j x t e dt
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As illustrated in Figure 3-3, when an analog signal with a maximum bandwidth of 

W (or a maximum frequency of fmax) is sampled at a rate of T
fs
s

= 1
, its correspond-

ing frequency response is repeated every 2π radians, or fs. In other words, the Fourier 
transform in the digital domain becomes a periodic version of the Fourier transform 

 (a) (b)

Figure 3-3: (a) Fourier transform of a continuous-
time signal, and (b) its discrete time version.
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in the analog domain. That is why, for discrete signals, we are only interested in the 
frequency range [0, fs /2]. 

Therefore, in order to avoid any aliasing or distortion of the frequency content of the 
discrete signal, and hence to be able to recover or reconstruct the frequency content 
of the original analog signal, we must have fs ≥ 2fmax. This is known as the Nyquist 
rate; that is, the sampling frequency should be at least twice the highest frequency in 
the signal. Normally, before any digital manipulation, a front-end antialiasing low-
pass analog filter is used to limit the highest frequency of the analog signal.

The aliasing problem can be further illustrated by considering an undersampled 
sinusoid as depicted in Figure 3-4. In this figure, a 1 kHz sinusoid is sampled at  
fs = 0.8 kHz, which is less than the Nyquist rate of 2 kHz. The dashed-line signal is a 
200 Hz sinusoid passing through the same sample points. Thus, at the sampling fre-
quency of 0.8 kHz, the output of an A/D converter would be the same if either of the 
1 kHz or 200 Hz sinusoids was the input signal. On the other hand, oversampling a 
signal provides a richer description than that of the signal sampled at the Nyquist rate.

Figure 3-4: Ambiguity caused by aliasing.
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3.1.1 Fast Fourier Transform

The Fourier transform of discrete signals is continuous over the frequency range  
[0, fs /2]. Thus, from a computational standpoint, this transform is not suitable to 
use. In practice, the discrete Fourier transform (DFT) is used in place of the Fourier 
transform. DFT is the equivalent of the Fourier series in the analog domain. Detailed 
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descriptions of signal transforms can be found in various textbooks on digital signal 
processing, for example [1], [2]. Fourier series and DFT transform pairs are expressed as

Fourier series for periodic 
analog signals

(3.4)
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where T denotes period and ω0 fundamental frequency.

Discrete Fourier transform 
(DFT) for periodic discrete 
signals

(3.5)

It should be noted that DFT and Fourier series pairs are defined for periodic signals. 
Hence, when computing DFT, it is required to assume periodicity with a period of 
N samples. Figure 3-5 illustrates a sampled sinusoid which is no longer periodic. In 
order to make sure that the sampled version remains periodic, the analog frequency 
should satisfy this condition [3]

(3.6)

where m denotes the number of cycles over which DFT is computed.

f
m
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Figure 3-5: Periodicity 
condition of sampling.
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The computational complexity (number of additions and multiplications) of DFT 
is reduced from N2 to N log N by using fast Fourier transform (FFT) algorithms. In 
these algorithms, N is normally considered to be a power of two. Figure 3-6 shows the 
effect of the periodicity constraint on the FFT computation. In this figure, the FFTs 
of two sinusoids with frequencies of 250 Hz and 251 Hz are shown. The amplitudes of 
the sinusoids are unity. Although there is only a 1 Hz difference between the sinu-
soids, the FFT outcomes are significantly different due to the improper sampling.

Figure 3-6: FFTs of (a) a 250 Hz and (b) a 251 Hz sinusoid.
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3.2 Quantization

An A/D converter has a finite number of bits (or resolution). As a result, continuous 
amplitude values are represented or approximated by discrete amplitude levels. The 
process of converting continuous into discrete amplitude levels is called quantization. 
This approximation leads to errors called quantization noise. The input/output char-
acteristic of a 3-bit A/D converter is shown in Figure 3-7 to see how analog voltage 
values are approximated by discrete voltage levels.

 (a) (b)

Figure 3-7: Characteristic of a 3-bit A/D converter: (a) input/
output transfer function, and (b) additive quantization noise.
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A quantization interval depends on the number of quantization or resolution levels, 
as illustrated in Figure 3-8. Clearly the amount of quantization noise generated by an 
A/D converter depends on the size of the quantization interval. More quantization 
bits translate into a narrower quantization interval and hence into a lower amount of 
quantization noise.

Figure 3-8: Quantization levels.
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In Figure 3-8, the spacing ∆ between two consecutive quantization levels corresponds 
to one least significant bit (LSB). Usually, it is assumed that quantization noise is sig-
nal independent and is uniformly distributed over –0.5 LSB and 0.5 LSB. Figure 3-9 
shows the quantization noise of an analog signal quantized by a 3-bit A/D converter.
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3.3 Signal Reconstruction

So far, we have examined the forward process of sampling. It is also important to 
understand the inverse process of signal reconstruction from samples. According to 
the Nyquist theorem, an analog signal va can be reconstructed from its samples by 
using the following equation:

(3.7)

(c)

Figure 3-9: Quantization of an analog signal by a 3-bit 
A/D converter: (a) output signal and quantization error, 
(b) histogram of quantization error, and (c) bit stream.
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One can see that the reconstruction is based on the summations of shifted sinc 
functions. Figure 3-10 illustrates the reconstruction of a sinewave from its samples.
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It is very difficult to generate sinc functions by electronic circuitry. That is why, in 
practice, an approximation of a sinc function is used. Figure 3-11 shows an approxi-
mation of a sinc function by a pulse, which is easy to realize in electronic circuitry. In 
fact, the well-known sample and hold circuit performs this approximation [3].

Figure 3-10: Reconstruction of an analog sinewave 
based on its samples, f = 125 Hz, and fs = 1 kHz.
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Figure 3-11: Approximation of a sinc function by a pulse.
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Lab 3: Sampling, Quantization 
and Reconstruction

This lab covers several examples to further convey sampling, quantization, and recon-
struction aspects of analog-to-digital and digital-to-analog signal conversion processes.

L3.1 Aliasing

In this example, a discrete signal is generated by sampling a sinusoidal signal. When 
the normalized frequency f / fs of the discrete signal becomes greater than 0.5, or the 
Nyquist frequency, the aliasing effect becomes evident.

A sampling process is done by setting the sampling frequency fs to 1 kHz, and the 
number of samples N to 10. This results in a 10 ms sampled signal. The signal 
frequency is arranged to vary between 0 to 1000 Hz using a FP control. Figure 3-12 
shows a sinusoidal signal having a frequency of 300 Hz which is sampled at 1 kHz for 
10 ms producing 10 samples, which are displayed in a Waveform Graph. In this 

Figure 3-12: Aliasing effect.
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graph, an analog signal representation is also made by oversampling the sinusoidal 
signal 100 times faster. In other words, an analog signal representation is obtained by 
considering a sampling frequency of 100 kHz generating 1000 samples. 

The FP of the VI includes a Horizontal Slide control for the signal frequency, 
and two Numeric Indicators for the normalized frequency and aliased frequen-
cy. A Stop Button associated with a While Loop on the BD is located on the 
FP. This button is used to stop the execution of the VI.

Figure 3-13 shows the BD for this sampling system. To generate the analog and 
discrete sinusoids, three Sine Wave VIs (Functions → All Functions → Analyze → 
Signal Processing → Signal Generation → Sine Wave) are used. These VIs are arranged 
vertically in the middle of the BD. The inputs to these VIs consist of the number of 
samples, amplitude, frequency, and phase offset. Amplitude is set to 1 by default in the 
absence of any wiring to the amplitude terminal. The f terminal requires frequency 
to be specified in cycles per sample, which is the reciprocal of number of samples per 
period. For phase, the numeric constant 90 is wired to the phase in terminal.

Figure 3-13: BD of aliasing example—True case.
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The output of the VI consists of an array of its sinewave samples. The Build 
Waveform function (Functions → All Functions → Waveform → Build Waveform) is 
used to build a waveform by combining the samples into the Y terminal, and the time 
duration between samples, Ts = 1/1000, into the dt terminal. As discussed earlier, the 
number of samples for the analog representation of the signal is set to 100 times that 
of the discrete signal. Thus, to keep the ratio of frequency to samples the same as that 
of the discrete signal, the value wired to the f terminal is divided by 100. Also, the 
time interval of the analog signal is set to one hundredth of that of the discrete signal.

Among the three Sine Wave VIs shown in Figure 3-13, the top VI generates the 
discrete signal, the middle VI generates the analog signal, and the bottom VI generates 
the aliased signal when the signal frequency is higher than the Nyquist frequency.

A Case Structure is used to handle the sampling cases with aliasing and 
without aliasing. If the normalized frequency is greater than 0.5, corresponding to 
the True case, the third Sine Wave VI generates an aliased signal. All the inputs 
except for the aliased signal frequency are the same.

Note that an Expression Node (Functions → All Functions → Numeric → 
Expression Node) is used to obtained the aliased frequency. An Expression Node is 
usually used to calculate an expression of a single variable. Many built-in functions, 
such as abs (absolute), can be used in an Expression Node to evaluate an equation. 
More details on the use of Expression Node can be found in [1].

For the False case, that is, sampling without aliasing, there is no need to generate 
an aliased signal. Thus, the analog signal is connected to the output of the case 
structure so that the same signal is drawn on the waveform graph and the frequency 
of the aliased signal is set to 0. This is illustrated in Figure 3-14. It should be remem-
bered that, when using a Case Structure, it is necessary to wire all the outputs 
for each case.

Figure 3-14: False case.
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An aliasing outcome is illustrated in Figure 3-15, where samples of a 700 Hz sinusoid 
are shown. Note that these samples could have also been obtained from a 300 Hz 
sinusoid, shown by the dotted line in Figure 3-15.

Figure 3-15: A 700 Hz sinusoid aliased with a 300 Hz sinusoid.

All the three waveforms are bundled together by using the Build Array function 
and displayed in the same graph. The properties of the Waveform Graph should 
be configured as shown in Figure 3-15. This is done by expanding the plot legend 
vertically to display the three entries and renaming the labels appropriately. Right-
click on the Waveform Graph and choose Properties from the shortcut menu. A 
Waveform Graph Properties dialog box will be brought up. Select the Plots tab to 
modify the plot style. Choose Sampled Signal in the Plot drop down menu, see 
Figure 3-16. Also, choose the options for Point Style, Plot Interpolation, and Fill to as 
indicated in this figure. Adjust the line style of the aliased signal to dotted line.

Rename all the controls and indicators, and modify the maximum scale of the 
Horizontal Pointer Slide control to 1000 to complete the VI.
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L3.2 Fast Fourier Transform

The analog frequency should satisfy the 
condition in Equation (3.6) to avoid 
any discontinuity in DFT. Let us build 
the example shown in Figure 3-17 using 
Express VIs to demonstrate the required 
periodicity of DFT.

Use two Simulate Signal Express 
VIs (Functions → Input → Simulate 
Signal) to simulate the signals. Placing a 
Simulate Signal Express VI brings 
up a configuration dialog for setting up 
the parameters including signal type, 
frequency, amplitude, and sampling 
frequency, as shown in Figure 3-18. 
Choose Sine for the signal type, set the 
frequency to 250, the amplitude to 1, 

Figure 3-16: Waveform Graph Properties dialog box.

Figure 3-17: BD of Express VI FFTs.
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and the phase to 90. Furthermore, enter 1000 as the sampling frequency and 512 as 
the number of samples. These parameters satisfy the condition in Equation (3.6). As 
for the 251 Hz sinusoid, use the same parameters except for the frequency, which is to 
be set to 251.

Figure 3-18: Configuration dialog of Simulate Signal Express VI.

Now, place two Spectral Measurements Express VIs (Functions → Analysis → 
Spectral Measurements) to compute the FFTs of the signals. The configuration dialog 
entries need to be adjusted as shown in Figure 3-19. The adjustments shown in this 
figure provide the spectrum in dB scale without using a spectral leakage window. 
Notice that when the parameters are adjusted, the preview windows are updated 
based on the current setting.

The spectra of the two signals are shown in Figure 3-20. As seen from this figure, the 
spectrum of the 251 Hz signal is spread over a wide range due to the improper sam-
pling. Also, its peak drops by nearly 4 dB.
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Figure 3-19: Configuration dialog of Spectral Measurements Express VI.

Figure 3-20: FFTs of a 250 and a 251 Hz sinusoid.



62

Lab 3

The plot in the Waveform Graph can be magnified using the Graph Palette for 
better visualization. The Graph Palette is displayed by right-clicking on the Wave-
form Graph and choosing Visible Item → Graph Palette from the shortcut menu. 
The options Cursor Movement Tool, Zoom, and Panning Tool are provided in the palette. 
More specific options for zooming in and out are available in the expanded menu 
when the Zoom option is chosen as shown in Figure 3-21.

Figure 3-21: Menu options of Graph palette.

The improper sampling for the 251 Hz signal can be corrected by modifying the 
sampling parameters. The configuration dialog of the Simulate Signal Express 
VI provides a useful option, Integer number of cycles, to satisfy the sampling condi-
tion. This is illustrated in Figure 3-22.

Checking the Integer number of cycles option alters the number of samples and 
frequency to 502 and 250.996, respectively. As a result, a proper sampling condition 
is established. The spectrum of this resampled signal is shown in Figure 3-23. As seen 
from this figure, the frequency leakage is considerably reduced in this case.
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Figure 3-22: Modifying sampling parameters.

Figure 3-23: FFTs of a 250 and a 251 Hz 
sinusoids (modified sampling condition).
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L3.3 Quantization

Let us now build an A/D converter VI to illustrate the quantization effect. An analog 
signal given by

y(t) = 5.2exp(–10t)sin(20πt) + 2.5

is considered for this purpose. Note that the maximum and minimum values of the 
signal fall in the range 0 to 7, which can be represented by 3 bits. On the FP, the 
quantization error, the histogram of the quantization error, as well as the quantized 
output are displayed as indicated in Figure 3-24.

Figure 3-24: Quantization of an analog signal by 
a 3-bit A/D converter: output signal, quantization 
error, and histogram of quantization error.
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To build the converter BD, see Figure 3-25, the Formula Waveform VI (Functions 
→ All Functions → Waveform → Analog Waveform → Waveform Generation → Formula Wave-
form) is used. The inputs to this VI comprise a string constant specifying the formula, 
amplitude, frequency, and sampling information. The values of the output waveform, 
Y component, are extracted with the Get Waveform Components function.

Figure 3-25: Quantization of an analog signal by a 3-bit A/D converter.

To exhibit the quantization process, the double precision signal is converted into an 
unsigned integer signal by using the To Unsigned Byte Integer function 
(Functions → All Functions → Numeric → Conversion → To Unsigned Byte Integer). 
The resolution of quantization is assumed to be 3 bits, noting that the amplitude 
of the signal remains between 0 and 7. Values of the analog waveform are replaced 
by quantized values forming a discretized waveform. This is done by wiring the 
quantized values to a Build Waveform function while the other properties are 
kept the same as the analog waveform.

Now the difference between the input and quantized output values is found by using 
a Subtract function. This difference represents the quantization error. Also, the 
histogram of the quantization error is obtained by using the Create Histogram 
Express VI (Functions → Signal Analysis → Create Histogram). Placing this VI brings 
up a configuration dialog as shown in Figure 3-26. The maximum and minimum 
quantization errors are 0.5 and –0.5, respectively. Hence, the number of bins is set to 
10 in order to divide the errors between -0.5 and 0.5 into 10 levels. In addition, for 
the Amplitude Representation option, choose Sample count to generate the histogram. 
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A Waveform Graph is created by right-clicking on the Histogram node of the 
Create Histogram Express VI and choosing Create → Graph Indicator.

Figure 3-26: Configuration dialog of Create Histogram Express VI.

Return to the FP and change the property of the graph for a more understandable 
display of the discrete signal. Add the plot legend to the waveform graph and resize 
it to display the two signals. Rename the analog signal as Input Signal and the 
discrete signal as Output Signal.

To display the discrete signal, bring up the properties dialog by right-clicking and 
choosing Properties from the shortcut menu. Click the Plots tab and choose the signal 
plot Output Signal. Then, choose stepwise horizontal, indicated by , from 
the Plot Interpolation option as the interpolation method. Now the VI is complete, see 
Figure 3-25.

Next, let us build a VI which can analyze the quantized discrete waveform into 
a bitstream resembling a logic analyzer. For a 3-bit A/D converter, the bitstream 
is represented as b3b2b1 in binary format. The discrete waveform and its bit 
decomposition are shown in Figure 3-27.
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The same analog signal used in the previous example is considered here. The analog 
signal is generated by a Formula Waveform VI, and quantized by using a To 
Unsigned Byte Integer function. Locate a For Loop to repeat the quan-
tization as many as the number of samples. This number is obtained by using the 
Array Size function (Functions → All Functions → Array → Array Size). Wire this 
number to the Count terminal of the For Loop. 

Wiring the input array to the For Loop places a Loop Tunnel on the loop bor-
der. Note that auto indexing is enabled by default when inputting an array into a For 
Loop. With auto indexing enabled, each element of the input array is passed into the 
loop one at a time per loop iteration.

In order to obtain a binary bitstream, each value passed into the For Loop is 
converted into a Boolean array via a Number To Boolean Array function 
(Functions → All Functions → Boolean → Number To Boolean Array). The elements of 
the Boolean array represent the decomposed bits of the 8-bit integer. The value of 
a specific bit can be accessed by passing the Boolean array into an Index Ar-
ray function (Functions → All Functions → Array → Index Array) and specifying the 
bit location with a Numeric Constant. Since the values stored in the array are 
Boolean, that is, False or True, they are then converted into 0 and 1, respectively, 

Figure 3-27: Bitstream of 3-bit quantization.
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using the Boolean To (0,1) function (Functions → All Functions → Boolean → 
Boolean To (0,1)). Data from each bit location are wired out of the For Loop. Note 
that an array output is created with the auto-indexing being enabled.

As configured in the previous example, the stepwise horizontal interpolation method 
is used for the waveform graph of the discrete signal. The completed VI is shown in 
Figure 3-28.

Figure 3-28: Logic analyzer BD.

L3.4 Signal Reconstruction

As the final example in this lab, a signal reconstruction VI is presented. Let us 
examine the FP shown in Figure 3-29 exhibiting a sampled signal and its reconstruct-
ed version. The reconstruction kernel is also shown in this FP.

The sampled signal is shown via bars in the top Waveform Graph. In order to 
reconstruct an analog signal from the sampled signal, a convolution operation with a 
sinc function is carried out as specified by Equation (3.7).
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Let us now build the VI. It is assumed that a unity amplitude sinusoid of 10 Hz is 
sampled at 80 Hz. To display the reconstructed analog signal, the sampling frequency 
and number of samples are set to 100 times those of the discrete signal. The two 
waveforms are merged and displayed in the same Waveform Graph as shown in 
Figure 3-29.

Figure 3-29: FP of a reconstructed sinewave from its samples.
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The BD of the signal reconstruction system is shown in Figure 3-30. Two custom 
subVIs are shown on the BD. The Add Zeros VI is used to insert zeros between 
consecutive samples to simulate oversampling, and the Sinc Function VI is used 
to generate samples of a sinc function with a specified number of zero-crossings.

The BD of each subVI is briefly explained here. In the Add Zeros VI, see Figure 
3-31, zero rows are concatenated to the 1D signal array. The augmented 2D array is 
then transposed and reshaped to 1D so that the zeros are located between the sam-
ples. The number of zeros inserted between the samples can be controlled by wiring 
a numeric control. The output waveform shown in the BD takes its input from the 
other VI and is created by right-clicking on the Get Waveform Components 

Figure 3-30: BD of signal reconstruction system.

Figure 3-31: Add Zeros subVI.
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function and choosing Create → Control. The outputs of the VI comprise the array of 
zero-inserted samples and the total number of samples. The connector pane of the 
VI consists of two input terminals and two output terminals. The input terminals are 
wired to the controls and the output terminals to the indicators, respectively.

The Sinc Function VI, see Figure 3-32, generates samples of a sinc function 
based on the number of samples, delay, and sampling interval parameters.

Figure 3-32: Sinc Function subVI.

Finally, let us return to the BD shown in Figure 3-30. The two signals generated by 
the subVIs, i.e., the zero-inserted signal and sinc signal, are convolved using the 
Convolution VI (Functions → All Functions → Analyze → Signal Processing → Time 
Domain → Convolution). Note that the length of the convolved array obtained from 
the Convolution VI is one less than the sum of the samples in the two signals, 
that is, 249 for the example shown in Figure 3-29. Since the number of the input 
samples is 200, only a 200 sample portion (samples indices between 25 and 224) of 
the convolved output is displayed for better visualization.
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L3.5 Bibliography

[1] National Instruments, LabVIEW User Manual, Part Number 320999E-01, 
2003.
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4C H A P T E R

Filtering of digital signals is a fundamental concept in digital signal processing. Here, 
it is assumed that the reader has already taken a course in digital signal processing or 
is already familiar with finite impulse response (FIR) and infinite impulse response 
(IIR) filter design methods.

In this chapter, the structure of digital filters is briefly mentioned followed by a dis-
cussion on the LabVIEW Digital Filter Design (DFD) toolkit. This toolkit provides 
various tools for the design, analysis and simulation of digital filters. 

4.1 Digital Filtering

4.1.1 Difference Equations

As a difference equation, an FIR filter is expressed as 

(4.1)y n b x n kk
k

N

[ ] = −[ ]
=
∑

0

where b’s denote the filter coefficients and N the number of zeros or filter order. As 
described by this equation, an FIR filter operates on a current input x n[ ] and a num-
ber of previous inputs x n k−[ ] to generate a current output y n[ ]. 
The equi-ripple method, also known as the Remez algorithm, is normally used to 
produce an optimal FIR filter [1]. Figure 4-1 shows the filter responses using the avail-
able design methods consisting of equi-ripple, Kaiser window and Dolph-Chebyshev 
window. Among these methods, the equi-ripple method generates a response whose 
deviation from the desired response is evenly distributed across the passband and 
stopband [2].
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The difference equation of an IIR filter is given by

      (4.2)

Figure 4-1: Responses of different FIR filter design methods.
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where b’s and a’s denote the filter coefficients and N and M the number of zeros 
and poles, respectively. As indicated by Equation (4.2), an IIR filter uses a number 
of previous outputs y n k−[ ] as well as a current and a number of previous inputs to 
generate a current output y n[ ].
Several methods are widely used to design IIR filters. They include Butterworth, 
Chebyshev, Inverse Chebyshev, and Elliptic methods. In Figure 4-2, the magnitude 
response of an IIR filter designed by these methods having the same order are 
shown for comparison purposes. For example, the elliptic method generates a 
relatively narrower transition band and more ripples in passband and stopband 
while the Butterworth method generates a monotonic type of response [2]. Table 4-1 
summarizes the characteristics of these design methods.
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IIR filter Ripple in 
passband?

Ripple in 
stopband?

Transition bandwidth 
for a fixed order

Order for given filter 
specifications

Butterworth No No Widest Highest
Chebyshev Yes No Narrower Lower

Inverse  
Chebyshev

No Yes Narrower Lower

Elliptic Yes Yes Narrowest Lowest

Figure 4-2: Responses of different IIR filter design methods.
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Table 4-1: Comparison of different IIR filter design methods [1].

4.1.2 Stability and Structure

In general, as compared to IIR filters, FIR filters require less precision and are compu-
tationally more stable. The stability of an IIR filter depends on whether its poles are 
located inside the unit circle in the complex plane. Consequently, when an IIR filter 
is implemented on a fixed-point processor, its stability can be affected. Furthermore, 
the phase response of an FIR filter is always linear. In Table 4-2, a summary of the 
differences between the attributes of FIR and IIR filters is listed.  
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Attribute FIR filter IIR filter
Linear phase response Possible Not possible
Stability Always stable Conditionally stable
Fixed-point implementation Easy to perform Can be complicated 
Computational complexity More operations Fewer operations
Datapath precision Less precision required Higher precision required
Limit cycles1 Does not produce May produce 

1 A limit cycle is an oscillation in the output caused by rounding errors.

Table 4-2: FIR filter attributes versus IIR filter attributes [1].

Let us now discuss the stability and structure of IIR filters. The transfer function of an 
IIR filter is expressed as

(4.3)H z
b b z b z

a z a z
N

N

M
M( ) = + + +

+ + +

− −

− −
0 1

1

1
11
…
…

It is well known that as far as stability is concerned, the direct-form implementation 
is sensitive to coefficient quantization errors. Noting that the second-order cascade 
form produces a more robust response to quantization noise [2], the above transfer 
function can be rewritten as 

(4.4)H z
b b z B z

a z a z
k k k

k kk

Ns

( ) = + +
+ +

− −

− −
=

∏ 0 1
1

2
2

1
1

2
2

1 1

where N Ns =  2 , ⋅   represents the largest integer less than or equal to the inside 
value. This serial or cascaded structure is illustrated in Figure 4-3.

Figure 4-3: Cascaded filter stages.

Stage 1 Stage 2 Stage Ns• • •x[n] y[n]

It is worth mentioning that each second-order filter is considered to be of direct-form 
II, see Figure 4-4, in order to have a more memory efficient implementation.
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4.2 LabVIEW Digital Filter Design Toolkit

There exist various software tools for designing digital filters. Here, we have used the 
LabVIEW Digital Filter Design (DFD) toolkit. Any other filter design tool may be 
used to obtain the coefficients of a digital filter. The DFD toolkit provides various 
tools to design, analyze, and simulate floating-point and fixed-point implementations 
of digital filters [1].

4.2.1 Filter Design

The Filter Design VIs of the DFD toolkit allow one to design a digital filter with 
ease by specifying its parameters. For example, the DFD Classical Filter 
Design Express VI provides a graphical user interface to design and analyze digital 
filters, and the DFD Pole-Zero Placement Express VI can be used to alter the 
locations of poles and zeros in the complex plane easily.

The filter design methods provided in the DFD toolkits include Kaiser Window, 
Dolph-Chebyshev Window, and Equi-Ripple for FIR filters, and Butterworth, 
Chebyshev, Inverse Chebyshev, and Elliptic for IIR filters.

In addition, the DFD toolkit has some Special Filter Design VIs. These VIs are used 
to design special filters such as notch/peak filter, comb filter, maximally flat filter, 
narrowband filter, and group delay compensator. 

Figure 4-4: Second order direct-form II.
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4.2.2 Analysis of Filter Design 

A comprehensive analysis of a digital filter can be achieved by using the Analysis VIs 
of the DFD toolkit. These VIs provide magnitude response, phase response, impulse 
response, step response, and zero/pole plot.

4.2.3 Fixed-Point Filter Design

The Fixed-Point Tools VIs of the DFD toolkit can be used to examine the outcome 
of a fixed-point implementation. Note that when changing a filter structure from 
the direct-form to the cascade-form or any other form, a different filter response is 
obtained, in particular when a fixed-point implementation is realized. 

4.2.4 Multirate Digital Filter Design

The DFD toolkit also provides a group of VIs, named Multirate Filter Design VIs, 
for the design, analysis, and implementation of multirate filters. These multirate 
filters include single-stage, multistage, halfband, Nyquist, raised cosine, and cascaded 
integrator comb (CIC) filters [1].

4.3 Bibliography

[1] National Instruments, Digital Filter Design Toolkit User Manual, Part Number 
371353A-01, 2005.

[2] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, 
Algorithms, and Applications, Prentice-Hall, 1995.
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In this lab, an FIR and an IIR filter are designed using the VIs as part of the Digital 
Filter Design (DFD) toolkit.

L4.1 FIR Filtering System

An FIR lowpass filtering system is designed and built in this section.

L4.1.1 Design FIR Filter with DFD Toolkit

Let us design a lowpass filter having the following specifications: passband response 
= 0.1 dB, passband frequency = 1200 Hz, stopband attenuation = 30 dB, stopband 
frequency = 2200 Hz and sampling rate = 8000 Hz. In order to design this filter 
using the DFD toolkit, place the DFD Classical Filter Design Express 
VI (Functions → All Functions → Digital Filter Design → Filter Design → DFD Classical 
Filter Design) on the BD. Enter the specifications of the filter in the configuration 
dialog box which appears when placing this Express VI. The magnitude response of 
the filter and the zero/pole plot are displayed based on the filter specifications in the 
configuration dialog box, see Figure 4-5. Here, the equi-ripple method is chosen as 
the design method.

Once this Express VI is configured, its label is changed based on the filter type speci-
fied, such as the Equi-Ripple FIR Lowpass Filter in this example. The 
filter type gets displayed on the BD as shown in Figure 4-6.

Additional information on the designed filter, such as phase, group delay, impulse 
response, unit response, frequency response, and zero/pole plot can be seen by using 
the DFD Filter Analysis Express VI (Functions → All Functions → Digital Filter 
Design → Filter Analysis → DFD Filter Analysis). As indicated in Figure 4-6, wire five 
Waveform Graphs to the output terminals of the DFD Filter Analysis 
Express VI except for the Z Plane terminal. The DFD Pole-Zero Plot 
control (Controls → All Controls → Digital Filter Design → DFD Pole-Zero Plot) needs to 
be placed on the FP to obtain the zero/pole plot. This locates a terminal icon on the 
BD. Then, wire the Z Plane terminal of the DFD Filter Analysis Express 
VI to the DFD Pole-Zero Plot control.
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Figure 4-5: Configuration of FIR lowpass filter.

Figure 4-6: Design and analysis of FIR filter using DFD toolkit.
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The coefficients of the filter are obtained by wiring the DFD Get TF VI (Functions 
→ All Functions → Digital Filter Design → Utilities → DFD Get TF) to the filter clus-
ter, i.e., the output of the DFD Classical Filter Design Express VI. The 
DFD Get TF VI retrieves the transfer function of the filter designed by the DFD 
Classical Filter Design Express VI. For FIR filters, the numerator values of 
the transfer function correspond to the b coefficients of the filter and the denomina-
tor to unity. The transfer function of the designed filter can be observed by creating 
two Numeric Indicators. To do this, right-click on the numerator terminal 
of the DFD Get TF VI and choose Create → Indicator from the shortcut menu. The 
second indicator is created and wired to the denominator terminal of the VI.

Save the VI as FIR Filter Design.vi and then run it. The response of the designed FIR 
filter is illustrated in Figure 4-7. Notice that the indicator array on the FP needs to be 
resized to display all the elements of the coefficient set.

Figure 4-7: FP of FIR filter object.
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L4.1.2 Creating a Filtering System VI

The VI of the filtering system built here consists of signal generation, filtering, and 
graphical output components. Three sinusoidal signals are summed and passed 
through the designed FIR filter and the filtered signal is then displayed and verified.

Let us build the FP of the filtering system. Place three Horizontal Pointer 
Slide controls (Controls → Numeric Controls → Horizontal Pointer Slide) to adjust the 
frequency of the signals. Place three Waveform Graphs to display the input signal 
and filtered signal in the time and frequency domains. See that the corresponding 
terminal icons for the Horizontal Pointer Slide controls and Waveform 
Graphs are created on the BD, see Figure 4-8.

Figure 4-8: BD of FIR filtering system.

