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Preface

For many years, I have been teaching DSP (Digital Signal Processing) lab courses
using various T1 (Texas Instruments) DSP platforms. One question I have been get-
ting from students in a consistent way is, “Do we have to know C to take DSP lab
courses!” Until last year, my response was, “Yes, C is a prerequisite for taking DSP
lab courses.” However, last year for the first time, I provided a different response by
saying, “Though preferred, it is not required to know C to take DSP lab courses.”
This change in my response came about because I started using LabVIEW to teach
students how to design and analyze DSP systems in our DSP courses.

The widely available graphical programming environments such as LabVIEW

have now reached the level of maturity that allow students and engineers to design
and analyze DSP systems with ease and in a relatively shorter time as compared

to C and MATLAB. I have observed that many students taking DSP lab courses,

in particular at the undergraduate level, often struggle and spend a fair amount of
their time debugging C and MATLAB code instead of placing their efforts into
understanding signal processing system design issues. The motivation behind writing
this book has thus been to avoid this problem by adopting a graphical programming
approach instead of the traditional and commonly used text-based programming
approach in DSP lab courses. As a result, this book allows students to put most of
their efforts into building DSP systems rather than debugging C code when taking
DSP lab courses.

One important point that needs to be mentioned here is that in order to optimize
signal processing algorithms on a DSP processor, it is still required to know and use
C and/or assembly programming. The existing graphical programming environments
are not meant to serve as optimizers when implementing signal processing algorithms
on DSP processors or other hardware platforms. This point has been addressed

ix



Preface

in this book by providing two chapters which are dedicated solely to algorithm
implementation on the TI family of TMS320C6000 DSP processors.

[t is envisioned that this alternative graphical programming approach to designing
digital signal processing systems will allow more students to get exposed to the field
of DSP. In addition, the book is written in such a way that it can be used as a self-
study guide by DSP engineers who wish to become familiar with LabVIEW and use it
to design and analyze DSP systems.

[ would like to express my gratitude to NI (National Instruments) for their support
of this book. In particular, I wish to thank Jim Cahow, Academic Resources Manager
at NI, and Ravi Marawar, Academic Program Manager at NI, for their valuable
feedback. I am pleased to acknowledge Chuck Glaser, Senior Acquisition Editor at
Elsevier, and Cathy Wicks, University Program Manager at TI, for their promotion
of the book. Finally, I am grateful to my family who put up with my preoccupation on
this book-writing project.

Nasser Kehtarnavaz

December 2004



What’s on the CD-ROM?

The accompanying CD-ROM includes all the lab files discussed throughout
the book. These files are placed in corresponding folders as follows:

(@)

(@)

(@)

(@)

(@)

LabO1

: Getting familiar with LabVIEW: Part [
Lab02:
Lab03:
Lab04:
Lab05:
Lab06:
Lab07:
Lab08:
Lab09:
Lab10:
Labl1:
Labl12:

Getting familiar with LabVIEW: Part I1
Sampling, Quantization, and Reconstruction
FIR/IIR Filtering System Design

Data Type and Scaling

Adaptive Filtering Systems

FFT, STFT, and DWT

Getting Familiar with Code Composer Studio
DSP Integration Examples

Building Dual Tone Multi Frequency System in LabVIEW
Building 4-QAM Modem System in LabVIEW
Building MP3 Player System in LabVIEW

To run the lab files, the National Instruments LabVIEW 7.1 is required and
assumed installed. The lab files need to be copied into the folder “C:\Lab-
VIEW Labs\”.
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e For Lab 8 and Lab

9, the Texas Instruments Code Composer Studio 2.2

(CCStudio) is required and assumed installed in the folder “C:\ti\”. The
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o DSK 6713

o Simulator (configured as DSK6713 as shown below)
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CHAPTER

Introduction

The field of digital signal processing (DSP) has experienced a considerable growth
in the last two decades, primarily due to the availability and advancements in digital
signal processors (also called DSPs). Nowadays, DSP systems such as cell phones and
high-speed modems have become an integral part of our lives.

In general, sensors generate analog signals in response to various physical phenomena
that occur in an analog manner (that is, in continuous time and amplitude). Pro-
cessing of signals can be done either in the analog or digital domain. To perform the
processing of an analog signal in the digital domain, it is required that a digital signal
is formed by sampling and quantizing (digitizing) the analog signal. Hence, in con-
trast to an analog signal, a digital signal is discrete in both time and amplitude. The
digitization process is achieved via an analog-to-digital (A/D) converter. The field of
DSP involves the manipulation of digital signals in order to extract useful informa-
tion from them.

There are many reasons why one might wish to process an analog signal in a digital
fashion by converting it into a digital signal. The main reason is that digital pro-
cessing allows programmability. The same processor hardware can be used for many
different applications by simply changing the code residing in memory. Another
reason is that digital circuits provide a more stable and tolerant output than ana-

log circuits—for instance, when subjected to temperature changes. In addition, the
advantage of operating in the digital domain may be intrinsic. For example, a linear
phase filter or a steep-cutoff notch filter can easily be realized by using digital signal
processing techniques, and many adaptive systems are achievable in a practical prod-
uct only via digital manipulation of signals. In essence, digital representation (zeroes
and ones) allows voice, audio, image, and video data to be treated the same for error-
tolerant digital transmission and storage purposes.



Chapter 1

1.1 Digital Signal Processing Hands-On Lab Courses

Nearly all electrical engineering curricula include DSP courses. DSP lab or design
courses are also being offered at many universities concurrently or as follow-ups to
DSP theory courses. These hands-on lab courses have played a major role in student
understanding of DSP concepts. A number of textbooks, such as [1-3], have been
written to provide the teaching materials for DSP lab courses. The programming
language used in these textbooks consists of either C, MATLAB®, or Assembly, that
is text-based programming. In addition to these programming skills, it is becoming
important for students to gain experience in a block-based or graphical (G) pro-
gramming language or environment for the purpose of designing DSP systems in a
relatively short amount of time. Thus, the main objective of this book is to provide
a block-based or system-level programming approach in DSP lab courses. The block-
based programming environment chosen is LabVIEW ™.

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is a graphi-
cal programming environment developed by National Instruments (NI), which
allows high-level or system-level designs. It uses a graphical programming language
to create so-called Virtual Instruments (VI) blocks in an intuitive flowchart-like
manner. A design is achieved by integrating different components or subsystems
within a graphical framework. LabVIEW provides data acquisition, analysis, and
visualization features well suited for DSP system-level design. It is also an open
environment accommodating C and MATLAB code as well as various applications

such as ActiveX and DLLs (Dynamic Link Libraries).

This book is written primarily for those who are already familiar with signal pro-
cessing concepts and are interested in designing signal processing systems without
needing to be proficient C or MATLAB programmers. After familiarizing the reader
with LabVIEW, the book covers a LabVIEW-based approach to generic experiments
encountered in a typical DSP lab course. It brings together in one place the informa-
tion scattered in several NI LabVIEW manuals to provide the necessary tools and
know-how for designing signal processing systems within a one-semester structured
course. This book can also be used as a self-study guide to design signal processing

systems using LabVIEW.

In addition, for those interested in DSP hardware implementation, two chapters

in the book are dedicated to executing selected portions of a LabVIEW designed
system on an actual DSP processor. The DSP processor chosen is TMS320C6000.
This processor is manufactured by Texas Instruments (TI) for computationally
intensive signal processing applications. The DSP hardware utilized to interface with
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LabVIEW is the TI's C6416 or C6713 DSK (DSP Starter Kit) board. It should be
mentioned that since the DSP implementation aspect of the labs (which includes

C programs) is independent of the LabVIEW implementation, those who are not
interested in the DSP implementation may skip these two chapters. It is also worth
pointing out that once the LabVIEW code generation utility becomes available, any
portion of a LabVIEW designed system can be executed on this DSP processor with-
out requiring any C programming.

1.2 Organization

The book includes twelve chapters and twelve labs. After this introduction, the
LabVIEW programming environment is presented in Chapter 2. Lab 1 and Lab 2 in
Chapter 2 provide a tutorial on getting familiar with the LabVIEW programming
environment. The topic of analog to digital signal conversion is presented in Chapter
3, followed by Lab 3 covering signal sampling examples. Chapter 4 involves digital
filtering. Lab 4 in Chapter 4 shows how to use LabVIEW to design FIR and IIR
digital filters. In Chapter 5, fixed-point versus floating-point implementation issues
are discussed followed by Lab 5 covering data type and fixed-point effect examples.
In Chapter 6, the topic of adaptive filtering is discussed. Lab 6 in Chapter 6 covers
two adaptive filtering systems consisting of system identification and noise cancella-
tion. Chapter 7 presents frequency domain processing followed by Lab 7 covering the
three widely used transforms in signal processing: fast Fourier transform (FFT), short
time Fourier transform (STFT), and discrete wavelet transform (DWT). Chapter 8
discusses the implementation of a LabVIEW-designed system on the TMS320C6000
DSP processor. First, an overview of the TMS320C6000 architecture is provided.
Then, in Lab 8, a tutorial is presented to show how to use the Code Composer
Studio™ (CCStudio) software development tool to achieve the DSP implementa-
tion. As a continuation of Chapter 8, Chapter 9 and Lab 9 discuss the issues related
to the interfacing of LabVIEW and the DSP processor. Chapters 10 through 12,

and Labs 10 through 12, respectively, discuss the following three DSP systems or
project examples that are fully designed via LabVIEW: (i) dual-tone multi-frequency
(DTMEF) signaling, (ii) software-defined radio, and (iii) MP3 player.

1.3 Software Installation

LabVIEW 7.1, which is the latest version at the time of this writing, is installed by
running setup.exe on the LabVIEW 7.1 Installation CD. Some lab portions use the
LabVIEW toolkits ‘Digital Filter Design,’ ‘Advanced Signal Processing,” and ‘DSP
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Test Integration for TI DSP.’” Each of these toolkits can be installed by running setup.
exe located on the corresponding toolset CD.

If one desires to run parts of a LabVIEW designed system on a DSP processor, then it
is necessary to install the Code Composer Studio software tool. This is done by run-
ning setup.exe on the CCStudio CD. The most updated version of CCStudio at the
time of this writing, CCStudio 2.2, is used in the DSK-related labs.

The accompanying CD includes all the files necessary for running the labs covered
throughout the book.

1.4 Updates

Considering that any programming environment goes through enhancements and
updates, it is expected that there will be updates of LabVIEW and its toolkits. To
accommodate for such updates and to make sure that the labs provided in the book
can still be used in DSP lab courses, any new version of the labs will be posted at the
website http://www.utdallas.edu/~kehtar/LabVIEW for easy access. It is recommend-
ed that this website be periodically checked to download any necessary updates.
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CHAPTER

LabVIEW Programming Environment

LabVIEW constitutes a graphical programming environment that allows one to
design and analyze a DSP system in a shorter time as compared to text-based pro-
gramming environments. LabVIEW graphical programs are called virtual instruments
(VIs). VIs run based on the concept of data flow programming. This means that
execution of a block or a graphical component is dependent on the flow of data, or
more specifically a block executes when data is made available at all of its inputs.
Output data of the block are then sent to all other connected blocks. Data flow pro-
gramming allows multiple operations to be performed in parallel since its execution is
determined by the flow of data and not by sequential lines of code.

2.1 Virtual Instruments (Vls)

A VI consists of two major components; a front panel (FP) and a block diagram
(BD). An FP provides the user-interface of a program, while a BD incorporates its
graphical code. When a VI is located within the block diagram of another VI, it is

called a subVI. LabVIEW VIs are modular, meaning that any VI or subVI can be
run by itself.

2.1.1 Front Panel and Block Diagram

An FP contains the user interfaces of a VI shown in a BD. Inputs to a VI are rep-
resented by so-called controls. Knobs, pushbuttons and dials are a few examples of
controls. Outputs from a VI are represented by so-called indicators. Graphs, LEDs
(light indicators) and meters are a few examples of indicators. As a VI runs, its FP
provides a display or user interface of controls (inputs) and indicators (outputs).

A BD contains terminal icons, nodes, wires, and structures. Terminal icons are
interfaces through which data are exchanged between an FP and a BD. Terminal icons



Chapter 2

correspond to controls or indicators that appear on an FP. Whenever a control or indi-
cator is placed on an FP, a terminal icon gets added to the corresponding BD. A node
represents an object which has input and/or output connectors and performs a certain
function. SubVIs and functions are examples of nodes. Wires establish the flow of data
in a BD. Structures such as repetitions or conditional executions are used to control
the flow of a program. Figure 2-1 shows what an FP and a BD window look like.
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Figure 2-1: LabVIEW windows: front panel and block diagram.

2.1.2 Icon and Connector Pane

A Vlicon is a graphical representation of a VI. It appears in the top right corner
of a BD or an FP window. When a VI is inserted in a BD as a subVI, its icon gets
displayed.

A connector pane defines inputs (controls) and outputs (indicators) of a VI. The
number of inputs and outputs can be changed by using different connector pane
patterns. In Figure 2-1, a VI icon is shown at the top right corner of the BD and its
corresponding connector pane having two inputs and one output is shown at the top
right corner of the FP.
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2.2 Graphical Environment

2.2.1 Functions Palette

The Functions palette, see Figure 2-2, provides various function VIs or blocks for
building a system. This palette can be displayed by right-clicking on an open area of
a BD. Note that this palette can only be displayed in a BD.
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Figure 2-2: Functions palette.

2.2.2 Controls Palette

The Controls palette, see Figure 2-3, provides controls and indicators of an FP. This
palette can be displayed by right-clicking on an open area of an FP. Note that this
palette can only be displayed in an FP.
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Figure 2-3: Controls palette.

2.2.3 Tools Palette

The Tools palette provides various operation modes of the mouse cursor for build-
ing or debugging a VI. The Tools palette and the frequently-used tools are shown in
Figure 2-4.

Each tool is utilized for a specific task. For example, the Wiring tool is used to wire
objects in a BD. If the automatic tool selection mode is enabled by clicking the
Automatic Tool Selection button, LabVIEW selects the best matching tool based on a
current cursor position.
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Figure 2-4: Tools palette.

2.3 Building a Front Panel

In general, a VI is put together by going back and forth between an FP and a BD,
placing inputs and outputs on the FP and building blocks on the BD.
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palette for text outputs, and grouped in the Graph Indicators palette for graphical
outputs. These indicator options are displayed in Figure 2-6.
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Figure 2-6: Indicator palettes.

2.3.3 Align, Distribute and Resize Objects

The menu items on the toolbar of an FP, see Figure 2-7, provide options to align
and distribute objects on the FP in an orderly manner. Normally, after controls and
indicators are placed on an FP, one uses these options to tidy up their appearance.

Align Objects

Distribute Objects

Resize Objects

2|8 ] 2

Reorder

Figure 2-7: Menu for align, distribute,
resize, and reorder objects.
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2.4 Building a Block Diagram

2.4.1 Express VI and Function

Express VIs denote higher-level VIs that have been configured to incorporate lower-
level VIs or functions. These VlIs are displayed as expandable nodes with a blue
background. Placing an Express VI in a BD brings up a configuration dialog window
allowing adjustment of its parameters. As a result, Express VIs demand less wiring. A
configuration window can be brought up by double-clicking on its Express VI.

Basic operations such as addition or subtraction are represented by functions. Figure
2-8 shows three examples corresponding to three types of a BD object (VI, Express
VI, and function).

(@) (b) ()
Figure 2-8: Block Diagram objects: (a) VI, (b) Express VI, and (c) function.

Both subVI and Express VI can be displayed as icons or expandable nodes. If a subVI
is displayed as an expandable node, the background appears yellow. Icons are used

to save space in a BD, while expandable nodes are used to provide easier wiring or
better readability. Expandable nodes can be resized to show their connection nodes
more clearly. Three appearances of a VI/Express VI are shown in Figure 2-9.
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Figure 2-9: Icon versus expandable node.
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2.4.2 Terminal Icons

FP objects are displayed as terminal icons in a BD. A terminal icon exhibits an input
or output as well as its data type. Figure 2-10 shows two terminal icon examples
consisting of a double precision numerical control and indicator. As shown in this
figure, terminal icons can be displayed as data type terminal icons to conserve space

in a BD.

Control Indicator
Terminal loons 1230 phzs
Data Type Terminal lcons oL r

Figure 2-10: Terminal icon examples displayed in a BD.

2.4.3 Wires

Wires transfer data from one node to another in a BD. Based on the data type of a
data source, the color and thickness of its connecting wires change.

Wires for the basic data types used in LabVIEW are shown in Figure 2-11. Other
than the data types shown in this figure, there are some other specific data types. For
example, the dynamic data type is always used for Express VIs, and the waveform
data type, which corresponds to the output from a waveform generation VI, is a
special cluster of waveform components incorporating trigger time, time interval, and
data value.

Wire Type Scalar 1D Array 20D Array Color
R Orange (Floating point)
Blue (Integer)
Boolean - - | sm— Green
String e - Fink

Figure 2-11: Basic types of wires [2].

11
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2.4.4 Structures

A structure is represented by a graphical enclosure. The graphical code enclosed by

a structure is repeated or executed conditionally. A loop structure is equivalent to a
for loop or a while loop statement encountered in text-based programming languages,
while a case structure is equivalent to an if-else statement.

2.4.4.1 For Loop

A For Loop structure is used to perform repetitions. As N
illustrated in Figure 2-12, the displayed border indicates a

For Loop structure, where the count terminal [N] represents

the number of times the loop is to be repeated. It is set by [i]
wiring a value from outside of the loop to it. The iteration
terminal [1] denotes the number of completed iterations,
which always starts at zero.

Figure 2-12: For Loop.

2.4.4.2 While Loop

A While Loop structure allows repetitions depending on
a condition, see Figure 2-13. The conditional terminal [@
initiates a stop if the condition is true. Similar to a For
Loop, the iteration terminal [i] provides the number of
completed iterations, always starting at zero.

Figure 2-13: While Loop.
2.4.4.3 Case Structure

A Case structure, see Figure 2-14, allows running different

sets of operations depending on the value it receives through
its selector terminal, which is indicated by [Z. In addition to
Boolean type, the input to a selector terminal can be of integer,
string, or enumerated type. This input determines which case
to execute. The case selector shows the status being Figure 2-14:
executed. Cases can be added or deleted as needed. Case structure.

2.5 Grouping Data: Array and Cluster

An array represents a group of elements having the same data type. An array consists
of data elements having a dimension up to 2*' —1. For example, if a random number
is generated in a loop, it makes sense to build the output as an array since the length
of the data element is fixed at 1 and the data type is not changed during iterations.

12
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A cluster consists of a collection of different data type elements, similar to the struc-
ture data type in text-based programming languages. Clusters allow one to reduce
the number of wires on a BD by bundling different data type elements together

and passing them to only one terminal. An individual element can be added to or
extracted from a cluster by using the cluster functions such as Bundle by Name
and Unbundle by Name.

2.6 Debugging and Profiling Vis

2.6.1 Probe Tool

The Probe tool is used for debugging VIs as they run. The value on a wire can be
checked while a VI is running. Note that the Probe tool can only be accessed in a

BD window.

The Probe tool can be used together with breakpoints and execution highlighting to
identify the source of an incorrect or an unexpected outcome. A breakpoint is used
to pause the execution of a VI at a specific location, while execution highlighting
helps one to visualize the flow of data during program execution.

2.6.2 Profile Tool

The Profile tool can be used to gather timing and memory usage information, in
other words, how long a VI takes to run and how much memory it consumes. It is
necessary to make sure a VI is stopped before setting up a Profile window.

An effective way to become familiar with LabVIEW programming is by going
through examples. Thus, in the two labs that follow in this chapter, most of the key
programming features of LabVIEW are presented by building some simple VIs. More
detailed information on LabVIEW programming can be found in [1-5].

13
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Lab 1: Getting Familiar
with LabVIEW: Part |

The objective of this first lab is to provide an initial hands-on experience in building
a VL. For detailed explanations of the LabVIEW features mentioned here, the reader
is referred to [1]. LabVIEW7.1 can get launched by double-clicking on the LabVIEW
7.1 icon. The dialog window shown in Figure 2-15 should appear.

Figure 2-15: Starting LabVIEW.

L1.1 Building a Simple VI

To become familiar with the LabVIEW programming environment, it is more effec-
tive if one goes through a simple example. The example presented here consists of
calculating the sum and average of two input values. This example is described in a
step-by-step fashion below.

L1.1.1 VI Creation

To create a new VI, click on the arrow next to New... and choose Blank VI from the
pull down menu. This step can also be done by choosing File — New VI from the
menu. As a result, a blank FP and a blank BD window appear, as shown in Figure

2-16. It should be remembered that an FP and a BD coexist when building a VI.

15
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Figure 2-16: Blank VI.

Clearly, the number of inputs and outputs to a VI is dependent on its function. In
this example, two inputs and two outputs are needed, one output generating the
sum and the other the average of two input values. The inputs are created by locat-
ing two Numeric Controls on the FP. This is done by right-clicking on an
open area of the FP to bring up the Controls palette, followed by choosing Controls
— Numeric Controls — Numeric Control. Each numeric control automatically places

a corresponding terminal icon on the BD. Double-clicking on a numeric control
highlights its counterpart on the BD, and vice versa.

Next, let us label the two inputs as x and y. This is achieved by using the Labeling
tool from the Tools palette, which can be displayed by choosing Window — Show Tools
Palette from the menu bar. Choose the Labeling tool and click on the default labels,
Numeric and Numeric 2, in order to edit them. Alternatively, if the automatic
tool selection mode is enabled by clicking Automatic Tool Selection in the Tools palette,
the labels can be edited by simply double-clicking on the default labels. Editing a label
on the FP changes its corresponding terminal icon label on the BD, and vice versa.

Similarly, the outputs are created by locating two Numeric Indicators
(Controls — Numeric Indicators — Numeric Indicator) on the FP. Each numeric indicator
automatically places a corresponding terminal icon on the BD. Edit the labels of the
indicators to read Sum and Average.

For a better visual appearance, objects on an FP window can be aligned, distributed,
and resized using the appropriate buttons appearing on the FP toolbar. To do this,

16
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select the objects to be aligned or distributed and apply the appropriate option from
the toolbar menu. Figure 2-17 shows the configuration of the FP just created.

Figure 2-17: FP configuration.

Now, let us build a graphical program on the BD to perform the summation and
averaging operations. Note that <Ctrl + E> toggles between an FP and a BD win-
dow. If one finds the objects on a BD are too close to insert other functions or Vls in
between, a horizontal or vertical space can be inserted by holding down the <Ctrl>
key to create space horizontally and/or vertically. As an example, Figure 2-18 (b)
illustrates a horizontal space inserted between the objects shown in Figure 2-18 (a).

1 h
[E]

" &

() (b)
Figure 2-18: Inserting horizontal/vertical space: (a) creating space while holding
down the <Ctrl> key, and (b) inserted horizontal space.
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Next, place an Add function (Functions — Arithmetic & Comparison — Express Numeric
— Add) and a Divide function (Functions — Arithmetic & Comparison — Express
Numeric — Divide) on the BD. The divisor, in our case 2, needs to be entered in a
Numeric Constant (Functions — Arithmetic & Comparison — Express Numeric —
Numeric Constant) and connected to the y terminal of the Divide function using the
Wiring tool.

To have a proper data flow, functions, structures and terminal icons on a BD need to
be wired. The Wiring tool is used for this purpose. To wire these objects, point the
Wiring tool at a terminal of a function or a subVI to be wired, left click on the termi-
nal, drag the mouse to a destination terminal and left click once again. Figure 2-19
illustrates the wires placed between the terminals of the numeric controls and the
input terminals of the add function. Notice that the label of a terminal is displayed
whenever the cursor is moved over it if the automatic tool selection mode is enabled.
Also, note that the Run button [#] on the toolbar remains broken until the wiring
process is completed.
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Figure 2-19: Wiring BD objects.

For better readability of a BD, wires which are hidden behind objects or crossed over
other wires can be cleaned up by right-clicking on them and choosing Clean Up Wire
from the shortcut menu. Any broken wires can be cleared by pressing <Ctrl + B> or
Edit — Remove Broken Wires.

The label of a BD object, such as a function, can be shown (or hidden) by right-
clicking on the object and checking (or unchecking) Visible ltems — Label from the
shortcut menu. Also, a terminal icon corresponding to a numeric control or indicator
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can be shown as a data type terminal icon. This is done by right-clicking on the ter-
minal icon and unchecking View As Icon from the shortcut menu. Figure 2-20 shows

an example where the numeric controls and indicators are shown as data type termi-
nal icons. The notation DBL represents double precision data type.
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Figure 2-20: Completed BD.

[t is worth pointing out that there exists a shortcut to build the above VI. Instead
of choosing the numeric controls, indicators or constants from the Controls or
Functions palette, the shortcut menu Create, activated by right-clicking on a
terminal of a BD object such as a function or a subVI, can be used. As an example
of this approach, create a blank VI and locate an Add function. Right-click on its
x terminal and choose Create — Control from the shortcut menu to create and wire
a numeric control or input. This locates a numeric control on the FP as well as a
corresponding terminal icon on the BD. The label is automatically set to x. Create
a second numeric control by right-clicking on the y terminal of the Add function.
Next, right-click on the output terminal of the Add function and choose Create
— Indicator from the shortcut menu. A data type terminal icon, labeled as x+v, is
created on the BD as well as a corresponding numeric indicator on the FP.

Next, right-click on the y terminal of the Divide function to choose Create —
Constant from the shortcut menu. This creates a Numeric Constant as the divi-
sor and wires its y terminal. Type the value 2 in the numeric constant. Right-click on
the output terminal of the Divide function, labeled as x /vy, and choose Create —
Indicator from the shortcut menu. If a wrong option is chosen, the terminal does not
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get wired. A wrong terminal option can easily be changed by right-clicking on the
terminal and choosing Change to Control or Change to Constant from the shortcut menu.