Next, switch to the BD. To provide the signal source of the system, place three Sine 
Waveform VIs (Functions → All Functions → Analyze → Waveform Generation → Sine 
Waveform) on the BD. The amplitude of the output sinusoid is configured to be its 
default value of unity in the absence of an input. The icons of the Horizontal 
Pointer Slide controls are wired to the frequency terminal of each Sine 
Waveform VI.

Create a cluster constant to incorporate the sampling information. This is done by 
right-clicking on the sampling info terminal of the Sine Waveform VI and 
choosing Create → Constant. Enter 8000 as the sampling rate and 256 as the number 
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of samples. Wire the cluster constant to all three VIs so that all the signals have 
the same sampling rate and length. The three signal arrays are summed together 
to construct the input signal of the filtering system. This is done by using two Add 
functions (Functions → Arithmetic & Comparison → Express Numeric → Add) as shown 
in Figure 4-8.

Now the filtering component is described. The filter is designed by using the DFD 
Classical Filter Design Express VI (Functions → All Functions → Digital 
Filter Design → Filter Design → DFD Classical Filter Design) as described earlier. This VI 
creates a filter object in the form of a cluster based on the configured filter specifica-
tions. The filter object is wired to the filter in terminal of the DFD Filtering 
VI (Functions → All Functions → Digital Filter Design → Processing → DFD Filtering) in 
order to filter the input signal, which is wired from the cascaded Add function.

The input signal and the output of the DFD Filtering VI are wired to two 
Waveform Graphs to observe the filtering effect in the time domain. To have a 
spectral measurement of the signal, place a Spectral Measurements Express 
VI on the BD. On the configuration dialog box of the Express VI, configure the Spec-
tral Measurement field as Magnitude (peak), the Result field as dB, and the Window 
field as None. Wire the FFT output in dB to a Waveform Graph. Place a While 
Loop on the BD to enclose all the sections of the code on the BD. The completed 
BD is shown in Figure 4-8.

Now, return to the FP to change the properties of the FP objects. Rename the labels 
of the controls and Waveform Graphs as shown in Figure 4-9. First, let us change the 
properties of the three Horizontal Pointer Slide controls. Right-click on 
each control and choose Properties from the shortcut menu. This brings up a proper-
ties dialog box. Change the maximum scale of all the three controls to the Nyquist 
frequency, 4000 Hz, in the Scale tab, and set the default frequency values to 750 Hz, 
2500 Hz and 3000 Hz, respectively, in the Data Range tab.

Next, let us modify the properties of the Waveform Graph labeled as FFT of 
Output in Figure 4-9. Right-click on the Waveform Graph and choose Properties 
from the shortcut menu to bring up a properties dialog box. Uncheck Autoscale of the 
Y axis and change the minimum scale to –80 in the Scales tab to observe peaks of the 
waveform more closely. In the other two graphs corresponding to the time domain 
signal, uncheck X Scale → Loose Fit from the shortcut menu to fit the plot into the 
entire plotting area.
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Save the VI as FIR Filtering System.vi and then run it. Note that among the three 
signals 750 Hz, 2500 Hz, and 3000 Hz, the 2500 Hz and 3000 Hz signals should be 
filtered out and only the 750 Hz signal should be seen at the output. The waveform 
result on the FP during run time is shown in Figure 4-9.

Figure 4-9: FP of FIR filtering system during run time.
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L4.2 IIR Filtering System

An IIR bandpass filter is designed and built in this section.

L4.2.1 IIR Filter Design

Let us consider a bandpass filter with the following specifications: passband response 
= 0.5 dB, passband frequency = 1333 to 2666 Hz, stopband attenuation = 20 dB,  
stopband frequency = 1000 to 3000 Hz and sampling frequency = 8000 Hz. The 
design of an IIR filter is achieved by using the DFD Classical Filter 
Design Express VI described earlier. Enter the specifications of the filter in the 
configuration dialog box which is brought up by placing this Express VI on the BD, 
see Figure 4-10. The elliptic method is chosen here as the design method to achieve 
a narrow transition band.

Figure 4-10: Configuration of IIR bandpass filter.
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The filter coefficients provided by the DFD Classical Filter Design 
Express VI correspond to the ‘IIR cascaded second order sections form II’ structure 
by default. To observe the cascaded coefficients, the filter cluster is wired to the DFD 
Get Cascaded Coef VI. A cluster of indicators is created by right-clicking on 
the IIR Filter Cluster terminal of the VI and choosing Create → Indicator. 
The filter coefficients corresponding to the ‘IIR direct form II’ structure are obtained 
by using the DFD Get TF VI similar to FIR filtering.

Save the VI as IIR Filtering Design.vi and then run it. The response of the IIR band-
pass filter is illustrated in Figure 4-12.

Figure 4-11: Design and analysis of IIR filter using DFD toolkit.

Similar to FIR filtering, the label of the Express VI is changed to Elliptic 
Bandpass Filter by altering the configuration as shown in Figure 4-11. The 
response of the designed filter can be obtained by using the DFD Filter Analy-
sis Express VI and wiring five Waveform Graphs and a DFD Pole-Zero 
Plot control. These steps are similar to those mentioned for FIR filtering.
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Notice that the filter coefficients are displayed as truncated values in Figure 4-12. 
The format of the numeric indicators is configured to be floating-point with six digits 
of precision. This is done by right-clicking on the numeric indicators on the FP and 
choosing Format & Precision… from the shortcut menu. A properties dialog box is 
brought up, see Figure 4-13. Configure the representation to Floating point and the 
precision to 6 Digits of precision as shown in Figure 4-13.

Figure 4-12: FP of IIR filter object.
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From the coefficient set, the transfer function of the IIR filter is given by 

Figure 4-13: Changing properties of 
numeric indicator format and precision.
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L4.2.2 Filtering System

Using the FIR Filtering System VI created in the previous section, the filter 
portion is replaced with the IIR bandpass filter just designed, see Figure 4-14. The VI 
is then saved as IIR Filtering System.vi.

Figure 4-14: BD of IIR filtering system.

Let us change the default values of the three frequency controls on the FP to 1000 Hz, 
2000 Hz, and 3000 Hz to see if the IIR filter is functioning properly. The signals hav-
ing the frequencies 1000 Hz and 3000 Hz should be filtered out while only the signal 
having the frequency 2000 Hz should remain and be seen in the output. The output 
waveform as seen on the FP is shown in Figure 4-15. From the FFT of the output, it 
can be seen that the desired stopband attenuation of 20 dB is obtained. 



90

Lab 4

L4.3 Building a Filtering System Using Filter Coefficients

There are various tools which one can use to compute coefficient sets of digital filters 
based on their specifications. In this section, the creation of a filter object is discussed 
when using different tools for obtaining its coefficients.

Figure 4-16 illustrates two ways to build a filter object using arrays of numeric 
constants containing filter coefficients. The DFD Build Filter from TF VI 
(Functions → All Functions → Digital Filter Design → Utilities → DFD Build Filter from 
TF) can be used to build a filter object if the direct-form coefficients of the filter are 
available, see Figure 4-16(a). For an IIR filter in the second-order cascade form, the 
DFD Build Filter from Cascaded Coef VI (Functions → All Functions 
→ Digital Filter Design → Utilities → DFD Build Filter from Cascaded Coef) can be used 

Figure 4-15: FP of IIR filtering system during run time.
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to build a filter object, see Figure 4-16(b). The input cluster to this VI consists of a 
numeric constant for the filter structure and two arrays of numeric constants, labeled 
as Reverse Coefficients and Forward Coefficients. Each filter section 
consists of two reverse coefficients in the denominator, and three forward coefficients 
in the numerator, considering that the first coefficient of the denominator is regarded 
as 1.

(b)

Figure 4-16: DFD Build Filter: (a) using direct-form 
coefficients, and (b) using cascade-form coefficients.

(a)

L4.4 Filter Design Without Using DFD Toolkit 

The examples explained in the preceding sections  can be implemented without 
using the DFD toolkit. This can be achieved by using the Digital FIR Filter 
VI (Functions → All Functions → Analyze → Waveforms Conditioning → Digital FIR Filter) 
and Digital IIR Filter VI (Functions → All Functions → Analyze → Waveforms 
Conditioning → Digital IIR Filter).

Similar to the Classic Filter Design Express VI of the DFD toolkit, the 
Digital FIR Filter VI is configured based on the filter specifications, thus 
there is no need to obtain the filter coefficients before building the filtering system. 
As a result, the specifications can be adjusted on the fly. The BD corresponding to 
this approach is shown in Figure 4-17.

For the Digital FIR Filter VI, the filter specifications are defined via two 
inputs in the form of a cluster constant. A cluster constant is created by right-
clicking on the FIR filter specifications terminal and choosing Create 
→ Constant. This cluster specifies the filter type, number of taps, and lower/upper 
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passband or stopband. Another cluster constant specifying the passband gain, 
stopband gain, and window type can be wired to the Optional FIR filter 
specifications terminal. More details on the use of cluster constants as related 
to the Digital FIR Filter VI can be found in [1].

Rename the FP objects and set the maximum and default values of the controls. 
Save the VI as FIR Filtering System without DFD.vi and then run it. The FP of the VI 
during run time is shown in Figure 4-18. Observe that the 750 Hz signal falling in 
the passband remains while the 2500 Hz and 3000 Hz signals falling in the stopband, 
that is, greater than 2200 Hz, are attenuated by 30 dB.

Figure 4-17: BD of FIR filtering system without using DFD VI.
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Figure 4-18: FP of filtering system using specifications.
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5C H A P T E R

From an arithmetic point of view, there are two ways a DSP system can be imple-
mented in LabVIEW to match its hardware implementation on a processor. These 
are fixed-point and floating-point implementations. In this chapter, we discuss the 
issues related to these two hardware implementations.

In a fixed-point processor, numbers are represented and manipulated in integer 
format. In a floating-point processor, in addition to integer arithmetic, floating-point 
arithmetic can be handled. This means that numbers are represented by the combi-
nation of a mantissa (or a fractional part) and an exponent part, and the processor 
possesses the necessary hardware for manipulating both of these parts. As a result, in 
general, floating-point processors are slower than fixed-point ones.

In a fixed-point processor, one needs to be concerned with the dynamic range of num-
bers, since a much narrower range of numbers can be represented in integer format 
as compared to floating-point format. For most applications, such a concern can be 
virtually ignored when using a floating-point processor. Consequently, fixed-point pro-
cessors usually demand more coding effort than do their floating-point counterparts.

5.1 Q-format Number Representation

The decimal value of an N-bit 2’s-complement number, B b b b b bN N i= ∈{ }− −1 2 1 0 0 1… , , ,  
is given by

(5.1)

The 2’s-complement representation allows a processor to perform integer addition 
and subtraction by using the same hardware. When using the unsigned integer repre-
sentation, the sign bit is treated as an extra bit. This way only positive numbers can 
be represented.

D B b b b bN
N

N
N( ) = − + + + +−

−
−

−
1

1
2

2
1

1
0

02 2 2 2...
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There is a limitation of the dynamic range of the foregoing integer representation 
scheme. For example, in a 16-bit system, it is not possible to represent numbers larger 
than 215 –1 = 32767 and smaller than –215 = –32768. To cope with this limitation, 
numbers are often normalized between –1 and 1. In other words, they are represented 
as fractions. This normalization is achieved by the programmer moving the implied 
or imaginary binary point (note that there is no physical memory allocated to this 
point) as indicated in Figure 5-1. This way, the fractional value is given by

(5.2)F B b b b bN N
N N( ) = − + + + +− −

− − −( ) − −( )
1

0
2

1
1

2
0

12 2 2 2...

This representation scheme is referred to as the Q-format or fractional represen-
tation. The programmer needs to keep track of the implied binary point when 
manipulating Q-format numbers. For instance, let us consider two Q15 format num-
bers. Each number consists of 1 sign bit plus 15 fractional bits. When these numbers 
are multiplied, a Q30 format number is generated (the product of two fractions is 
still a fraction), with bit 31 being the sign bit and bit 32 another sign bit (called an 
extended sign bit). Assuming a 16-bit wide memory, not enough bits are available 
to store all 32 bits, and only 16 bits can be stored. It makes sense to store the sixteen 
most significant bits. This requires storing the upper portion of the 32-bit product by 
doing a 15-bit right shift. In this manner, the product would be stored in Q15 format. 
(See Figure 5-2.)

Based on the 2’s-complement representation, a dynamic range of 
− ≤ ( ) ≤ −− −2 2 11 1N ND B  can be covered, where N denotes the number of bits.  
For illustration purposes, let us consider a 4-bit system where the most negative 
number is –8 and the most positive number 7. The decimal representations of the 
numbers are shown in Figure 5-3. Notice how the numbers change from most posi-
tive to most negative with the sign bit. Since only the integer numbers falling within 

Figure 5-1: Number representations.

Integer Representation

Implied binary point

bN–1 bN−2 b0

Fractional Representation

bN–1 bN−2 b0

Implied binary point
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the limits –8 and 7 can be represented, it is easy to see that any multiplication or 
addition resulting in a number larger than 7 or smaller than –8 will cause overflow. 
For example, when 6 is multiplied by 2, we get 12. Hence, the result is greater than 
the representation limits and will be wrapped around the circle to 1100, which is –4.

Figure 5-2: Multiplying and storing Q15 numbers.

Q30

Add 1 to ? bit then truncate

If ? = 0, no effect (for instance, rounded down) 
If ? = 1, result rounded up 

×
S x x x x x x x x x x x x x x x

S S z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z

Q15

Q15 S y y y y y y y y y y y y y y y

Q15 S z z z z z z z z z z z z z z ?

Figure 5-3: Four-bit binary representation.
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The Q-format representation solves this problem by normalizing the dynamic range 
between –1 and 1. This way, any resulting multiplication will be within these limits. 
Using the Q-format representation, the dynamic range is divided into 2N sections, 
where 2–(N–1) is the size of a section. The most negative number is always –1 and the 
most positive number is 1 – 2–(N–1).
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The following example helps one to see the difference in the two representation 
schemes. As shown in Figure 5-4, the multiplication of 0110 by 1110 in binary is 
equivalent to multiplying 6 by –2 in decimal, giving an outcome of –12, a number 
exceeding the dynamic range of the 4-bit system. Based on the Q3 representation, 
these numbers correspond to 0.75 and –0.25, respectively. The result is –0.1875, 
which falls within the fractional range. Notice that the hardware generates the same 
1’s and 0’s; what is different is the interpretation of the bits.

Figure 5-4: Binary and fractional multiplication.

11110100

sign bit extended 
sign bit

sign bit best approximation 
in 4-bit memory

-0.25

1.110

Note that since the 
MSB  is a sign bit, 
the corresponding 
partial product is 
the 2’s complement  
of the multiplicand

    0110
  * 1110

   6
* -2

    0000
   0110 
  0110
 1010

-12 11.110 100

     0.110
   * 1.110

   0.75
* -0.25

     0 000
    01 10 
   011 0
  1010

-0.1875

Q3
Q3

Q6

When multiplying Q-N numbers, it should be remembered that the result will con-
sist of 2N fractional bits, one sign bit, and one or more extended sign bits. Based on 
the data type used, the result has to be shifted accordingly. If two Q15 numbers are 
multiplied, the result will be 32 bits wide, with the most significant bit being the 
extended sign bit followed by the sign bit. The imaginary decimal point will be after 
the 30th bit. So a right shift of 15 is required to store the result in a 16-bit memory 
location as a Q15 number. It should be realized that some precision is lost, of course, 
as a result of discarding the smaller fractional bits. Since only 16 bits can be stored, 
the shifting allows one to retain the higher precision fractional bits. If a 32-bit 
storage capability is available, a left shift of 1 can be done to remove the extended 
sign bit and store the result as a Q31 number. 

To further understand a possible precision loss when manipulating Q-format num-
bers, let us consider another example where two Q12 numbers corresponding to 7.5 
and 7.25 are multiplied. As can be seen from Figure 5-5, the resulting product must 
be left shifted by 4 bits to store all the fractional bits corresponding to Q12 format. 
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However, doing so results in a product value of 6.375, which is different from the 
correct value of 54.375. If the product is stored in a lower precision Q-format—say, 
in Q8 format—then the correct product value can be obtained and stored. 

Although Q-format solves the problem of overflow during multiplications, addi-
tion and subtraction still pose a problem. When adding two Q15 numbers, the sum 
could exceed the range of the Q15 representation. To solve this problem, the scaling 
approach, discussed later in this chapter, needs to be employed.

5.2 Finite Word Length Effects 

Due to the fact that the memory or registers of a processor have a finite number of 
bits, there could be a noticeable error between desired and actual outcomes on a 
fixed-point processor. The so-called finite word length quantization effect is similar to 
the input data quantization effect introduced by an A/D converter.

Consider fractional numbers quantized by a b + 1 bit converter. When these numbers 
are manipulated and stored in a M + 1 bit memory, with M < b, there is going to be 
an error (simply because b – M of the least significant fractional bits are discarded or 
truncated). This finite word length error could alter the behavior of a DSP system by 
an unacceptable degree. The range of the magnitude of truncation error εt is given by 
0 2 2≤ ≤ −− −εt

M b. The lowest level of truncation error corresponds to the situation 
when all the thrown-away bits are zeros, and the highest level to the situation when 
all the thrown-away bits are ones.

This effect has been extensively studied for FIR and IIR filters, for example see [1]. 
Since the coefficients of such filters are represented by a finite number of bits, the 
roots of their transfer function polynomials, or the positions of their zeros and poles, 
shift in the complex plane. The amount of shift in the positions of poles and zeros 
can be related to the amount of quantization errors in the coefficients. For example, 

Figure 5-5: Q-format precision loss example.

Q12      0111. 1000 0000 0000    
Q12    * 0111. 0100 0000 0000
Q24 0011 0110. 0110 0000 0000 0000

6.375

 7.5
 7.25
54.375

Q12
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for an Nth-order IIR filter, the sensitivity of the ith pole pi with respect to the kth 
coefficient ak can be derived to be (see [1]),

(5.3)
∂
∂

= −

−( )

−

=
≠

∏
p
a

p

p p
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N k

i l
l
l i

N

1

This means that a change in the position of a pole is influenced by the positions of 
all the other poles. That is the reason the implementation of an Nth order IIR filter 
is normally achieved by having a number of second-order IIR filters in cascade or 
series in order to decouple this dependency of poles.

Also, note that as a result of coefficient quantization, the actual frequency response 
Ĥ ejθ( ) is different than the desired frequency response H ejθ( ). For example, for an 
FIR filter having N coefficients, it can be easily shown that the amount of error in 
the magnitude of the frequency response, ∆H ejθ( ) , is bounded by 

(5.4)∆H e H e H e Nj j j bθ θ θ( ) = ( ) − ( ) ≤ −ˆ 2

In addition to the above effects, coefficient quantization can lead to limit cycles.  
This means that in the absence of an input, the response of a supposedly stable 
system (poles inside the unit circle) to a unit sample is oscillatory instead of dimin-
ishing in magnitude.

5.3 Floating-Point Number Representation

Due to relatively limited dynamic ranges of fixed-point processors, when using such 
processors, one should be concerned with the scaling issue, or how big the numbers get 
in the manipulation of a signal. Scaling is not of concern when using floating-point 
processors, since the floating-point hardware provides a much wider dynamic range. 

As an example, let us consider the C67x processor, which is the floating-point ver-
sion of the TI family of TMS320C6000 DSP processors. There are two floating-point 
data representations on the C67x processor: single precision (SP) and double preci-
sion (DP). In the single precision format, a value is expressed as (see [2])

(5.5)

where s denotes the sign bit (bit 31), exp the exponent bits (bits 23 through 30), and 
frac the fractional or mantissa bits (bits 0 through 22). (See Figure 5-6.)

− × ×−1 2 1127s exp frac( ) .



101

Fixed-Point versus Floating-Point

Consequently, numbers as big as 3.4 × 1038 and as small as 1.175 × 10−38 can be pro-
cessed. In the double precision format, more fractional and exponent bits are used as 
indicated below

(5.6)

Figure 5-6: C67x floating-point data representation.

31 30

s exp

23 22

frac

0

− × ×−1 2 11023s exp frac( ) .

where the exponent bits are from bits 20 through 30 and the fractional bits are all 
the bits of a first word and bits 0 through 19 of a second word. (See Figure 5-7.) In 
this manner, numbers as big as 1.7 × 10308 and as small as 2.2 × 10−308 can be handled. 

Figure 5-7: C67x double precision floating-point representation.

fracs exp frac

Even registerOdd register

00 3130 192031

When using a floating-point processor, all the steps needed to perform floating-point 
arithmetic are done by the floating-point hardware. For example, consider adding 
two floating-point numbers represented by 

(5.7)a a

b b

frac
a

frac
b

= ×

= ×

2

2

exp

exp

The floating-point sum c has the following exponent and fractional parts:

(5.8)

c a b

a b a b

a

frac frac

a b a

frac

= +

= + ×( )( ) × ≥

=

− −( )2 2exp exp exp

exp expif

××( ) +( ) × <− −( )2 2
b a

frac
bb a bexp exp exp

exp expif

These parts are computed by the floating-point hardware. This shows that, though 
possible, it is inefficient to perform floating-point arithmetic on fixed-point proces-
sors, since all the operations involved, such as those in Equation (5.8), must be done 
in software.
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5.4 Overflow and Scaling

As stated before, fixed-point processors have a much smaller dynamic range than 
their floating-point counterparts. It is due to this limitation that the Q15 representa-
tion of numbers is normally considered. For instance, a 16-bit multiplier can be used 
to multiply two Q15 numbers and produce a 32-bit product. Then the product can be 
stored in 32 bits or shifted back to 16 bits for storage or further processing.

When multiplying two Q15 numbers, which are in the range of –1 and 1, as discussed 
earlier, the product will be in the same range. However, when two Q15 numbers are 
added, the sum may fall outside this range, leading to an overflow. Overflows can 
cause major problems by generating erroneous results. When using a fixed-point 
processor, the range of numbers must be closely examined and if necessary adjusted to 
compensate for overflows. The simplest correction method for overflow is scaling.

The idea of scaling is to scale down the system input before performing any process-
ing and then to scale up the resulting output to the original size. Scaling can be 
applied to most filtering and transform operations. An easy way to achieve scaling is 
by shifting. Since a right shift of 1 is equivalent to a division by 2, we can scale the 
input repeatedly by 0.5 until all overflows disappear. The output can then be rescaled 
back to the total scaling amount.

As far as FIR and IIR filters are concerned, it is possible to scale coefficients to avoid 

overflows. Let us consider the output of an FIR filter y n h k x n k
k

N

[ ] [ ] [ ]= −
=

−

∑
0

1

, where h’s 

denote coefficients or unit sample response terms and x’s input samples. In case of IIR 
filters, for a large enough N, the terms of the unit sample response become so small 

that they can be ignored. Let us suppose that x’s are in Q15 format (i.e., x n k−[ ] ≤ 1).  

Therefore, we can write y n h k
k

N

[ ] ≤ [ ]
=

−

∑
0

1

. This means that, to ensure no output 

overflow (i.e., y n[ ] ≤ 1), the condition | [ ]|h k
k

N

=

−

∑ ≤
0

1

1 must be satisfied. This condition 

can be satisfied by repeatedly scaling (dividing by 2) the coefficients or unit sample 
response terms.

5.5 Data Types in LabVIEW

The numeric data types in LabVIEW together with their symbols and ranges are 
listed in Table 5-1.
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Terminal symbol Numeric data type Bits of storage on disk
Single-precision, floating-point 32

Double-precision, floating-point 64

Extended-precision, floating-point 128

Complex single-precision, floating-point 64

Complex double-precision, floating-point 128

Complex extended-precision, floating-point 256

Byte signed integer 8

Word signed integer 16

Long signed integer 32

Byte unsigned integer 8

Word unsigned integer 16

Long unsigned integer 32

128-bit time stamp <64.64> 

Table 5-1: Numeric data types in LabVIEW [4].

Note that, other than the numeric data types shown in Table 5-1, there exist other 
data types in LabVIEW, such as cluster, waveform, and dynamic data type, see Table 
5-2. For more details on all the LabVIEW data types, refer to [3,4].

Terminal symbol Data type
Enumerated type

Boolean

String
Array—Encloses the data type of its elements in square brackets and takes the 
color of that data type.

Cluster—Encloses several data types. Cluster data types are brown if all ele-
ments in the cluster are numeric or pink if all the elements of the cluster are 
different types.

Path
Dynamic—(Express VIs) Includes data associated with a signal and the attri-
butes that provide information about the signal, such as the name of the signal 
or the date and time the data was acquired.
Waveform—Carries the data, start time, and dt of a waveform.
Digital waveform—Carries start time, delta x, the digital data, and any attri-
butes of a digital waveform.

Table 5-2: Other data types in LabVIEW [4].
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Terminal symbol Data type
Digital—Encloses data associated with digital signals.

Reference number (refnum)
Variant—Includes the control or indicator name, the data type information, 
and the data itself.
I/O name—Passes resources you configure to I/O VIs to communicate with an 
instrument or a measurement device.
Picture—Includes a set of drawing instructions for displaying pictures that can 
contain lines, circles, text, and other types of graphic shapes.
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Fixed-point implementation of a DSP system requires one to examine permissible 
ranges of numbers so that necessary adjustments are made to avoid overflows. The 
most widely used approach to cope with overflows is scaling. The scaling approach is 
covered in this lab.

L5.1 Handling Data types in LabVIEW

In LabVIEW, the data type of data exchanged between two blocks is exhibited by the 
color of their connecting wires as well as their icons. A mismatched data type is rep-
resented by a coercion dot on a function or subVI input terminal, alerting that the 
input data type is being coerced into a different type. In general, a lower precision 
data value gets converted to a higher precision value. Coercion dots can lead to an 
increase in memory usage and run time [1]. Thus, it is recommended to resolve coer-
cion dots in a VI.

An example exhibiting a mismatched data type is depicted in Figure 5-8. A double 
precision value and a 16-bit integer are wired to the input terminals of an Add 
function. As can be seen from this figure, a coercion dot appears at the y terminal of 
the Add function since the input to this terminal is of 16-bit integer type while the 
other input is of double precision type.

Figure 5-8: Data type mismatch.



106

Lab 5

Let us build the VI shown in Figure 5-8. Place an Add function and create two input 
controls by right-clicking and choosing Create → Control from the shortcut menu at 
each input terminal. By default, the data types of the two controls are set to double 
precision. In order to change the data type of the second Numeric Control, 
labeled y, right-click on the icon on the BD and select Representation → Word, which 
is represented by I16.

Create a Numeric Indicator by right-clicking on the x+y terminal of the Add 
function and choosing Create → Indicator from the shortcut menu. The data type of 
the newly created Numerical Indicator is double precision since the addition 
of two double precision values results in another double precision value.

Let us switch to the FP of the VI to demonstrate the importance of specifying the 
correct data type to the Numeric Control/Indicator. If the value entered on 
the FP control does not match the data type specified by the Numeric Control/
Indicator, the input value is automatically converted into the data type specified 
by the Numeric Control. In the example shown in Figure 5-9, the value 1.5 is 
entered in both of the Numeric Controls on the FP. As can be seen, the entered 
value of the second Numeric Control, labeled y, automatically gets converted to 
a 16-bit integer or 2.

 (a) (b)

Figure 5-9: Data type conversion: (a) data typed in, and 
(b) data is converted to 16-bit integer by LabVIEW.
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Coercion dots can be avoided if appropriate conversion functions are inserted in the 
BD. For example, as shown in Figure 5-10, the addition of a double precision and 
a 16-bit integer value is achieved without getting a coercion dot by inserting a To 
Double Precision Float function. 

Figure 5-10: Data type conversion.

L5.2 Overflow Handling

An overflow occurs when the outcome of an operation is too large or too small for 
a processor to handle. In a 16-bit system, when manipulating integer numbers, they 
must remain in the range –32768 to 32767. Otherwise, any operation resulting in a 
number smaller than –32768 or larger than 32767 will cause overflow. For example, 
when 32767 is multiplied by 2, we get 65534, which is beyond the representation 
limit of a 16-bit system.

Consider the BD shown in Figure 5-11. In this BD, samples of a sinusoidal signal 
having an amplitude of 30000 are multiplied by 2. To illustrate the overflow prob-
lem, the input values generated by the Sine Waveform VI are converted to 
word signed integers or 16-bit integers (I16). This is done by inserting a To Word 
Integer function (Functions → All Functions → Numeric → Conversion → To Word 
Integer) at the output of the Get Waveform Component function. After the 
insertion of this function, the color of the wire connected to the output terminal of 
the function should appear blue indicating integer data type.

In addition, the multiplicand constant should also be converted to the I16 data type 
to avoid a coercion dot. To achieve this, right-click on the Numeric Constant 
and select Representation → Word. As a result, the data type of the multiplication 
outcome or product is automatically set to word signed integer (I16).
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It should be noted that the definition of data types is software/hardware dependent. 
For example, the “word” data type in LabVIEW has a length of 16 bits, while it is  
32 bits in the C6x DSP. That is, the “word” data type in LabVIEW is equivalent to 
the “short” data type in the C6x DSP [2].

The multiplication of a sinusoidal signal by 2 is expected to generate another sinu-
soidal signal with twice the amplitude. However, as seen from the FP in Figure 5-12, 
the result is distorted and clipped when the product is beyond the word integer (I16) 
range. Let us examine whether any overflow is caused by these multiplications. From 
Figure 5-12, it can be seen that the output signal includes wrong values due to over-
flows. For example, –5536 is shown to be the result of the multiplication of 30000 
(the maximum input value) by 2, which is incorrect. 

Figure 5-11: Signal multiplication data type conversion.

Figure 5-12: Signal distorted by overflow.
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L5.2.1 Q-Format Conversion

Let us now consider the conversion of single or double precision values to Q-format. 
As shown in Figure 5-13, a double precision input value is first checked to see 
whether it is in the range of –1 and 1. This is done by using the In Range and 
Coerce function (Functions → All Functions → Comparison → In Range and Coerce). 
The input is scaled so that it falls within the range of 16-bit signed integer data type, 
or –32768 to 32767, by multiplying it with its maximum allowable value, that is 
32768. Then, the product is converted to 16-bit signed integer data type by using a 
To Word Integer function. This ensures that the product falls within the range 
of the specified data type. In the worst case, the product gets clipped or saturated to 
the maximum or minimum allowable value.

Figure 5-13: BD of Q15 format conversion.

Edit the icon of the VI as shown in Figure 5-13. The connector pane of the VI has 
one input and one output terminal. Assign the input terminal to the Numeric 
Control and the output terminal to the Numeric Indicator. Save the VI in a 
file named Q15_Conv_Scalar.vi and use it as a Q15 format converter for scalar inputs.

Next, the Q15_Conv_Scalar VI is modified to perform Q15 conversion for array 
type inputs/outputs as follows. As shown in Figure 5-14, replace the scalar numeric 
control and indicator with an array of controls and indicators, respectively. An array 
of controls or indicators can be created by first placing an Array shell (Controls → 
All Controls → Array & Cluster → Array) and then by dragging a control or indicator 
into it. The icon and the connector pane of the modified VI should be reconfigured 
accordingly. Save the modified VI in a file named Q15_Conv_Array.vi.
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L5.2.2 Creating a Polymorphic VI

The two VIs just created are integrated into a so called polymorphic VI so that one 
VI can handle both scalar and array inputs/outputs. A polymorphic VI is a collection 
of multiple VIs for different instances having the same input and output connector 
pane [3]. The multiplication function is a good example of polymorphism since it can 
be applied to two scalars, an array and a scalar, or two arrays.