To save the created VI for later use, choose File — Save from the menu or press
<Ctrl + S> to bring up a dialog window to enter a name. Type Sum and Average
as the VI name and click Save.

To test the functionality of the VI, enter some sample values in the numeric controls
on the FP and run the VI by choosing Operate — Run, by pressing <Ctrl + R>, or

by clicking the Run button on the toolbar. From the displayed output values in the
numeric indicators, the functionality of the VI can be verified. Figure 2-21 illustrates
the outcome after running the VI with two inputs 10 and 30.

& Sum and Average.vi Front Panel |__|'E|I.§|

Figure 2-21: VI verification.

L1.1.2 SubVI Creation

If a VI is to be used as part of a higher level VI, its connector pane needs to be
configured. A connector pane assigns inputs and outputs of a subVI to its terminals
through which data are exchanged. A connector pane can be displayed by right-
clicking on the top right corner icon of an FP and selecting Show Connector from the
shortcut menu.

The default pattern of a connector pane is determined based on the number of
controls and indicators. In general, the terminals on the left side of a connector pane
pattern are used for inputs, and the ones on the right side for outputs. Terminals can
be added to or removed from a connector pane by right-clicking and choosing Add
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Terminal or Remove Terminal from the shortcut menu. If a change is to be made to the
number of inputs/outputs or to the distribution of terminals, a connector pane pat-
tern can be replaced with a new one by right-clicking and choosing Patterns from the
shortcut menu. Once a pattern is selected, each terminal needs to be reassigned to a
control or an indicator by using the Wiring tool, or by enabling the automatic tool
selection mode.

Figure 2-22(a) illustrates assigning a terminal of the Sum and Average VItoa
numeric control. The completed connector pane is shown in Figure 2-22(b). Notice
that the output terminals have thicker borders. The color of a terminal reflects its
data type.

2 Sum and Average.vi Front Panel ® |- [= [ = Sum and Average.vi Front Panel ® |_ |.C EX|
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Figure 2-22: Connector pane: (a) assigning a terminal
to a control, and (b) terminal assignment completed.

Considering that a subVI icon is displayed on the BD of a higher level VI, it is
important to edit the subVI icon for it to be explicitly identified. Double-clicking on
the top right corner icon of a BD brings up the Icon Editor. The tools provided in
the Icon Editor are very similar to those encountered in other graphical editors, such

as Microsoft Paint. An edited icon for the Sum and Average Vlis illustrated in
Figure 2-23.

A subVI can also be created from a section of a VI. To do so, select the nodes on the
BD to be included in the subVI, as shown in Figure 2-24(a). Then, choose Edit —
Create SubVI. This inserts a new subVI icon. Figure 2-24(b) illustrates the BD with an
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Figure 2-23: Editing subVI icon.

inserted subVI. This subVI can be opened and edited by double-clicking on its icon
on the BD. Save this subVI as Sum and Average.vi. This subVI performs the same
function as the original Sum and Average VI
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Figure 2-24: Creating a subVI: (a) selecting nodes to make
a subVI, and (b) inserted subVI icon.

In Figure 2-25, the completed FP and BD of the Sum and Average VI are shown.
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Figure 2-25: Sum and Average VI.

L1.2 Using Structures and SubVis

Let us now consider another example to demonstrate the use of structures and subVIs.
In this example, a VI is used to show the sum and average of two input values in a
continuous fashion. The two inputs can be altered by the user. If the average of the
two inputs becomes greater than a preset threshold value, a LED warning light is lit.

As the first step towards building such a VI, build an FP as shown in Figure 2-26(a).
For the inputs, use two Knobs (Controls — Numeric Controls — Knob). Adjust the size
of the knobs by using the Positioning tool. Properties of knobs such as precision and
data type can be modified by right-clicking and choosing Properties from the shortcut
menu. A Knob Properties dialog box is brought up and an Appearance tab is shown by
default. Edit the label of one of the knobs to read Input 1. Select the Data Range
tab, and click Representation to change the data type from double precision to byte by
selecting Byte among the displayed data types. This can also be achieved by right-
clicking on the knob and choosing Representation — Byte from the shortcut menu. In
the Data Range tab, a default value needs to be specified. In this example, the default
value is considered to be 0. The default value can be set by right-clicking on the
control and choosing Data Operations — Make Current Value Default from the shortcut
menu. Also, this control can be set to a default value by right-clicking and choosing
Data Operations — Reinitialize to Default Value from the shortcut menu.
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Label the second knob as Tnput 2 and repeat all the adjustments as done for the
first knob except for the data representation part. The data type of the second knob is
specified to be double precision in order to demonstrate the difference in the out-
come. As the final step of configuring the FP, align and distribute the objects using
the appropriate buttons on the FP toolbar.

To set the outputs, locate and place a Numeric Indicator,aRounded LED
(Controls — LEDs — Rounded LED), and a Gauge (Controls — Numeric Indicators —
Gauge). Edit the labels of the indicators as shown in Figure 2-26(a).

B Struciure and Sub¥ vl Block (Hagram | - =P

(a) (b)
Figure 2-26: Example of structure and subVI: (a) FP, and (b) BD.

Now, let us build the BD. There are five control and indicator icons already
appearing on the BD. Right-click on an open area of the BD to bring up the Func-
tions palette and then choose All functions — Select a V... This brings up a file dialog
box. Navigate to the Sum and Average VI in order to place it on the BD. This
subVl is displayed as an icon on the BD. Wire the numeric controls, Input 1 and
Input 2, to the x and y terminals, respectively. Also, wire the Sum terminal of
the subVI to the numeric indicator labeled Sum, and the Average terminal to the
gauge indicator labeled Average.

A Greater or Equal-? function is located from Functions — Arithmetic &
Comparisons — Comparison — Greater or Equal? in order to compare the average
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output of the subVI with a threshold value. Create a wire branch on the wire
between the Average terminal of the subVI and its indicator via the Wiring tool.
Then, extend this wire to the x terminal of the Greater or Egqual? function.
Right-click on the y terminal of the Greater or Equal? function and choose
Create — Constant in order to place a Numeric Constant. Enter 9 in the numeric
constant. Then, wire the Rounded LED, labeled as Warning, to the x>=y?
terminal of this function to provide a Boolean value.

In order to run the VI continuously, a While Loop structure is used. Choose Functions
— Execution Control — While Loop to create aWhile Loop. Change the size by

dragging the mouse to enclose the objects in the While Loop as illustrated in
Figure 2-27.
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Figure 2-27: While Loop enclosure.

Once this structure is created, its boundary together with the loop iteration terminal
[i], and conditional terminal [@ are shown on the BD. If the While Loop is cre-
ated by using Functions — All Functions — Structures — While Loop, then the Stop
Button is not included as part of the structure. This button can be created by right-
clicking on the conditional terminal and choosing Greate — Gontrol from the shortcut
menu. A Boolean condition can be wired to a conditional terminal, instead of a stop
button, in order to stop the loop programmatically.
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As the final step, tidy up the wires, nodes and terminals on the BD using the Align
object and Distribute object options on the BD toolbar. Then, save the VI in a file
named Strucure and SubVI.vi.

Now run the VI to verify its functionality. After clicking the Run button on the
toolbar, adjust the knobs to alter the inputs. Verify whether the average and sum

are displayed correctly in the gauge and numeric indicators. Note that only integer
values can be entered via the Input 1 knob while real values can be entered via
the Input 2 knob. This is due to the data types associated with these knobs. The
Input 1 knob is set to byte type, that is, I8 or 8 bit signed integer. As a result, only
integer values within the range —128 and 127 can be entered. Considering that the
minimum and maximum value of this knob are set to 0 and 10 respectively, only
integer values from O to 10 can thus be entered for this input.

Figure 2-28: FP as VI runs.

When the average value of the two inputs becomes greater than the preset threshold
value of 9, the warning LED will light up, see Figure 2-28. Click the stop button

on the FP to stop the VI. Otherwise, the VI keeps running until the conditional
terminal of the While Loop becomes true.
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L1.3 Create an Array with Indexing

Auto-indexing enables one to read/write each element from/to a data array in a loop
structure. That feature is covered in this section.

Let us first locate a For Loop (Functions — All Functions — Structures — For Loop).
Right-click on its count terminal and choose Create — Constant from the shortcut
menu to set the number of iterations. Enter 10 so that the code inside it gets repeated
ten times. Note that the current loop iteration count, which is read from the
iteration terminal, starts at index O and ends at index 9.

Place a Random Number (0-1) function (Functions — Arithmetic & Comparison —
Express Numeric — Random Number (0-1)) inside the For Loop and wire the output
terminal of this function, number (0 to 1), to the border of the For Loop to
create an output tunnel. The tunnel appears as a box with the array symbol [ ] inside
it. For a For Loop, auto-indexing is enabled by default whereas for a While Loop,

it is disabled by default. Create an indicator on the tunnel by right-clicking and
choosing Create — Indicator from the shortcut menu. This creates an array indicator
icon outside the loop structure on the BD. Its wire appears thicker due to its array
data type. Also, another indicator representing the array index gets displayed on the
FP. This indicator is of array data type and can be resized as desired. In this example,
the size of the array is specified as 10 to display all the values, considering that the
number of iterations of the For Loop is set to be ten.

Create a second output tunnel by wiring the output of the Random Number (0-1)
function to the border of the loop structure, then right-click on the tunnel and choose
Disable indexing from the shortcut menu to disable auto-indexing. By doing this, the
tunnel becomes a filled box representing a scalar value. Create an indicator on the
tunnel by right-clicking and choosing Create — Indicator from the shortcut menu. This
sets up an indicator of scalar data type outside the loop structure on the BD.

Next, create a third indicator on the Number (0 to 1) terminal of the Random
Number (0-1) function located in the For Loop to observe the values coming
out. To do this, right-click on the output terminal or on the wire connected to this
terminal and choose Create — Indicator from the shortcut menu.

Place a Time Delay Express VI (Functions — Execution Contol — Time Delay) to
delay the execution in order to have enough time to observe a current value. A con-
figuration window is brought up to specify the delay time in seconds. Enter the value
0.1 to wait 0.1 seconds at each iteration. Note that the Time Delay Express VI is
shown as an icon in Figure 2-29 in order to have a more compact display.
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Figure 2-29: Creating array with indexing.

Save the VI as Indexing Example.vi and run it to observe its functionality. From

the output displayed on the FP, a new random number should be displayed every

0.1 seconds on the indicator residing inside the loop structure. However, no data
should be available from the indicators outside the loop structure until the loop
iterations end. An array of 10 elements should be generated from the indexing-
enabled tunnel while only one output, the last element of the array, should be passed
from the indexing-disabled tunnel.

L1.4 Debugging Vis: Probe Tool

The Probe tool is used to observe data that are being passed while a VI is running.
A probe can be placed on a wire by using the Probe tool or by right-clicking on a
wire and choosing Probe from the shortcut menu. Probes can also be placed while a
VI is running.

Placing probes on wires creates probe windows through which intermediate values
can be observed. A probe window can be customized. For example, showing data of
array data type via a graph makes debugging easier. To do this, right-click on the wire
where an array is being passed and choose Custom Probe — Controls — Graph Indicators
— Waveform Graphs from the shortcut menu.
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As an example of using custom probes, a Waveform Chart is used here to track
the scalar values at probe location 1, a Wwaveform Graph to monitor the array at
probe location 2, and a regular probe window at probe location 3 to see the values
of the Indexing Example VI. These probes and their locations are illustrated in

Figure 2-30.
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Figure 2-30: Probe tool.
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Lab 2: Getting Familiar
with LabVIEW: Part Ii

Now that an initial familiarity with the LabVIEW programming environment has
been acquired in Lab 1, this second lab covers an example where a simple DSP
system is built, thus enhancing the familiarity of the reader with LabVIEW. This
example involves a signal generation and amplification system. The shape of the
input signal (sine, square, triangle, or sawtooth), as well as its frequency and gain, are
altered by using appropriate FP controls.

The system is built with Express VIs first, then the same system is built with regular
VIs. This is done in order to illustrate the advantages and disadvantages of Express
VIs versus regular VIs for building a system.

L2.1 Building a System VI with Express Vis

The use of Express VIs allows less wiring on a BD. Also, it provides an interactive
user-interface by which parameter values can be adjusted on the fly. The BD of the
signal generation system using Express Vs is shown in Figure 2-31.

> Lah0? Express.vi Block Disgram E"'ELE|

e al

Figure 2-31: BD of signal generation and
amplification system using Express Vis [1].
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To build this BD, locate the Simulate Signal Express VI (Functions — Input —
Simulate Signal) to generate a signal source. This brings up a configuration dialog

as shown in Figure 2-32. Different types of signals including sine, square, triangle,
sawtooth, or DC can be generated with this VI. Enter and adjust the parameters as
indicated in Figure 2-32 to simulate a sinewave having a frequency of 200 Hz and
an amplitude swinging between —100 and 100. Set the sampling frequency to 8000
Hz. A total of 128 samples spanning a time duration of 15.875 milliseconds (ms) are
generated. Note that when the parameters are changed, the modified signal is dis-
played instantly in the Result Preview graph window.
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Figure 2-32: Configuration of Simulate Signal Express VI.

Next, place a Scaling and Mapping Express VI (Functions — Arithmetic &
Comparison — Scaling and Mapping) to amplify or scale this simulated signal. When its
configuration dialog is brought up, see Figure 2-33, choose Linear (Y=mx+b) and enter
5 in Slope (m) to scale the input signal 5 times.
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Wire the Sine terminal of the Simulate Signal Express VI to the Signals
terminal of the Scaling and Mapping Express VI. Note that a wire having a
dynamic data type is created.
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Figure 2-33: Configuration of Scaling and Mapping Express VI.

To display the output signal, place a Waveform Graph (Controls — Graph Indicators
— Waveform Graph) on the FP. The Waveform Graph can also be created by right-
clicking on the Scaled Signals terminal and choosing Create — Graph Indicator
from the shortcut menu.

Now, in order to observe the original and the scaled signal together in the same
graph, wire the Sine terminal of the Simulate Signal Express VI to the
Waveform Graph. This inserts a Merge Signals function on the wire
automatically. An automatic insertion of the Merge Signals function occurs
when a signal having a dynamic data type is wired to other signals having the same
or other data types. The Merge Signals function combines multiple inputs, thus
allowing two signals, consisting of the original and scaled signals, to be handled by
one wire. Since both the original and scaled signals are displayed in the same graph,
resize the plot legend to display the two labels and markers. The use of the dynamic
data type sets the signal labels automatically.

To run the VI continuously, place aWhile Loop. Position the While Loop to
enclose all the Express VIs and the graph. Now the VI is ready to be run.

33



Lab 2

& Lab0?_Express,vi Front Pancl r—||'EI_|f'.(-|

‘lt Cperate Tooks Hl'ws: Wrdowy h:b |
g 1"

& {gi J 130t pphcationFort. <Al

Figure 2-34: FP of signal generation and amplification system.

Run the VI and observe the Waveform Graph. The output should appear as
shown in Figure 2-34. To extend the plot to the right end of the plotting area, right-
click on the Waveform Graph and choose X Scale, then uncheck Loose Fit from
the shortcut menu. The graph shown in Figure 2-35 should appear.
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Figure 2-35: Plot with Loose Fit.
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If the plot runs too fast, a delay can be placed in the While Loop. To do this, place
a Time Delay Express VI (Functions — Execution Control — Time Delay) and set

the delay time to 0.2 in the configuration window. This way, the loop execution is
delayed by 0.2 seconds in the BD shown in Figure 2-31.

Although this system runs successfully, no control of the signal frequency and gain
is available during its execution since all the parameters are set in the configuration
dialogs of the Express VIs. To gain such flexibility, some modifications need to be made.

To change the frequency at run time, place a Vertical Pointer Slide con-
trol (Controls — Numeric Controls — Vertical Pointer Slide) on the FP and wire it to

the Frequency terminal of the Simulate Signal Express VI. The control is
labeled as Frequency. The Express VI can be resized to show more terminals at the
bottom of the expandable node. Resize the VI to show an additional terminal below
the Sine terminal. Then, click on this new terminal, error out by default, to
select Frequency from the list of the displayed terminals.

Next, replace the Scaling and Mapping Express VI with aMultiply
function (Functions — Arithmetic & Comparison — Express Numeric — Multiply). Place
another Vertical Pointer Slide control and wire it to the v terminal of
the Multiply function to adjust the gain. This control is labeled as Gain. These
modifications are illustrated in Figure 2-36.
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Figure 2-36: BD of signal generation and amplification system with controls.
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Now on the FP, set the maximum range of each slide control to 1000 for the Fre-
quency control and 5 for the Gain control, respectively. Also, set the default
values for these controls to 200 and 2, respectively.

By running this modified VI, it can be observed that the two signals are displayed
with the same label since the source of these signals, that is, the Sine terminal of
the Simulate Signal Express VI, is the same. Also, due to the autoscale feature
of the Waveform Graph, the scaled signal appears unchanged while the Y axis of
the Waveform Graph changes appropriately. This is illustrated in Figure 2-37.
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Figure 2-37: Autoscaled graph of two signals shown together.

Let us now modify the properties of the Waveform Graph. In order to disable

the autoscale feature, right-click on the Waveform Graph and uncheck Y Axis —
AutoScale Y. The maximum and minimum scale can also be adjusted. In this example
—600 and 600 are used as the minimum and maximum values, respectively. This is
done by modifying the maximum and minimum scale values of the Y axis with the
Labeling tool. If the automatic tool selection mode is enabled, just click on the maxi-
mum or minimum scale of the Y axis to enter any desired scale value. To modify the
labels displayed in the plot legend, right-click and choose Ignore Attributes. Then, edit
the labels to read Original and Scaled using the Labeling tool. Changing the
properties of the Waveform Graph can also be accomplished by using its proper-
ties dialog box. This box is brought up by right-clicking on the Waveform Graph
and choosing Properties from the shortcut menu.
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The completed FP is shown in Figure 2-38. With this version of the VI, the frequen-
cy of the input signal and the gain of the output signal can be controlled using the
controls on the FP.
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Figure 2-38: FP of signal generation and amplification system with controls.

L2.2 Building a System with Regular Vis

In this section, the implementation of the same system discussed above is achieved
by using regular Vls.

After creating a blank VI, place aWhile Loop (Functions — Execution Control —
While Loop) on the BD, which may need to be resized later. To provide the signal
source of the system, place a Basic Function Generator VI (Functions —

All Functions — Analyze — Waveform Generation — Basic Function Generator) inside
the While Loop. To configure the parameters of the signal, appropriate controls
and constants need to be wired. To create a control for the signal type, right-click
on the signal type terminal of the Basic Function Generator VIand
choose Create — Control from the shortcut menu. Note that an enumerated (Enum)
type control for the signal gets located on the FP. Four items including sine, triangle,
square and sawtooth are listed in this control.
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Next, right-click on the amp1 i tude terminal, and choose Create — Constant

from the shortcut menu to create an amplitude constant. Enter 100 in the numeric
constant box to set the amplitude of the signal. In order to configure the sam-

pling frequency and the number of samples, create a constant on the sampling
information terminal by right-clicking and choosing Create — Constant from

the shortcut menu. This creates a cluster constant which includes two numeric
constants. The first element of the cluster shown in the upper box represents the
sampling frequency and the second element shown in the lower box represents the
number of samples. Enter 8000 for the sampling frequency and 128 for the number of
samples. Note that the same parameters were used in the previous section.

Now, toggle to the FP by pressing <Ctrl + E> and place two Vertical Pointer
S1lide controls on the FP by choosing Controls — Numeric Controls — Vertical Pointer
Slide. Rename the controls Frequency and Gain, respectively. Set the maximum
scale values to 1000 for the Frequency control and 5 for the Gain control. The
Vertical Pointer Slide controls create corresponding icons on the BD.
Make sure that the icons are located inside the While Loop. If not, select the icons
and drag them inside the While Loop. The Frequency control should be wired
to the frequency terminal of the Basic Function Generator VIin order to
be able to adjust the frequency at run time. The Gain control is used at a later stage.

The output of the Basic Function Generator VI appears in the waveform
data type. The waveform data type is a special cluster which bundles three components
(t0, dt, and Y) together. The component t0 represents the trigger time of the wave-
form, dt the time interval between two samples, and Y data values of the waveform.

Next, the generated signal needs to be scaled based on a gain factor. This is done by
using a Multiply function (Functions — Arithmetic & Comparison — Express Numeric
— Multiply) and a second Vertical Pointer Slide control, named Gain.
Wire the generated waveform out of the signal out terminal of the Basic
Function Generator VI to the x terminal of the Multiply function. Also,
wire the Gain control to the y terminal of the Multiply function.

Recall that the Merge Signals function is used to combine two signals having
dynamic data types into the same wire. To achieve the same outcome with regular
VlIs, place a Build Array function (Functions — All Functions — Array — Build
Array) to build a 2D array, that is, two rows (or columns) of one dimensional signal.
Resize the Build Array function to have two input terminals. Wire the original
signal to the upper terminal of the Build Array function, and the output of the
Multiply function to the lower terminal. Remember that the Build Array
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function is used to concatenate arrays or build n-dimensional arrays. Since the
Build Array function is used for comparing the two signals, make sure that the
Concatenate Inputs option is unchecked from the shortcut menu. More details on the
use of the Build Array function can be found in [2].

A Waveform Graph (Controls — Graph Indicators — Waveform Graph) is then
placed on the FP. Wire the output of the Build Array function to the input of
the Waveform Graph. Resize the plot legend to display the labels and edit them.
Similar to the example in the previous section, the AutoScale feature of the Y axis
should be disabled and the Loose Fit option should be unchecked along the X axis.

PlaceaWait (ms) function (Functions — All Functions — Time & Dialog — Wait)
inside the While Loop to delay the execution in case the VI runs too fast. Right-
click onthemilliseconds to wait terminal and choose Create — Constant
from the shortcut menu to create and wire a Numeric Constant. Enter 200 in
the box created.

Figure 2-39 and Figure 2-40 illustrate the BD and FP of the designed signal genera-
tion system, respectively. Save the VI as Lab02_Regular_Waveform.vi and run it.
Change the signal type, gain and frequency values to see the original and scaled
signal in the Waveform Graph.

The waveform data type is not accepted by all of the functions or subVIs. To cope
with this issue, the Y component (data value) of the waveform data type is extracted
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Figure 2-39: BD of signal generation and
amplification system using regular Vis.
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Figure 2-40: Original and scaled output signals.

to obtain the output signal as an array of data samples. This is done by placing a

Get Waveform Components function (Functions — All Functions — Waveform
— Get Waveform Components). Then, wire the signal out terminal of the Basic
Function Generator VI to the waveform terminal of the Get Waveform
Components function. Click on t 0, the default terminal, of the Get Waveform

Components function
and choose Y as the out-
put to extract data values
from the waveform data
type, see Figure 2-41. The
remaining steps are the
same as those for the ver-

sion shown in Figure 2-39.

In this version, however,
the processed signal is an
array of double precision
samples.
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Figure 2-41: Matching data types.
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L2.3 Profile VI

The Profile tool is used to gather timing and memory usage information. Make sure
the VI is stopped before setting up a Profile window. Select Tool — Advanced — Profile
Vls... to bring up a Profile window.

Place a checkmark in the Timing Statistics checkbox to display timing statistics of
the VI. The Timing Details option provides more detailed statistics of the VI such as
drawing time. To profile memory usage as well as timing, check the Memory Usage
checkbox after checking the Profile Memory Usage checkbox. Note that this op-

tion can slow down the execution of the VI. Start profiling by clicking the Start
button on the profiler, then run the VI. A snapshot of the profiler information can
be obtained by clicking on the Snapshot button. After viewing the timing infor-
mation, click the Stop button. The profile statistics can be stored into a text file by
clicking the Save button.

An outcome of the profiler is exhibited in Figure 2-42 after running the Lab02_
Regular VI. More details on the use of the Profile tool can be found in [3].

B Profile
Stmt —— [=] Timing Stakistics Trne infllesccrnks |
(] Tomirug Cont s - - :
[] Protie Memory Usage =] Memory Usage Shehidctytas 8
VI Tame: Sub VIS Time Total Time: & Runs Averags Sha*
Lab2_Recular,w 78.1 0.0 78,1 1 TRl m|1
e W 0.0 0.0 0.0 k] o LR
ma_patchErrorCode or Caller as Source.w 0,0 0.0 o0 i [1N] [1 %]
rris_Trap Fosn Pacsmaler Erord. v 0.0 0.0 0.0 El 0.0 oo
Triangle Wawe. v 0.0 [ 1] oo 1] . i Ni]
Sueare Wave,vi 0.0 0.9 0.0 1] 0.0 0.0
Sawhooth Wave. v 0.0 0.4 0.0 [t} 0.9 oo
s _[Lipsclatan (] Mt g vl 0.0 0.0 0.0 El LN} oo
ma_Lipdistetid v 0.0 LR 0.0 u LI 0o
may_basscEmorCodeZErmorCiuster, v 0.0 0.0 0.0 9 0.0 0.0
Biasic Funtion Generator.v 0.0 (1] 0.0 ] 0.0 LX)
an_Lipclaket 0 DL o4 0.0 0.0 oo o o oo
-
L L]

Figure 2-42: Profile window after running Lab02_Regular VI.
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CHAPTER

Analog-to-Digital
Signal Conversion

The process of analog-to-digital signal conversion consists of converting a continu-
ous time and amplitude signal into discrete time and amplitude values. Sampling
and quantization constitute the steps needed to achieve analog-to-digital signal
conversion. To minimize any loss of information that may occur as a result of this
conversion, it is important to understand the underlying principles behind sampling
and quantization.