To create a polymorphic VI, select File → New → Other Document Types → Polymorphic 
VI. This brings up a Polymorphic VI window, see Figure 5-15. Add the Q15_Conv_
Scalar and Q15_Conv_Array VIs to include both the scalar and array cases. 
Edit the icon of the polymorphic VI as shown in Figure 5-15, then save the VI as 
Q15_Conv.vi. This polymorphic VI is used for the remaining part of this lab.

Next, a VI is presented to show how the overflow is checked. In the BD shown in 
Figure 5-16(a), two input values in the range between –1 and 1 are converted to Q15 
format by using the polymorphic Q15_conv VI. These inputs are converted into a 
higher precision data type, long integer (I32), to avoid getting any saturation during 
their addition. Consider that LabVIEW automatically limits the output of numerical 
operations to the input range. The sum of the two input values is wired into the In 
Range and Coerce function to check whether they are in the allowable range. 
If the output does not fall in the range of I16, this indicates that an overflow has 
occurred. The FP in Figure 5-16(b) illustrates such an overflow.

 (a) (b)

Figure 5-14: Q15 format conversion: (a) scalar input 
and output, and (b) array input and output.
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Figure 5-15: Creating a polymorphic VI.

 (a) (b)

Figure 5-16: Test for overflow: (a) BD, and (b) FP.

L5.3 Scaling Approach

Scaling is the most widely used approach to overcome the overflow problem. In 
order to see how scaling works, let us consider a simple multiply/accumulate opera-
tion.  Suppose there are four constants or coefficients that need to be multiplied with 
samples of an input signal. The worst possible overflow case would be the one where 
all the multiplicands Ck’s and x[n]’s are 1’s. For this case, the result y[n] will be 4, 

given that y n C x n kkk
[ ] = −[ ]=∑ 1

4
. Assuming that we have control over only the input 
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signal, the input samples should be scaled for the result or sum y[n] to fall in the 
allowable range. A single half-scaling, or division by 2, reduces the input samples by 
one-half, and a double half-scaling reduces them further by one-quarter. Of course, 
this leads to less precision, but it is better than getting an erroneous outcome. 

A simple method to implement the scaling approach is to create a VI that returns 
the necessary amount of scaling on the input. For multiply/accumulate type of opera-
tions, such as filtering or transforms, the worst case is multiplications and additions of 
all 1’s. This means that the required number of scaling is dependent on the number 
of additions in the summation. To examine the worst case, one needs to obtain the 
required number of scaling so that all overflows disappear. This can be achieved by 
building a VI to compute the required number of scaling. For the example covered in 
this lab, such a VI is shown in Figure 5-17 and is named Number of Scaling.vi.

Figure 5-17: Computing number of scaling.

Here, the input is first converted into Q15 format via the Q15_Conv VI. Inside the 
outer loop, the input is scaled. In each iteration of the inner loop, a new input sample 
is taken into consideration and a summation is obtained. Then, the summation value 
is compared with the minimum and maximum values in the allowable range. If the 
summation value does not fall into this range, the inner loop is stopped and the input 
samples are scaled down for a next iteration. The number of scaling is also counted. 
After scaling the input, the summation is repeated. If another overflow occurs, the 
input sample is scaled down further. This process is continued until no overflow 
occurs. The final number of scaling is then displayed. Care must be taken not to scale 
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the input too many times; otherwise, the input signal gets buried in the quantization 
noise. Here, the auto-indexing is enabled to collect the output samples into an array 
corresponding to each While Loop. As a result, a 2D array is generated.

Figure 5-18 shows the FP for the computation of the number of scaling. The input 
signal consists of the samples of one period of a sinusoid with an amplitude of 0.8 
sampled at 0.125 in terms of normalized frequency. The elements of the column 
shown in the output indicator represent the accumulated sums of the input samples. 
Notice that an overflow occurs at the third summation since the value is greater 
than the maximum value of a 16-bit signed integer, that is, 32767. The overflow 
disappears if the input is scaled down once by one-half. Thus, in this example, the 
required number of scaling to avoid any overflow is one.

Figure 5-18: Number of scaling for one period of sinusoidal signal.

It is worth mentioning that, in addition to scaling the input, it is also possible to scale 
the filter coefficients or constants in convolution type of operations so that the out-
come is forced to stay within the allowable range. In this case, the worst case for the 
input samples is assumed to be one. Note that scaling down the coefficients by one-half 
is equivalent to scaling down the input samples by one-half. An example of fixed-point 
digital filtering as well as coefficients scaling is examined in the following section.

L5.4 Digital Filtering in Fixed-Point Format

The analyses of overflow and scaling discussed above are repeated here by using the 
DFD Fixed-Point Tools VIs. These VIs allow the quantization of filter coefficients 
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and the fixed-point simulation of a digital filter. As an example of fixed-point digital 
filtering, the FIR lowpass filter designed in Lab 4 is used here.

L5.4.1 Design and Analysis of Fixed-Point Digital Filtering System

To design an FIR filter, place the DFD Classical Filter Design Express 
VI on the BD and enter the filter specifications on the configuration dialog box of 
this Express VI. To display the filter response, a total of four VIs as part of the DFD 
toolkit are used as shown in Figure 5-19.

Figure 5-19: Computing number of scaling with DFD toolkit.

Let us explain each object of this BD. The DFD FXP Quantize Coef VI (Func-
tions → All Functions → Digital Filter Design → Fixed-Point Tools → DFD FXP Quantize 
Coef) quantizes the filter coefficients according to the specified options. By default, 
a 16-bit word length is used for quantization. The bk  coefficients of the filter are 
unbundled by using the Unbundle By Name function. Right-click on the Un-
bundle By Name function and choose Select Item → quantized coef → coef b(v) 
from the shortcut menu. Next, the quantized coefficients are scaled down to match 
the number of scaling specified in the Numeric Control. The use of an array of 
indicators labeled as Scaled Coefficient is optional. This can be used to export 
the filter coefficients to other VIs easily. The original filter coefficients are replaced 
with the scaled coefficients by using the Bundle by Name function.
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The DFD FXP Simulation VI (Functions → All Functions → Digital Filter Design 
→ Fixed-Point Tools → DFD FXP Simulation) simulates the filter operation and generates 
its statistics using the fixed-point filter coefficient set. The filter statistics include min 
and max value, number of overflow/underflow, and number of operation. A text report 
of the filter statistics is generated via the DFD FXP Simulation Report VI 
(Functions → All Functions → Digital Filter Design → Fixed-Point Tools → DFD FXP Simu-
lation Report) and displayed in the String Indicator. The DFD FXP Coef 
Report VI (Functions → All Functions → Digital Filter Design → Fixed-Point Tools → 
DFD FXP Coef Report) generates a text report on the quantized filter coefficients.

In order to consider the worst case scenario, an array of all ones are created and wired 
to act as the input of the filter. The length of this array is determined by the number 
of filter coefficients. The simulated result is shown in Figure 5-20. As seen in this fig-
ure, five overflows are reported at the output for the no scaling case. The sums of the 
filter coefficients Ck’s are listed in Table 5-3 with the overflows highlighted.

Figure 5-20: Fixed point analysis using DFD toolkit (no scaling).
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Ck Ck∑ Ck

2
Ck

2∑
–0.00878906 –0.00878906 –0.00439453 –0.00439453

0.0246582 0.01586914 0.0123291 0.00793457
0.021698 0.03756714 0.010849 0.01878357

–0.03970337 –0.00213623 –0.01985168 –0.00106811
–0.07348633 –0.07562256 –0.03674316 –0.03781127
0.05606079 –0.01956177 0.0280304 –0.00978087
0.30593872 0.28637695 0.15296936 0.14318849
0.43734741 0.72372436 0.21867371 0.3618622
0.30593872 1.02966308 0.15296936 0.51483156
0.05606079 1.08572387 0.0280304 0.54286196

–0.07348633 1.01223754 –0.03674316 0.5061188
–0.03970337 0.97253417 –0.01985168 0.48626712

0.021698 0.99423217 0.010849 0.49711612
0.0246582 1.01889037 0.0123291 0.50944522

–0.00878906 1.01010131 –0.00439453 0.50505069

Table 5-3: Scaling example.

Now, enter 1 as the number of scaling and run the VI. The outcome of this simula-
tion after scaling by one-half is shown in Figure 5-21. No overflow is observed after 
this scaling. The scaled coefficient set is also shown in this figure. In addition, the 
sums of the scaled coefficients are listed in Table 5-3 indicating no overflow.

L5.4.2 Filtering System

As stated previously, the coefficients of the FIR filter need to be scaled by one-half 
to avoid overflows. For simplicity, two arrays of constants containing the scaled filter 
coefficients are used on the BD as shown in Figure 5-22. One way to create an array 
of constants corresponding to the filter coefficients is to change an array of indicators 
to an array of constants. To do this, an icon of indicator, labeled as Scaled Coef-
ficient in Figure 5-19, is copied to the BD of a new VI. It should be verified that 
the array of indicators displays the coefficients before it is copied to a new VI. Right-
click on the icon of the indicator on the BD and choose Change to Constant. This way 
an array of constants containing the filter coefficients is created.

A filter object is created from the coefficient or transfer function of the filter. This is 
done by placing the DFD Build Filter from TF VI (Functions → All Functions 
→ Digital Filter Design → Utilities → DFD Build Filter from TF) and wiring the copied 
array constants to the numerator of the transfer function. Note that the denominator 
of the FIR transfer function is a single element array of size 1. Once the filter cluster 
is created, it is wired to the DFD Filtering VI to carry out the filtering operation.
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Figure 5-21: Fixed-point analysis using DFD toolkit (one scaling).

Figure 5-22: Fixed-point FIR filtering system.
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The input to the DFD Filtering VI consists of three sinusoidal signals. The 
summed input is divided by 3 to make the range of the input values between –1 and 
1, and then is connected to the FIR filter. The input and output signals are shown 
in Figure 5-23. It can be observed that the fixed-point version of the filter operates 
exactly the same way as the floating-point version covered in Lab 4. The difference 
in the scales is due to the use of the one-half scaled filter coefficients and one-third 
scaled input values.

Figure 5-23: Fixed-point FIR filtering output.
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L5.4.3 Fixed-Point IIR Filter Example

Considering that the stability of an IIR filter is sensitive to the precision used, an 
example is provided here to demonstrate this point. This example involves the fixed-
point versions of an IIR filter corresponding to different filter forms.

Let us consider an IIR lowpass filter with the following specifications: passband 
response = 0.1 dB, passband frequency = 1200 Hz, stopband attenuation = 30 dB, 
stopband frequency = 2200 Hz, and sampling rate = 8000 Hz. The default form of 
the IIR filter designed by the DFD Classical Filter Design Express VI is 
the second-order cascade form. The filter can be converted to the direct form by us-
ing the DFD Convert Structure VI (Functions → All Functions → Digital Filter 
Design → Conversion → DFD Convert Structure). The DFD Convert Structure 
VI provides a total of 23 forms as the target structure. A Ring Constant is cre-
ated by right-clicking on the target structure terminal of the VI, followed by 
choosing Create → Constant. Click on the created Ring Constant and select IIR 
Direct Form II as the target structure.

Next, the filter coefficients in the direct form are quantized by using the DFD FXP 
Quantize Coef VI. Notice that 16 bits is the default word length of the fixed-
point representation in the absence of a configuration cluster constant. Different 
configurations of quantization can be set by creating and wiring a cluster constant at 
the Coefficient quantizer terminal of the DFD FXP Quantize Coef VI. 
The floating-point (unquantized) and fixed-point (quantized) filter clusters are wired 
to the DFD Filter Analysis Express VIs, which are configured to create the 
magnitude responses. These magnitude responses are placed into one Waveform 
Graph. This is done by creating a graphical indicator at the magnitude termi-
nal of one of the Express VIs and then by wiring the output of the other Express VI 
to the same Waveform Graph. A Merge Signal function gets automatically 
located on the BD. This normally occurs when two or more dynamic data type wires 
are merged. The BD of the fixed-point IIR filter is shown in Figure 5-24.
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The quantized filter object is also wired to a DFD FXP Coef Report VI (Func-
tions → All Functions → Digital Filter Design → Fixed-Point Tools → DFD FXP Coef Report) 
to generate a text report. This report provides reference coefficients, quantized coef-
ficients, and note sections such as overflow/underflow.

The FP of the VI after running the fixed-point filter is shown in Figure 5-25. Notice 
that the line style of the fixed-point plot is chosen as dotted for comparison purposes. 
This is done by right-clicking on the label or plotting in the plot legend and choos-
ing Line Style from the shortcut menu.

From Figure 5-25, the magnitude response of the fixed-point version of the IIR filter 
is seen to be quite different than its floating-point version. This is due to the fact that 
one underflow and one overflow occur in the filter coefficients, causing the discrep-
ancies in the responses. 

Figure 5-24: BD of fixed-point IIR filter in direct form.
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Figure 5-25: FP of fixed-point IIR filter in direct form.

Next, let us examine the fixed-point version of the IIR filter in the second-order 
cascade form. This can be achieved simply by removing the DFD Convert 
Structure VI from the BD shown in Figure 5-24. The magnitude responses of the 
floating-point and fixed-point versions are illustrated in Figure 5-26. These magni-
tude responses appear to be identical. Also, no overflow or underflow are observed. 
This indicates that the effect of quantization can be minimized by using the second-
order cascade form.
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Figure 5-26: Fixed-point IIR filtering response.
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6C H A P T E R

Adaptive filtering is used in many applications, including noise cancellation and 
system identification. In most cases, the coefficients of an FIR filter are modified 
according to an error signal in order to adapt to a desired signal. In this chapter, 
a system identification and a noise cancellation system are presented wherein an 
adaptive FIR filter is used.

6.1 System Identification

In system identification, the behavior of an unknown system is modeled by accessing 
its input and output. An adaptive FIR filter can be used to adapt to the output of the 
unknown system based on the same input. As indicated in Figure 6-1, the difference 
in the output of the system, d [n ], and the output of the adaptive FIR filter, y [n ], 
constitutes the error term, e [n ], which is used to update the coefficients of the filter.  

Figure 6-1: System identification system.
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The error term, or the difference between the outputs of the two systems, is used to 
update each coefficient of the FIR filter according to the equation below (known as 
the least mean square (LMS) algorithm [1]):

(6.1)h k h k e n x n kn n[ ] = [ ]+ [ ] −[ ]−1 δ

where h’s denote the unit sample response or FIR filter coefficients, and δ a step 
size. This adaptation causes the output y [n ] to approach d [n ]. A small step size will 
ensure convergence, but results in a slow adaptation rate.  A large step size, though 
faster, may lead to skipping over the solution.

6.2 Noise Cancellation
A system for adaptive noise cancellation has two inputs, consisting of a noise-
corrupted signal and a noise source. Figure 6-2 illustrates an adaptive noise 
cancellation system. A desired signal s [n ] is corrupted by a noise signal v 1[n ] 
which originates from a noise source signal v 0[n ]. Bear in mind that the original 
noise source signal is altered as it passes through an environment or channel whose 
characteristics are unknown. For example, this alteration can be in the form of a low-
pass filtering process. Consequently, the original noise signal v 0[n ] cannot be simply 
subtracted from the noise corrupted signal as there exists an unknown dependency 
between the two noise signals, v 1[n ] and v 0[n ]. The adaptive filter is thus used to 
provide an estimate for the noise signal v 1[n ].

Figure 6-2: Noise cancellation system.
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The weights of the filter are adjusted in the same manner stated previously. The error 
term of this system is given by

(6.2)e n s n v n y n[ ] = [ ]+ [ ]− [ ]1
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The error e [n ] approaches the signal s [n ] as the filter output adapts to the noise 
component of the input v 1[n ]. To obtain an effective noise cancellation system, the 
sensor for capturing the noise source should be placed adequately far from the signal 
source.
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This lab covers adaptive filtering by presenting two adaptive systems using the LMS 
algorithm, one involving system identification and the other noise cancellation.

L6.1 System Identification
A seventh-order IIR bandpass filter having a passband from π/3 to 2π/3 (radians) is 
used here to act as the unknown system. An adaptive FIR filter is designed to adapt 
to the response of this system.

L6.1.1 Point-By-Point Processing

Before building a system identification VI, it is useful to become familiar with the 
point-by-point processing feature of LabVIEW. As implied by its name, point-by-
point processing is a scalar type of data processing. Point-by-point processing is 
suitable for real-time data processing tasks, such as signal filtering, since it allows 
inputs and outputs to be synchronized. On the other hand, in array-based processing, 
there exists a delay between data acquisition and processing [1].

Figure 6-3 shows the BD of an IIR filtering system utilizing point-by-point processing. 
A single sample of the input signal gets generated at each iteration of the While 

Figure 6-3: BD of IIR filtering system.
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Loop by using the Sine Wave PtByPt VI (Functions → All Functions → Analyze 
→ Point By Point → Signal Generation PtByPt → Sine Wave PtByPt). This VI requires a 
normalized frequency input. Thus, the signal frequency is divided by the sampling 
frequency, 8000 Hz, and is wired to the f terminal of the VI. Also, the iteration 
counter of the While Loop is wired to the time terminal of the VI.

The Butterworth Filter PtByPt VI (Functions → All Functions → Analyze 
→ Point By Point → Filters PtByPt → Butterworth Filter PtByPt) is used here to serve as 
the IIR filter. The filter specifications need to be entered and wired to the VI. For 
example, right click on the filter type terminal and choose Create → Constant 
from the shortcut menu to create an Enum Constant (enumerated constant) 
which enumerates the filter types: lowpass, highpass, bandpass, and bandstop, in a 
pull-down menu. An enumerated constant is used to establish a list of string labels 
and corresponding numeric values.

The filtered output signal is then examined in both the time and frequency domains. 
The Real FFT PtByPt VI (Functions → All Functions → Analyze → Point By Point 
→ Frequency Domain PtByPt → Real FFT PtByPt) is used to see the frequency response. 
Note that this VI collects a frame of the incoming samples to compute the FFT. A 
total of 128 input samples are used to generate the magnitudes of 128 complex FFT 
values. Only the first half of the values is displayed in normalized magnitude, consid-
ering that the second half is a mirror image of the first half. This is done by using the  
Array Subset function.  Notice that the index is set to its default value,  0, in the 
absence of an input. The FFT outcome is then displayed in a Waveform Graph.

For the time domain observation of the signals, the Bundle function is used to 
combine the input and output signals and display them in the same Waveform 
Chart (Controls → Graph Indicators → Waveform Chart). Waveform Chart is discussed 
in a later subsection.

The FP of the IIR filtering system is shown in Figure 6-4. In order to display the two 
signals together in the same Waveform Chart, right-click on the chart and choose 
Stack Plots. To modify the display length, right-click on the plot area of the Wave-
form Chart and choose Chart History Length…. This brings up a dialog window to 
adjust the number of samples for the display. Enter 64 for the buffer length.

Let us change the properties of the FP objects. Rename the axes of the Waveform 
Graphs as shown in Figure 6-4. The scale factor needs to be modified in order to 
have a proper scaling of the frequency axis on the Waveform Graphs. The value 
of 4000/64 = 62.5 is used as the multiplier of the X axis to scale it in the range 0 
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to π (radians), that is 4000 Hz. This is done by right-clicking on the Waveform 
Graphs, and choosing Properties. This brings up the Waveform Graph Property 
window. Click the Scales tab and choose the Frequency (Hz) axis to edit its property. 
Enter 62.5 for the multiplier under the Scaling factors field. The Autoscale 
option for the Y axis of the Waveform Graphs also needs to be disabled to 
observe the magnitude attenuation in the filter output.

The functionality of the filter can be verified by adjusting the frequency of the input 
signal and running the VI. Observe the frequency response to make sure that the out-
put signal corresponds to the input signal in the passband (1333 to 2667 Hz), while the 
input signal in the stopband (0 to 1333 and 2667 to 4000 Hz) should get filtered out.

L6.1.2 Least Mean Square (LMS) algorithm

Figure 6-5 shows the BD of the LMS VI, which is built by using the point-by-point 
processing feature. The inputs of this VI include: desired output (Input 1), array of 
samples in a previous iteration (x[n]), input to the unknown system (Input 2), 
step size, and filter coefficient set of the previous iteration (h[n]) ordered from top to 
bottom. The outputs of this VI include: updated array (x[n+1]), error term, updated 
filter coefficient set (h[n+1]), and FIR filter output ordered from top to bottom.

Figure 6-4: FP of IIR filtering system.
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The two array functions, Replace Array Subset (Functions → All Functions → 
Array → Replace Array Subset) and Rotate 1D Array (Functions → All Functions 
→ Array → Rotate 1D Array), act as a circular buffer where the input sample at index 0 
gets replaced by a new incoming sample. To perform point-by-point processing, the 
FIR Filter PtByPt VI (Functions → All Functions → Analyze → Point By Point → 
Filters PtByPt → FIR Filter PtByPt) is used. This VI requires a single-element input and 
a coefficient array.

The Subtract function on the BD calculates the error or the difference between 
the desired signal and the output of the adaptive FIR filter. This error is multiplied by 
the step size δ and then by the elements in the input buffer to obtain the coefficient 
updates. Next, these updates are added to the previous coefficients h [n ]’s to compute 
the updated coefficients h [n+1]’s as stated in Equation (6.1).

The icon of the LMS VI is edited as shown in Figure 6-5. The connector pane of the 
VI is also modified as shown in Figure 6-6 for it to be used as a subVI.

Figure 6-5: BD of LMS VI.

Figure 6-6: Connector pane of LMS VI.
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L6.1.3 Waveform Chart

A Waveform Graph plots an array of samples while a Waveform Chart takes one or 
more samples as its input and maintains a history so that a trajectory can be dis-
played, similar to an oscilloscope.

There are three different updating modes in a Waveform Chart. They include: Strip 
chart, Scope chart, and Sweep chart. The Strip chart mode provides a continuous 
data display. Once the plot reaches the right border, the old data are scrolled to the 
left and new data are plotted on the right edge of the plotting area. The Scope chart 
mode provides a data display from left to right. Then, it clears the plot and resumes it 
from the left border of the plotting area. This is similar to data display on an oscillo-
scope. The Sweep chart mode functions similar to the Scope chart mode except the 
old data are not cleared. The old and new data are separated by a vertical line. All 
three modes are illustrated in Figure 6-7. These modes are configured by right-click-
ing on the plot area and then by selecting Advanced → Update Mode.

Figure 6-7: Three different modes of Waveform Chart.

The length of data displayed on the chart is changeable. To do so, right-click on  
the plot area and select Chart History Length. This brings up a dialog box to enter  
data length.

L6.1.4 Shift-Register and Feedback Node

The BD of the overall adaptive system is shown in Figure 6-8. Note that two Feed-
back Nodes, denoted by , are used. A Feedback Node is used to transfer 
data from one iteration to a next iteration inside a For Loop or a While Loop. A 
Feedback Node is automatically generated when the output of a VI is wired to its 
input inside a loop structure. By default, an initializer terminal is added onto the left 
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border of the loop for each Feedback Node. An initializer terminal is used to initialize 
the value to be transferred by the Feedback Node. If no initialization is needed, the 
terminal can be removed by right-clicking on it and unchecking Initializer terminal.

A Feedback Node can be replaced by a Shift Register. To achieve this, right-click on 
the Feedback Node. Then choose Replace with Shift Register. This adds a Shift 
Register at both sides of the While Loop. Also, the Shift Registers are 
wired to the terminals of the LMS subVI.

Figure 6-8: BD of system identification.

In the BD shown in Figure 6-8, the IIR filtering system built earlier is located to 
act as the unknown system. The filter coefficient array and the input data array are 
passed from one iteration to a next iteration by the Feedback Nodes to update 
the filter coefficients via the LMS algorithm. Both of these arrays are initialized with 
32 zero values, considering that the number of filter taps is 32. This is done by wiring 
an Initialize Array function (Functions → All Functions → Array → Initialize 
Array) to the initializer terminal. The initialization array is configured to be of length 
32 containing zero values.
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Figure 6-9: FP of system identification.

For the step size of the LMS algorithm, a Numeric Constant is created and 
wired. This value can be adjusted to control the speed of adaptation. In this example, 
0.003 is used. Also, a  Wait(ms) function is placed in the While Loop to delay 
the execution of the loop.

As shown in Figure 6-9, the output of the adaptive LMS filter adapts to the output of 
the IIR filter and thus the error between the outputs diminishes.



134

Lab 6

L6.2 Noise Cancellation

The design of a noise cancellation system is achieved similar to the system identi-
fication system mentioned above. A noise cancellation system takes two inputs: a 
noise-corrupted input signal and a reference noise signal. The BD of the adaptive 
noise cancellation system is shown in Figure 6-10. Again, as in the system identifica-
tion example, the point-by-point processing feature is employed here. This requires 
using a Get Waveform Components function together with an Index Array 
function at the output of the noise and signal sources. The number of samples of the 
waveforms generated by the three Sine Waveform VIs is set to 1 for performing 
point-by-point processing. The data type of the Y component is still of array type with 
size 1. The Index Array function is used to extract a scalar element from the array. 
This ensures that the numerical operations are done in a point-by-point fashion. 

Figure 6-10: BD of noise cancellation system.

To be able to observe the adaptability of the system, a time-varying channel is added. 
The noise source, which consists of the sum of two sinusoidal waveforms (400 and 
700 Hz), is passed through the channel before it is added to the input signal. The BD 
of the time-varying channel is shown in Figure 6-11.
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The channel consists of an FIR lowpass filter with its passband and stopband varying 
according to a discretized triangular waveform. The reason for the discretization is to 
give the LMS algorithm enough time to adapt to the noise signal. The characteristic 
of the channel is varied with time by swinging the filter passband from 100 to 900 Hz. 
The bandwidth of the time-varying channel is shown in Figure 6-12. 

Figure 6-11: Time-varying channel.

Figure 6-12: Bandwidth of time-varying channel.
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Figure 6-13: FP of noise cancellation system.

The Waveform Graph shown in Figure 6-13 indicates that the adaptive filter 
adapts to its input by cancelling out the noise component as the characteristic of the 
channel is changed. As illustrated in Figure 6-13, the input signal to the system is a 
50 Hz sinusoid and the noise varies in the range of 100–900 Hz. The step size δ may 
need to be modified depending on how fast the system is converging. It is necessary 
to make sure that the characteristic of the channel is not changing too fast to give 
the adaptive filter adequate time to adapt to the noise signal passed through it. As 
seen in Figure 6-13, the system adapts to the noise signal before the channel changes.
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Note that the noise-cancelled signal is available from the Error terminal of the 
LMS VI. If a DC input signal, in other words a 0 Hz signal, is applied to the system, 
the output of the adaptive filter becomes the error between the noise signal passed 
through the channel and the reference noise signal. This is illustrated in Figure 6-14.

Figure 6-14: Error between input and noise cancelled output.
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7C H A P T E R

Transformation of signals to the frequency domain is widely used in signal process-
ing. In many cases, such transformations provide a more effective representation and 
a more computationally efficient processing of signals as compared to time domain 
processing. For example, due to the equivalency of convolution operation in the 
time domain to multiplication in the frequency domain, one can find the output of a 
linear system by simply multiplying the Fourier transform of the input signal by the 
system transfer function. 

This chapter presents an overview of three widely used frequency domain transforma-
tions, namely fast Fourier transform (FFT), short-time Fourier transform (STFT), and 
discrete wavelet transform (DWT). More theoretical details regarding these transfor-
mations can be found in many signal processing textbooks, e.g. [1].

7.1 Discrete Fourier Transform (DFT) and Fast Fourier 
Transform (FFT)

Discrete Fourier transform (DFT) x [k ]  of an N-point signal x [n ]  is given by

(7.1)
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. The above transform equations require N complex multiplications 
and N – 1 complex additions for each term. For all N terms, N2 complex multipli-
cations and N2 – N complex additions are needed. As it is well known, the direct 
computation of (7.1) is not efficient.
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To obtain a fast or real-time implementation of (7.1), a fast Fourier transform (FFT) 
algorithm is often used which makes use of the symmetry properties of DFT. There 
are many approaches to finding a fast implementation of DFT; that is, there are many 
FFT algorithms. Here, we mention the approach presented in the TI Application 
Report SPRA291 for computing a 2N-point FFT [2]. This approach involves forming 
two new N-point signals x 1[n ]  and x 2[n ]  from a 2N-point signal g [n ]  by splitting it 
into an even and an odd part as follows:

(7.2)x n g n n N

x n g n
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From the two sequences x1[n] and x2[n], a new complex sequence x[n] is defined to be

(7.3)x n x n jx n n N[ ] = [ ]+ [ ] ≤ ≤ −1 2 0 1

To get G [k ] , the DFT of g [n ] , the equation
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Only N points of G [k ]  are computed from (7.4). The remaining points are found 
by using the complex conjugate property of G [k ] , that is G[2N – k] = G*[k]. As a 
result, a 2N-point transform is calculated based on an N-point transform, leading to a 
reduction in the number of operations.

7.2 Short-Time Fourier Transform (STFT)

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a 
windowed signal. STFT provides the time-localized frequency information for 
situations when frequency components of a signal vary over time, whereas the 
standard Fourier transform provides the frequency information averaged over the 
entire signal time interval. 
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The STFT pair is given by

(7.7)
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where x [k ]  denotes a signal, g [k ]  an L-point window function. From (7.7), the STFT 
of x [k ]  can be interpreted as the Fourier transform of the product x[k]g[k – m]. Fig-
ure 7-1 illustrates computing STFT by taking Fourier transforms of a windowed signal.

Figure 7-1: Short-time Fourier transform.
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There exists a trade-off between time and frequency resolution in STFT. In other 
words, although a narrow-width window results in a better resolution in the time 
domain, it generates a poor resolution in the frequency domain, and vice versa. 
Visualization of STFT is often realized via its spectrogram, which is an intensity 
plot of STFT magnitude over time. Three spectrograms illustrating different time-
frequency resolutions are shown in Figure 7-2. The implementation details of STFT 
are described in Lab 7.
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7.3 Discrete Wavelet Transform (DWT)

Wavelet transform offers a generalization of STFT. From a signal theory point of 
view, similar to DFT and STFT, wavelet transform can be viewed as the projection 
of a signal into a set of basis functions named wavelets. Such basis functions offer 
localization in the frequency domain. In contrast to STFT having equally-spaced 
time-frequency localization, wavelet transform provides high frequency resolution at 
low frequencies and high time resolution at high frequencies. Figure 7-3 provides a 
tiling depiction of the time-frequency resolution of wavelet transform as compared to 
STFT and DFT.