3.1 Sampling

Sampling is the process of generating discrete time samples from an analog signal.
First, it is helpful to mention the relationship between analog and digital frequencies.
Let us consider an analog sinusoidal signal x(t) = Acos(mt + ¢). Sampling this signal
at t = nT,, with the sampling time interval of T,, generates the discrete time signal

x[n]: Acos(O)nTS +(I))= Acos(9n+¢), n=0,12,..., (3.1)

T
where 0 =0T, = nf denotes digital frequency with units being radians (as compared
to analog frequency o with units being radians/sec).
The difference between analog and digital frequencies is more evident by observing
that the same discrete time signal is obtained from different continuous time signals
if the product ®T, remains the same. (An example is shown in Figure 3-1.) Likewise,
different discrete time signals are obtained from the same analog or continuous time
signal when the sampling frequency is changed. (An example is shown in Figure
3-2.) In other words, both the frequency of an analog signal f and the sampling fre-
quency f, define the frequency of the corresponding digital signal ©.
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Figure 3-1: Sampling of two different analog
signals leading to the same digital signal.
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Figure 3-2: Sampling of the same analog signal
leading to two different digital signals.
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[t helps to understand the constraints associated with the above sampling process by
examining signals in the frequency domain. The Fourier transform pairs in the ana-
log and digital domains are given by

X(jw)= T x(t)e ™ dt
Fourier transform pair for (i) J""’ (©) (3.2)
analog signals x(t)= Lo X (joo) ™ do
2=

X(*)=3 7 0=0T
Fourier transform pair for (e ) n;; K[ne ) (3.3)
discrete signals n o

x[n] = L X(e]e)e"‘ede

| 2 d-n

Analog Signal Discrete Signal
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Figure 3-3: (a) Fourier transform of a continuous-
time signal, and (b) its discrete time version.

As illustrated in Figure 3-3, when an analog signal with a maximum bandwidth of
1
W (or a maximum frequency of f,,,.) is sampled at a rate of T, = —, its correspond-

ing frequency response is repeated every 27 radians, or f.. In other words, the Fourier
transform in the digital domain becomes a periodic version of the Fourier transform
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in the analog domain. That is why, for discrete signals, we are only interested in the
frequency range [0, f, /2].

Therefore, in order to avoid any aliasing or distortion of the frequency content of the
discrete signal, and hence to be able to recover or reconstruct the frequency content
of the original analog signal, we must have f, > 2f, . This is known as the Nyquist
rate; that is, the sampling frequency should be at least twice the highest frequency in
the signal. Normally, before any digital manipulation, a front-end antialiasing low-
pass analog filter is used to limit the highest frequency of the analog signal.

The aliasing problem can be further illustrated by considering an undersampled
sinusoid as depicted in Figure 3-4. In this figure, a 1 kHz sinusoid is sampled at

f. = 0.8 kHz, which is less than the Nyquist rate of 2 kHz. The dashed-line signal is a
200 Hz sinusoid passing through the same sample points. Thus, at the sampling fre-
quency of 0.8 kHz, the output of an A/D converter would be the same if either of the

1 kHz or 200 Hz sinusoids was the input signal. On the other hand, oversampling a
signal provides a richer description than that of the signal sampled at the Nyquist rate.
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Figure 3-4: Ambiguity caused by aliasing.

3.1.1 Fast Fourier Transform

The Fourier transform of discrete signals is continuous over the frequency range

[0, £. /2]. Thus, from a computational standpoint, this transform is not suitable to
use. In practice, the discrete Fourier transform (DFT) is used in place of the Fourier
transform. DFT is the equivalent of the Fourier series in the analog domain. Detailed
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descriptions of signal transforms can be found in various textbooks on digital signal
processing, for example [1], [2]. Fourier series and DFT transform pairs are expressed as

T2 _
— _J. —]cooktdt
Fourier series for periodic 7" (3.4)
analog signals o :
()= Y, X,
k=—c0

where T denotes period and ®, fundamental frequency.

N-1 _.zj

j——nk
Discrete Fourier transform k] - ~ x Y k=01..,N-1
(DFT) for periodic discrete | e o (3.5)
signals NZX k]e]N ,n=0,1,.,.N-1
k=

[t should be noted that DFT and Fourier series pairs are defined for periodic signals.
Hence, when computing DFT, it is required to assume periodicity with a period of
N samples. Figure 3-5 illustrates a sampled sinusoid which is no longer periodic. In
order to make sure that the sampled version remains periodic, the analog frequency
should satisfy this condition [3]

m
f= ﬁfs (3.6)
where m denotes the number of cycles over which DFT is computed.

Xk

Figure 3-5: Periodicity

condition of sampling.
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The computational complexity (number of additions and multiplications) of DFT

is reduced from N? to N log N by using fast Fourier transform (FFT) algorithms. In
these algorithms, N is normally considered to be a power of two. Figure 3-6 shows the
effect of the periodicity constraint on the FFT computation. In this figure, the FFTs
of two sinusoids with frequencies of 250 Hz and 251 Hz are shown. The amplitudes of
the sinusoids are unity. Although there is only a 1 Hz difference between the sinu-
soids, the FFT outcomes are significantly different due to the improper sampling.
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Figure 3-6: FFTs of (a) a 250 Hz and (b) a 251 Hz sinusoid.
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3.2 Quantization

An A/D converter has a finite number of bits (or resolution). As a result, continuous
amplitude values are represented or approximated by discrete amplitude levels. The
process of converting continuous into discrete amplitude levels is called quantization.
This approximation leads to errors called quantization noise. The input/output char-
acteristic of a 3-bit A/D converter is shown in Figure 3-7 to see how analog voltage
values are approximated by discrete voltage levels.

Digital Output
A
111 |—
A
010 — P ) Quantization Error
7
ot = L7 % LSB —_—
100 | £
v
/)
o — /, 0 Analog Input
010 — ~ -% LSB -
/
Vs
001 —
/
000 L] Lo

0 1 2 3 4 5 6 7 Analog Input

@ (b)

Figure 3-7: Characteristic of a 3-bit A/D converter: (a) input/
output transfer function, and (b) additive quantization noise.

A quantization interval depends on the number of quantization or resolution levels,
as illustrated in Figure 3-8. Clearly the amount of quantization noise generated by an
A/D converter depends on the size of the quantization interval. More quantization
bits translate into a narrower quantization interval and hence into a lower amount of
quantization noise.
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Figure 3-8: Quantization levels.
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In Figure 3-8, the spacing A between two consecutive quantization levels corresponds
to one least significant bit (LSB). Usually, it is assumed that quantization noise is sig-

nal independent and is uniformly distributed over —0.5 LSB and 0.5 LSB. Figure 3-9

shows the quantization noise of an analog signal quantized by a 3-bit A/D converter.
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Figure 3-9: Quantization of an analog signal by a 3-bit
A/D converter: (a) output signal and quantization error,
(b) histogram of quantization error, and (c) bit stream.
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3.3 Signal Reconstruction

So far, we have examined the forward process of sampling. It is also important to
understand the inverse process of signal reconstruction from samples. According to
the Nyquist theorem, an analog signal v, can be reconstructed from its samples by
using the following equation:

v (t)= i v, [kTS] sinc(t_;Ts] (3.7)

k=—oco

s

One can see that the reconstruction is based on the summations of shifted sinc
functions. Figure 3-10 illustrates the reconstruction of a sinewave from its samples.
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Sinc Interpolation

Sinc function

Weighted Sincs

-1 ! ! ! ! S ! !
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Figure 3-10: Reconstruction of an analog sinewave
based on its samples, f= 125 Hz, and f, = 1 kHz.

[t is very difficult to generate sinc functions by electronic circuitry. That is why, in
practice, an approximation of a sinc function is used. Figure 3-11 shows an approxi-
mation of a sinc function by a pulse, which is easy to realize in electronic circuitry. In
fact, the well-known sample and hold circuit performs this approximation [3].

08| \ |
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Figure 3-11: Approximation of a sinc function by a pulse.
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Lab 3: Sampling, Quantization
and Reconstruction

This lab covers several examples to further convey sampling, quantization, and recon-
struction aspects of analog-to-digital and digital-to-analog signal conversion processes.

L3.1 Aliasing

In this example, a discrete signal is generated by sampling a sinusoidal signal. When
the normalized frequency f/ f, of the discrete signal becomes greater than 0.5, or the
Nyquist frequency, the aliasing effect becomes evident.

A sampling process is done by setting the sampling frequency f, to 1 kHz, and the
number of samples N to 10. This results in a 10 ms sampled signal. The signal
frequency is arranged to vary between O to 1000 Hz using a FP control. Figure 3-12
shows a sinusoidal signal having a frequency of 300 Hz which is sampled at 1 kHz for
10 ms producing 10 samples, which are displayed in a Waveform Graph. In this

& Labid Aliasing.vi
Fe Edt Cperstz Took Browse Windos Help

Figure 3-12: Aliasing effect.
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graph, an analog signal representation is also made by oversampling the sinusoidal
signal 100 times faster. In other words, an analog signal representation is obtained by
considering a sampling frequency of 100 kHz generating 1000 samples.

The FP of the VI includes a Horizontal Slide control for the signal frequency,
and two Numeric Indicators for the normalized frequency and aliased frequen-
cy. A Stop Button associated with aWhile Loop on the BD is located on the
FP. This button is used to stop the execution of the VI.

Figure 3-13 shows the BD for this sampling system. To generate the analog and
discrete sinusoids, three Sine Wawve VIs (Functions — All Functions — Analyze —
Signal Processing — Signal Generation — Sine Wave) are used. These VIs are arranged
vertically in the middle of the BD. The inputs to these VIs consist of the number of
samples, amplitude, frequency, and phase offset. Amplitude is set to 1 by default in the
absence of any wiring to the amp1litude terminal. The f terminal requires frequency
to be specified in cycles per sample, which is the reciprocal of number of samples per
period. For phase, the numeric constant 90 is wired to the phase in terminal.

b= Lab3 Aliasing, vi Block Diagram
Fie Edt Cperate Tooks frowss Window Help
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Jrormaskzad Frisgquency (Fe= 110}

> -
et &= . .

[0

Figure 3-13: BD of aliasing example—True case.
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Figure 3-14: False case.

The output of the VI consists of an array of its sinewave samples. The Build
Waveform function (Functions — All Functions — Waveform — Build Waveform) is
used to build a waveform by combining the samples into the Y terminal, and the time
duration between samples, T, = 1/1000, into the dt terminal. As discussed earlier, the
number of samples for the analog representation of the signal is set to 100 times that
of the discrete signal. Thus, to keep the ratio of frequency to samples the same as that
of the discrete signal, the value wired to the f terminal is divided by 100. Also, the
time interval of the analog signal is set to one hundredth of that of the discrete signal.

Among the three Sine Wave VIs shown in Figure 3-13, the top VI generates the
discrete signal, the middle VI generates the analog signal, and the bottom VI generates
the aliased signal when the signal frequency is higher than the Nyquist frequency.

A Case Structure is used to handle the sampling cases with aliasing and
without aliasing. If the normalized frequency is greater than 0.5, corresponding to
the True case, the third Sine Wave VI generates an aliased signal. All the inputs
except for the aliased signal frequency are the same.

Note that an Expression Node (Functions — All Functions — Numeric —
Expression Node) is used to obtained the aliased frequency. An Expression Node is
usually used to calculate an expression of a single variable. Many built-in functions,
such as abs (absolute), can be used in an Expression Node to evaluate an equation.
More details on the use of Expression Node can be found in [1].

For the False case, that is, sampling without aliasing, there is no need to generate
an aliased signal. Thus, the analog signal is connected to the output of the case
structure so that the same signal is drawn on the waveform graph and the frequency
of the aliased signal is set to 0. This is illustrated in Figure 3-14. It should be remem-
bered that, when using a Case Structure, it is necessary to wire all the outputs
for each case.
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An aliasing outcome is illustrated in Figure 3-15, where samples of a 700 Hz sinusoid
are shown. Note that these samples could have also been obtained from a 300 Hz
sinusoid, shown by the dotted line in Figure 3-15.

B Lab3 Aliasing.vi
Ede Edt Cpeorabe Tooks Browse Window Help

Figure 3-15: A 700 Hz sinusoid aliased with a 300 Hz sinusoid.

All the three waveforms are bundled together by using the Build Array function
and displayed in the same graph. The properties of the Waveform Graph should
be configured as shown in Figure 3-15. This is done by expanding the plot legend
vertically to display the three entries and renaming the labels appropriately. Right-
click on the Waveform Graph and choose Properties from the shortcut menu. A
Waveform Graph Properties dialog box will be brought up. Select the Plots tab to
modify the plot style. Choose Sampled Signal in the Plot drop down menu, see
Figure 3-16. Also, choose the options for Point Style, Plot Interpolation, and Fill to as
indicated in this figure. Adjust the line style of the aliased signal to dotted line.

Rename all the controls and indicators, and modify the maximum scale of the
Horizontal Pointer Slide control to 1000 to complete the VI.
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Figure 3-16: Waveform Graph Properties dialog box.

L3.2 Fast Fourier Transform

= Lah3 FFT.vi Rlock Diagram
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and the phase to 90. Furthermore, enter 1000 as the sampling frequency and 512 as
the number of samples. These parameters satisfy the condition in Equation (3.6). As
for the 251 Hz sinusoid, use the same parameters except for the frequency, which is to

be set to 251.
= I,'u|1IIE_|| it Smulalie SF,|_5|||1[ [!S'illrulnllr !li'itr.||.1l_|
Sigral bype
Ty (¥
Fraquency (He) Phae (dag)
250 a0
Aenpltude Cffgat
1 ]
Tirmsdog
Sarphes paw pacond (He)
1000 () Srmdste: scquisition timing
Noreber of tamples (=) Fum s Fast a5 possibie
s1z = | []sutomstc
[Clinbeger number of cycles

]

5=

o

.

i
1]

Ampltude

0.511

14l ||||
i
T

Tirme Stamps

(=) Relativn to start of measuremert:
() breoh e (date and time)

Reset Signal

(I Reset phase, saed, and time stamgs
(=) Uise conkinunus gers stion

Segnal Name

[#] Uise signal ypes rawms

Signal nasme
Sare

| | J {

Cancel Help

Figure 3-18: Configuration dialog of Simulate Signal Express VI.

Now, place two Spectral Measurements Express VIs (Functions — Analysis —
Spectral Measurements) to compute the FFTs of the signals. The configuration dialog
entries need to be adjusted as shown in Figure 3-19. The adjustments shown in this
figure provide the spectrum in dB scale without using a spectral leakage window.
Notice that when the parameters are adjusted, the preview windows are updated

based on the current setting.

The spectra of the two signals are shown in Figure 3-20. As seen from this figure, the
spectrum of the 251 Hz signal is spread over a wide range due to the improper sam-

pling. Also, its peak drops by nearly 4 dB.
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Figure 3-20: FFTs of a 250 and a 251 Hz sinusoid.
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The plot in the Waveform Graph can be magnified using the Graph Palette for
better visualization. The Graph Palette is displayed by right-clicking on the Wave-
form Graph and choosing Visible ltem — Graph Palette from the shortcut menu.
The options Gursor Movement Tool, Zoom, and Panning Tool are provided in the palette.
More specific options for zooming in and out are available in the expanded menu
when the Zoom option is chosen as shown in Figure 3-21.

Cursor Movement Tool Zoom  Panning Tool
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Hig el |
r »
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Zoom In about Poind
Zoom Out about Point

Figure 3-21: Menu options of Graph palette.

The improper sampling for the 251 Hz signal can be corrected by modifying the
sampling parameters. The configuration dialog of the Simulate Signal Express
VI provides a useful option, Integer number of cycles, to satisfy the sampling condi-
tion. This is illustrated in Figure 3-22.

Checking the Integer number of cycles option alters the number of samples and
frequency to 502 and 250.996, respectively. As a result, a proper sampling condition
is established. The spectrum of this resampled signal is shown in Figure 3-23. As seen
from this figure, the frequency leakage is considerably reduced in this case.
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Figure 3-22: Modifying sampling parameters.
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Figure 3-23: FFTs of a 250 and a 251 Hz
sinusoids (modified sampling condition).
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L3.3 Quantization

Let us now build an A/D converter VI to illustrate the quantization effect. An analog
signal given by

y(t) = 5.2exp(~10t)sin(20mt) + 2.5

is considered for this purpose. Note that the maximum and minimum values of the
signal fall in the range O to 7, which can be represented by 3 bits. On the FP, the
quantization error, the histogram of the quantization error, as well as the quantized
output are displayed as indicated in Figure 3-24.

B Lab3 Quantization.vi Front Papel
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Figure 3-24: Quantization of an analog signal by
a 3-bit A/D converter: output signal, quantization
error, and histogram of quantization error.
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To build the converter BD, see Figure 3-25, the Formula Waveform VI (Functions
— All Functions — Waveform — Analog Waveform — Waveform Generation — Formula Wave-
form) is used. The inputs to this VI comprise a string constant specifying the formula,
amplitude, frequency, and sampling information. The values of the output waveform,
Y component, are extracted with the Get Waveform Components function.
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Figure 3-25: Quantization of an analog signal by a 3-bit A/D converter.

To exhibit the quantization process, the double precision signal is converted into an
unsigned integer signal by using the To Unsigned Byte Integer function
(Functions — All Functions — Numeric — Conversion — To Unsigned Byte Integer).

The resolution of quantization is assumed to be 3 bits, noting that the amplitude

of the signal remains between 0 and 7. Values of the analog waveform are replaced
by quantized values forming a discretized waveform. This is done by wiring the
quantized values to a Build Waveform function while the other properties are
kept the same as the analog waveform.

Now the difference between the input and quantized output values is found by using
a Subtract function. This difference represents the quantization error. Also, the
histogram of the quantization error is obtained by using the Create Histogram
Express VI (Functions — Signal Analysis — Create Histogram). Placing this VI brings
up a configuration dialog as shown in Figure 3-26. The maximum and minimum
quantization errors are 0.5 and —0.5, respectively. Hence, the number of bins is set to
10 in order to divide the errors between -0.5 and 0.5 into 10 levels. In addition, for
the Amplitude Representation option, choose Sample count to generate the histogram.
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A Waveform Graph is created by right-clicking on the Hi stogram node of the
Create Histogram Express VI and choosing Create — Graph Indicator.

= Configure Create Histogram | Create Histogram]

Condbgurakion Input Signal

Wumbste of bing
10 —

Masimr vahe

0.5 -

Mmoo
0.5 ]

| fudo Configae ]

Amplitude Representation Result Preview

{7 Percent of total
(=) Sample court

R
:
F
o]

Figure 3-26: Configuration dialog of Create Histogram Express VI.

Return to the FP and change the property of the graph for a more understandable
display of the discrete signal. Add the plot legend to the waveform graph and resize
it to display the two signals. Rename the analog signal as ITnput Signal and the
discrete signal as Output Signal.

To display the discrete signal, bring up the properties dialog by right-clicking and
choosing Properties from the shortcut menu. Click the Plots tab and choose the signal
plot output Signal. Then, choose stepwise horizontal, indicated by .+'1, from
the Plot Interpolation option as the interpolation method. Now the VI is complete, see
Figure 3-25.

Next, let us build a VI which can analyze the quantized discrete waveform into
a bitstream resembling a logic analyzer. For a 3-bit A/D converter, the bitstream
is represented as b;b,b; in binary format. The discrete waveform and its bit
decomposition are shown in Figure 3-27.
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Figure 3-27: Bitstream of 3-bit quantization.

The same analog signal used in the previous example is considered here. The analog
signal is generated by a Formula Waveform VI, and quantized by using a To
Unsigned Byte Integer function. Locate a For Loop to repeat the quan-
tization as many as the number of samples. This number is obtained by using the
Array Size function (Functions — All Functions — Array — Array Size). Wire this
number to the Count terminal of the For Loop.

Wiring the input array to the For Loop places a Loop Tunnel on the loop bor-
der. Note that auto indexing is enabled by default when inputting an array into a For
Loop. With auto indexing enabled, each element of the input array is passed into the
loop one at a time per loop iteration.

In order to obtain a binary bitstream, each value passed into the For Loop is
converted into a Boolean array via a Number To Boolean Array function
(Functions — All Functions — Boolean — Number To Boolean Array). The elements of
the Boolean array represent the decomposed bits of the 8-bit integer. The value of
a specific bit can be accessed by passing the Boolean array into an ITndex Ar-
ray function (Functions — All Functions — Array — Index Array) and specifying the
bit location with a Numeric Constant. Since the values stored in the array are
Boolean, that is, False or True, they are then converted into O and 1, respectively,

67



Lab 3

using the Boolean To (0,1) function (Functions — All Functions — Boolean —
Boolean To (0,1)). Data from each bit location are wired out of the For Loop. Note
that an array output is created with the auto-indexing being enabled.

As configured in the previous example, the stepwise horizontal interpolation method
is used for the waveform graph of the discrete signal. The completed VI is shown in

Figure 3-28.
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Figure 3-28: Logic analyzer BD.

L3.4 Signal Reconstruction

As the final example in this lab, a signal reconstruction VI is presented. Let us
examine the FP shown in Figure 3-29 exhibiting a sampled signal and its reconstruct-
ed version. The reconstruction kernel is also shown in this FP.

The sampled signal is shown via bars in the top Waveform Graph. In order to
reconstruct an analog signal from the sampled signal, a convolution operation with a
sinc function is carried out as specified by Equation (3.7).
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Let us now build the VI. It is assumed that a unity amplitude sinusoid of 10 Hz is
sampled at 80 Hz. To display the reconstructed analog signal, the sampling frequency
and number of samples are set to 100 times those of the discrete signal. The two
waveforms are merged and displayed in the same Waveform Graph as shown in

Figure 3-29.
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Figure 3-29: FP of a reconstructed sinewave from its samples.
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Figure 3-30: BD of signal reconstruction system.

The BD of the signal reconstruction system is shown in Figure 3-30. Two custom
subVIs are shown on the BD. The Add Zeros VI is used to insert zeros between
consecutive samples to simulate oversampling, and the Sinc Function VIis used
to generate samples of a sinc function with a specified number of zero-crossings.

The BD of each subVI is briefly explained here. In the Add Zzeros VI, see Figure
3-31, zero rows are concatenated to the 1D signal array. The augmented 2D array is
then transposed and reshaped to 1D so that the zeros are located between the sam-
ples. The number of zeros inserted between the samples can be controlled by wiring
a numeric control. The output waveform shown in the BD takes its input from the
other VI and is created by right-clicking on the Get Waveform Components
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Figure 3-31: Add Zeros subVI.
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function and choosing Create — Control. The outputs of the VI comprise the array of
zero-inserted samples and the total number of samples. The connector pane of the
VI consists of two input terminals and two output terminals. The input terminals are
wired to the controls and the output terminals to the indicators, respectively.

The Sinc Function VI, see Figure 3-32, generates samples of a sinc function
based on the number of samples, delay, and sampling interval parameters.
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Figure 3-32: Sinc Function subVI.

Finally, let us return to the BD shown in Figure 3-30. The two signals generated by
the subVls, i.e., the zero-inserted signal and sinc signal, are convolved using the
Convolution VI (Functions — All Functions — Analyze — Signal Processing — Time
Domain — Convolution). Note that the length of the convolved array obtained from
the Convolution VI is one less than the sum of the samples in the two signals,
that is, 249 for the example shown in Figure 3-29. Since the number of the input
samples is 200, only a 200 sample portion (samples indices between 25 and 224) of
the convolved output is displayed for better visualization.
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L3.5 Bibliography

[1] National Instruments, LabVIEW User Manual, Part Number 320999E-01,
2003.
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CHAPTER

Digital Filtering

Filtering of digital signals is a fundamental concept in digital signal processing. Here,
it is assumed that the reader has already taken a course in digital signal processing or
is already familiar with finite impulse response (FIR) and infinite impulse response

(ITIR) filter design methods.

In this chapter, the structure of digital filters is briefly mentioned followed by a dis-
cussion on the LabVIEW Digital Filter Design (DFD) toolkit. This toolkit provides

various tools for the design, analysis and simulation of digital filters.

4.1 Digital Filtering

4.1.1 Difference Equations

As a difference equation, an FIR filter is expressed as

N

y[n]= 2 bux[n—k] (4.1)

k=0

where b’s denote the filter coefficients and N the number of zeros or filter order. As
described by this equation, an FIR filter operates on a current input x[n] and a num-
ber of previous inputs x[n —k] to generate a current output y[n].

The equi-ripple method, also known as the Remez algorithm, is normally used to
produce an optimal FIR filter [1]. Figure 4-1 shows the filter responses using the avail-
able design methods consisting of equi-ripple, Kaiser window and Dolph-Chebyshev
window. Among these methods, the equi-ripple method generates a response whose
deviation from the desired response is evenly distributed across the passband and

stopband [2].
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Figure 4-1: Responses of different FIR filter design methods.

The difference equation of an IIR filter is given by

N

M

y[n]= Y bx[n=k] =X ay[n -k (4.2)
k=0 k=1

where b’s and a’s denote the filter coefficients and N and M the number of zeros

and poles, respectively. As indicated by Equation (4.2), an IIR filter uses a number

of previous outputs y[n—k] as well as a current and a number of previous inputs to

generate a current output y[n].

Several methods are widely used to design IIR filters. They include Butterworth,
Chebyshev, Inverse Chebyshev, and Elliptic methods. In Figure 4-2, the magnitude
response of an IIR filter designed by these methods having the same order are
shown for comparison purposes. For example, the elliptic method generates a
relatively narrower transition band and more ripples in passband and stopband
while the Butterworth method generates a monotonic type of response [2]. Table 4-1
summarizes the characteristics of these design methods.
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Figure 4-2: Responses of different IIR filter desigh methods.

Table 4-1: Comparison of different IIR filter design methods [1].