Figure 7-2: STFT with different time frequency resolutions.
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The discrete wavelet transform (DWT) of a signal x [n ]  is defined based on so-called 
approximation coefficients, Wϕ[ j 0,k ] , and detail coefficients, Wψ[ j ,k ] , as follows:

(7.8)

 (a) (b) (c)

Figure 7-3: Time-frequency tiling for (a) DFT, (b) STFT, and (c) DWT.
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and the inverse DWT is given by

(7.9)x n
M

W j k n
M

W j k nj k
k

j k
kj j

J

[ ] = [ ] [ ]+ [ ] [ ]∑ ∑∑
=

1 1
0 0

0

ϕ ψϕ ψ, ,, ,

where n = 0,1,2,..., M – 1, j = 0,1,2,..., J – 1, k = 0,2,..., 2j – 1, and M denotes the 
number of samples to be transformed. This number is selected to be M = 2J, where J 
indicates the number of transform levels. The basis functions ϕ j k n, [ ]{ } and ψ j k n, [ ]{ } 
are defined as
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where ϕ[n ] is called scaling function and ψ[n ]  wavelet function.

For the implementation of DWT, the filter bank structure is often used. Figure 7-4  
shows the decomposition or analysis filter bank for obtaining the forward DWT 
coefficients. The approximation coefficients at a higher level are passed through a 
highpass and a lowpass filter followed by a downsampling by two to compute both the 
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detail and approximation coefficients at a lower level. This tree structure is repeated 
for a multi-level decomposition.

Figure 7-4: Discrete wavelet transform decomposition filter 
bank, G0 lowpass and G1 highpass decomposition filters.
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Inverse DWT (IDWT) is obtained by using the reconstruction or synthesis filter 
bank shown in Figure 7-5. The coefficients at a lower level are upsampled by two 
and passed through a highpass and a lowpass filter. The results are added together to 
obtain the approximation coefficients at a higher level.

Figure 7-5: Discrete wavelet transform reconstruction filter 
bank, H0 lowpass and H1 highpass reconstruction filters.
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7.4 Signal Processing Toolset

Signal Processing Toolset (SPT) is an add-on toolkit of LabVIEW that provides use-
ful tools for performing time-frequency analysis [3]. SPT has three components: Joint 
Time-Frequency Analysis (JTFA), Super-resolution Spectral Analysis (SRSA), and 
Wavelet Analysis.

The VIs associated with STFT are included as part of the JTFA component. The 
SRSA component is based on the model-based frequency analysis normally used for 
situations when a limited number of samples are available. The VIs associated with 
the SRSA component include high-resolution spectral analysis and parameter esti-
mation, such as amplitude, phase, damping factor, and damped sinusoidal estimation. 
The VIs associated with the Wavelet Analysis component include 1D and 2D wave-
let transform as well as their filter bank implementations.
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Lab 7: FFT, STFT and DWT

This lab shows how to use the LabVIEW tools to perform FFT, STFT and DWT as 
part of a frequency domain transformation system.

L7.1 FFT versus STFT
To illustrate the difference between FFT and STFT transformations, a 512-point 
input signal is formed by combining three signals: a 75 Hz sinusoidal signal sampled at 
512 Hz, a chirp signal with linearly decreasing frequency from 200 to 120 Hz,  and an 
impulse signal having an amplitude of 2 for 500 ms located at the 256th sample. This 
composite signal is shown in Figure 7-6. The FFT and STFT graphs are also shown in 

Figure 7-6: FP of FFT versus STFT.



148

Lab 7

this figure. The FFT graph shows the time averaged spectrum reflecting the presence 
of a signal from 120 to 200 Hz with one major peak at 75 Hz. As can be seen from this 
graph, the impulse having the short time duration does not appear in the spectrum. 
The STFT graph shows the spectrogram for a time increment of 1 and a rectangular 
window of width 32 by which the presence of the impulse can be detected.

As far as the FP is concerned, two Menu Ring controls (Controls → All Controls 
→ Ring & Enum → Menu Ring) are used to input values via their labels. The labels 
and corresponding values of the ring controls can be modified by right clicking and 
choosing Edit Items… from the shortcut menu. This brings up the dialog window 
shown in Figure 7-7.

Figure 7-7: Properties of a ring control.

An Enum (enumerate) control acts the same as a Menu Ring control, except that 
values of an Enum control cannot be modified and are assigned sequentially. A Menu 
Ring or Enum can be changed to a Ring Constant or Enum Constant when 
used on a BD.

Several spectrograms with different time window widths are shown in Figure 7-8. 
Figure 7-8(a) shows an impulse (vertical line) at time 500 ms because of the relatively 
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time-localized characteristic of the window used. Even though a high resolution in the 
time domain is achieved with this window, the resolution in the frequency domain is 
so poor that the frequency contents of the sinusoidal and chirp signals cannot eas-
ily be distinguished. This is due to the Heisenberg’s uncertainty principle [1], which 
states that if the time resolution is increased, the frequency resolution is decreased.

Now, let us increase the width of the time-frequency window. This causes the fre-
quency resolution to become better while the time resolution becomes poorer. As a 
result, as shown in Figure 7-8(d), the frequency contents of the sinusoidal and chirp 
signals become better distinguished. It is also seen that as the time resolution becomes 
poorer, the moment of occurrence of the impulse becomes more difficult to identify.

 (a) (b)

 (c) (d)

Figure 7-8: STFT with time window of width (a) 16, (b) 32, (c) 64, and (d) 128.

The BD of this example is illustrated in Figure 7-9. To build this VI, let us first gener-
ate the input signal with the specifications stated above. The sinusoidal waveform is 
generated by using the Sine Waveform VI (Functions → All Functions → Analyze 
→ Waveform Generation → Sine Waveform) and the chirp signal is generated by using 
the Chirp Pattern VI (Functions → All Functions → Analyze → Signal Process-
ing → Signal Generation → Chirp Pattern). Also, the impulse is generated by using the 
Impulse Pattern VI (Functions → All Functions → Analyze → Signal Processing 
→ Signal Generation → Impulse Pattern). These signals are added together to form a 
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composite signal, see Figure 7-10. In order to use this VI as the signal source of the 
system, an output terminal in the connector pane is wired to the waveform indicator. 
Then, the VI is saved as Composite Signal.vi.

Figure 7-9: BD of FFT and STFT.

Figure 7-10: Composite signal: sine + chirp + impulse.
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Now, let us create the entire transformation system using the Composite Signal 
VI just made. Create a blank VI, then select Functions → All Functions → Select a 
VI…. This brings up a window for choosing and locating a VI. Click Composite Signal.
vi  to insert it into the BD. The composite signal output is connected to three blocks 
consisting of a Waveform Graph, a FFT, and a STFT VI. The waveform data (Y 
component) is connected to the input of the FFT VI (Functions → All Functions → 
Analyze → Signal Processing → Frequency Domain → FFT). Only the first half of the 
output data from the FFT VI is taken since the other half is a mirror image of the 
first half. This is done by placing an Array Subset function and wiring to it one 
half of the signal length. The magnitude of the FFT output is then displayed in the 
Waveform Graph. Properties of a FP object, such as scale multiplier of a graph, 
can be changed programmatically by using a property node. Property nodes are 
discussed in the next subsection.

Getting the STFT output is more involved than FFT. The STFT VI (Functions → 
All Functions → Advanced Signal Processing → Advanced JTFA → STFT), which is part 
of the Signal Processing Toolkit (SPT), is used here for this purpose. To utilize the 
STFT VI, several inputs as well as the input signal need to be connected. These 
inputs are: time increment, extension, window, num of freq bin, initial condition, 
and final condition. The time increment input defines a step size for sliding a window 
along the time axis. A constant of 1 is used in the example shown in Figure 7-9. The 
extension input specifies the method to pad data at both ends of a signal to avoid 
abrupt changes in the transformed outcome. There exist five different extension 
options: zero padding, symmetric, periodic, spline, and user-defined. For the user-
defined extension mode, an initial condition and a final condition input should be 
specified as well. The periodic mode is used in the example shown in Figure 7-9. The 
window input specifies which window to apply. In our example, a Hanning window is 
considered by passing an array of all 1s whose width is adjustable by the user through 
the Hanning window VI (Functions → All Functions → Analyze → Signal Processing 
→ Window → Hanning Window). Similar to FFT, only one half of the frequency values 
are taken while the time values retain the original length. Additional details on us-
ing the STFT VI can be found in [2].

The output of the STFT is displayed in the Intensity Graph (Controls → All 
Controls → Graph → Intensity Graph). Right-click on the Intensity Graph  and 
then uncheck the Loose Fit option under both X Scale and Y Scale from the shortcut 
menu. By doing this, the STFT output graph is fitted into the entire plotting area. 
Enable auto-scaling of intensity by right-clicking on the Intensity Graph and 
choosing Z Scale → AutoScale Z.
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L7.1.1 Property Node

The number of FFT values varies based upon the number of samples. Similarly, the 
number of frequency rows of STFT varies based upon the number of frequency bins 
specified by the user. However, the scale of the frequency axis in FFT or STFT graphs 
should always remain between 0 and fs/2, which is 256 Hz in the example, regardless 
of the number of frequency bins, as illustrated in Figure 7-6 and Figure 7-8. For this 
reason, the multiplier for the spectrogram scale needs to be changed depending on 
the width of the time window during run time.
A property node can be used to modify the appearance of an FP object. A property 
node can be created by right-clicking either on a terminal icon in a BD or an object 
in a FP, and then by choosing Create → Property Node. This way default elements, 
named visible, are created in a BD, which are linked to a corresponding FP object. 
Properties of FP objects can be set to either read or write. Note that by default a 
property node is set to read. Changing to the write mode can be done by right click-
ing on a property element and choosing Change to Write. The read/write mode of all 
elements can be changed together by choosing Change all to Read/Write.
To change the scale of the spectrogram graph, the value of the element YScale.
Multiplier needs to be modified. Replace the element visible with YScale.Multiplier by 
clicking it and choosing Y Scale → Offset and Multiplier → Multiplier. The sampling 
frequency of the signal divided by the number of frequency bins, which defines the 
scale multiplier, is wired to the element YScale.Multiplier of the property node. Two 
more elements, XScale.Multiplier and XScale.Precision, are added to the property node 
for modifying the time axis multiplier and precision, respectively.
A property node of the FFT graph is also created and modified in a similar way, con-
sidering that the resolution of FFT is altered depending on the sampling frequency 
and number of input signal samples. The property nodes of the STFT and FFT graphs 
are shown in Figure 7-9. More details on using property nodes can be found in [3].

L7.2 DWT
In this transformation, the time-frequency window has high frequency resolution 
for higher frequencies and high time resolution for lower frequencies. This is a great 
advantage over STFT where the window size is fixed for all frequencies.  
The BD of a 1D decomposition and reconstruction wavelet transform is shown in 
Figure 7-11. Three VIs including Wavelet Filter VI, Discrete Wavelet 
Transform Ex VI, and Inverse Discrete Wavelet Transform Ex 
VI, are used here from the advanced wavelet palette (Functions → All Functions → 
Advanced Signal Processing → Advanced Wavelet).
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Figure 7-11: Wavelet decomposition and reconstruction.

A chirp type signal, shown in Figure 7-12, is considered to be the input signal source. 
This signal is designed to consist of four sinusoidal signals, each consisting of 128 
samples with increasing frequencies in this order: 250, 500, 1000, 2000 Hz. This 
makes the entire chirp signal 512 samples. The Fourier transform of this signal is also 
shown in Figure 7-12.

Figure 7-12: Waveforms of input signal: (a) time domain, and (b) frequency domain.

(a)

(b)
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In Figure 7-13, the BD of this signal generation process is illustrated. Save this VI as 
Chirp Signal.vi to be used as a signal source subVI within the DWT VI. Note that the 
Concatenate Inputs option of the Build Array function should be chosen to build 
the 1D chirp signal. This VI has only one output terminal.

Figure 7-13: Generating input signal.

The Discrete Wavelet Transform Ex VI requires four inputs including 
input signal, extension, scales, and analysis filter. The input signal is provided by the 
Chirp Signal VI. For the extension input, the same options are available as 
mentioned earlier for STFT. The scales input specifies the level of decomposition. 
In the BD shown in Figure 7-11, a three-level decomposition is used via specifying 
a constant 3. The filter bank implementation for a three-level wavelet decomposi-
tion is illustrated in Figure 7-14. In this example, the Daubechies-2 wavelet is used. 
The coefficients of the filters are generated by the Wavelet Filter VI. This VI 
provides the coefficient sets for both the decomposition and reconstruction parts.

Figure 7-14: Waveform decomposition tree.
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The result of the Discrete Wavelet Transform Ex VI is structured  into 
a 1D array corresponding to the components of the transformed signal in this order 
LLL, LLH, LH, H, where L stands for low and H for high. The length of each com-
ponent is also available from this VI. The wavelet decomposed outcome for each 
stage of the filter bank is shown in Figure 7-15. From the outcome, it can be observed 
that lower frequencies occur earlier and higher frequencies occur later in time. This 
demonstrates the fact that wavelet transform provides both frequency and time reso-
lution, a clear advantage over Fourier transform.

The decomposed signal can be reconstructed by the Inverse Discrete 
Wavelet Transform Ex VI. From the reconstructed signal, shown in Figure 
7-15, it is seen that the wavelet decomposed signal is reconstructed perfectly by using 
the synthesis or reconstruction filter bank.

Figure 7-15: FP of DWT VI.
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8C H A P T E R

It is often computationally more efficient to implement some or most components of 
a signal processing system on a DSP processor. The choice of a DSP processor to use 
in a signal processing system is application dependent. There are many factors that 
influence this choice, including cost, performance, power consumption, ease-of-use, 
time-to-market, and integration/interfacing capabilities.

8.1 TMS320C6X DSP

The TMS320C6x family of processors, manufactured by Texas Instruments, is built to 
deliver speed. They are designed for million instructions per second (MIPS) intensive 
applications such as third generation (3G) wireless and digital imaging. There are 
many processor versions belonging to this family, differing in instruction cycle time, 
speed, power consumption, memory, peripherals, packaging, and cost. For example, 
the fixed-point C6416-600 version operates at 600 MHz (1.67 ns cycle time), deliver-
ing a peak performance of 4800 MIPS. The floating-point C6713-225 version operates 
at 225 MHz (4.4 ns cycle time), delivering a peak performance of 1350 MIPS.

Figure 8-1 shows a block diagram of the generic C6x architecture. The C6x central 
processing unit (CPU) consists of eight functional units divided into two sides: A 
and B. Each side has a .M unit (used for multiplication operation), a .L unit (used for 
logical and arithmetic operations), a .S unit (used for branch, bit manipulation and 
arithmetic operations), and a .D unit (used for loading, storing and arithmetic opera-
tions). Some instructions, such as ADD, can be done by more than one unit. There 
are sixteen 32-bit registers associated with each side. Interaction with the CPU must 
be done through these registers. 
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As shown in Figure 8-2, the internal buses consist of a 32-bit program address bus, a 
256-bit program data bus accommodating eight 32-bit instructions, two 32-bit data 
address buses (DA1 and DA2), two 32-bit (64-bit for C64 version) load data buses 
(LD1 and LD2), and two 32-bit (64-bit for the floating-point version) store data 
buses (ST1 and ST2). In addition, there are a 32-bit direct memory access (DMA) 
data and a 32-bit DMA address bus. The off-chip, or external, memory is accessed 
through a 20-bit address bus and a 32-bit data bus.

The peripherals on a typical C6x processor include external memory interface 
(EMIF), DMA, boot loader, multi-channel buffered serial port (McBSP), host port 
interface (HPI), timer, and power down unit. EMIF provides the necessary timing for 
accessing external memory. DMA allows the movement of data from one place in 
memory to another place without interfering with the CPU operation. Boot loader 
boots the code from off-chip memory or HPI to the internal memory. McBSP pro-
vides a high speed multi-channel serial communication link. HPI allows a host to 
access the internal memory. Timer provides two 32-bit counters. Power down unit is 
used to save power for durations when the CPU is inactive.

Figure 8-1: Generic C6x architecture.
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Figure 8-2: C6x internal buses.
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8.1.1 Pipelined CPU

In general, there are three basic steps to perform an instruction. They include: fetch-
ing, decoding, and execution. If these steps are done serially, not all of the resources 
on the processor, such as multiple buses or functional units, are fully utilized. In order 
to increase throughput, DSP CPUs are designed to be pipelined. This means that the 
foregoing steps are carried out simultaneously. Figure 8-3 illustrates the difference in 
the processing time for three instructions executed on a serial or nonpipelined and a 
pipelined CPU. As can be seen from this figure, a pipelined CPU requires fewer clock 
cycles to complete the same number of instructions.

The C6x architecture is based on the very long instruction word (VLIW) archi-
tecture. In such an architecture, several instructions are captured and processed 
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simultaneously. For more details on the TMS320C6000 architecture, the interested 
reader is referred to [1].

8.1.2 C64x DSP

The C64x is a more recently released DSP core, part of the C6x family, with higher 
MIPS power, operating at higher clock rates. This core can operate in the range of 
300–1000 MHz clock rates, giving a processing power of 2400-8000 MIPS. The C64x 
speedups are achieved due to many enhancements, some of which are mentioned here. 

Per CPU data path, the number of registers is increased from 16 to 32, A0–A31 and 
B0-B31. These registers support packed datatypes, allowing storage and manipulation 
of four 8-bit or two 16-bit values within a single 32-bit register. 

Although the C64x core is code compatible with the earlier C6x cores, it can run 
additional instructions on packed datatypes, boosting parallelism. For example, the 
new instruction MPYU4 performs four, or quad, 8-bit multiplications, or the instruc-
tion MPY2 performs two, or dual, 16-bit multiplications in a single instruction cycle 
on a .M unit. This packed data processing capability is illustrated in Figure 8-4. 

Figure 8-3: Pipelined versus nonpipelined CPU.

Clock Cycles

CPU Type 1 2 3 4 5 6 7 8 9

Non-Pipelined F1 D1 E1 F2 D2 E2 F3 D3 E3

Pipelined F1 D1 E1

F2 D2 E2

F3 D3 E3

Fx = fetching of instruction x
Dx = decoding of instruction x
Ex = execution of instruction x

Figure 8-4: C64x packed data processing capability.
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Additional instructions have been added to each functional unit on the C64x for 
performing special purpose functions encountered in wireless and digital imaging 
applications. In addition, the functionality of each functional unit on the C64x has 
been improved leading to a greater orthogonality, or generality, of operations. For 
example, the .D unit can perform 32-bit logical operation just as the .S and .L units, 
or the .M unit can perform shift and rotate operations just as the .S unit. 

8.2 C6x DSK Target Boards
Given the availability of a DSP starter kit (DSK) board, appropriate components of a 
DSP system can be run on an actual C6x processor. 

8.2.1 Board configuration and peripherals

As shown in Figure 8-5, the C6713 DSK board is a DSP system which includes a 
C6713 floating-point DSP chip operating at 225 MHz with 8 Mbytes of on-board 
synchronous dynamic RAM (SDRAM), 512 Kbytes of flash memory, and a 16-bit 
stereo codec AIC23. The codec is used to convert an analog input signal to a digi-
tal signal for the DSP manipulation. The sampling frequency of the codec can be 
changed from 8 kHz to 96 kHz. The C6416 DSK board includes a C6416 fixed-point 
DSP chip operating at 600 MHz with 16 Mbytes of on-board SDRAM, 512 Kbytes of 
flash memory, and an AIC23 codec. 

Figure 8-5: C6713 DSK board [2].
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8.2.2 Memory Organization

The external memory used by a DSP processor can be either static or dynamic. Static 
memory (SRAM) is faster than dynamic memory (DRAM), but it is more expensive, 
since it takes more space on silicon. SDRAM (synchronous DRAM) provides a com-
promise between cost and performance.

Given that the address bus is 32 bits wide, the total memory space of C6x consists of 
232 = 4 Gbytes. For the lab exercises in this book, the DSK board is configured based 
on the memory map 1 shown in Figure 8-6. 

Figure 8-6: C6x DSK memory map [3].

Internal RAM (L2)

Reserved

0000 0000

0001 0000

EMIF control regs

Cache Configuration regs

0180 0000

0184 0000

L2 base addr & count regs

L1 base addr & count regs0184 4020

0184 5000 L2 flush & clean regs

CE0 mem attribute regs0184 8200

0184 8240 CE1 mem attribute regs

CE2 mem attribute regs0184 8280

0184 82C0 CE3 mem attribute regs

HPI control regs0188 0000

018C 0000 McBSP0 regs

McBSP1 regs0190 0000

0194 0000 Timer0 regs

Timer1 regs0198 0000

019C 0000 Interrupt selector regs

EDMA parameter RAM01A0 0000

01A0 FFE0 EDMA control regs

QDMA regs0200 0000

0200 0020 QDMA pseudo-regs

McBSP0 data3000 0000

3400 0000 McBSP1 data

CE0, SDRAM8000 0000

9000 0000 CE1, 8-bit ROM

9008 0000 

Memory Map 1
Block Size 

(Bytes)Address

64K

32

4

32

32

4

12

16

16

40

32

16

16

40

12

12

2M

32

20

20

64M

64M

16M

128K

24M

CE1, 8-bit I/O port

A000 0000 

4

CE2-Daughtercard

B000 0000 

256M

CE3-Daughtercard 256M

0184 4000

10000 0000
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If a program fits into the on-chip or internal memory, it should be run from there to 
avoid delays associated with accessing off-chip or external memory. If a program is 
too big to fit into the internal memory, most of its time-consuming portions should 
be placed into the internal memory for efficient execution. For repetitive codes, it is 
recommended that the internal memory is configured as cache memory. This allows 
accessing external memory as seldom as possible and hence avoiding delays associ-
ated with such accesses.

8.3 DSP Programming 

Programming most DSP processors can be done either in C or assembly. Although 
writing programs in C would require less effort, the efficiency achieved is normally 
less than that of programs written in assembly. Efficiency means having as few 
instructions or as few instruction cycles as possible by making maximum use of the 
resources on the chip.

In practice, one starts with C coding to analyze the behavior and functionality of an 
algorithm. Then, if the required processing time is not met by using the C compiler 
optimizer, the time-consuming portions of the C code are identified and converted 
into assembly, or the entire code is rewritten in assembly. In addition to C and 
assembly, the C6x allows writing code in linear assembly. Figure 8-7 illustrates code 
efficiency versus coding effort for three types of source files on the C6x: C, linear 
assembly, and hand optimized assembly. As can be seen, linear assembly provides a 
good compromise between code efficiency and coding effort. 

Figure 8-7: Code efficiency versus coding effort [1].
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More efficient code is obtained by performing assembly programming, fully utilizing 
the pipelined feature of the CPU. Details regarding programming in assembly/linear 
assembly and code optimization are discussed in [1].

8.3.1 Software Tools: Code Composer Studio 

The assembler is used to convert an assembly file into an object file (.obj extension). 
The assembly optimizer and the compiler are used to convert, respectively, a linear 
assembly file and a C file into an object file. The linker is used to combine object 
files, as instructed by the linker command file (.cmd extension), into an executable 
file. All the assembling, linking, compiling, and debugging steps have been incor-
porated into an integrated development environment (IDE) called Code Composer 
Studio (CCS or CCStudio). CCS provides an easy-to-use graphical user environ-
ment for building and debugging C and assembly codes on various target DSPs. 
Figure 8-8 shows the steps involved for going from a source file (.c extension for C, 
.asm for assembly, and .sa for linear assembly) to an executable file (.out extension). 

During its set-up, CCS can be configured for different target DSP boards (such as 
C6713 DSK, C6416 DSK, C6xxx Simulator). The version used in the book is CCS 
2.2, the latest version at the time of this writing. CCS provides a file management 
environment for building application programs. It includes an integrated editor for 
editing C and assembly files. For debugging purposes, it provides breakpoints, data 
monitoring and graphing capabilities, profiler for benchmarking, and probe points to 
stream data to and from a target DSP.

Figure 8-8: C6x software tools [1].

.c
.asm

Link.cmd
.sa

.c = C source file

.sa = linear assembly source file

.asm = assembly source file

.obj = object file

.out = executable file
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Editor

Assembly
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8.3.2 Linking 

Linking places code, constant, and variable sections into appropriate locations 
in memory as specified in a linker command file. Also, it combines several object 
files into a final executable file. A typical command file corresponding to the DSK 
memory map 1 is shown below in Figure 8-9.

Figure 8-9: A typical command file.

MEMORY
{
 VECS: o=00000000h l=00000200h     /* interrupt vectors */
 PMEM: o=00000200h l=0000FE00h     /* Internal RAM (L2) mem */
 BMEM: o=80000000h l=01000000h     /* External Memory CE0, SDRAM, 16 
Mbytes */
}

SECTIONS
{
    .intvecs    > 0h
    .text       > PMEM
    .far        > PMEM
    .stack      > PMEM
    .bss        > PMEM
    .cinit      > PMEM
    .pinit      > PMEM
    .cio        > PMEM
    .const      > PMEM
    .data       > PMEM
    .switch     > PMEM
    .sysmem     > PMEM
}

The first part, MEMORY, provides a description of the type of physical memory, its ori-
gin and its length. The second part, SECTIONS, specifies the assignment of various 
code sections to the available physical memory. These sections are defined by direc-
tives such as .text, .data, etc. 

8.3.3 Compiling

The build feature of CCS can be used to perform the entire process of compiling, 
assembling, and linking in one step. The compiler allows four levels of optimizations. 

Debugging and full-scale optimization cannot be done together, since they are in 
conflict; that is, in debugging, information is added to enhance the debugging pro-
cess, while in optimizing, information is minimized or removed to enhance code 
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efficiency. In essence, the optimizer changes the flow of C code, making program 
debugging very difficult. 

It is thus a good programming practice to first verify the proper functionality of code 
by using the compiler with no optimization. Then, use full optimization to make the 
code efficient. It is recommended that an intermediary step be taken in which some 
optimization is done without interfering with source level debugging. This intermedi-
ary step can re-verify code functionality before performing full optimization. 
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L8.1 Code Composer Studio

This tutorial lab introduces the basic features of CCS one needs to know in order to 
build and debug a program running on a DSP processor. To become familiar with all 
of its features, refer to the TI CCS Tutorial [1] and TI CCS User’s Guide manuals [2].

This lab demonstrates how a simple DSP program can be compiled and linked by 
using CCS. The algorithm consists of a sinewave generator using a difference equa-
tion. As part of this example, debugging and benchmarking issues are also covered. 
Knowledge of C programming is required for this and next lab. These labs may be 
skipped if the reader is only interested in the LabVIEW implementation.

Note that the accompanying CD provides the lab programs separately for the DSP 
target boards C6416 and C6713 DSK, as well as the simulator.

L8.2 Creating Projects

Let us consider all the files required to create an executable file; that is, .c (c), 
.asm (assembly), .sa (linear assembly) source files, a .cmd linker command file, 
a .h header file, and appropriate .lib library files. The CCS code development 
process begins with the creation of a so-called project to integrate and manage all 
these required files for generating and running an executable file. After opening CCS 
by double-clicking the CCS icon on the Windows® desktop, the Project View panel 
can be seen on the left-hand side of the CCS window. This panel provides an easy 
mechanism for building a project. In this panel, a project file (.pjt extension) can 
be created or opened to contain not only the source and library files but also the 
compiler, assembler, and linker options for generating an executable file. 

To create a project, choose the menu item Project → New from the CCS menu bar. 
This brings up the dialog box Project Creation, as shown in Figure 8-10. In the dialog 
box, navigate to the working folder, here considered to be C:\ti\myprojects, and type 
a project name in the field Project Name. Then, click the button Finish for CCS to 
create a project file named Lab08.pjt. All the files necessary to run a program should 
be added to the project.
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CCS provides an integrated editor which allows the creation of source files. Some 
of the features of the editor are color syntax highlighting, code block marking in 
parentheses and braces, parenthesis/brace matching, control indentions, and find/
replace/search capabilities. It is also possible to add files to a project from Windows 
Explorer using the drag-and-drop approach. An editor window is brought up by 
choosing the menu item File → New → Source File. For this lab, let us type the follow-
ing C code into the editor window:

#include <stdio.h>
#include <math.h>

#define PI  3.141592

void main()
{
 short i, gain;
 float fs, f;
 float y[3], a[2], b1, x; 

 short *output; 
 output = (short *) 0x0000FF00;

 // Coefficient Initialization

 fs = 8000;     // Sampling frequency 
 f = 500;     // Signal frequency
 gain = 100;     // Amplitude gain
 
 a[0] = -1;
 a[1] = 2 * cos(2*PI*f/fs);
 b1 = gain;
 

Figure 8-10: Creating a new project.
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 // Initial Conditions
 
 y[1] = y[2] = 0;
 x = 1;

 printf(“BEGIN\n”);
 
 for ( i = 0; i < 128; i++ )
 {
   y[0] = b1*x + a[1]*y[1] + a[0]*y[2];
  y[2] = y[1];
   y[1] = y[0];

  x = 0;
  
  output[i] = (short) y[0];
 }
 
 printf(“END\n”);
}

This code generates a sinusoidal waveform y[n] based on the following difference 
equation:

(8.1)y n B x n A y n A y n[ ] = −[ ]+ −[ ]+ −[ ]1 1 01 1 2

where B1 = 1, A0 = –1, A1 = 2cos(θ), and x[n] is a delta function. The frequency of 
the waveform is given by [1]

(8.2)f
f

As= ( )
2

21π
arccos

By changing the coefficient A1, the frequency can be altered. By changing the coef-
ficient B1, the gain can be altered. 

Save the created source file by choosing the menu item File → Save. This brings up 
the dialog box Save As, as shown in Figure 8-11. In the dialog box, go to the field 
Save as type and select C Source Files (*.c) from the pull-down list. Then, go to the 
field File name, and type sinewave.c. Finally, click Save to save the code into a C 
source file named sinewave.c.
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In addition to source files, a linker command file must be specified to create an 
executable file and to conform to the memory map of the target DSP. A linker 
command file can be created by choosing File → New → Source File. For this lab, let 
us type the command file shown in Figure 8-12. This file can also be downloaded 
from the accompanying CD, which is configured based on the DSK memory map. 
Save the editor window into a linker command file by choosing File → Save or by 
pressing <Ctrl + S>. This brings up the dialog box Save As. Go to the field Save as 
type and select TI Command Language Files (*.cmd) from the pull-down list. Then, type 
Lab08.cmd in the field File name and click Save.

Figure 8-11: Creating a source file.
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MEMORY
{
 PMEM: o=00000000h l=0000FF00h  /* Internal RAM (L2) mem */
 PMEM2: o=0000FF00h l=00000100h  /* Defined for output value*/
 BMEM: o=80000000h l=01000000h  /* CE0, SDRAM, 16 MBytes */
}

SECTIONS
{
    .text  > PMEM
    .far  > PMEM
    .stack  > PMEM
    .bss  > PMEM
    .cinit  > PMEM
    .pinit  > PMEM
    .cio  > PMEM
    .const  > PMEM
    .data  > PMEM
    .switch  > PMEM
    .sysmem  > PMEM
}}

Figure 8-12: Linker command file for Lab 8.