IIR filter Ripple in Ripple in Transition bandwidth Order for given filter
passband? stopband? for a fixed order specifications
Butterworth No No Widest Highest
Chebyshev Yes No Narrower Lower
Inverse No Yes Narrower Lower
Chebyshev
Elliptic Yes Yes Narrowest Lowest

4.1.2 Stability and Structure

In general, as compared to IIR filters, FIR filters require less precision and are compu-
tationally more stable. The stability of an IIR filter depends on whether its poles are
located inside the unit circle in the complex plane. Consequently, when an IIR filter
is implemented on a fixed-point processor, its stability can be affected. Furthermore,
the phase response of an FIR filter is always linear. In Table 4-2, a summary of the

differences between the attributes of FIR and IIR filters is listed.
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Table 4-2: FIR filter attributes versus IIR filter attributes [1].

Attribute FIR filter 1IR filter
Linear phase response Possible Not possible
Stability Always stable Conditionally stable
Fixed-point implementation | Easy to perform Can be complicated
Computational complexity More operations Fewer operations
Datapath precision Less precision required Higher precision required
Limit cycles' Does not produce May produce

'A limit cycle is an oscillation in the output caused by rounding errors.

Let us now discuss the stability and structure of IIR filters. The transfer function of an
[IR filter is expressed as

_bytbr . 4b
I+az " +...+a,z™

H(z) (4.3)
[t is well known that as far as stability is concerned, the direct-form implementation
is sensitive to coefficient quantization errors. Noting that the second-order cascade
form produces a more robust response to quantization noise [2], the above transfer
function can be rewritten as

N.s

by, +b, 2z ' +B, 7"
H =[5 —=25 (44)
k=1 1R ayx

where N_ = LN / ZJ, | -] represents the largest integer less than or equal to the inside
value. This serial or cascaded structure is illustrated in Figure 4-3.

x[n] O——  Stage 1 Stage 2 eoe Stage Ny | O yn

Figure 4-3: Cascaded filter stages.

It is worth mentioning that each second-order filter is considered to be of direct-form
[1, see Figure 4-4, in order to have a more memory efficient implementation.

76



Digital Filtering

bo
x[n] 4@—>—4>—®—> ylnl
/
-1
—a bi
A
-1
—a; b>

Figure 4-4: Second order direct-form Il.

4.2 LabVIEW Digital Filter Design Toolkit

There exist various software tools for designing digital filters. Here, we have used the
LabVIEW Digital Filter Design (DFD) toolkit. Any other filter design tool may be
used to obtain the coefficients of a digital filter. The DFD toolkit provides various
tools to design, analyze, and simulate floating-point and fixed-point implementations

of digital filters [1].

4.2.1 Filter Design

The Filter Design VIs of the DFD toolkit allow one to design a digital filter with
ease by specifying its parameters. For example, the DFD Classical Filter
Design Express VI provides a graphical user interface to design and analyze digital
filters, and the DFD Pole-Zero Placement Express VI can be used to alter the
locations of poles and zeros in the complex plane easily.

The filter design methods provided in the DFD toolkits include Kaiser Window,
Dolph-Chebyshev Window, and Equi-Ripple for FIR filters, and Butterworth,
Chebyshev, Inverse Chebyshev, and Elliptic for IIR filters.

In addition, the DFD toolkit has some Special Filter Design VIs. These Vs are used
to design special filters such as notch/peak filter, comb filter, maximally flat filter,
narrowband filter, and group delay compensator.
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4.2.2 Analysis of Filter Design

A comprehensive analysis of a digital filter can be achieved by using the Analysis Vs
of the DFD toolkit. These VIs provide magnitude response, phase response, impulse
response, step response, and zero/pole plot.

4.2.3 Fixed-Point Filter Design

The Fixed-Point Tools VIs of the DFD toolkit can be used to examine the outcome
of a fixed-point implementation. Note that when changing a filter structure from
the direct-form to the cascade-form or any other form, a different filter response is
obtained, in particular when a fixed-point implementation is realized.

4.2.4 Multirate Digital Filter Design

The DFD toolkit also provides a group of VIs, named Multirate Filter Design Vls,

for the design, analysis, and implementation of multirate filters. These multirate
filters include single-stage, multistage, halfband, Nyquist, raised cosine, and cascaded
integrator comb (CIC) filters [1].

4.3 Bibliography

[1] National Instruments, Digital Filter Design Toolkit User Manual, Part Number
371353A-01, 2005.

[2] J. Proakis and D. Manolakis, Digital Signal Processing: Principles,
Algorithms, and Applications, Prentice-Hall, 1995.
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System Design

In this lab, an FIR and an IIR filter are designed using the VIs as part of the Digital
Filter Design (DFD) toolkit.

L4.1 FIR Filtering System

An FIR lowpass filtering system is designed and built in this section.

L4.1.1 Design FIR Filter with DFD Toolkit

Let us design a lowpass filter having the following specifications: passband response
= 0.1 dB, passband frequency = 1200 Hz, stopband attenuation = 30 dB, stopband
frequency = 2200 Hz and sampling rate = 8000 Hz. In order to design this filter
using the DFD toolkit, place the DFD Classical Filter Design Express
VI (Functions — All Functions — Digital Filter Design — Filter Design — DFD Classical
Filter Design) on the BD. Enter the specifications of the filter in the configuration
dialog box which appears when placing this Express VI. The magnitude response of
the filter and the zero/pole plot are displayed based on the filter specifications in the
configuration dialog box, see Figure 4-5. Here, the equi-ripple method is chosen as
the design method.

Once this Express VI is configured, its label is changed based on the filter type speci-
fied, such as the Equi-Ripple FIR Lowpass Filter in this example. The
filter type gets displayed on the BD as shown in Figure 4-6.

Additional information on the designed filter, such as phase, group delay, impulse
response, unit response, frequency response, and zero/pole plot can be seen by using
the DFD Filter Analysis Express VI (Functions — All Functions — Digital Filter
Design — Filter Analysis — DFD Filter Analysis). As indicated in Figure 4-6, wire five
Waveform Graphs to the output terminals of the DFD Filter Analysis
Express VI except for the Z Plane terminal. The DFD Pole-Zero Plot
control (Controls — All Controls — Digital Filter Design — DFD Pole-Zero Plot) needs to
be placed on the FP to obtain the zero/pole plot. This locates a terminal icon on the
BD. Then, wire the Z Plane terminal of the DFD Filter Analysis Express
VI to the DFD Pole-Zero Plot control.
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Figure 4-5: Configuration of FIR lowpass filter.
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The coefficients of the filter are obtained by wiring the DFD Get TF VI (Functions
— All Functions — Digital Filter Design — Utilities — DFD Get TF) to the filter clus-

ter, i.e., the output of the DFD Classical Filter Design Express VI. The
DFD Get TF Vlretrieves the transfer function of the filter designed by the DFD
Classical Filter Design Express VI. For FIR filters, the numerator values of
the transfer function correspond to the b coefficients of the filter and the denomina-
tor to unity. The transfer function of the designed filter can be observed by creating
two Numeric Indicators. To do this, right-click on the numerator terminal
of the DFD Get TF VI and choose Create — Indicator from the shortcut menu. The
second indicator is created and wired to the denominator terminal of the VI.

Save the VI as FIR Filter Design.vi and then run it. The response of the designed FIR
filter is illustrated in Figure 4-7. Notice that the indicator array on the FP needs to be
resized to display all the elements of the coefficient set.
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Figure 4-7: FP of FIR filter object.
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L4.1.2 Creating a Filtering System VI

The VI of the filtering system built here consists of signal generation, filtering, and
graphical output components. Three sinusoidal signals are summed and passed
through the designed FIR filter and the filtered signal is then displayed and verified.

Let us build the FP of the filtering system. Place three Horizontal Pointer
S1ide controls (Controls — Numeric Controls — Horizontal Pointer Slide) to adjust the
frequency of the signals. Place three Waveform Graphs to display the input signal
and filtered signal in the time and frequency domains. See that the corresponding
terminal icons for the Horizontal Pointer Slide controls and Waveform
Graphs are created on the BD, see Figure 4-8.
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Figure 4-8: BD of FIR filtering system.

Next, switch to the BD. To provide the signal source of the system, place three Sine
Waveform VIs (Functions — All Functions — Analyze — Waveform Generation — Sine
Waveform) on the BD. The amplitude of the output sinusoid is configured to be its
default value of unity in the absence of an input. The icons of the Horizontal
Pointer Slide controls are wired to the frequency terminal of each Sine
Waveform VI

Create a cluster constant to incorporate the sampling information. This is done by
right-clicking on the sampling info terminal of the Sine Waveform VI and
choosing Create — Constant. Enter 8000 as the sampling rate and 256 as the number
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of samples. Wire the cluster constant to all three VIs so that all the signals have
the same sampling rate and length. The three signal arrays are summed together

to construct the input signal of the filtering system. This is done by using two Add
functions (Functions — Arithmetic & Comparison — Express Numeric — Add) as shown
in Figure 4-8.

Now the filtering component is described. The filter is designed by using the DFD
Classical Filter Design Express VI (Functions — All Functions — Digital
Filter Design — Filter Design — DFD Classical Filter Design) as described earlier. This VI
creates a filter object in the form of a cluster based on the configured filter specifica-
tions. The filter object is wired to the filter in terminal of the DFD Filtering
VI (Functions — All Functions — Digital Filter Design — Processing — DFD Filtering) in
order to filter the input signal, which is wired from the cascaded Add function.

The input signal and the output of the DFD Filtering VI are wired to two
Waveform Graphs to observe the filtering effect in the time domain. To have a
spectral measurement of the signal, place a Spectral Measurements Express
VI on the BD. On the configuration dialog box of the Express VI, configure the Spec-
tral Measurement field as Magnitude (peak), the Result field as dB, and the Window
field as None. Wire the FFT output in dB to a Waveform Graph. Placeawhile
Loop on the BD to enclose all the sections of the code on the BD. The completed
BD is shown in Figure 4-8.

Now, return to the FP to change the properties of the FP objects. Rename the labels
of the controls and Waveform Graphs as shown in Figure 4-9. First, let us change the
properties of the three Horizontal Pointer Slide controls. Right-click on
each control and choose Properties from the shortcut menu. This brings up a proper-
ties dialog box. Change the maximum scale of all the three controls to the Nyquist
frequency, 4000 Hz, in the Scale tab, and set the default frequency values to 750 Hz,
2500 Hz and 3000 Hz, respectively, in the Data Range tab.

Next, let us modify the properties of the Waveform Graph labeled as FFT of
Output in Figure 4-9. Right-click on the Waveform Graph and choose Properties
from the shortcut menu to bring up a properties dialog box. Uncheck Autoscale of the
Y axis and change the minimum scale to —80 in the Scales tab to observe peaks of the
waveform more closely. In the other two graphs corresponding to the time domain
signal, uncheck X Scale — Loose Fit from the shortcut menu to fit the plot into the
entire plotting area.
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Save the VI as FIR Filtering System.vi and then run it. Note that among the three
signals 750 Hz, 2500 Hz, and 3000 Hz, the 2500 Hz and 3000 Hz signals should be
filtered out and only the 750 Hz signal should be seen at the output. The waveform
result on the FP during run time is shown in Figure 4-9.
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Figure 4-9: FP of FIR filtering system during run time.
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L4.2 IIR Filtering System

An IIR bandpass filter is designed and built in this section.

L4.2.1 IIR Filter Design

Let us consider a bandpass filter with the following specifications: passband response
= 0.5 dB, passband frequency = 1333 to 2666 Hz, stopband attenuation = 20 dB,
stopband frequency = 1000 to 3000 Hz and sampling frequency = 8000 Hz. The
design of an IIR filter is achieved by using the DFD Classical Filter
Design Express VI described earlier. Enter the specifications of the filter in the
configuration dialog box which is brought up by placing this Express VI on the BD,
see Figure 4-10. The elliptic method is chosen here as the design method to achieve
a narrow transition band.
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Figure 4-10: Configuration of IIR bandpass filter.
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Similar to FIR filtering, the label of the Express VI is changed to E11iptic
Bandpass Filter by altering the configuration as shown in Figure 4-11. The
response of the designed filter can be obtained by using the DFD Filter Analy-
sis Express VI and wiring five Waveform Graphs and a DFD Pole-Zero
Plot control. These steps are similar to those mentioned for FIR filtering.
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Figure 4-11: Design and analysis of IIR filter using DFD toolkit.

The filter coefficients provided by the DFD Classical Filter Design
Express VI correspond to the ‘IIR cascaded second order sections form II’ structure
by default. To observe the cascaded coefficients, the filter cluster is wired to the DFD
Get Cascaded Coef VI. A cluster of indicators is created by right-clicking on
the IIR Filter Cluster terminal of the VI and choosing Create — Indicator.
The filter coefficients corresponding to the ‘IIR direct form II’ structure are obtained
by using the DFD Get TF VI similar to FIR filtering.

Save the VI as IIR Filtering Design.vi and then run it. The response of the IIR band-
pass filter is illustrated in Figure 4-12.

86



FIR/IIR Filtering System Design

B |IR Fitter Destgn, v Front Panel
Fibs [:l: ::mrm Took [rowecs Window Help

i 2 s —
fom [o.98550s Jo.avieee Jo.ssezss Jo.eoumn | O

Fﬂ —-mmm——_z

e el o L A e L

Figure 4-12: FP of IIR filter object.