Now that the source file sinewave.c and the linker command file Lab08.cmd are 
created, they should be added to the project for compiling and linking. To do this, 
choose the menu item Project → Add Files to Project. This brings up the dialog box 
Add Files to Project. In the dialog box, select sinewave.c and click the button Open. 
This adds sinewave.c to the project. In order to add Lab08.cmd, choose Project → Add 
Files to Project. Then, in the dialog box Add Files to Project, set Files of type to Linker 
Command File (*.cmd), so that Lab08.cmd appears in the dialog box. Next, select 
Lab08.cmd and click the button Open. In addition to sinewave.c and Lab08.cmd files, 
the run-time support library should be added to the project. To do so, choose Project 
→ Add Files to Project, go to the compiler library folder, here assumed to be the default 
option C:\ti\c6000\cgtools\lib, select Object and Library Files (*.o*,*.l*) in the box 
Files of type, then select rts6700.lib and click Open. If running on the TMS320C6416, 
select rts6400.lib instead. 

After adding all the source files, the command file and the library file to the project, 
it is time either to build the project or to create an executable file for the target DSP. 
This is achieved by choosing the Project → Build menu item. CCS compiles, assem-
bles, and links all of the files in the project. Messages about this process are shown in 
a panel at the bottom of the CCS window. When the building process is completed 
without any errors, the executable file Lab08.out is generated. It is also possible to do 
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incremental builds—that is, rebuilding only those files changed since last build, by 
choosing the menu item Project → Rebuild. The CCS window provides shortcut but-
tons for frequently used menu options, such as build  and rebuild all . 

Although CCS provides default build options, all the compiler, assembler, and linker 
options can be changed via the menu item Project → Build Options. Among many 
compiler options shown in Figure 8-13, particular attention should be paid to the 
optimization level options. There are four levels of optimization (0, 1, 2, 3), which 
control the type and degree of optimization. Note that in some cases, debugging is 
not possible due to optimization. Thus, it is recommended to debug a program first to 
make sure that it is logically correct before performing any optimization.

Figure 8-13: Build and compiler options.

Another important compiler option is the Target Version option. When implementing 
on the floating-point target DSP (TMS320C6713 DSK), go to the Target Version field 
and select C671x (-mv6710) from the pull-down list. For the fixed-point target DSP 
(TMS320C6416 DSK), select C64xx (-mv6400).

When a message stating a compilation error appears, click Stop Build and scroll up 
in the build area to see the syntax error message. Double-click on the red text that 
describes the location of the syntax error. Notice that the sinewave.c file opens, and 
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the cursor appears on the line that has caused the error, see Figure 8-14. After cor-
recting the syntax error, the file should be saved and the project rebuilt.

Figure 8-14: Build error.

L8.3 Debugging Tools

Once the build process is completed without any errors, the program can be loaded 
and executed on the target DSP. To load the program, choose File → Load Program, 
select the program Lab08.out just rebuilt, and click Open. To run the program, choose 
the menu item Debug → Run. You should be able to see BEGIN and END appearing in 
the Stdout window.

Now, let us view the content of the memory at a specific location. To do so, select 
View → Memory from the menu. The dialog box Memory Window Options should 
appear. This dialog box allows one to specify various attributes of the Memory win-
dow. Go to the Address field and enter 0x0000FF00. Then, select 16-bit Signed Int 
from the pull-down list in the Format field and click OK. Note that a global variable 
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name should be used in the Address field. A Memory window appears as shown in 
Figure 8-15. The contents of the CPU, peripheral, DMA, and serial port registers can 
also be viewed by selecting View → Registers → Core Registers.

Figure 8-15: Memory Window Options dialog box and Memory window.

Data stored in the DSP memory can be saved to a PC file. CCS provides a probe 
point capability, so that a stream of data can be moved from the DSP to a PC host 
file or vice versa. In order to use this capability, a probe point should be set within 
the program by placing the mouse cursor at the line where a stream of data needs to 
be transferred and by clicking the button Probe Point . Choose File → File I/O to 
invoke the dialog box File I/O. Select the tab File Output for saving the data file, then 
click the button Add File and type the name of the data file. Next, the file should be 
connected to the probe point by clicking the button Add Probe Point. In the Probe 
Point field, select the probe point to make it active, then connect the probe point 
to the PC file through File Out:… in the field Connect To. Click the button Replace 
and then the button OK, see Figure 8-16. Finally, enter the memory location in 
the Address field and the data type in the Length field. For storing the data in short 
format, 64 words needs to be stated in the length field for 128 short data. A probe 
point connected to a PC file is shown in Figure 8-17.
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The probe point capability can be used to simulate the execution of a program in 
the absence of a live signal. A valid PC file should have the correct file header and 
extension. The file header should conform to the following format:

MagicNumber Format StartingAddress PageNum Length

MagicNumber is fixed at 1651. Format indicates the format of samples in the file: 
1 for hexadecimal, 2 for integer, 3 for long, and 4 for float. StartingAddress 
and PageNum are determined by CCS when a stream of data is saved into a PC file. 
Length indicates the number of samples in memory. A valid data file should have the 

Figure 8-16: Probe Points window.

Figure 8-17: File I/O window.
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extension .dat. Data files having the same format can be transferred by choosing File 
→ Data → Load…, instead. However, data transfer with this capability of CCS needs to 
be reinvoked manually while the probe point does data updates automatically. 

A graphical display of data often provides better feedback about the behavior of a 
program. CCS provides a signal analysis interface to monitor a signal. Let us display 
the array of values at 0x0000FF00 as a signal or a time graph. To do so, select View → 
Graph → Time/Frequency to view the Graph Property Dialog box. Field names appear in 
the left column. Go to the Start Address field, click it and type 0x0000FFFF. Then, 
go to the Acquisition Buffer Size field, click it and enter 128. Also, enter 128 in the 
Display Data Size field. Finally, click on DSP Data Type, select 16-bit signed integer from 
the pull-down list, and click OK, see Figure 8-18. A graph window appears based on 
the properties selected. This window is illustrated in Figure 8-19. Properties of the 
graph window can be changed by right-clicking on it and selecting Properties at any 
time during the debugging process.

Figure 8-18: Graph Property Dialog box.

Figure 8-19: Graphical Display window.
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To access a specific location of the DSP memory, a memory address can be assigned 
directly to a pointer. It is necessary to typecast the pointer to short since the values 
are of that type. In the code shown, a pointer is assigned to 0x0000FF00.

When developing and testing programs, one often needs to check the value of a vari-
able during program execution. This can be achieved by using breakpoints and watch 
windows. To view the values of the pointer in sinewave.c before and after the pointer 
assignment, choose File → Reload Program to reload the program. Then, double-click 
on sinewave.c in the Project View panel to bring up the source file, see Figure 8-20. 
You may wish to make the window larger to see more of the file in one place. Next, 
put the cursor on the line that reads output = (short *) 0x0000FF00 and 
press <F9> to set a breakpoint. To open a watch window, choose View → Watch Win-
dow from the menu bar. This will bring up a Watch Window with the local variables 
listed in the Watch Locals tab. To add a new expression to the Watch Window, select 
the Watch 1 tab, then type output (or any expression you desire to examine) in 
the Name column. Then, choose Debug → Run or press <F5>. The program stops at 
the breakpoint and the Watch Window displays the value of the pointer. This is the 
value before the pointer is set to 0x0000FF00. By pressing <F10> to step over the 
line, or the shortcut button , one should be able to see the value 0x0000FF00 in 
the Watch Window.

Figure 8-20: Project View panel.
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To add a C function that sums the values, we can simply pass a pointer to an array 
and have a return type of integer. The following C function can be used to sum the 
values and return the result:

#include <stdio.h>
#include <math.h>

#define PI  3.141592

void main()
{
 short i, gain;
 int ret;
 float fs, f;
 float y[3], a[2], b1, x; 

 short *output; 
 output = (short *) 0x0000FF00;

 // Coefficient Initialization

 fs = 8000;     // Sampling frequency 
 f = 500;     // Signal frequency
 gain = 100;     // Amplitude gain
 
 a[0] = -1;
 a[1] = 2 * cos(2*PI*f/fs);
 b1 = gain;
 
 // Initial Conditions
 
 y[1] = y[2] = 0;
 x = 1;

 printf(“BEGIN\n”);
 
 for ( i = 0; i < 128; i++ )
 {
   y[0] = b1*x + a[1]*y[1] + a[0]*y[2];
  y[2] = y[1];
   y[1] = y[0];

  x = 0;
  
  output[i] = (short) y[0];
 }
  
 ret = sum(output,128);
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 printf(“Sum = %d\n”, ret);
 printf(“END\n”);
}

int sum(const short* array,int N)
{
 int count,sum;
 sum = 0;
 
 for(count=0 ; count < N ; count++)
  sum += array[count];

 return(sum);
}

As part of the debugging process, it is normally required to benchmark or time a pro-
gram. In this lab, let us determine how much time it takes for the function sum() 
to run. To achieve this benchmarking, reload the program and choose Profiler → Start 
New Session. This will bring up Profile Session Name. Type a session name, MySes-
sion by default, then click OK. The Profile window showing the code size and the 
cycle statistics will be docked at the bottom of CCS. Resize this window by dragging 
its edges or undock it so that all the columns can be seen. Now select the code area 
of the function to be benchmarked, then right-click and choose Profile Function → 
in MySession Session from the shortcut menu. The name of the function is added to 
the list in the Profile window. The same step can be achieved by clicking Profile All 
Functions on the MySession Profile window, and deleting unnecessary functions from 
the list. Finally, press <F5> to run the program. Examine the number of cycles shown 
in Figure 8-21 for sum(). It should be about 161 cycles (the exact number may vary 
slightly). This is the number of cycles it takes to execute the function sum().

Figure 8-21: Profile window.
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There is another way to benchmark codes using breakpoints. Double-click on 
the file sinewave.c in the Project View panel and choose View → Mixed Source/ASM 
to list the assembled instructions corresponding to the C code lines. Set a break-
point at the calling line by placing the cursor on the line that reads ret = 
sum(point,128), then press <F9> or double-click Selection Margin located on 
the left-hand side of the editor. Set another breakpoint at the next line as indicated 
in Figure 8-22. Once the breakpoints are set, choose Profiler → Enable Clock to enable 
a profiler clock. Then, choose Profiler → View Clock to bring up a window displaying 
Profile Clock. Now, press <F5> to run the program. When the program is stopped at 
the first breakpoint, reset the clock by double-clicking the inner area of the Profile 
Clock window. Finally, click Step Out or Run in the Debug menu to execute and stop 
at the second breakpoint. Examine the number of clocks in the Profile Clock window. 
It should read 4189. The difference in the number of cycles between the breakpoint 
and the profile approaches originates from the extra procedures for calling functions, 
for example passing arguments to functions, storing return addresses, branching back 
from functions, and so on.

Figure 8-22: Profiling code execution time using breakpoints.

A workspace containing breakpoints, probe points, graphs and watch windows can 
be stored and recalled later. To do so, choose File → Workspace → Save Workspace As. 
This will bring up the Save Workspace window. Type the workspace name in the File 
name field, then click Save.

Table 8-1 provides the number of cycles it takes to run the sum() function using 
several different builds. When a program is too large to fit into the internal memory, 
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it has to be placed into the external memory. Although the program in this lab is 
small enough to fit in the internal memory, it is also placed in the external memory 
to study the change in the number of cycles. To move the program into the external 
memory, open the command file Lab08.cmd and replace the line .text > PMEM 
with .text > BMEM. As seen in Table 8-1, this build slows down the execution to 
37356 cycles. In the second build, the program resides in the internal memory and 
the number of cycles is hence reduced to 4180. By increasing the optimization level, 
the number of cycles can be further decreased to 161. At this point, it is worth point-
ing out that the stated numbers of cycles in this lab correspond to the C6713 DSK 
with CCS version 2.2. The numbers of cycles vary depending on the DSK target and 
CCS version used. 

Type of Build Code size Number of Cycles
C program in external memory 148 37356
C program in internal memory 148 4180
–o0 60 1085
–o1 60 1078
–o2 128 198
–o3 404 161

Table 8-1: Number of cycles for different builds.
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9C H A P T E R

A DSP system designed in LabVIEW can be placed entirely or partially on a hard-
ware platform. This chapter discusses the implementation process on a DSP hardware 
platform consisting of a TMS320C6713 or TMS320C6416 DSK board. Such an 
implementation or integration is made possible by using the LabVIEW toolkit DSP 
Test Integration for TI DSP.

9.1 Communication with LabVIEW: Real-Time Data Exchange  
 (RTDX)

Communication between LabVIEW and a C6x DSK board is achieved by using 
the real-time data exchange (RTDX™) feature of the TMS320C6x DSP. This 
feature allows one to exchange data between a DSK board and a PC host (run-
ning LabVIEW) without stopping program execution on the DSP side. This data 
exchange is done either via the joint test action group (JTAG) connection, or the 
universal serial bus (USB) port emulating the JTAG connection.

RTDX can be configured in two modes: noncontinuous and continuous. In 
noncontinuous mode, data is written to a log file on the host. This mode is normally 
used for recording purposes. In continuous mode, data is buffered by the RTDX 
host library. This mode is normally used for continuously displaying data. Here, to 
view the processed data on the PC/LabVIEW side, RTDX is configured to be in 
continuous mode.

9.2 LabVIEW DSP Test Integration Toolkit for TI DSP

The DSP Test Integration for TI DSP toolkit provides a set of VIs which enable 
interfacing between LabVIEW and Code Composer Studio [1]. The VIs provided in 
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this toolkit are categorized into two groups: CCS Automation and CCS Communi-
cation. These VI groups are listed in Table 9-1.

Table 9-1: List of VIs in the LabVIEW DSP Test Integration toolkit.

CCS Automation VIs CCS Communication VIs
CCS Open Project VI CCS RTDX Read VI
CCS Build VI CCS RTDX Write VI
CCS Download Code VI CCS RTDX Enable VI
CCS Run VI CCS RTDX Enable Channel VI
CCS Halt VI CCS RTDX Disable VI
CCS Close Project VI CCS RTDX Disable Channel VI
CCS Window Visibility VI CCS Memory Read VI
CCS Reset VI CCS Memory Write VI

CCS Symbol to Memory Address VI

The VIs in the CCS Automation group allow automating the CCS code execution 
process through LabVIEW. They include: (a) open CCS, (b) build project, (c) reset 
CPU, (d) load program, (e) run code, (f) halt CPU, and (g) close CCS. The flow of 
these steps is the same as those in CCS.

The VIs in the CCS Communication group allow exchange of data through the 
RTDX channel. For example, the CCS RTDX write VI and CCS RTDX read 
VI are used for writing and reading data to and from the DSP side, respectively. Note 
that these VIs are polymorphic. Therefore, data types (such as single precision, dou-
ble precision, or integer) and data formats (such as scalar or array) should be matched 
in LabVIEW and CCS in order to establish a proper LabVIEW DSP integration.

9.3 Combined Implementation: Gain Example

In this section, a LabVIEW DSP integration example is presented to show the basic 
steps that are required for a combined LabVIEW and DSP implementation. From the 
main dialog of LabVIEW, open the NI Example Finder shown in Figure 9-1 by choos-
ing Help → Find Examples.

Open the Gain_dsk6713 VI by clicking on Directory Structure from the category 
Browse according to of the Browse tab, and by choosing DSPTest → dsk6713 → Gain → 
Gain_dsk6713.vi. If using a C6416 DSK, open the dsk6416 folder.

In this example, an input signal along with a gain factor are sent from the LabVIEW 
side to the DSP side. On the DSP side, the input signal is multiplied by the gain 
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factor, then sent back to the LabVIEW side. The gain factor, the frequency of the 
input signal, and the signal type can be altered by the controls specified in the FP. 
Also, the original and scaled signals are displayed in the FP as shown in Figure 9-2.

Figure 9-1: NI Example Finder—Gain example.

Figure 9-2: FP of Gain example.
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9.3.1 LabVIEW Configuration

To better understand the LabVIEW DSP integration process, let us examine the BD 
of the Gain_dsk6713 VI, which is shown in Figure 9-3.

Figure 9-3: BD of Gain example.

There are two major sections associated with this BD. The first section consisting 
of a Stacked Sequence structure, shown to the left side of the While Loop, 
corresponds to the CCS automation process. This section includes a CCS Open 
Project VI, a CCS Build VI, a CCS Reset VI, a CCS Download Code VI, 
and a CCS Run VI. In addition, a CCS Halt VI and a CCS Close Project 
VI, shown to the right side of the While Loop, are a part of the CCS automation 
process. The three functions (Strip Path, Build Path, and Current VI’s 
Path) of the File I/O palette are used in the Stacked Sequence structure to 
create a file path to a CCS project file that can be opened from the CCS side. With 
these VIs and functions in place, the process of opening CCS, building a project, 
loading a program to the DSP and running it on the DSP can be controlled from 
the LabVIEW side. The CCS Automation VIs are located in the DSP Test Integra-
tion Palette (Functions → All Functions → DSP Test Integration). Note that the CCS 
automation process just described can be used for all the LabVIEW DSP integration 
examples presented in Lab 9.

The second section of the BD shown in the While Loop involves signal genera-
tion and CCS RTDX communication. The Basic Function Generator VI is 
used to generate waveform samples. Two CCS RTDX read VIs and one CCS RTDX 
write VI are located in the While Loop. The channel name of each CCS RTDX 
VI is wired to this VI. This allows the generated samples to be continuously sent to 
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the DSP side, and the DSP processed samples to be continuously read from the DSP 
side. The scaled signal is displayed in a Waveform Graph. Note that the original 
and scaled signals are of array type, while the gain factor is scalar. Thus, one of the 
CCS RTDX read/write VIs is set to 32-bit integer array, indicated by [I32] on 
its icon, and the other is set to 32-bit integer, indicated by I32 on its icon. 

9.3.2 DSP Configuration 

A CCS Project implemented on the DSP side should include four components: a 
linker command file, an interrupt service table which defines the interrupt vector 
for RTDX, the RTDX library along with the run-time support library, and the source 
code as shown in Figure 9-4.

Figure 9-4: Project view of CCS.

The source code of the Gain example running on the DSP side is shown below.

#include <rtdx.h>                      /* RTDX                      */
#include "target.h"                    /* TARGET_INITIALIZE()       */

#define kBUFFER_SIZE 49

RTDX_CreateInputChannel(cinput);
RTDX_CreateInputChannel(cgain);
RTDX_CreateOutputChannel(coutput);

// Gain value scales the wavefrom
void Gain (int *output, int *input, int gain)
{
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 int i;
 for(i=0; i<kBUFFER_SIZE; i++)
  output[i]=input[i]*gain;
}

void main()
{ 
 int input[kBUFFER_SIZE];
 int output[kBUFFER_SIZE];
 int gain = 10;
 
 // Target initialization for RTDX
 TARGET_INITIALIZE();

 /*enable RTDX channels*/
 RTDX_enableInput(&cgain);
 RTDX_enableInput(&cinput);
 RTDX_enableOutput(&coutput);
 
 for (;;) /* Infinite message loop. */
 {
  /* Read new gain value if one exists */
  if (!RTDX_channelBusy(&cgain))
   RTDX_readNB(&cgain, &gain, sizeof(gain));
  /* Wait for input waveform */
  while(!RTDX_read(&cinput, input, sizeof(input)));
  
  Gain (output, input, gain);
  
  /* Write scaled data back to host. */
  RTDX_write(&coutput, output, sizeof(output));
 }
}

In this code, several application program interfaces (APIs), which are part of 
the CCS RTDX library, are used to allow data exchange between the DSP and 
LabVIEW side. First, the RTDX_CreateInputChannel() and RTDX_
CreateOutputChannel() APIs are used to declare the input and output 
channels. Second, the DSP board is initialized with the TARGET_INITIALIZE() 
API. Both of the RTDX channels are enabled by the RTDX_enableInput() and 
RTDX_enableOutput() APIs. To get scalar data from the LabVIEW to the DSP 
side, the RTDX_readNB() API is used with the arguments being channel, buffer 
pointer, and buffer size. In addition, the RTDX_read() API is used with the argu-
ments being channel, array pointer, and array size. The RTDX_write() API is used 
to send data back to the LabVIEW side.
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Bear in mind that the name assigned to the RTDX communication channel should 
be the same as the one used in LabVIEW. Also, the data types of polymorphic VIs, 
i.e. CCS RTDX Read VI and CCS RTDX Write VI, as well as the array lengths 
should be the same as the ones defined in LabVIEW. For example, the input array 
input[] in the above source code should be defined as follows:

int input[kBUFFER_SIZE];

That is, input[] must be declared as 32-bit integer, and the array size must be 
configured to be kBUFFER_SIZE, which is specified as 49 at the beginning of the 
Gain example code. 
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This lab includes four DSP integration examples. These examples correspond to the 
DSP systems built by LabVIEW in the previous labs, that is, digital filtering, integer 
arithmetic, adaptive filtering, and frequency processing.

L9.1 CCS Automation

Figure 9-5 illustrates the CCS automation process. In this lab, all the examples are 
assumed to have the sub-diagrams shown to the left and right of the While Loop 
and thus are not explicitly mentioned.

Figure 9-5: Generic structure of CCS Automation.

Let us explain the CCS automation process in more detail. In order to specify a proj-
ect to be used by the CCS Automation VIs, a file path to the project file should be 
built. Two methods of creating a path are mentioned here. The first method involves 
using a relative path by assuming that the CCS project file is located in the folder 
where the VI resides. Place a Current VI’s Path function (Functions → All 
Functions → File I/O → File Constants → Current VI’s Path) in the BD to get the entire 
file path of the project file and wire the output of this VI to the path terminal of 
a Strip Path function (Functions → All Functions → File I/O → Strip Path), which 
returns a stripped path by removing the VI’s name from the path. The stripped path 
is wired to the base path terminal of the Build Path function (Functions → All 
Functions → File I/O → Build Path). This function appends the name of the file, wired 
to the name or relative path terminal of the function as a string constant, 
to the stripped path. Now, the output of the function indicates the entire path of the 
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CCS project file. The created file path is then wired to the Path to Project ter-
minal of the CCS Open Project VI to allow access by the CCS Automation VIs. 

The second method of creating a project path involves using an absolute path.  
Wire a Path Constant (Functions → All Functions → File I/O → File Constants → 
Path Contant) to the Path to Project terminal of the CCS Open Project 
VI or create a file constant by right-clicking and choosing Create → Constant on the 
Path to Project terminal of the VI. Enter the absolute path of the CCS project 
file in the Path Constant. The absolute path can also be generated by browsing 
the project file path. To do this, right-click on the Path Constant and choose 
Browse for Path… from the shortcut menu. A file dialog box appears to select the path 
via file browsing. 

Next, place the CCS Automation VIs (CCS Open Project VI, CCS Build 
VI, CCS Reset VI, CCS Download Code VI, and CCS Run VI) from the 
DSP Test Integration Palette (Functions → All Functions → DSP Test Integration) in 
the order shown in Figure 9-5. These VIs are wired to each other via the terminals 
CCS references out (or dup CCS references) and error out to 
the terminals CCS references in and error in. The VIs are used to open 
a CCS project, build a project, reset CPU, download a program to the DSP, and run 
the program. The CCS references cluster, wired to all the CCS Automation VIs, 
contains the CCS IDE references, while the error in/out cluster carries the error 
information of the CCS Automation VIs. Consequently, if an error occurs in one of 
the CCS Automation VIs, the error information is passed through the CCS Automa-
tion VIs to the Simple Error Handler VI (Functions → All Functions → Time & 
Dialog → Simple Error Handler) located at the end of the CCS Automation VIs. This 
VI displays a description of the error.

A String Indicator is placed in the FP in order to display the current status of 
the CCS automation process. A Control Reference for this indicator is created 
by right-clicking on it and choosing Create → Reference from the shortcut menu. This 
reference should be wired to the Status String Refnum terminal of the CCS 
Open Project VI in order to post a status string to this indicator.

Now, let us explain the exchange of data between LabVIEW and the DSP. Data is 
continuously exchanged using the CCS Communication VIs, CCS RTDX Read VI 
and CCS RTDX Write VI, when both the VI and CCS are running. As mentioned 
earlier, data types should be carefully configured on the LabVIEW and CCS sides 
since the CCS RTDX Read VI and the CCS RTDX Write VI are data type poly-
morphic. The read/write data type can be specified from the Select Type menu as part 
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of the shortcut menu. This menu can be brought up by right-clicking on the CCS 
RTDX Read VI or CCS RTDX Write VI. Another way to change the data type is 
by using a Polymorphic VI Selector. This selector can be displayed by right-clicking 
on it and choosing Visible Items → Polymorphic VI Selector from the shortcut menu. 
The string constants indicate the names of the RTDX channels that are wired to the 
CCS RTDX Read VI or CCS RTDX Write VI.

The execution of the While Loop structure is stopped by pressing a stop button in 
the FP or if an error is generated by the CCS Automation or CCS Communication 
VIs. In such cases, the CCS needs to be halted and closed. This is done by locating 
and wiring a CCS Halt VI to a CCS Close Project VI. These VIs appear to 
the right side of the While Loop structure.

L9.2 Digital Filtering

In this section, the filtering code written in C is used to run the filtering block or 
component of the Lab 4 filtering system on the DSP. 

L9.2.1 FIR Filter

The BD of the FIR lowpass filtering system that was built in Lab 4 is illustrated in 
Figure 9-6.

Figure 9-6: Filtering system in Lab 4.
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Let us modify this BD to send the generated samples to the DSP and then to receive 
the filtered samples from the DSP. This is achieved by inserting the CCS automation 
process to the left and right sections of the While Loop structure. As indicated in 
Figure 9-7, a portion of the DFD Filter VI is replaced with the CCS RTDX Write 
VI and the CCS RTDX Read VI. Both of these VIs are configured to write and read 
single precision floating-point array data, which means configuring the polymorphic 
VIs as CCS RTDX Write Array SGL and CCS RTDX Read Array SGL, 
refer to Figure 9-7. Consider that the number of samples in the sampling info cluster is 
reduced to 128 in order to reduce the time associated with the RTDX communication.

Figure 9-7: BD of filtering system with DSP integration.

An array of signal samples consisting of the sum of the three sinusoids is wired to  
the Data terminal of the CCS RTDX Write Array SGL VI. Also, a string 
constant containing the name of the input channel, cinput, is wired to the 
Channel terminal.

In the CCS RTDX Read Array SGL VI, the data transmitted via RTDX is read 
from the Data terminal of the VI. This terminal is wired to a Waveform Graph 
as well as to a Spectral Measurements Express VI for frequency analysis. 
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To check the status of errors generated by the CCS Automation or CCS Communi-
cation VIs, observe the status element of the error cluster. This is made possible 
by locating an Unbundle By Name function (Functions → All Functions → Cluster 
→ Unbundle By Name). Wire the error out cluster from the CCS RTDX Read 
Array SGL VI to the Unbundle By Name function. This way the status 
element of the error out cluster is selected by default. The result of an OR opera-
tion of two Boolean values, corresponding to the status element of the cluster and 
a stop button, is wired to the conditional terminal of the While Loop. Whenever 
the stop button is pressed or an error occurs while accessing CCS or communicating 
via RTDX, the execution of the loop stops.

Notice the importance of the timeout value of the CCS RTDX Read Array SGL 
VI. If the RTDX communication speed is too slow or the number of data samples is 
large, the timeout value should be changed to avoid getting a RTDX error as shown 
in Figure 9-8. The default timeout value is 2000. To change the timeout value, wire 
a Numeric Constant to the timeout terminal of the CCS RTDX Read 
Array SGL VI, and enter a desired timeout value in milliseconds. Save the com-
pleted VI as DSP FIR Filtering System.vi.

Figure 9-8: RTDX error.
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The FIR filtering C source code is shown below:

#include <rtdx.h>                      /* RTDX                      */
#include “target.h”                    /* TARGET_INITIALIZE()       */

#define kBUFFER_SIZE 128
#define N 15

float b[N] = {-0.008773, 0.0246851, 0.0217041, -0.0396942, -0.0734726,
    0.0560876, 0.305969, 0.437322, 0.305969, 0.0560876, -0.0734726,
   -0.0396942, 0.0217041, 0.0246851, -0.008773};
float samples[N];

RTDX_CreateInputChannel(cinput);

Figure 9-9: Build Options of CCS.

Next, let us state how to operate in CCS. Create a new project and name it FIR.pjt. 
Add the linker command file c6713dsk.cmd, the interrupt service vector intvecs.asm, 
the source code FIR.c, and the library files rtdx.lib (ti\c6000\rtdx\lib) and rts6700.
lib (ti\c6000\cgtools\lib), into the project. The linker command file and interrupt 
service vector are located in the folder ti\examples\dsk6713\rtdx\shared. This folder 
should also include the header file target.h. The path to this folder needs to be added 
in Include Search Path of Build Options, as shown in Figure 9-9.
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RTDX_CreateOutputChannel(coutput);

void FIR(float *input, float *output)
{
 int i, j; 
 float result;
 
 for( j = 0; j < kBUFFER_SIZE; j++ )
 {
  for(i = N-1; i > 0; i-- )
   samples[i] = samples[i-1];
  
  samples[0] = input[j];

  result = 0; 
  for( i = 0 ; i < N ; i++ )
   result += samples[i] * b[i];
   
  output[j] = result;
 }
}

void main()
{ 
 float input[kBUFFER_SIZE];
 float output[kBUFFER_SIZE];
 int i;
 
 for( i = 0; i < N ; i++ )
  samples[i] =0;
 
 // Target initialization for RTDX
 TARGET_INITIALIZE();

 /*enable RTDX channels*/
 RTDX_enableInput(&cinput);
 RTDX_enableOutput(&coutput);
 
 for (;;) /* Infinite message loop. */
 {
  while(!RTDX_read(&cinput, input, sizeof(input)));
  
  FIR(input, output);
  
  /* Write filtered data back to host. */
  RTDX_write(&coutput, output, sizeof(output));
 }
}
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After creating the VI for the signal source and the CCS project for the FIR filtering 
block, run the VI from LabVIEW. One should see the outcome depicted in Figure 
9-10. Notice that the amplitudes of the frequency components in the stopband 
(2200-4000 Hz) appear attenuated by 30 dB. This agrees with the filter specification.

Figure 9-10: FP of FIR filtering system with DSP integration.

L9.2.2 IIR Filter

The bandpass IIR filter designed in Lab 4 is modified here. The previously used DSP 
FIR Filtering System VI is modified in order to run the IIR filtering project, 
IIR.pjt, on the DSP. The modified VI is then saved as DSP IIR Filtering System.vi.
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As mentioned in Chapter 4, by default, the DFD Classical Filter Design 
Express VI of the DFD toolkit provides the IIR filter coefficients in the second-order 
cascade form. In the C source code shown below, the IIR filter comprises three sec-
ond-order IIR filters in cascade. The advantage of the second-order cascade form lies 
in its lower sensitivity to coefficient quantization. In this implementation, the output 
from a second-order filter becomes the input to a next second-order filter.

#include <rtdx.h>                      /* RTDX                      */
#include “target.h”                    /* TARGET_INITIALIZE()       */

#define kBUFFER_SIZE 128

float a1[2]={-0.955505, 0.834882};
float b1[3]={0.545337, -0.735242, 0.545337}; 

float a2[2]={0.954255, 0.834810};
float b2[3]={0.545337, 0.734702, 0.545337};

float a3[2]={-0.000622, 0.372609};
float b3[3]={0.545337, 0, -0.545337};

float IIRwindow1[3] = {0,0,0}; 
float y_prev1[2] = {0,0};

float IIRwindow2[3] = {0,0,0}; 
float y_prev2[2] = {0,0};

float IIRwindow3[3] = {0,0,0}; 
float y_prev3[2] = {0,0};

RTDX_CreateInputChannel(cinput);
RTDX_CreateOutputChannel(coutput);

void main()
{ 
 float input[kBUFFER_SIZE];
 float output[kBUFFER_SIZE];
 int i, n;
 float ASUM, BSUM;
 
 // Target initialization for RTDX
 TARGET_INITIALIZE();

 /*enable RTDX channels*/
 RTDX_enableInput(&cinput);
 RTDX_enableOutput(&coutput);
 
 for (;;) /* Infinite message loop. */



200

Lab 9

 {
  while(!RTDX_read(&cinput, input, sizeof(input)));

  // IIR filtering

  for(i=0; i<kBUFFER_SIZE; i++)
  {

      // Stage #1

      for(n=2;n>0;n--)
       IIRwindow1[n] = IIRwindow1[n-1];
      
      IIRwindow1[0] = input[i];
          
      BSUM = 0;
      for(n = 0; n <= 2; n++)
      {
          BSUM += b1[n] * IIRwindow1[n];
      }
      
      ASUM = 0;
      for(n = 0;n <= 1; n++)
      {
       ASUM += a1[n] * y_prev1[n];
      }                                           
      
      y_prev1[1] = y_prev1[0];     
      y_prev1[0] = BSUM - ASUM;

      // Stage #2
   
      for(n=2;n>0;n--)
       IIRwindow2[n] = IIRwindow2[n-1];
      
      IIRwindow2[0] = y_prev1[0];
          
      BSUM = 0;
      for(n = 0; n <= 2; n++)
      {
          BSUM += b2[n] * IIRwindow2[n];
      }
      
      ASUM = 0;
      for(n = 0;n <= 1; n++)
      {
       ASUM += a2[n] * y_prev2[n];
      }                                           
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      y_prev2[1] = y_prev2[0];     
      y_prev2[0] = BSUM - ASUM; 
   
      // Stage #3
   
      for(n=2;n>0;n--)
       IIRwindow3[n] = IIRwindow3[n-1];
      
      IIRwindow3[0] = y_prev2[0];
          
      BSUM = 0;
      for(n = 0; n <= 2; n++)
      {
          BSUM += b3[n] * IIRwindow3[n];
      }
      
      ASUM = 0;
      for(n = 0;n <= 1; n++)
      {
       ASUM += a3[n] * y_prev3[n];
      }                                           
      
   output[i] = BSUM - ASUM;
      y_prev3[1] = y_prev3[0];     
      y_prev3[0] = output[i];

  }
  
  /* Write data back to host. */
  RTDX_write(&coutput, output, sizeof(output));
 }

}

The output of the IIR bandpass filter is depicted in Figure 9-11. Considering that the 
passband of this filter is between 1333 and 2667 Hz, the amplitude of any signal in 
the stopband is attenuated by about 25 dB, which matches the outcome in Lab 4.
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L9.3 Fixed-Point Implementation

In this section, an example is shown to demonstrate fixed-point arithmetic opera-
tions on the DSP. The FIR filtering system in the previous section is modified here to 
achieve fixed-point filtering on the DSP.

The BD of the fixed-point version of the FIR filtering system is shown in Figure 9-12. 
In this BD, the amplitude of the sum of the three sinusoids is multiplied by 10000 to 
represent it as a 16-bit integer while not exceeding the representable range of 16-bit 
integer numbers.

Figure 9-11: FP of IIR filtering system with DSP integration.
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It is worth mentioning that, if a C6416 DSK is used, the files and libraries to be 
added to the project are different from those required when using a C6713 DSK. 
These files include the linker command file c6416.cmd, the interrupt service vector 
intvecs6416.asm, the source code FIR.c, and the library files rtdx64xx.lib (ti\c6000\
rtdx\lib) and rts6400.lib (ti\c6000\cgtools\lib). Also, the file path, ti\examples\
dsk6416\rtdx\shared, should be added in Include Search Path of Build Options.

The source code of the fixed-point version of the FIR filtering system is shown below. 
In this code, the filter coefficients originally expressed in floating-point format are 
first converted into Q15 format. Then, they are scaled by one-half to avoid overflows. 
The number of scaling is obtained to be one by considering that all the inputs are 1s 
as discussed in Lab 5.

#include <rtdx.h>                      /* RTDX                      */
#include "target.h"                    /* TARGET_INITIALIZE()       */

#define kBUFFER_SIZE 128
#define N 15

float b[N] = {-0.008773, 0.0246851, 0.0217041, -0.0396942, -0.0734726,
    0.0560876, 0.305969, 0.437322, 0.305969, 0.0560876, -0.0734726,
   -0.0396942, 0.0217041, 0.0246851, -0.008773};

short samples[N];
short coeff[N];

Figure 9-12: BD of fixed-point FIR filtering system with DSP integration.
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RTDX_CreateInputChannel(cinput);
RTDX_CreateOutputChannel(coutput);

void FIR(short *input, short *output)
{
 int i, j; 
 int result;
 
 for( j = 0; j < kBUFFER_SIZE; j++ )
 {
  for(i = N-1; i > 0; i-- )
   samples[i] = samples[i-1];
  
  samples[0] = input[j];

  result = 0; 
  for( i = 0 ; i < N ; i++ )
   result += ( samples[i] * coeff[i] ) << 1;
  
  result = result >> 16;
  
  // Scale the Output to Compensate Scaling of Coefficients.
  output[j] = (short) ( result << 1 );
 }
}

void main()
{ 
 short input[kBUFFER_SIZE];
 short output[kBUFFER_SIZE];
 int i;
 
 for( i = 0; i < N ; i++ )
  samples[i] =0;

 // Convert to Q-15
 for( i = 0; i < N ; i++ )
  coeff[i] = b[i] * 0x7fff;
  
 // Scale by Half
 for( i = 0; i < N ; i++ )
  coeff[i] = coeff[i] >> 1;  
 
 // Target initialization for RTDX
 TARGET_INITIALIZE();

 /*enable RTDX channels*/
 RTDX_enableInput(&cinput);
 RTDX_enableOutput(&coutput);
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 for (;;) /* Infinite message loop. */
 {
  while(!RTDX_read(&cinput, input, sizeof(input)));
  
  FIR(input, output);
  
  /* Write filtered data back to host. */
  RTDX_write(&coutput, output, sizeof(output));
 }
}

The multiplication of two Q15 numbers results in a Q30 format number with an 
extended sign bit being at the most significant bit. The extended sign bit is removed 
by shifting left this output number by one bit, which makes it a Q31 format number. 
To store it in Q15 format, it is right shifted by 16 bits.

The FP corresponding 
to the fixed-point DSP 
integration is shown in 
Figure 9-13. As can be 
seen from this figure, 
the displays match those 
in the floating-point 
version shown in  
Figure 9-10.

Figure 9-13: FP 
of fixed-point 
FIR filtering 
system with DSP 
integration. 



206

Lab 9

L9.4 Adaptive Filtering Systems

The DSP integration of the adaptive filtering systems in Lab 6 is presented in this 
section. Though one can implement adaptive filtering by sending one sample at a 
time to the DSP, this approach is very inefficient due to the overhead associated with 
RTDX communication. It is thus more efficient to send an array of input data to the 
DSP where a point-by-point processing is performed. 

L9.4.1 System Identification

An IIR filter is used to act as the unknown system by using the Butterworth 
Filter VI. Note that unlike the Butterworth Filter PtByPt VI used in 
Lab 7, this VI processes an array input. A 64-sample sinusoidal signal is used as the 
reference input via the RTDX channel cin1, and the output of the IIR filter is sent 
to the DSP via the RTDX channel cin2. The output of the LMS FIR filter and the 
error between the filter output and the desired output are read via the cout1 and 
cout2 channels, respectively.

Figure 9-14: System identification with DSP integration.

A True Constant is wired to the init/cont terminal of the Butterworth 
Filter VI. This disables the initialization of the internal state of the filter, thus 
avoiding the group delay effect at the beginning of each output array. The BD of the 
system identification system with DSP integration is shown in Figure 9-14.
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The C code for performing adaptive filtering on the C6x DSP is shown below. This 
code updates two arrays, consisting of the coefficients and input samples, at each 
iteration, similar to the LabVIEW implementation.

#include “target.h”
#include <rtdx.h>

#define N 32 //filter length
#define kBUFFER_SIZE 64

float h[N] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
0.0, 0.0, 0.0, 0.0, 0.0};
float samples[N];

RTDX_CreateInputChannel(cin1);
RTDX_CreateInputChannel(cin2);
RTDX_CreateOutputChannel(cout1);
RTDX_CreateOutputChannel(cout2);

void main()
{ 
 float input1[kBUFFER_SIZE];
 float input2[kBUFFER_SIZE];
 float output[kBUFFER_SIZE];
 float e[kBUFFER_SIZE];
 
 int i, j;
 float  stemp, stemp2;
   
 for( i = 0 ; i < N ; i++ )
  samples[i] = 0;
 
 // Target initialization for RTDX
 TARGET_INITIALIZE();

 /*enable RTDX channels*/
 
 RTDX_enableInput(&cin1);
 RTDX_enableInput(&cin2);
 RTDX_enableOutput(&cout1);
 RTDX_enableOutput(&cout2);
 
 for (;;) /* Infinite message loop. */
 {
  /* Wait for input sample */
  while(!RTDX_read(&cin1, input1, sizeof(input1)));
  while(!RTDX_read(&cin2, input2, sizeof(input2)));
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  for (j = 0; j < kBUFFER_SIZE; j++)
  {    
   // Update array samples
   for(i = N-1; i > 0; i-- )
    samples[i] = samples[i-1];
 
   samples[0] = input1[j];

   stemp =0;
   
   // FIR Filtering
   for( i = 0 ; i < N ; i++ )
    stemp += (samples[i] * h[i]);
   
   output[j] = stemp;
   
   e[j] =  input2[j] - stemp;
   
   stemp = (0.001 * e[j]);
   
   // Update Coefficient
   for(i = 0; i < N; i++)
   {
    stemp2 = (stemp * samples[i]);
    h[i] = h[i] + stemp2; 
   }
  } 
  
  /* Write scaled data back to host. */
  RTDX_write(&cout1, output, sizeof(output));
  RTDX_write(&cout2, e, sizeof(e));
 
 }

}

The output of the IIR filter and the adaptive FIR filter are shown in Figure 9-15. 
The output of the adaptive FIR filter adapts to the output of the IIR filter (unknown 
system) when the input is suddenly changed. Notice that the speed of convergence is 
governed by the step size specified in the C code.
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Figure 9-15: System identification with DSP integration.
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L9.4.2 Noise Cancellation

For the DSP integration of the noise cancellation system, the same CCS project, 
LMS.pjt, is used here. As shown in Figure 9-16, the noise signal acts as the reference 
signal and is sent to the DSP via the cin1 channel. The filtered noise signal, generat-
ed by passing the noise signal through a time-varying channel, is sent to the DSP via 
the cin2 channel. The LMS filter output then becomes available from the cout1 
channel, and the noise cancelled output signal is read from the cout2 channel.

Figure 9-16: BD of noise cancellation with DSP integration.

In the Channel VI, introduced in Lab 6, the time duration between the steps is 
modified. This is done by changing the frequency of the Basic Function Gen-
erator VI to 25. As shown in Figure 9-17, the LMS filter adapts to the noise signal 
in such a way that the difference between its output and the noise corrupted signal 
approaches zero. 
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Figure 9-17: FP of noise cancellation with DSP integration.

L9.5 Frequency Processing: FFT

In this section, the DSP integration of the FFT algorithm is presented.

The BD of the combined implementation is shown in Figure 9-18(a). In this BD, a 
128-sample sinusoidal signal having a 16-bit integer array format is sent to the DSP. 
Notice that the samples read from the DSP are in the 32-integer array format since the 
FFT magnitude values are quite large as indicated in the FP shown in Figure 9-18(b).
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(b)

Figure 9-18: FFT DSP integration: (a) BD, and (b) FP.

(a)
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For the DSP implementation, it is required to have the C source code of the FFT 
algorithm presented in Chapter 7. This code appears below and is provided on the 
accompanying CD [3]:

#include <math.h>    
#include "twiddleR.h"
#include "twiddleI.h" 

#include <rtdx.h>                      /* RTDX                      */
#include "target.h"        /* TARGET_INITIALIZE()       */

#define kBUFFER_SIZE 128
#define NUMDATA 128   /* number of real data samples */
#define NUMPOINTS 64    /* number of point in the DFT, NUMDATA/2 */

#define TRUE 1
#define FALSE 0
#define BE TRUE
#define LE FALSE
#define ENDIAN LE    /* selects proper endianaess. If building 
          code in Big Endian, use BE, else use LE */

#define PI 3.141592653589793 /* defineition of pi */

typedef struct { /* define the data type for the radix-4 twiddle factors */
short imag;
short real;
} COEFF;

/* BIG Endian */
#if ENDIAN == TRUE

typedef struct {
 short imag;
 short real;
} COMPLEX;

#else

/* LITTLE Endian */
typedef struct {
 short real;
 short imag;
} COMPLEX;

#endif

#pragma DATA_ALIGN(x,NUMPOINTS);
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COMPLEX x[NUMPOINTS+1];   /* array of complex DFT data */
COEFF W4[NUMPOINTS];
short g[NUMDATA];
COMPLEX A[NUMPOINTS];   /* array of complex A coefficients */
COMPLEX B[NUMPOINTS];   /* array of complex B coefficients */
COMPLEX G[2*NUMPOINTS];   /* array of complex DFT result */
unsigned short IIndex[NUMPOINTS], JIndex[NUMPOINTS]; 
int count;

int magR[NUMDATA]; 
int magI[NUMDATA];

int output[kBUFFER_SIZE];

void make_q15(short out[], float in[], int N);
void R4DigitRevIndexTableGen(int, int *, unsigned short *, unsigned short 
*);
void split1(int, COMPLEX *, COMPLEX *, COMPLEX *, COMPLEX *);
void digit_reverse(int *, unsigned short *, unsigned short *, int);
void radix4(int, short[], short[]);
void fft();

RTDX_CreateInputChannel(cinput);
RTDX_CreateOutputChannel(coutput);

void main()
{
   int i,k;
   short tr[NUMPOINTS], ti[NUMPOINTS]; 
 
   // Target initialization for RTDX
   TARGET_INITIALIZE();

   /*enable RTDX channels*/
   RTDX_enableInput(&cinput);
   RTDX_enableOutput(&coutput);

   //Read Twiddle factors to COMPLEX array and make Q-15;
   make_q15(tr, TR, NUMPOINTS);  //Data in Header files from Matlab
   make_q15(ti, TI, NUMPOINTS);           

   for(i=0;i<NUMPOINTS;i++)
   {
    W4[i].real = tr[i];
    W4[i].imag = ti[i];
   }

   /* Initialize A,B, IA, and IB arrays */
   for(k=0; k<NUMPOINTS; k++)



215

DSP Integration Examples

   {
   A[k].imag = (short)(16383.0 * (-cos(2*PI/(double)(2*NUMPOINTS)*
                (double)k)));
   A[k].real = (short)(16383.0*(1.0 - sin(2*PI/(double)(2*NUMPOINTS)*
                (double)k)));
   B[k].imag = (short)(16383.0*(cos(2*PI/
(double)(2*NUMPOINTS)*(double)k)));
   B[k].real = (short)(16383.0*(1.0 + sin(2*PI/(double)(2*NUMPOINTS)*
                (double)k)));
   }

   /* Initialize tables for FFT digit reversal function */
   R4DigitRevIndexTableGen(NUMPOINTS, &count, IIndex, JIndex);

   for(;;) /* Infinite message loop. */
   {
      while(!RTDX_read(&cinput, g, sizeof(g)));

      /* Call FFT algorithm */        
      fft();

      for (k=0; k<NUMDATA; k++)
      {
         magR[k] = (G[k].real*G[k].real) << 1;
         magI[k] = (G[k].imag*G[k].imag) << 1;

         output[k] = magR[k] + magI[k];
      }

      /* Write scaled data back to host. */
      RTDX_write(&coutput, &output, sizeof(output));
   }
}

void fft()
{ 
   int n;
   /* Forward DFT */
   /* From the 2N point real sequence, g(n), for the N-point complex 
sequence, x(n) */

   for (n=0; n<NUMPOINTS; n++)
   {
      x[n].imag = g[2*n + 1]; /* x2(n) = g(2n + 1) */
      x[n].real = g[2*n]; /* x1(n) = g(2n) */
   }

   /* Compute the DFT of x(n) to get X(k) -> X(k) = DFT{x(n)} */
   radix4(NUMPOINTS, (short *)x, (short *)W4);
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   digit_reverse((int *)x, IIndex, JIndex, count);
   /* Because of the periodicity property of the DFT, we know that X(N+k) = 
X(k) . */
   x[NUMPOINTS].real = x[0].real;
   x[NUMPOINTS].imag = x[0].imag;
   /* The split function performs the additional computations required to 
get G(k) from X(k). */

   split1(NUMPOINTS, x, A, B, G);
   /* Use complex conjugate symmetry properties to get the rest of G(k) */
   G[NUMPOINTS].real = x[0].real - x[0].imag;
   G[NUMPOINTS].imag = 0;

   for (n=1; n<NUMPOINTS; n++)
   {
      G[2*NUMPOINTS-n].real = G[n].real;
      G[2*NUMPOINTS-n].imag = -G[n].imag;
   }
}

void radix4(int n, short x[], short w[])
{
   int n1, n2, ie, ia1, ia2, ia3, i0, i1, i2, i3, j, k;
   short t, r1, r2, s1, s2, co1, co2, co3, si1, si2, si3;
   n2 = n;
   ie = 1;
   for (k = n; k > 1; k >>= 2) 
   {
      n1 = n2;
      n2 >>= 2;
      ia1 = 0;
      for (j = 0; j < n2; j++) 
      {
         ia2 = ia1 + ia1;
         ia3 = ia2 + ia1;
         co1 = w[ia1 * 2 + 1];
         si1 = w[ia1 * 2];
         co2 = w[ia2 * 2 + 1];
         si2 = w[ia2 * 2];
         co3 = w[ia3 * 2 + 1];
         si3 = w[ia3 * 2];
         ia1 = ia1 + ie;
         for (i0 = j; i0 < n; i0 += n1) 
         {
            i1 = i0 + n2;
            i2 = i1 + n2;
            i3 = i2 + n2;
            r1 = x[2 * i0] + x[2 * i2];
            r2 = x[2 * i0] - x[2 * i2];
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            t = x[2 * i1] + x[2 * i3];
            x[2 * i0] = r1 + t;
            r1 = r1 - t;
            s1 = x[2 * i0 + 1] + x[2 * i2 + 1];
            s2 = x[2 * i0 + 1] - x[2 * i2 + 1];
            t = x[2 * i1 + 1] + x[2 * i3 + 1];
            x[2 * i0 + 1] = s1 + t;
            s1 = s1 - t;
            x[2 * i2] = (r1 * co2 + s1 * si2) >> 15;
            x[2 * i2 + 1] = (s1 * co2-r1 * si2)>>15;
            t = x[2 * i1 + 1] - x[2 * i3 + 1];
            r1 = r2 + t;
            r2 = r2 - t;
            t = x[2 * i1] - x[2 * i3];
            s1 = s2 - t;
            s2 = s2 + t;
            x[2 * i1] = (r1 * co1 + s1 * si1) >>15;
            x[2 * i1 + 1] = (s1 * co1-r1 * si1)>>15;
            x[2 * i3] = (r2 * co3 + s2 * si3) >>15;
            x[2 * i3 + 1] = (s2 * co3-r2 * si3)>>15;
         }
      }
   ie <<= 2;
   }
}

void digit_reverse(int *yx, unsigned short *JIndex, unsigned short *IIndex, 
int count)
{
   int i;
   unsigned short I, J;
   int YXI, YXJ;
   for (i = 0; i<count; i++)
   {
      I = IIndex[i];
      J = JIndex[i];
      YXI = yx[I];
      YXJ = yx[J];
      yx[J] = YXI;
      yx[I] = YXJ;
   }
}

void R4DigitRevIndexTableGen(int n, int *count, unsigned short *IIndex, 
unsigned short *JIndex)
{
   int j, n1, k, i;
   j = 1;
   n1 = n - 1;
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   *count = 0;
   for(i=1; i<=n1; i++)
   {
      if(i < j)
      {
         IIndex[*count] = (unsigned short)(i-1);
         JIndex[*count] = (unsigned short)(j-1);
         *count = *count + 1;
      }
      k = n >> 2;
      while(k*3 < j)
      {
         j = j - k*3;
         k = k >> 2;
      }
      j = j + k;
   }
}

void split1(int N, COMPLEX *X, COMPLEX *A, COMPLEX *B, COMPLEX *G)
{
   int k;
   int Tr, Ti;

   for (k=0; k<N; k++)
   {
    Tr = (int)X[k].real * (int)A[k].real - (int)X[k].imag * (int)A[k].imag 
+
      (int)X[N-k].real * (int)B[k].real + (int)X[N-k].imag * (int)B[k].
imag;
    G[k].real = (short)(Tr>>15);

    Ti = (int)X[k].imag * (int)A[k].real + (int)X[k].real * (int)A[k].imag 
+
      (int)X[N-k].real * (int)B[k].imag - (int)X[N-k].imag * (int)B[k].
real;
    G[k].imag = (short)(Ti>>15);
   }
}

void make_q15(short out[], float in[], int N)
{
   int i;
 
   for(i=0;i<N;i++)
   {
      out[i]=0x7fff*in[i];  //Convert to Q-15, good approximate
   }
}
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Care must be taken to avoid overflows if the algorithm is running on a fixed-point 
DSP. The amplitude of the input signal needs to be scaled properly in order to avoid 
overflows in the computations of the FFT on the DSP. In the example shown in 
Figure 9-18, 256 is used as the amplitude of the input signal. Figure 9-19 illustrates an 
overflowed FFT outcome when the amplitude is set to 4096. 

Figure 9-19: Overflow in computing FFT. 

It should be noted that the overall timing of a typical DSP integration is often not so 
efficient due to the overhead associated with RTDX communication. Nevertheless, 
the discussed DSP integration allows one to examine code execution on the C6x 
DSP hardware platform.
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10C H A P T E R

In this and the next two chapters, three DSP system project examples are discussed 
and designed using LabVIEW. These examples show how a complete DSP system can 
be built in a relatively short amount of time by using LabVIEW. In increasing order 
of complexity, they consist of dual-tone multi-frequency signaling, software-defined 
radio, and MP3 player. 

Dual-tone multi-frequency (DTMF) signaling is used extensively in voice commu-
nication applications such as voice mail and telephone banking. A DTMF signal is 
made up of two tones selected from a low and a high tone group. Each pair of tones 
contains one frequency from the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and 
one frequency from the high group (1209 Hz, 1336 Hz, 1477 Hz). Figure 10-1 shows 
the frequencies allocated to the telephone pad push buttons.

Figure 10-1: Keypad and allocated frequencies.
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The implementation of the DTMF receiver system is normally done by using the 
Goertzel algorithm [1]. This algorithm is more efficient than the FFT algorithm for 
DTMF detection both in terms of the number of operations and amount of memory 
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usage. Furthermore, unlike the FFT, it does not require access to the entire data 
frame, leading to faster execution. As indicated in Figure 10-2, seven Goertzel filters 
are used here in parallel to form a DTMF detection system. Each Goertzel filter is 
designed to detect a DTMF tone. The output from each filter is squared and fed into 
a threshold detector, where the strongest signals from the low and high frequency 
groups are selected to identify a pressed digit on the keypad.

Figure 10-2: DTMF system using Goertzel algorithm.
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The difference equations of a second-order Goertzel filter, see Figure 10-3, are given by
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where x[n] denotes input, yk[n] output, vk[n] intermediate output, the subscript k 
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The initial conditions are assumed to be zero, i.e., v vk k−[ ] = −[ ] =1 2 0. Considering 
that only the magnitude of the signal is required for the DTMF tone detection, the 
following equation is used to generate magnitude squared outputs:
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Figure 10-3: Structure of a second-order Goertzel filter.

The coefficients  are selected based on the DTMF tones. They are listed in Table 10-1.
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Fundamental Frequency (Hz) Coefficient
697 1.703275
770 1.635585
852 1.562297
941 1.482867
1209 1.163138
1336 1.008835
1477 0.790074

Table 10-1: Fundamental frequencies.
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In this lab, the DTMF system just explained is built in the LabVIEW graphical pro-
gramming environment.

L10.1 DTMF Tone Generator System

Before building a BD for the DTMF system, let us begin by creating a keypad as 
shown in Figure 10-4. The twelve buttons shown are grouped into a cluster so that 
their outputs are wired via a cluster wire. This is done by placing a Cluster shell 
(Controls → All Controls → Array & Cluster → Cluster) on the FP, and then by locating 
Text Buttons (Controls → Buttons & Switches → OK Button) in the cluster area.

Figure 10-4: Creating a cluster control.

The width and height of a button can be adjusted to have a larger display on the FP. 
This is achieved by choosing the buttons and then by selecting the option Set Width 
and Height from the Resize Objects menu of the FP toolbar as shown in Figure 10-4. 
In this example, both the width and height of the buttons are set to 30. Also, the 
mechanical action of the buttons is configured to be Latch When Released by right-
clicking on the buttons and choosing Mechanical Action from the shortcut menu. 
Once the configuration of a button is complete, the button is copied multiple times 
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to construct a keypad. Change the Boolean text of the buttons appropriately. Align 
and distribute the buttons via Align Objects and Distribute Objects on the FP toolbar.

Next, the output value of the cluster control is specified for each button, in other 
words the value coming out of the output of the cluster control when one of the 
buttons is pressed. To accomplish this, right-click on the border of the cluster and 
choose Reorder Controls In Cluster from the shortcut menu. This brings up the window 
shown in Figure 10-5. The numbers shown in the black background correspond to 
the modified order and the numbers in the white background to the original order. 
The number assigned to a key is displayed next to Click to set to shown on the toolbar. 
Click the buttons in sequential order to specify the value shown in the toolbar area. 
After finishing the assignment of the values to the buttons, click the OK button to 
finish reordering controls, or the X button to cancel the changes.

Figure 10-5: Reordering cluster control.

Right-click on the border of the cluster, and choose Auto Sizing → Size to Fit to resize 
the cluster, if desired. Also, rename the label of the cluster as Keypad.

The BD of the built DTMF system is shown in Figure 10-6. Note that the keypad 
cluster control is shown as an icon on the BD. This VI generates a tone depending 
on the number pressed on the keypad in the FP. The DTMF decoder based on the 
Goertzel algorithm can be seen in the lower half of the BD.
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To build the BD, wire the output value of the cluster to an array by using the 
Cluster to Array function (Functions → All Functions → Array → Cluster to 
Array). This is done in order to have the value of each button as an element of an 
array. The array is then wired to a Search 1D Array function to search for the 
True values among the array elements. In other words, this is done to check the 
status of the buttons considering that the index of the array which is greater or equal 
to zero is returned when a button is pressed, otherwise –1 is returned. 

Thus, if the index of the array becomes greater than or equal to zero, that is, any 
button is pressed, a DTMF signal is generated and the decoding part in the True case 
of the Case Structure is executed. In the False case of the Case Structure, 
a time delay is included to continue the idle status until a key is pressed.

Figure 10-6: BD of DTMF system.
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Now, let us go through the DTMF signal generation for the True case of the Case 
Structure. The value of the array index is wired to the Quotient & Remain-
der function with 3 as divisor. Since the numbers on the keypad are  arranged in 
three columns and four rows, the remainder of this operation becomes the column 
index, and the quotient becomes the row index. Based on the column and row indi-
ces, a high and a low tone value are chosen using two 1D array constants. The low 
and high tone values are wired to a Sine Waveform VI to generate a waveform 
based on the chosen frequencies.
The generated waveform is scaled to 8-bit integer so that it can be played at an 
audible volume level. An Expression Node (Functions → All Functions → Numeric 
→ Expression Node) is used for scaling the waveform. An Expression Node is 
useful for evaluating a simple equation or expression containing a single variable [1]. 
A Snd Write Waveform VI (Functions → All Functions → Graphics & Sound → 
Sound → Snd Write Waveform) is located to send out the waveform to the PC sound 
card. Create a constant on the sound format terminal to specify the sound 
format including stereo/mono, sampling frequency, and bits per sample. Here, the 
8-bit mono format with a sampling frequency of 8000 Hz is used. For spectral analysis 
of the generated samples, a Spectral Measurement Express VI and a Wave-
form Graph are used. The Spectral Measurement Express VI is configured 
as linear amplitude spectrum with no windowing.
At this stage, the DTMF generator is complete. In the next section, the decoding 
module is covered.

L10.2 DTMF Decoder System
The Goertzel algorithm is used for the decoding of DTMF signals. The BD shown in 
Figure 10-7 illustrates the Goertzel algorithm described by Equation (10.3). Notice 
that to access the two previous values of vk[n], i.e., vk[n–1] and vk[n–2], two Shift 
Registers are stacked by right-clicking on the Shift Register and selecting 
Add Element on the shortcut menu.
The inputs of this subVI consist of a 1D array of 205 samples and the coefficients of 
the Goertzel algorithm. A Text Ring control (Controls → All Controls → Ring & 
Enum → Text Ring), labeled as Freq/Coeff, is located on the FP. Its data represen-
tation and properties are then modified as illustrated in Figure 10-8. This is done by 
right-clicking on the Text Ring in the FP, and then by choosing Edit Items… from 
the shortcut menu. Note that this Goertzel subVI is designed to incorporate only 
the first harmonic. It uses 205 input samples and its coefficients are calculated based 
on 205 frequency bins.
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The output of the Goertzel subVI is a Boolean value which indicates whether the 
specified frequency component is present in the input samples or not. This is decided 
by comparing the squared output of this subVI with a threshold value. The threshold 
value here is empirically set to 5000.

Figure 10-7: BD of Goertzel algorithm.

Figure 10-8: Ring Properties.
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In the BD of the DTMF system shown in Figure 10-6, a total of seven Goertzel subVIs 
are placed to detect each frequency of a DTMF signal. The outputs of the Geortzel 
subVIs are grouped as two arrays to incorporate the row and column frequencies. 
From these arrays, indices of the True values are searched to determine a pressed 
key. A string constant is referred to by the indices of the 2D array of string constants.

To create the 2D array of string constants, first place an Array Constant shell 
(Functions → All Functions → Array → Array Constant) on the BD. Then, place a 
String Constant (Functions → All Functions → String → String Constant) in the 
Array Constant. As a result, a 1D array of string constants is created. In order 
to increase the dimension of the array, right-click on the Array Constant and 
choose Add Dimension from the shortcut menu. Now, enter the corresponding strings 
in the 2D array.

The output of the DTMF is shown in Figure 10-9. Notice that when the button ‘#’ is 
pressed, two frequencies are observed at 941 Hz and 1477 Hz in the decoded output. 
Furthermore, the decoded output matches the expected outcome.

Figure 10-9: FP of DTMF system.

L10.3 Bibliography
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11C H A P T E R

This chapter covers a software-defined radio system built using LabVIEW. A soft-
ware-defined radio consists of a programmable communication system where 
functional changes can be made by merely updating software. For a detailed descrip-
tion of software-defined radio, the reader is referred to [1], [2]. 

4-QAM (Quadrature Amplitude Modulation) is chosen to be the modulation 
scheme of our software-defined radio system, noting that this modulation is widely 
used for data transmission applications over bandpass channels such as FAX modem, 
high speed cable, multi-tone wireless and satellite systems [2]. For simplicity, here the 
communication channel is considered to be ideal or noise-free. 

11.1 QAM Transmitter

For transmission, pseudo noise (PN) sequences are generated to serve as our message 
signal. A PN sequence is generated with a five-stage linear feedback shift register 
structure, see Figure 11-1, whose connection polynomial is given by

(11.1)h D D D( ) = + +1 2 5

where D denotes delay and the summations represent modulo 2 additions.

Figure 11-1: PN generation with linear feedback shift register.

D+

h1

x(n)

+

y(n)

y(n−1)
D

y(n−2)
D

y(n−3)
D

y(n−4)
D

y(n−5)

h2

+

h3

+

h4

+

h5



232

Chapter 11

The sequence generated by the above equation has a period of 31(= 25 – 1). Two PN 
sequence generators are used in order to create the message sequences for both the 
in-phase and quadrature phase components. The constellation of 4-QAM is shown 
in Figure 11-2. For more details of PN sequence generation, refer to [2].

Figure 11-2: Constellation of 4-QAM.
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Note that frame marker bits are inserted in front of the generated PN sequences. This 
is done for frame synchronization purposes, discussed shortly in the receiver section. 
As illustrated in Figure 11-3, a total of ten frame maker bits are located in front of 
each period of a PN sequence.

Figure 11-3: PN sequence generator.
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The generated message sequences are then passed through a raised-cosine FIR filter 
to create a band limited baseband signal. The frequency response of the raised cosine 
filter is given by
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where α∈[0,1] denotes a roll-off factor specifying the excess bandwidth beyond the 
Nyquist frequency fc.

The output of the raised cosine filter is then used to build a complex envelope, s t( ), 
of a QAM signal expressed by

(11.3)s t c g t kTk T
k

( ) = −( )
=−∞

∞

∑
where ck indicates a complex message, made up of two real messages ak and bk,  
ck = ak + jbk.

By modulating s t( ) with ej tcω , an analytical signal or pre-envelope, s+(t), is generated,

(11.4)s t s t e c g t kT ej t
k T

k

j tc c
+

=−∞

∞

( ) = ( ) = −( )∑ ω ω

The transmitted QAM signal, s(t), is thus given by 

(11.5)s t e s t

a t t b t tc c

( ) = ℜ ( ) 
= ( ) ( ) − ( ) ( )

+

cos sinω ω

where ℜ ⋅[ ]e  corresponds to the real part of the complex value inside the brackets.

Figure 11-4 illustrates the block diagram of the QAM transmitter just discussed. 
Notice that the two data paths, indicated by a solid line and a dotted line, represent 
complex data. Again, the reader is referred to [2] for more theoretical details.

Figure 11-4: QAM transmitter [2].
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11.2 QAM Receiver

11.2.1 Ideal QAM Demodulation

Here, it is assumed that the exact phase and frequency information of the carrier is 
available. The received QAM signal is denoted by r(t). To simplify the system, an 
ideal channel is assumed between the transmitter and the receiver, i.e., r(t) = s(t).

If r(nT) is considered to be the sampled received signal, the analytic signal r+(nT) is 
given by

(11.6)r nT r nT jr nT+ ( ) = ( ) + ( )ˆ

where ̂r ⋅( ) indicates the Hilbert transform of r ⋅( ). Thus, the complex envelope of the 
received QAM signal  can be expressed as

(11.7)r nT r nT e

a nT jb nT

j nTc( ) = ( )
= ( ) + ( )

+
− ω

Such a QAM demodulation process is illustrated in Figure 11-5.

Figure 11-5: Ideal demodulation [2].
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11.2.2 Frame Synchonization

Frame synchronization is required for properly grouping transmitted bits into an 
alphabet. To achieve this synchronization, a similarity measure, consisting of cross-
correlation, is computed between the known marker bits and received samples. The 
cross-correlation of two complex values v and w is given by

(11.8)R j w n v n jwv
n

[ ] = [ ] +[ ]
=−∞

∞

∑
where the bar denotes complex conjugate.

An example of the cross-correlation outcome for frame synchronization is shown 
in Figure 11-6. The maximum value is found to be at the location of index 33. The 
subsequent message symbols are then framed from this index point.
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11.2.3 Decision Based Carrier Tracking

Let us now consider the phase offset, denoted by θ, between the transmitter and the 
receiver. Based on this offset, the received signal can be written as

(11.9)

Figure 11-6: Cross-correlation of frame 
marker bits and received samples.
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where ̂cn indicates the output of a slicer mapping a received sample to the nearest 
ideal reference in the signal constellation. As a result, the baseband error at the 
receiver is given by

(11.10) e nT c r nTn( ) = − ( )ˆ

Next, the LMS update method is used to minimize a decision directed cost function, 
JDD(θ), consisting of the mean squared baseband error

(11.11)
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By differentiating JDD(θ) with respect to θ, we get

(11.12)
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where

(11.13)de nT

d
d
d

c r nT
dr nT

dn



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θ θ θ

ˆ

and
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Equation (11.12) can thus be rewritten as

(11.15)
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where ℑ ⋅[ ]m  corresponds to the imaginary part of the complex value inside the 
brackets. 

By writing the term ℑ ( ){ }m c r nTn̂  in polar form, we get

(11.16)
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Note that for small βr – βc,

(11.18)
sin β β β βr c r c

r c nR R c

−( ) ≈ −

≈ =



237

DSP System Design: Software-Defined Radio

As a result, the phase error ∆θ(n) is given by

(11.19)∆ ( ) =
ℑ ( ) ( ){ }

θ n
m e nT r nT

cn

 
2

Figure 11-7 shows a block diagram of the above tracking equations.

Figure 11-7: Decision directed carrier phase and frequency tracking.
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When both phase and frequency tracking are considered, the carrier phase of the 
receiver becomes

(11.20)

In this case, the phase update ∆ϕ(n) is given by

(11.21)

where ψ(n)  denotes the contribution of frequency tracking, which is expressed as

(11.22)

The scale factors k1 and k2 are configured to be small here and usually k1 / k2 ≥ 100 is 
required for phase convergence [2].

ϕ ϕ ϕn n n+( ) = ( ) + ∆ ( )1

∆ ( ) = ∆ ( ) + ( )ϕ θ ψn k n n1

ψ ψ θn n k n( ) = −( ) + ∆ ( )1 2



238

Chapter 11

11.3 Bibliography

[1] C. Johnson and W. Sethares, Telecommunication Breakdown: Concepts of 
Communication Transmitted via Software-Defined Radio, Prentice-Hall, 2004.

[2] S. Tretter, Communication System Design Using DSP Algorithms, Klumer 
Academic/Plenum Publishers, 2003.



239

Lab 11: Building a 4-QAM Modem

The design of a 4-QAM modem system is covered in this lab. As shown in Figure 
11-8, this system consists of the following functional modules: message source, pulse 
shape filter, QAM modulator, Hilbert transformer, QAM demodulator, frame synchro-
nizer, and phase & frequency tracker. The system is divided into two parts: transmitter 
and receiver. The first three modules (message source, pulse shape filter, and QAM 
modulator) make up the transmitter side and the other modules the receiver side. The 
building of each functional module is described in the sections that follow.

Figure 11-8: System-level VI of 4-QAM modem.

L11.1 QAM Transmitter

The first component of the QAM modem is the message source. Here, PN sequences 
are used for this purpose. Frame marker bits are inserted in front of these sequences to 
achieve frame synchronization. The BD of the Message Source VI is shown in 
Figure 11-9.

The generated samples are oversampled 4 times. This is done by comparing with 0 
the remainder of the global counter, indicated by n, divided by 4. Thus, out of four 
executions of this VI, one message sample (frame marker bit or PN sample) is gener-
ated. For the remaining three executions of the VI, zero samples are generated. The 
total length of the message for one period of a PN sequence and frame marker bits 
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is 164, which is obtained by 4 (oversampling rate) × [10 (frame marker bits) + 31 
(period of PN sequence)]. A constant array of ten complex numbers is used to specify 
the marker bits. Note that the real parts of the complex values are used as the frame 
marker bits of the in-phase samples and the imaginary parts as the frame marker bits 
of the quadrature-phase samples. In order to create complex constants, the repre-
sentation of a numeric constant is changed by right-clicking on it and choosing 
Representation → Complex Double (or Complex Single).

The BD of the PN Generator VI is shown in Figure 11-10. With this subVI, a 
pseudo noise sequence of length 31 is generated by XORing the values of the second 
and fifth shift registers.

Figure 11-9: Message Source VI.

Figure 11-10: PN Generator VI.
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The Shift Register, Rotate 1D Array, Index Array, and Replace 
Array Subset functions are used to compute a new PN sample and to rotate 
the shift register. A For Loop with one iteration and a First Call? function 
(Functions → All Functions → Advanced → Synchronization → First Call?) are used in 
order to pass the shift register value of a current call to a next call of the subVI. The 
First Call? function checks whether a current call is occurring for the first time 
or not. If that is the case, the shift register values are initialized by their specified 
initial values. Otherwise, the old values of the shift registers are passed from the pre-
vious execution of the subVI. Notice that the PN Generator VI shown in Figure 
11-10 is built with the consideration of porting the algorithm to a DSP hardware 
platform. Alternatively, the built-in Binary MLS VI, (Functions → All Functions → 
Analyze → Signal Processing → Signal Generation → Binary MLS),  can be used for the 
LabVIEW implementation.
Next, the generated samples are passed to a pulse shape filter shown in Figure 11-11. 
A raised cosine filter is used to serve as the pulse shape filter. The FIR Filter 
PtByPt VI is utilized for this purpose. The two outputs of the pulse shape filters 
are combined to construct the pulse shaped message signal by using the Re/Im to 
Complex function (Functions → All Functions → Numeric → Complex → Re/Im to 
Complex).

Figure 11-11: 
Pulse shape filter.

As for the filter coefficients, they can be designed by a filter design tool, such as the 
one discussed in Lab 4, and stored in an array of constants.
The signal passed through the pulse shape filter is then connected to the QAM 
modulator shown in Figure 11-12. The QAM modulated signal s(t) is obtained by 
taking the real part of the pre-envelope signal s+(t). This is achieved by performing a 
complex multiplication between the complex input and a complex carrier consisting 
of a cosine and a sine waveform. This completes the modules of the transmitter. In 
the next section, the modules of the receiver are built.
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Figure 11-12: QAM modulator.

L11.2 QAM Receiver

The first module on the receiver side is the Hilbert transformer. This module builds 
the required analytic signal for demodulation based on the transmitted QAM signal.

A Hilbert transformer is built by using the DFD Remez Design VI (Functions → 
All Functions → Digital Filter Design → Filter Design → Advance FIR Filter Design → DFD 
Remez Design) of the DFD toolkit. To have an integer group delay, an even number, 
such as 32, is specified as the filter order. The DFD Filter Analysis Express 
VI is wired to analyze the group delay of the filter as well as its magnitude and phase 
response, see Figure 11-13.

Figure 11-13: Building Hilbert transformer.
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The specifications of the Hilbert transformer are similar to a bandpass filter as indi-
cated in Figure 11-14. Notice that only one element of the cluster array is needed 
to design the Hilbert transformer. However, when a control is created at the band 
specs terminal of the DFD Remez Design VI, there are two default cluster val-
ues. The second element, indexed at 1, should thus be deleted. To do this, select the 
element of the cluster array to be deleted, then right-click and choose Data Operation 
→ Delete Element from the shortcut menu.

By running the VI, the magnitude, phase response and group delay of the Hilbert 
transformer can be seen as shown in Figure 11-14.

Figure 11-14: Analysis of Hilbert transformer.

The array of indicators corresponding to the Hilbert transform coefficients is con-
verted to an array of constants to be used by the other VIs. Note that the design and 
analysis of the Hilbert transformer are needed only in the designing phase not in the 
implementation phase of the modem system.
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The BD of the Hilbert transformer using the coefficients obtained from the DFD 
toolkit is shown in Figure 11-15.

Figure 11-15: Hilbert Transform VI.

A Data Queue PtByPt VI (Functions → All Functions → Analyze → Signal Pro-
cessing → Point By Point → Other Functions PtByPt → Data Queue PtByPt) is employed in 
order to synchronize the input and output of the Hilbert transformer. In other words, 
the input samples are delayed until the corresponding output samples become avail-
able. This is needed due to the group delay associated with the filtering operation. 
For an FIR filter of 33 taps, the group delay is 16. An array of numeric constants cor-
responding to the filter coefficients is set up based on the text file generated by a filter 
design tool. Here, an FIR filter has been used for the implementation of the Hilbert 
transformer instead of the built-in VI of LabVIEW. This is done to allow its DSP 
hardware implementation.

The analytic signal achieved from the Hilbert transformer is demodulated by the 
QAM demodulator as illustrated in Figure 11-16. The demodulation process is 
similar to the modulation process illustrated in Figure 11-12 except for the negative 
frequency part.

Next, the QAM demodulated signal is decimated by 4. To do this, a Case Struc-
ture is used so that every fourth sample is selected for processing, as illustrated in 
Figure 11-8. The decimated signal is sent to the Sync & Tracking VI for frame 
synchronization and phase/frequency tracking. The Sync & Tracking VI is an 
intermediate level subVI incorporating several subVIs/functions and operating in two 
different modes: frame synchronization and phase/frequency tracking. Let us exam-
ine the BD of this VI displayed in Figure 11-17. The input samples are passed into 
the receiver queue, implemented via the Complex Queue PtByPt VI (Functions 
→ All Functions → Analyze → Signal Processing → Point By Point → Other Functions 
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PtByPt → Complex Queue PtByPt), in order to obtain the beginning of a frame by 
cross-correlating the frame marker bits and received samples in the queue. Filling the 
queue is continued until the queue is completely filled. Extra iterations are done to 
avoid including any transient samples due to the delays associated with the filtering 
operations in the transmitter.

Figure 11-16: QAM demodulator.

Figure 11-17: Sync & Tracking VI—frame synchronization mode.
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The length of the queue is configured to be 51 in order to include the entire marker 
bits in the queue. This length is decided based on this calculation: 31 (one period 
of PN sequence) + 2 × 10 (frame marker bits). Also, sixteen extra samples are taken 
to flush out any possible transient output of the filter as mentioned previously. Bear 
in mind that the length of the queue or the number of extra reads varies based upon 
the specification of the transmitted signal such as the length of the frame marker bits 
and the number of taps of the phase shape filter. A counter, denoted by the Loop 
Count VI in Figure 11-18, is used to count the number of samples filling the queue. 
Once the queue is completely filled and extra reads are done, the frame synchroniza-
tion module is initiated.

Figure 11-18: Loop 
Counter VI.

The subVI for frame synchronization is shown in Figure 11-19. In this subVI, the 
cross-correlation of the frame marker bits and the samples in the receiver queue are 
computed. The absolute value of the complex output is used to obtain the cross-
correlation peak since the location of this peak coincides with the beginning of the 

Figure 11-19: Frame 
Synchronization VI.
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frame. The Array Max & Min function is used to detect the index corresponding 
to the maximum cross-correlation value.

In Figure 11-20, the Complex CrossCorrelation VI is shown. This VI 
accomplishes the complex cross-correlation operation by evaluating Equation (11.8).

Figure 11-20: Complex CrossCorrelation VI.

Once the index of the maximum cross-correlation value is obtained, all the data samples 
are taken at this location of the queue. Consequently, the data bits are synchronized.

The initial phase estimation is achieved using the phase of the complex data at the 
beginning of the marker bits. Considering that the ideal reference is known for the 
first bit of the frame marker, 1 + i in our case, this allows us to obtain the phase dif-
ference between the ideal reference and the received frame marker bits. The real 
and imaginary parts of data at the beginning of the marker bits are also passed to the 
Phase and Frequency Tracking VI to provide the initial constellation.

The subVI of the frame synchronization is now complete. Locate the subVI on the 
BD of the Sync & Tracking VI shown in Figure 11-17. Notice that three local 
variables are created in order to pass the indicator values to the other parts of the VI 
which cannot be wired. In the Sync & Tracking VI, a Rounded LED indica-
tor, labeled as Sync, is placed on the FP. A local variable is created by right-clicking 
either on the terminal icon in the BD or on the Rounded LED indicator in the FP 
and choosing Create → Local Variable. Next, a local variable icon is placed on the BD. 
More details on using local and global variables can be found in [1].

The local variable Sync is used to control the flow of data for the frame synchro-
nization. The initial value of the local variable is set to True to execute the frame 
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synchronization. Then, it is changed to False within the Case Structure so 
that it is not invoked again. The other two local variables, Initial Const and 
Delay Index, are used as the inputs of the phase and frequency tracking module, 
see Figure 11-21.

Figure 11-21: Sync & Tracking VI – phase and frequency tracking mode.

Now, let us describe the Phase and Frequency Tracking VI illustrated in 
Figure 11-22. A Formula Node (Functions → All Functions → Structures → Formula 
Node) is shown in the upper part of the BD, which acts as a slicer to determine the 
nearest ideal reference based on the quadrant on the I-Q plane. A Formula Node 
structure is capable of evaluating a script written in text-based C code. There are 
numerous built-in mathematical functions and variables which can be used in a 
Formula Node. For example, pi represents π in the formula node script shown in 
Figure 11-22. Further details on Formula Node can be found in [1].

The phase error,  see the BD in Figure 11-22, is computed from Equation (11.19). 
This error is multiplied by a small scale factor to determine the phase update ∆ϕ(n) 
in a second Formula Node implementing Equation (11.20).

Now, all the components of the modem system are completed. As the final step, 
a Waveform Chart and an XY Graph (Controls → All Controls → Graph → XY 
Graph) are added to the system-level BD shown in Figure 11-8. In Figure 11-23, the 
FP of the system is shown. After updating the phase, the received signal becomes 
nearly a perfect reproduction of the transmitted signal except for the time delay. 
If there exist a phase and a frequency offset with no tracking, the received signal 
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Figure 11-22: Phase & Frequency Tracking VI.

Figure 11-23: Initial phase estimation.
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appears as shown in Figure 11-24. As displayed in this figure, the constellation of the 
received signal is rotated, and the amplitudes of some of the received samples become 
too small. Obviously, the received signal will change by introducing channel noise.

Figure 11-24: Received signal with no phase & frequency tracking.

The change in the constellation via the phase and frequency tracking is illustrated in 
Figure 11-25. The constellation of the samples in the I-Q plane becomes that of the 
ideal reference as the tracking operation progresses.

In summary, a 4-QAM transmitter and receiver system is built in LabVIEW by 
adopting a hierarchical approach. A simplified version of the system hierarchy, dis-
played by choosing Browse → Show VI Hierarchy, is shown in Figure 11-26. Using the 
phase and frequency tracking module, the phase and/or frequency offset between the 
transmitter and receiver is successfully compensated.
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As the final remark, all the subVIs discussed in this lab can be saved in a LabVIEW 
Library (LLB) file, such as Lab 11.llb. A new LLB file can be created by choosing New 
VI Library and naming it from the Name the VI window, which is brought up dur-
ing the save operation.

Figure 11-25: Phase and frequency tracking in IQ plane.

Figure 11-26: Hierarchy of QAM Modem VI.
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12C H A P T E R

The International Organization of Standardization (ISO) standard MPEG-I Layer-III,  
known as MP3, is one of the most widely used standards for digital compression and 
thus storage of audio data. The MP3 standard was developed by the Fraunhofer Insti-
tute to provide compression of audio files without any perceptible loss in audio quality 
[1]. This standard gives a compression ratio of 12:1 and yet preserves CD quality 
audio. There exist many software tools, in addition to portable MP3 players, that are 
capable of playing MP3 files.

This chapter presents a LabVIEW software implementation of single channel (mono) 
MP3 player after providing an overview of its theory. The overview presented below 
is not meant to be a detailed description of MP3 decoding, rather to provide enough 
information for one to understand the building components or blocks associated  
with MP3 decoding. The interested reader can refer to [1-4] for theoretical details  
on MP3 decoding.

Lab 12 in this chapter covers the LabVIEW implementation of the entire MP3 
decoding system. The last part of this lab involves the steps taken for the real-time 
implementation of the system. The functional blocks associated with an MP3 player 
are depicted in Figure 12-1. In what follows, the function of each block is briefly 
mentioned.
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12.1 Synchronization Block 

The first block is the Synchronization block. This block serves the purpose of receiv-
ing the incoming bitstream, extracting certain information from it and passing the 
extracted information to the succeeding blocks. This information consists of the 
Header Information, the Cyclic Redundancy Check (CRC) Information, and the 
Side Information. The Header Information specifies the type of the MP3 file, the 
bitrate used for transmission, the sampling frequency, and the nature of the audio. 
During decoding, the Header Information is identified by the occurrence of 12 
consecutive ‘1s’ [3]. The CRC Information provides details about the integrity of the 
data while the Side Information provides the necessary parameters for decoding the 
data as well as the reconstruction of scale factors.

An MP3 file is divided into smaller units called frames, as shown in Figure 12-2. Each 
frame is divided into five sections: Header, CRC, Side Information, Main Data, and 
Ancillary Data. Main Data is the coded audio, while Ancillary Data is optional and 

Figure 12-1: Functional blocks associated with MP3 player [2].
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Reduction

IMDCT
and 

Windowing

Frequency 
Inversion

Synthesis
Pholyphase
Filter Bank

PCM 
Samples

MP3 Bit  
stream

Scale Factor
Decoding

576 Samples

Figure 12-2: Anatomy of an MP3 File.
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contains user-defined attributes such as song title, artist name or song genre. Main 
Data is further divided into two granules: Granule 0 and Granule 1.

Let us first mention some details on the Side Information. The Side Information 
is divided into four parts: Main Data Begin Pointer, Private bits, SCFSI bits, and 
Granule 0/Granule 1 information. The length of the Side Information varies depend-
ing upon the nature of the audio signal; 17 bytes for mono and 32 bytes for stereo, as 
indicated in Figure 12-3.

Figure 12-3: Side Information bit mapping (number of 
bits for mono/stereo) and its fields.
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The Main Data Begin Pointer indicates the beginning of Main Data in the bitstream. 
Noting that the MP3 encoding uses the ‘bit reservoir’ technique [1], Main Data for 
a current frame does not necessarily begin after the Side Information for that frame 
but may reside in another frame, as illustrated in Figure 12-4. This is done to obtain 
more compression, as data from a current frame may not completely fill that frame. 
The Main Data Begin Pointer provides a negative offset in bytes from the header of 
a current frame to the location where Main Data for the current frame begins. This 
pointer is 9 bits long, so the bit reservoir can be at most 29 – 1 bytes long.

Figure 12-4: Bit reservoir technique [1].

H1 SI MD 1 MD 2 H2 SI MD 2 MD 3 H3 SI MD 4 H4 SI MD 4 MD 5 H5 SI

Frame1
H: Header
SI: Side information
MD: Main Data

Frame2 Frame4Frame3

Main Data Pointer 2 Main Data Pointer 3 Main Data Pointer 4 Main Data Pointer 5
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Private bits  are used for private use and not normally used for decoding. The SCale 
Factor Selection Information (SCFSI) determines whether the same scale factor 
bands are transmitted for both granules considering that the scale factors for Granule 
0 can be sometimes reused by Granule 1 in the Layer III standard. At encoding time, 
a total of 576 frequency lines of a granule are sorted into four groups of scale factor 
bands. Each group of scale factor bands corresponds to a bit of the 4-bit long SCFSI 
as shown in Table 12-1. If the bit corresponding to a group is set, this means the scale 
factors for that group are common to both granules and are transmitted only once. If 
it is zero, then they are transmitted separately for the granules.

Table 12-1: Scale factor bands corresponding to SCFSI bits [1].

SCFSI bits Scale factor band

0 0,1,2,3,4,5

1 6,7,8,9,10

2 11,12,13,14,15

3 16,17,18,19,20

The fields for the Granule 0/Granule 1 side information is illustrated in Figure 12-3. 
These fields are grouped into three categories based on their functions: Huffman 
decode (part2_3_length, big_value, table_select, region0_count, region1_count, 
count1table_select), window selection (window_switch_flag, block_type, mix_
block_flag), and requantization (global_gain, scalefac_compress, subblock_gain, 
scalefac_scale, preflag). These fields are discussed further in the following sections.

12.2 Scale Factor Decoding Block

The Scale Factor Decoding block, see Figure 12-1, decodes the scale factors to allow 
the reconstruction of the original audio signal. Scale factors are used to mask out the 
quantization noise during encoding by boosting the sound frequencies that are more 
perceptible to human ears.

Scale factors are decoded after the coded scale factors portion is separated from Main 
Data. The number of bits used for coded scale factors is specified by the part2_length 
field which is obtained from the slen1 and slen2 values. These values are determined 
from the table of scale factors by using the scalefac_compress field, displayed in Fig-
ure 12-3, as an index to the table. Note that the method to calculate part2_length 
changes depending on the type of window used at encoding. The windowing is done 
during encoding to reduce the effect of aliasing and the type of window (short or long) 
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is determined by the block type. In the following sections, the scale factor output is re-
ferred to as scalefac_l and scalefac_s for long windows and short windows, respectively.

12.3 Huffman Decoder 

The Huffman decoding is the most critical block in the decoding process. This is due 
to the fact that the bitstream consists of contiguous variable length codewords which 
cannot be identified individually. Once the start of the first codeword is identified, 
the decoding proceeds sequentially by identifying the start of the next codeword at 
the end of a previous codeword. Consequently, any error in decoding propagates, in 
other words the remaining codewords cannot be decoded correctly. To understand 
better how this block functions, some necessary information regarding the format of 
Huffman coded bits is mentioned next.

12.3.1 Format of Huffman Code Bits

In the MP3 standard, the frequency lines are partitioned into three regions called 
rzero, count1 and big_value. As Huffman coding is dependent on the relative 
occurrence of values, coding in each region is done with the Huffman tables that 
correspond to the characteristics of that region. 

A continuous run of all zero values is counted and grouped as one of the regions 
called rzero. This region is not coded, because its size can be calculated from the size 
of the other two regions. The second region, count1, comprises a continuous run of  
–1, 0, or 1. The two Huffman tables for this region encode four values at a time, so 
the number of values in this region is a multiple of 4. Finally, the third region, big_
value, covers all the remaining values. The 32 Huffman tables for this region encode 
the values in pairs. This region is further subdivided into three sub-regions: region0, 
region1, and region2. The region boundaries are determined during encoding. Figure 
12-5 depicts the output of the Huffman Decoder splitted into the regions.

Figure 12-5: Regions of Huffman Decoder output [4].

region0 region1 region2 count1 rzero

big_value

xxxxxxxxxxxx xxxxxxxxxxxx xxxxxxxxxxxx ------------ 000000000000

576 Frequency lines

In the big_value region, a parameter called Escape is used in order to improve the 
coding efficiency. In this region, values exceeding 15 are represented by 15, and the 
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difference is represented by the Escape value. Notice that the number of bits required 
to represent the Escape value is called Linbits, which is associated with the Huffman 
table used for encoding. A sign bit follows Linbits for nonzero values.

12.3.2 Huffman Decoding

The Huffman Decoding block consists of two components: Huffman Information 
Decoding and Huffman Decoding. Huffman Information Decoding uses the Side 
Information to set up the fields for Huffman Decoding. It acts as a controller and 
controls the decoding process by providing information on Huffman table selection, 
codeword region, and how many frequency lines are decoded. This decoding is illus-
trated in Figure 12-6.

Figure 12-6: Huffman Information Decoding block as a controller.

Huffman Information
Decoding Block

Huffman Decoding 
Block

Table Select

Current Region

Linbits

Stop/Continue

576 samples decoded or
all bits exhausted?

Yes No

Huffman Information Decoding starts by determining the part3_length value, which 
indicates the number of Huffman coded bits present in the current granule. This 
value is obtained by subtracting part2_length of the Scale Factor Decoder from 
part2_3_length of the Side Information.

The next step involves determining the codeword region considering that the selec-
tion of the Huffman tables is region specific. The decoding always starts with region0 
of the big_value region. The start of region1 and region2 is determined using the 
region0_count and region1_count fields of the Side Information. The start of the 
count1 region is not explicitly defined and begins after all the codewords in the 
big_value region have been decoded. The count1 region ends when the number of 
bits exceeds part3_length.
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The third step consists of obtaining the table numbers for each region. The table_
select field of the Side Information gives the table numbers for all the three regions of 
the big_value region. For the count1 region, 32 is added to the count1_table_select 
field of the Side Information to get the table number for this region. This block 
terminates the decoding process if 576 lines are decoded or part3_length bits are 
used. If the decoding stops before 576 lines are decoded, zeros are padded at the end 
so that 576 lines are generated.

Huffman Decoding requires 34 Huffman tables for decoding Main Data. Since two 
of the 34 tables (table number 4 and 14) are not used, only 32 tables are required 
for decoding. Two tables out of these 32 tables are used for the count1 region while 
the rest are used for the big_value region. The process of Huffman Decoding can 
be understood better with the help of Figure 12-7, which shows the pattern of the 
Huffman coded bitstream.

Figure 12-7: Bit format of Huffman coded bits.

Codeword (X, Y) Sign XEscape X Sign YEscape Y

Linbits X Linbits Y

The decoder fetches one bit at a time and compares it with all the codewords in the 
selected table. The fetched bits represent the codeword(x, y) in the figure. If there is 
a match, then the corresponding value is returned. If there is no match, then another 
bit is fetched and the process is repeated. If the returned value for the big_value 
region equals 15, the next bits are fetched and the number represented by them is 
added to the decoded value. As discussed earlier, the Linbits field is determined by 
the Huffman table in which a codeword match exists. 

As the last step, the sign of the decoded codeword is determined. The same proce-
dure is carried out for the codewords in the count1 region with the difference that 
Linbits are not used and one codeword from this region gives four decoded values.

12.4 Requantizer

The MP3 encoder incorporates a quantizer block that quantizes the frequency lines 
so that they can be Huffman coded. The output of the quantizer is multiplied by the 
scale factors to suppress the quantization noise. The function of the requantizer block 
is to combine the outputs of the Huffman Decoder and Scale Factor Decoder blocks, 
generating the original frequency lines. Figure 12-8 illustrates the function of the 
Requantization block.
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The Requantizer block is one of the most computationally intensive blocks of MP3 
decoding, since every output sample from the Huffman Decoder block needs to be 
raised to the power 4/3. This power is the inverse of the one used in the encoder 
quantization process, i.e., 0.75. The result is then multiplied by the sign of the 
Huffman decoded value and logarithmically quantized.

Requantization can be described by two equations, one for long and one for short 
windows, which are stated below [1]

For long window,  (12.1)

Figure 12-8: Block diagram of Requantization block.
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For short window,  (12.2)

where xri’s, isi’s, and gr denote requantized arrays, Huffman decoded arrays, and 
granule, respectively. The remaining terms are explained below. The preflag and 
global_gain parameters are obtained from the Side Information. The value 210 is 
a system constant and is defined in the ISO/IEC 11172-3 document [1]. The scal-
efac_mul parameter depends on the scalefac_scale field of the Side Information. If 
scalefac_scale is 0, then scalefac_mul is 0.5. If scalefac_scale is 1, then scalefac_mul 
is 1. Thus, in the above equations, the Huffman values are scaled by 2 or 2. The 
parameter pretab is used for further amplification of higher frequencies and is speci-
fied as follows:

(12.3)

xr sign is abs isi i i

global gain gr subblock

= ( )⋅ ( ) ⋅
− − ⋅

4
3

1
42 210 8_ [ ] __ [ ][ ][ ]

_ _ [ ][ ]

gain gr sfb window

scalefac mul scalefac s gr sfb

( )

⋅2 [[ ]window( )

pretab 21 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2[ ] = , , , , , , , , , , , , , , , ,                     2 3 3 3 2, , , ,{ }
The 21 elements in this array correspond to the 21 scale factor bands. The param-
eters scalefac_1 and scalefac_2 represent the decoded scale factors for long and short 
windows, respectively. The parameter sfb indicates the current scale factor band. The 
selection of the scale factor bands depends on the sampling frequency. One thing 
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that must be ensured before requantization is that the scale factor bands should cover 
all the 576 frequency lines.

12.5 Reordering

Huffman coding gives better results if its inputs are ordered in an increasing order 
or have similar values. This is the reason the frequency lines are ordered in increas-
ing order of frequency during encoding as values closer in frequency have similar 
values. Normally, the output of the Modified Discrete Cosine Transform (MDCT) in 
the encoder is ordered into subbands with increasing frequency values. However, for 
short blocks, the output samples are ordered into subbands first by increasing win-
dows and then by frequency. In order to remove this dependency of the window type 
on the output samples, the output of the MDCT is ordered first by subband then by 
frequency and lastly by window. Figure 12-9 illustrates the effect of the reordering 
block on the frequency lines.

Figure 12-9: Reordering of frequency lines for short blocks [4].

0 21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 63 9 12 15 1 4 7 10 13 16 2 5 8 11 14 17

Frequency Lines (Before reordering)

Low High

Low High

Frequency Lines (After reordering )

Frequency

Frequency Low HighFrequency Low HighFrequency

Note that reordering is done only for subbands with short windows. Hence, the main 
task of the reordering block is to search for short windows to reorder the frequency 
lines. The output of the requantizer, for short windows, gives 18 samples in a sub-
band. These samples are not dependent on the window used. The reordering block 
simply picks up the samples and reorders them in groups of six for each window, 
thereby generating them as they were before reordering.

12.6 Alias Reduction

During the encoding process, the pulse code modulated (PCM) samples are filtered 
into subbands using bandpass filters. However, due to the non-ideal nature of the 
bandpass filters, aliasing effects occur. To minimize aliasing artifacts, windowing 
is done after the MDCT block. That is why during the decoding process, an alias 
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reduction block is used to generate the frequency lines similar to those generated by 
the MDCT in the encoder. This block adds the alias components to each frequency 
line to produce the original frequency lines. The alias components are specified in 
the ISO/IEC 11172-3 document [1]. Alias reduction is applied to all windows other 
than short windows.

Basically, the Alias Reduction block consists of eight butterfly calculations, described 
in [2], per subband, similar to that in the FFT calculation. The alias components cor-
respond to the scale factors with which the frequency lines are scaled. The formula to 
calculate the two scale factors cai and csi is stated below,

(12.4)cs
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where cai and csi denote the aliased components and ci’s are defined in [1].

12.7 IMDCT and Windowing

The Inverse MDCT (IMDCT) block is responsible for generating samples which 
serve as the input to the Polyphase filter. The IMDCT takes in 18 input values and 
generates 36 output values per subband in each granule. The reason for generating 
twice as many output values is that the IMDCT contains a 50% overlap. This means 
that only 18 out of 36 values are unique, and the remaining 18 values are generated 
by a data copying operation. For a fast implementation of the IMDCT block, its 
symmetry property is used, which is described by the following equation:
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After performing IMDCT, windowing is done so as to generate time samples that are 
similar to those obtained after the filter bank in the encoder. This is because window-
ing is carried out on the output of the filter bank which provides the input to the 
MDCT block during encoding. The type of window used depends on the block_type 
field in the Side Information being long or short. The window functions that are used 
for different blocks are stated as follows [1],
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for block type = 0,

(12.6)z i x i i i[ ] [ ] sin ,= ⋅ +











≤ ≤π
36

1
2

0 35

for block type = 1,

(12.7)z i

x i i i

x i i

x i

[ ]

[ ] sin ,

[ ],

[ ]

=

⋅ +











≤ ≤

≤ ≤

⋅

π
36

1
2

0 17 

18 23 

ssin ,

,

π
12

18
1
2

0

i i

i

− +











≤ ≤

≤ ≤















24 29

30 35

for block type = 2,

(12.8)z win i x win i i i wi[ ][ ] [ ][ ] sin ,= ⋅ − +











≤ ≤ ≤π
12

18
1
2

0 11, 0 nn ≤ 2

for block type = 3,

(12.9)z i

i

x i i i

x i i
[ ]

,

[ ] sin ,

[ ],
=

≤ ≤

⋅ − +











≤ ≤

≤

0 0 5

12
6

1
2

6 11

12

 

π

≤≤

⋅ +











≤ ≤















17

36
1
2

18 35x i i i[ ] sin ,
π

After the output of the IMDCT is multiplied with a window function, the 36 output 
values per subband are overlapped and added to produce 18 output values for every 
subband of a granule. The upper 18 values of the previous subband are stored and 
added to the lower 18 values of the current subband. Figure 12-10 illustrates the flow 
diagram for this overlap and add operation.
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12.8 Polyphase Filter Bank

Finally, a Polyphase filter bank is used to transform the 32 subbands, each with 18 
time samples from every granule, to 18 bands of 32 PCM samples. PCM is a standard 
format of storing digital data in uncompressed format, CD audio being the prime 
example. PCM samples are defined depending on the sampling frequency and bitrate. 
A higher sampling frequency implies that higher frequencies are present and a higher 
bitrate produces a better resolution. Generally, CD audio uses 16 bits at 44.1 kHz. 
Here, after a brief overview of the PCM format, the generation of PCM samples is 
briefly explained with the help of the flow diagram shown in Figure 12-11.

12.8.1 MDCT

The MDCT block transforms the 32 input samples, one from each subband, to a  
64-point V vector given by the following equation:

(12.10)

Figure 12-10: Overlap and Add operation.
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where S[k] denotes 32 input samples and n = 64.

For a fast implementation of this block, as mentioned earlier, the symmetry property 
of MDCT is used which requires only the computation of 50% of the values. An 
alternative way for a fast computation of MDCT is via the Lee’s method [5], which 
uses a FFT type approach. In this method, an n-point MDCT is calculated using two 
n/2-point MDCTs. Such a reduction is repeated till a single point is reached.
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12.8.2 FIFO Shifting

The 64 output values (V vector) from the MDCT block are then fed to a 1024 sam-
ple first-in-first-out (FIFO) shift register. The MDCT operation is repeated 18 times 
per granule. However, due to the size of the shift register, only the last 16 V vectors 
are saved. Each time a V vector is generated, the shift register is shifted by 64 places 
to accommodate for a new V vector. The shift register is reset only at the beginning 
of the decoding process and not during the decoding of each frame. The last part of 
the IMDCT block involves the generation of a 512-sample U vector. This vector is 
generated by selecting alternate subbands from the shift register.

12.8.3 Windowing and Adding

As the last part towards generating PCM samples, the windowing shown in Figure 
12-11 is done. This consists of multiplying the U vector by a 512-point window 
function. The resulting 512 point vector is transformed into 16 vectors consisting of 
32 values each. The 16 vectors are then added sample-wise to generate one subband 
of PCM samples. The sum is then represented in 16-bit format. This operation is 
repeated 18 times to generate the 18 subbands of the 32 PCM samples.

Figure 12-11: Steps in generation of PCM samples [4].
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Lab 12: Implementation of  
MP3 Player in LabVIEW

In this lab, the entire MP3 decoder system for mono MP3 files is implemented in 
LabVIEW. The last section of this lab covers the modifications made in order to 
obtain a real-time throughput from the decoder.

L12.1 System-Level VI

Figure 12-12 illustrates the system-level BD of the implemented MP3 decoder. The 
subVIs located in the For Loop are repeated as many as number of frames.

Figure 12-12: System-level Block Diagram of MP3 decoder.

The Frame Type VI finds the frame header from the bit stream and extracts the 
decoding bitrate and sampling frequency. The location of the frame header is passed 
to the Dec Side Info VI to identify its beginning. The Dec Side Info VI 
decodes the Side Information and bundles the decoded parameters into a cluster for 
easy access by the other VIs.

A Shift Register is placed to serve as a buffer for Main Data as part of the 
bit reservoir technique. The Circ Buffer VI is used to fill the buffer with Main 
Data, to calculate a pointer marking the start of Main Data of a current frame, and to 
provide Main Data and its starting index as outputs to the other VIs.
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The Scale Factor Decode VI decodes the scale factors that are used to 
suppress quantization and any other noise. The output of this VI consists of two 
arrays: scalefac_l and scalefac_s. The Huffman Decode VI incorporates 
a number of subVIs to determine the required information about Huffman decod-
ing, to calculate the length of Huffman coded bits, and to decode different regions 
of Huffman coded data. The Requantization VI combines the output of the 
Scale Factor Decode and Huffman Decode VIs. This VI implements the 
requantization equations.

The Reorder VI arranges the frequency lines of short blocks in the same order as 
in the MDCT block of the encoder. The Alias Reduction VI computes the 
antialias coefficients and weighs the frequency lines accordingly. The IMDCT VI 
computes IMDCT, does windowing on the IMDCT output, and performs overlap/add 
on the windowed output to generate the polyphase filter input.

The Poly & PCM VI carries out three operations. It multiplies every odd sample of 
each odd subband by ‘–1’ (referred to as Frequency Inversion), implements the poly-
phase filter, and generates PCM samples.

L12.2 LabVIEW Implementation

L12.2.1 MP3 Read

As the first step of the MP3 decoding process, an MP3 file is opened and read by 
the MP3 Read VI, see Figure 12-13. This VI reads an MP3 file as specified by the 
File Path control via the Read Characters From File VI (Functions → 
All Functions → File I/O → Read Characters From File). The data stream is converted to 
unsigned integer byte using the String to Byte Array function (Functions → 
All Functions → String → String/Array/Path Conversion → String to Byte Array).

Figure 12-13: BD of MP3 Read VI.
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L12.2.2 MP3 File Info

The MP3 File Info VI extracts and displays the information about an MP3 file 
that is present in the file header, see Figure 12-14. It consists of two VIs: Frame 
Type and MP3 Info Display. The former finds the header and extracts the 
decoding information, while the latter displays this information in an ordered fashion.

Figure 12-14: BD of MP3 File Info VI.

The Frame Type VI, see Figure 12-15, uses the Find Header subVI to find the 
new location of the header by searching for twelve consecutive ones. Once the head-
er is found, three bytes of the header which contain the frame information are passed 
to the Find Type VI. Next, the Find Type VI performs the actual decoding of 
the header information using table look-ups.

Figure 12-15: BD of Frame Type VI. 
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The MP3 Info Display VI generates a string array based on the output of the 
Frame Type VI. The output string array of this VI is displayed on the FP. 

L12.2.3 Dec Side Info

The Dec Side Info VI extracts the 17 bytes of the Side Information from the 
bit stream and decodes it in a sequential order. Figure 12-16 illustrates the extraction 
of the 17 bytes of the Side Information using the Array Subset function. In case 
an optional CRC is present, indicated by the Protection bit, the starting location of 
the Side Information is moved by two bytes after the header. Next, each byte of the 
17-byte long Side Information is wired to the Get Bits subVIs in order to extract 
the individual parameters.

Figure 12-16: A BD section of Dec Side Info VI.

The Get Bits subVI performs ‘logical AND’ to extract bits from the input byte. 
This VI provides a mask that contains ones at the positions to be extracted from the 
input byte. The length and location of the ones in the mask are specified by the input 
parameters to the VI. Notice that the MSB and LSB of the byte are indicated by the 
indices 8 and 1, respectively. If a field is split into two bytes, the bits extracted from 
the higher byte is logically shifted and added to the bits from the lower byte to form 
one value. All the parameters of the Side Information extracted from the bit stream 
are bundled to form a cluster, indicated by Side Info.
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L12.2.4 Circ Buffer

Main Data of a frame can be obtained from previous frames as well as a current frame 
depending on the value of the Main Data Begin Pointer. The Circ Buffer VI, 
see Figure 12-17, extracts the Main Data section of the current frame and fills a  
1024 point buffer. Thus, a total of 1024 Main Data samples from the previous frames 
and current frame are stored in the buffer. This buffer is rotated in such a way that 
a new Main Data section is inserted to the end of the buffer. In order to fetch Main 
Data for decoding of a current frame, the index of the start of Main Data is provided 
by subtracting the sum consisting of the size of the new Main Data section and Main 
Data Ptr from the length of the buffer.

Figure 12-17: BD of Circular Buffer VI.

L12.2.5 Scale Factor Decode

The Scale Factor Decode 
VI consists of two VIs: Scale 
Factor Decode0 and Scale 
Factor Decode1, which 
are used for decoding Granule0 
and Granule1, respectively. 
Considering that the basic 
components of these VIs are 
the same, here only a general 
description for the Scale 
Factor Decode0 VI is 
mentioned. A BD section of the 
VI is illustrated in Figure 12-18.

Figure 12-18: A BD section of 
Scale Factor Decode0 VI.
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The Side Information input of the VI is unbundled to obtain the individual fields. 
Find Part2 Length0 VI calculates part2_length, which forms the length 
of the coded scale factors in Main Data. Once part2_length is calculated, the 
scale factors are extracted. Note that the equivalent C code for extracting the scale 
factors is provided as part of the BD on the accompanying CD. The Byte to 
Boolean Array VI converts each element of the integer array to Boolean digits 
and concatenates them to form a Boolean array.

Once the scale factor decoding for Granule0 is done, the scale factor decoding for 
Granule1 is done creating two scale factor outputs, scalefac_l and scalefac_s.

L12.2.6 Huffman Decode

The Huffman Decode VI decodes coded data by performing a table look-up 
using thirty-four standard Huffman tables. This VI consists of the following subVIs: 
Part2 Length, Byte to Boolean Array, Huffman Info, Big Value 
Search, Big Value Sign, Count1 Search, and Count1 Sign. In what 
follows, this VI and its subVIs are described. Considering that the Part2 Length 
and Byte to Boolean Array subVIs are already explained, we begin by the 
Huffman Info VI.

The Huffman Info VI, see Figure 12-19, extracts the individual table_select for 
each of the three sub-regions of the big_value region from the table_select field of 
the Side Information.

Figure 12-19: A BD section of Huffman Info VI.
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Note that the two parameters region0_count and region1_count are used to deter-
mine the boundaries of the big_value region. Once table_select and the boundaries 
are determined in the Huffman Info VI, the decoding of the Big Value and 
Count1 regions begins.

The big_value stage of the Huffman Decode VI consists of the search loop 
section which is located in the While Loop shown in Figure 12-20. This section 
searches for a codeword match in the big_value region. Before this search takes place 
in the search loop, the current region to be decoded must be determined. This is 
achieved by using the Formula Node exhibited in Figure 12-20. This is important, 
as the table_select value is region dependent. The search loop extracts one bit 
at a time, appends it to the previously extracted bit, and passes it to the Big Value 
Search VI. The search loop terminates when a match is found.

Figure 12-20: Search loop section of big_value stage.

The Big Value Search VI performs the search for the bit string generated in 
the search loop using the tables and generates the decoded values as its output. 
Figure 12-21 illustrates the BD of the Big Value Search VI. It uses the standard 
Huffman tables with table_select being used as an index. 

The Search 1D Array function (Functions → All Functions → Array → Search 1D 
Array) is used to search for the codewords in the selected tables. Once a match is found, 
the VI extracts the decoded values, X and Y, from the selected table at the index 
produced by the Search 1D Array function. The Boolean indicator, denoted by 
Match, is used to terminate the search loop of the Huffman Decode VI.

Next, the Big Value Sign VI, see Figure 12-22, is used to determine the Escape 
and the sign value for X and Y. As mentioned earlier, the Escape value is only evalu-
ated when the decoded value is equal to fifteen. This value is determined by fetching 
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Linbits number of bits. Then, the value represented by the fetched bits is added to 
the decoded outputs as shown in the Escape Value case structure in the BD. The 
decoded outputs are updated with the Escape and sign value to form the final output.

Figure 12-21: BD of Big Value Search VI.

Figure 12-22: Escape and Sign bit decoding.

After the big_value stage, the decoding of the count1 stage follows. This stage is 
similar to the big_value decoding, except that this time four decoded outputs, V, W, 
X, and Y are obtained. The process of determining the sign bit is similar to the big_
value sign process. Figure 12-23 illustrates the count1 stage of the Huffman decoding.
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L12.2.7 Requantization

The Requantization VI combines the outputs of the Scale Factor 
Decode and Huffman Decode VIs to implement the requantization equations 
given by Equations (12.2) and (12.3). Figure 12-24 shows one section of the 
Requantization VI, which illustrates the implementation of the requantization 
equation for long blocks.

Figure 12-23: Count1 sage of Huffman Decoding.

Figure 12-24: A BD section of Requantization VI.
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This VI calculates the overall scaling factor and raises the Huffman decoded outputs 
to the power 4/3. Then, it multiplies them with the overall scaling factor and the 
sign of the Huffman decoded outputs. An array consisting of all the outputs is built to 
serve as the output of the requantization block.

In the other section of the Requantization VI shown in Figure 12-24, the 
MainSI Params VI is used. This VI is created to extract the frequently used 
fields of the Side Information including global_gain, window_switch_flag, 
block_type, mix_block_flag, scalefac_scale, and preflag. The 
MainSI Params subVI is used in the other decoding stages, e.g. IMDCT VI, as 
well as in the requantization block.

L12.2.8 Reordering

The Reorder VI changes the order of frequency lines or the output of the requan-
tization block. Since reordering is required for short blocks and mix blocks only, the 
Reorder VI first identifies the block type before performing reordering. The BD of 
the Reorder VI for short blocks is illustrated in Figure 12-25. Note that this VI sim-
ply copies the frequency lines to a new array having a reordered index.

Figure 12-25: BD of Reorder VI.

For mix blocks, the reordering is not carried out for the first two subbands, as they 
consist of long blocks.
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L12.2.9 Alias 
Reduction

The Alias Reduc-
tion VI scales the 
reordered frequency lines 
with the alias coefficients. 
Since alias reduction is 
performed only for long 
blocks, this VI identifies 
such blocks and performs 
alias reduction on them. 
The BD shown in Figure 
12-26 carries out the 
butterfly calculation. Note 
that the alias coefficients are defined in the arrays ca and cs, see Figure 12-26.

L12.2.10 IMDCT

The IMDCT VI converts the frequency domain samples to time domain samples, 
thereby providing the input samples to the Polyphase filter. This VI also performs win-
dowing and an overlap/add operation on the output samples as shown in Figure 12-27. 
The global variable PrevBlck is used to pass the output values used for the overlap/
add operation from one frame to another. Note that this value is initialized only once 

Figure 12-26: A BD Section of Alias Reduction VI.

Figure 12-27: BD of IMDCT VI.
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at the beginning of decoding. The MainSI Params VI, mentioned earlier, is located 
to obtain the main Side Information fields used for the IMDCT operation.

The IMDCT Calc subVI performs the actual IMDCT computations. Since the 
formula used for the calculation of IMDCT is different for long and short blocks, the 
implementation of each case is done separately.

The BD for calculating IMDCT for long blocks is illustrated in Figure 12-28. Input 
values are convolved with the IMDCT coefficients denoted by Cos_l. The window-
ing is performed on the convolution output. This is done by multiplying the IMDCT 
output with the predefined window coefficients, denoted by win.

Figure 12-28: BD of IMDCT Calc VI (long block case).

For short blocks, the three outputs of IMDCT are overlapped and added for the final 
IMDCT array. 

L12.2.11 Poly & PCM 

The Poly & PCM VI generates the final output of the MP3 decoding process, i.e., 
PCM samples. This VI transforms the thirty-two subbands of eighteen samples each to 
eighteen subbands of thirty-two PCM samples. It consists of three subVIs: FreqInv, 
MDCT & Wvec, and Add & PCM. Figure 12-29 displays the BD of the Poly & 
PCM VI and its associated subVIs. Two global variables, a 1024 point Vvector and 
bufferOffset, are created for transferring the data of the current frame to the 
next frame.
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The FreqInv VI performs frequency inversion on the input samples by negating 
every odd sample of every odd subband. This inversion is done to compensate for the 
negation of values during the MDCT stage.

The MDCT & Wvec VI, see Figure 12-30, computes the MDCT array and generates 
the windowed vector, indicated by Wvector. The global variable Vvector plays 
a circular buffer role where the elements are shifted circularly and a new element 
is inserted at the index specified by bOf. Sixteen 32-point arrays of the replaced 
Vvector are extracted to form the pre-windowed vector. This vector is then mul-
tiplied with the window function to form the Wvector as illustrated in Figure 12-30.

Figure 12-29: BD of Poly & PCM VI.

Figure 12-30: BD of MDCT & Wvec VI.
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The Add and PCM VI adds the elements of the Wvector. The addition of the 
16×32 Wvector takes place column wise so that the sixteen values in each column 
are added to generate one value for the final output array as previously illustrated in 
Figure 12-11. This operation is repeated eighteen times to form the final 18×32 out-
put array. This array is then converted to the I16 format for the final PCM samples.

L12.2.12 PCM Out

This VI writes the output of the Poly & PCM VI to a file. It uses the Build Path 
function (Functions → All Functions → File I/O → Build Path) and the Write to I16 
File VI (Functions → All Functions → File I/O → Binary File VIs → Write to I16 File). 
The controls are connected to the appropriate functions as illustrated in Figure 12-31.

Figure 12-31: BD of PCM Out VI.

L12.2.13 MP3 Player

The MP3 Player VI is the top-level VI of the MP3 decoder system. It integrates 
all the discussed VIs. A new VI is opened and the MP3 Read VI is placed in its 
BD. The file path of the MP3 file is obtained from the path terminal of the File 
Dialog function (Functions → All Functions → File I/O → Advanced File Functions → 
File Dialog). The output of the MP3 Read VI is wired to an Array Size function 
and the MP3 Frame Info VI. The output of the Array Size function is wired 
to the MP3 frame Info VI. Indicators for all the outputs of the MP3 Frame 
Info VI are created to display the MP3 file information on the FP. A 1024 point 
array, Buffer, and the global variable used in the IMDCT and Poly & PCM VIs 
are initialized with zeros. The bufferOffset global variable in the Poly & PCM 
VI is initialized to 64.

Finally, a For loop is created and the Frame # output of the MP3 Frame 
Info VI is wired to the loop count N. All the VIs are wired together as shown in 



281

Implementation of MP3 Player in LabVIEW

Figure 12-12. Two Shift Registers are located in the For Loop. The initial-
ized Buffer array is wired to one of the shift registers and a constant ‘0’ to the other.

Running the VI brings up a file dialog to choose an MP3 file to play. The decoded 
PCM file can be played by any audio application software, such as Adobe® Audi-
tion™. Figure 12-32 displays the FP of the MP3 Player VI.

Figure 12-32: FP of MP3 Player VI.

L12.3 Modifications to Achieve Real-Time Decoding

By profiling the VI built in the previous section, one can find that four of the sub-
VIs account for over 93% of the execution time. The time consuming subVIs along 
with their time usage (in percentage) are listed in Table 12-2. The overall decoding 
time for an examined file of 21 seconds takes 58 seconds, which means not having a 
real-time throughput. The following VI modifications are thus carried out in order to 
decode MP3 files within their play times.

Table 12-2: Processing time percentages for the time consuming VIs.

SubVI Relative time consumption (%)
Huffman Decode VI 47.34
Requantization VI 4.50
IMDCT VI 8.90
Polyphase VI 32.28
Other VIs 6.8
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L12.3.1 Huffman Decode

In the above version of this VI, the section for the codeword table look-up in the 
Huffman tables is quite slow. Also, the search algorithm employed is not efficient, 
which results in a very slow execution. In this section, a faster way of implementing 
the Huffman Decoding block is presented. The outer structure of the VI remains the 
same. The changes made are in the search loop, the Big Value Search VI, 
and the Count1 Search VI.

In the search loop, the search is done at bit level. However, a faster version can 
be obtained by performing the search on multiple bits of Huffman coded data. The 
length of the bits to be extracted is determined by the predefined codeword lengths 
in the selected table. As a result, all the redundant searches for codewords whose 
lengths are not specified in the selected table are avoided. A Case Structure 
is created where its contents are arrays corresponding to the codeword lengths of 
the tables. The array for a table is selected using the tableout parameter. Figure 
12-33 illustrates the implementation of this new search loop.

Figure 12-33: Faster search loop for Huffman Decode VI.

The Big Value Search VI creates the 2D Huffman tables consisting of integers 
instead of strings, thereby improving the speed of this VI by a factor of ten. This VI 
uses a new style of look-up tables (LUTs), whose description follows next.

Divide the Huffman tables such that codewords with the same length occur together. 
Construct a 2D array with two columns and rows given by the number of codewords 
of the selected length. The elements are specified by the decoded values, X and Y. 
Construct another 1D array with the integer values of the codewords. For example, 
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the codeword ‘111001’ is represented in the array as 57. Combine the two arrays into 
a cluster and form a 2D array of all such clusters. The clusters in the 2D array are 
indexed by table_select and length. As a result, the search is only done on 
the table specified by table_select and length. This makes the VI run quite 
fast. Also, create a 1D array whose elements are Linbits for each table.

After indexing the correct table, codeword searching is carried out using the 
Search 1D Array VI. This VI returns ‘–1’ for no match. Figure 12-34 shows the 
BD of the Big Value Search VI.

Figure 12-34: BD of faster Big Value Search VI.

Now, create three controls: table_select, length, and Bits to search. 
Next, place three functions: Index Array, Unbundle, and Search 1-D 
Array. Implement the Big Value Search VI using these functions as illustrat-
ed in Figure 12-34. Link the Big Value Search VI to the Big Value Sign 
VI. Make the same changes in the search loop of the count1 region as done in 
the big_value region earlier. Similarly, place the Count1 Search VI and repeat 
the above steps to construct a cluster of LUTs. The difference is that the 2D array in 
the cluster has four columns. The four columns correspond to the decoded values V, 
W, X, and Y. Search for the bits as before and index out elements from the 2D array 
at the row index given by the output of the Search 1-D Array function and 
columns 0, 1, 2, and 3. Place all the indicators and complete the updated version of 
the Huffman Decode VI by linking this VI to the Count1 Sign VI.
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L12.3.2 IMDCTDLL

The IMDCT VI consumes an excessive amount of execution time because of the 
number of loops in the code. Also, reading and writing to a global variable adds 
to the overall time of the VI. Therefore, to speed up the IMDCT VI, the Call 
Library Function Node feature of LabVIEW is utilized here. This function 
improves the speed by a factor of four.

Open a new VI and save it as IMDCTDLL.vi. Place all the controls and connect 
them to the functions in the VI as shown in Figure 12-35. Place the Call Library 
Function Node function (Functions → All Functions → Advanced → Call Library Func-
tion). Before using this function, a Dynamic Link Library (DLL) must be created to 
carry out the desired operation. To create a DLL, use Visual C++. Open a new Win32 
Dynamic Link Library project (File → New → Projects → Win32 Dynamic Link Library). 
Give the project a name and click OK. Select Empty DLL Project in the next window.

Figure 12-35: BD of IMDCTDLL VI.

The source code of the IMDCTDLL project is provided on the accompanying CD. 
Add the files from the IMDCT folder in the project (Project → Add to Project → 
Files…). Build the project (Build → Rebuild All). Then, double-click on the Call 
Library Function Node function. Select the DLL just created using the 
Browse button. The function in the DLL will be displayed in the Function Name 
field. Select C in the Calling Convention field. Click on Add Parameters After in that 
window and provide a name to be entered in the Parameter field. Select the param-
eter type (array, number or string etc.) and the data type. Also, select the method of 
passing arguments to the function. For numbers, select Pass by Value or Pass 
by Reference. However, for arrays, select Array Data Pointer. Add all 
the controls as defined in the C function. Click OK when finished. Attention should 
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be paid to the data type matching in LabVIEW and C. For example, Float in C 
corresponds to Single Precision in LabVIEW. Also, when outputs are arrays, 
an array initialized with zeros must be passed to the Call Library Function 
Node function as input. For more details on the use of DLL in LabVIEW, refer to [1].

L12.3.3 Poly & PCM

The Poly & PCM VI is also modified using the Call Library Function 
Node function to improve its speed. First, open a new VI. Then, implement this 
VI as illustrated in Figure 12-36 with the use of the Call Library Function 
Node function. Now, create a project that builds a DLL to perform the function 
of the Poly & PCM VI as just described in the IMDCTDLL VI. The original code 
used to build the DLL is provided on the accompanying CD. Add the files from the 
Polyphase folder and build the project to create the DLL. After the completion of 
the DLL project, add appropriate parameters to the Call Library Function 
Node function as done in the IMDCTDLL VI. Use the Reshape Array func-
tion to convert the 2D output of the library function to a 1D array of length 1152 
as shown in Figure 12-36. Place an indicator, POLYOUT, at the output of the first 
Shift Register.

Figure 12-36: Polyphase VI using Call Library Function Node.

The above modifications allow the 21-second MP3 file to be decoded in 3.2 seconds. 
Table 12-3 provides five other MP3 files and their decoded times. Note that all these 
files are decoded in shorter times than their durations.
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MP3 File Specs Play time (sec) Decoding time (sec)
32 kHz, 48 kbps, 330 Frames 11 3.0
44.1 kHz, 56 kbps, 1075 Frames 27 9.2
44.1 kHz, 128 kbps, 454 Frames 11 4.0
44.1 kHz, 128 kbps,2573 Frames 67 47.4
48 kHz, 128 kbps,1099 Frames 26 15.9

Table 12-3: Decoding times for different MP3 files.

L12.4 Bibliography

[1] National Instruments, LabVIEW User Manual, Part Number 320999E-01, 
2003.
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