Notice that the filter coefficients are displayed as truncated values in Figure 4-12.
The format of the numeric indicators is configured to be floating-point with six digits
of precision. This is done by right-clicking on the numeric indicators on the FP and
choosing Format & Precision... from the shortcut menu. A properties dialog box is
brought up, see Figure 4-13. Configure the representation to Floating point and the
precision to 6 Digits of precision as shown in Figure 4-13.
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Figure 4-13: Changing properties of
numeric indicator format and precision.

From the coefficient set, the transfer function of the IIR filter is given by

(<] = 0.162179-0.000161z ™" —0.132403¢* +0.132403z* +0.00016 1z —0.162179z™°
1-0.001873z"" +1.130506z % —0.001913z~ +0.979368z* —0.000797z* +0.259697z "

=H, [Z]'Hz [Z]'H3 [Z]

where H, [z], H, [z], and H; [z] denote the transfer functions of the three second-
order sections. From the cascade coefficient cluster, the three transfer functions are

_0.545337-0.7352422" +0.545337¢

H
[z 1-0.955505¢ ' +0.834882¢
H[<]= 0.545337+0.734702z "' +0.545337z
: 1+0.954255:" +0.834810z

(<] = 0.545337-0.545337z "
} 1-0.0006227 7" +0.3726097 2
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L4.2.2 Filtering System

Using the FIR Filtering System VI created in the previous section, the filter

portion is replaced with the IIR bandpass filter just designed, see Figure 4-14. The VI
is then saved as IIR Filtering System.ui.
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Figure 4-14: BD of IIR filtering system.

Let us change the default values of the three frequency controls on the FP to 1000 Hz,
2000 Hz, and 3000 Hz to see if the IIR filter is functioning properly. The signals hav-
ing the frequencies 1000 Hz and 3000 Hz should be filtered out while only the signal
having the frequency 2000 Hz should remain and be seen in the output. The output
waveform as seen on the FP is shown in Figure 4-15. From the FFT of the output, it
can be seen that the desired stopband attenuation of 20 dB is obtained.
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Figure 4-15: FP of IIR filtering system during run time.

L4.3 Building a Filtering System Using Filter Coefficients

There are various tools which one can use to compute coefficient sets of digital filters
based on their specifications. In this section, the creation of a filter object is discussed
when using different tools for obtaining its coefficients.

Figure 4-16 illustrates two ways to build a filter object using arrays of numeric
constants containing filter coefficients. The DFD Build Filter from TF VI
(Functions — All Functions — Digital Filter Design — Utilities — DFD Build Filter from
TF) can be used to build a filter object if the direct-form coefficients of the filter are
available, see Figure 4-16(a). For an IIR filter in the second-order cascade form, the
DFD Build Filter from Cascaded Coef VI (Functions — All Functions
— Digital Filter Design — Utilities — DFD Build Filter from Cascaded Coef) can be used
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to build a filter object, see Figure 4-16(b). The input cluster to this VI consists of a
numeric constant for the filter structure and two arrays of numeric constants, labeled
as Reverse Coefficients and Forward Coefficients. Each filter section
consists of two reverse coefficients in the denominator, and three forward coefficients
in the numerator, considering that the first coefficient of the denominator is regarded
as 1.
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Figure 4-16: DFD Build Filter: (a) using direct-form
coefficients, and (b) using cascade-form coefficients.

L4.4 Filter Design Without Using DFD Toolkit

The examples explained in the preceding sections can be implemented without
using the DFD toolkit. This can be achieved by using the Digital FIR Filter
VI (Functions — All Functions — Analyze — Waveforms Conditioning — Digital FIR Filter)
and Digital IIR Filter VI (Functions — All Functions — Analyze — Waveforms
Conditioning — Digital IR Filter).

Similar to the Classic Filter Design Express VI of the DFD toolkit, the
Digital FIR Filter Vlis configured based on the filter specifications, thus
there is no need to obtain the filter coefficients before building the filtering system.
As a result, the specifications can be adjusted on the fly. The BD corresponding to
this approach is shown in Figure 4-17.

For the Digital FIR Filter VI, the filter specifications are defined via two
inputs in the form of a cluster constant. A cluster constant is created by right-
clicking on the FIR filter specifications terminal and choosing Create
— Constant. This cluster specifies the filter type, number of taps, and lower/upper
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Figure 4-17: BD of FIR filtering system without using DFD VI.

passband or stopband. Another cluster constant specifying the passband gain,
stopband gain, and window type can be wired to the Optional FIR filter
specifications terminal. More details on the use of cluster constants as related
tothe Digital FIR Filter VIcan be found in [1].

Rename the FP objects and set the maximum and default values of the controls.
Save the VI as FIR Filtering System without DFD.vi and then run it. The FP of the VI
during run time is shown in Figure 4-18. Observe that the 750 Hz signal falling in
the passband remains while the 2500 Hz and 3000 Hz signals falling in the stopband,
that is, greater than 2200 Hz, are attenuated by 30 dB.
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Figure 4-18: FP of filtering system using specifications.
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CHAPTER

Fixed-Point versus Floating-Point

From an arithmetic point of view, there are two ways a DSP system can be imple-
mented in LabVIEW to match its hardware implementation on a processor. These
are fixed-point and floating-point implementations. In this chapter, we discuss the
issues related to these two hardware implementations.

In a fixed-point processor, numbers are represented and manipulated in integer
format. In a floating-point processor, in addition to integer arithmetic, floating-point
arithmetic can be handled. This means that numbers are represented by the combi-
nation of a mantissa (or a fractional part) and an exponent part, and the processor
possesses the necessary hardware for manipulating both of these parts. As a result, in
general, floating-point processors are slower than fixed-point ones.

In a fixed-point processor, one needs to be concerned with the dynamic range of num-
bers, since a much narrower range of numbers can be represented in integer format

as compared to floating-point format. For most applications, such a concern can be
virtually ignored when using a floating-point processor. Consequently, fixed-point pro-
cessors usually demand more coding effort than do their floating-point counterparts.

5.1 Q-format Number Representation
The decimal value of an N-bit 2’s-complement number, B=by_by_,...bb,,b, € {0,1}
is given by

D(B)=-by 2" +by , 2" +...+b2" +b,2° (5.1)
The 2’s-complement representation allows a processor to perform integer addition
and subtraction by using the same hardware. When using the unsigned integer repre-

sentation, the sign bit is treated as an extra bit. This way only positive numbers can
be represented.
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There is a limitation of the dynamic range of the foregoing integer representation
scheme. For example, in a 16-bit system, it is not possible to represent numbers larger
than 2" —1 = 32767 and smaller than -2 = —32768. To cope with this limitation,
numbers are often normalized between —1 and 1. In other words, they are represented
as fractions. This normalization is achieved by the programmer moving the implied
or imaginary binary point (note that there is no physical memory allocated to this
point) as indicated in Figure 5-1. This way, the fractional value is given by

F(B)= by 2° +by, 27" +..4b 27" 4 p 27N (5.2)

Integer Representation
‘ bn-1 ‘ bN—Z‘ ‘ ‘ ‘ bo

Implied binary point -

Fractional Representation
b1 bN—Z‘ ‘ ‘ ‘ bo ‘

> Implied binary point

Figure 5-1: Number representations.

This representation scheme is referred to as the Q-format or fractional represen-
tation. The programmer needs to keep track of the implied binary point when
manipulating Q-format numbers. For instance, let us consider two Q15 format num-
bers. Each number consists of 1 sign bit plus 15 fractional bits. When these numbers
are multiplied, a Q30 format number is generated (the product of two fractions is
still a fraction), with bit 31 being the sign bit and bit 32 another sign bit (called an
extended sign bit). Assuming a 16-bit wide memory, not enough bits are available

to store all 32 bits, and only 16 bits can be stored. It makes sense to store the sixteen
most significant bits. This requires storing the upper portion of the 32-bit product by
doing a 15-bit right shift. In this manner, the product would be stored in Q15 format.
(See Figure 5-2.)

Based on the 2’s-complement representation, a dynamic range of

2N < D(B) < 2V —1 can be covered, where N denotes the number of bits.

For illustration purposes, let us consider a 4-bit system where the most negative
number is -8 and the most positive number 7. The decimal representations of the
numbers are shown in Figure 5-3. Notice how the numbers change from most posi-
tive to most negative with the sign bit. Since only the integer numbers falling within
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015‘Slx‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘x‘

x Q15 [Sly [y[ylylylylvlylvlylylylylyly]

o0 [E[81z[z] 2z [z ]z ]2 2]z [z (2] 2] 2]z ]z 2]z 2]z [z [2]z] z [ 2]z [z ]2 2] 2]z]

Q15 ‘Slz‘z‘z‘z‘z‘z‘z‘z‘z‘z‘z‘z‘z‘z‘?‘

Add 1 to? bit then truncate /

If ? =0, no effect (for instance, rounded down)
If ? =1, result rounded up

Figure 5-2: Multiplying and storing Q15 numbers.

the limits —8 and 7 can be represented, it is easy to see that any multiplication or
addition resulting in a number larger than 7 or smaller than -8 will cause overflow.
For example, when 6 is multiplied by 2, we get 12. Hence, the result is greater than
the representation limits and will be wrapped around the circle to 1100, which is —4.

Figure 5-3: Four-bit binary representation.

The Q-format representation solves this problem by normalizing the dynamic range
between —1 and 1. This way, any resulting multiplication will be within these limits.
Using the Q-format representation, the dynamic range is divided into 2V sections,
where 2-™-D is the size of a section. The most negative number is always —1 and the
most positive number is 1 — 2-N-D,
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The following example helps one to see the difference in the two representation
schemes. As shown in Figure 5-4, the multiplication of 0110 by 1110 in binary is
equivalent to multiplying 6 by —2 in decimal, giving an outcome of —12, a number
exceeding the dynamic range of the 4-bit system. Based on the Q3 representation,
these numbers correspond to 0.75 and —0.25, respectively. The result is —0.1875,
which falls within the fractional range. Notice that the hardware generates the same
I’s and O’s; what is different is the interpretation of the bits.

0110 6 0.110 0.75 Q3

Note that since the * @nio * 2 * @.110 * -0.25 Q3
the corresponding
partial product is 0110 01 10
the 2's complement 0110 011 0
of the multiplicand —» 1010

11110100 -12 11.110 100 -0.1875 Q6

f g (—

sign bit extended

sign bit Y

signbit | 1.110 | bestapproximation

~0.25 in 4-bit memory

Figure 5-4: Binary and fractional multiplication.

When multiplying Q-N numbers, it should be remembered that the result will con-
sist of 2N fractional bits, one sign bit, and one or more extended sign bits. Based on
the data type used, the result has to be shifted accordingly. If two Q15 numbers are
multiplied, the result will be 32 bits wide, with the most significant bit being the
extended sign bit followed by the sign bit. The imaginary decimal point will be after
the 30th bit. So a right shift of 15 is required to store the result in a 16-bit memory
location as a Q15 number. It should be realized that some precision is lost, of course,
as a result of discarding the smaller fractional bits. Since only 16 bits can be stored,
the shifting allows one to retain the higher precision fractional bits. If a 32-bit
storage capability is available, a left shift of 1 can be done to remove the extended
sign bit and store the result as a Q31 number.

To further understand a possible precision loss when manipulating Q-format num-

bers, let us consider another example where two Q12 numbers corresponding to 7.5
and 7.25 are multiplied. As can be seen from Figure 5-5, the resulting product must
be left shifted by 4 bits to store all the fractional bits corresponding to Q12 format.
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Q12 —» 7.5 0111. 1000 0000 0000
012 —» 7.25 * 0111. 0100 0000 0000
024 —» 54.375 0011 0110. 0110 0000 0000 0000
| |
Q12 —» 6.375
|

Q8 —» 54.375

Figure 5-5: Q-format precision loss example.

However, doing so results in a product value of 6.375, which is different from the
correct value of 54.375. If the product is stored in a lower precision Q-format—say,
in Q8 format—then the correct product value can be obtained and stored.

Although Q-format solves the problem of overflow during multiplications, addi-
tion and subtraction still pose a problem. When adding two Q15 numbers, the sum
could exceed the range of the Q15 representation. To solve this problem, the scaling
approach, discussed later in this chapter, needs to be employed.

5.2 Finite Word Length Effects

Due to the fact that the memory or registers of a processor have a finite number of
bits, there could be a noticeable error between desired and actual outcomes on a
fixed-point processor. The so-called finite word length quantization effect is similar to
the input data quantization effect introduced by an A/D converter.

Consider fractional numbers quantized by a b + 1 bit converter. When these numbers
are manipulated and stored in a M + 1 bit memory, with M < b, there is going to be
an error (simply because b — M of the least significant fractional bits are discarded or
truncated). This finite word length error could alter the behavior of a DSP system by
an unacceptable degree. The range of the magnitude of truncation error €, is given by
0<[e|<2™-2"". The lowest level of truncation error corresponds to the situation
when all the thrown-away bits are zeros, and the highest level to the situation when
all the thrown-away bits are ones.

This effect has been extensively studied for FIR and IIR filters, for example see [1].
Since the coefficients of such filters are represented by a finite number of bits, the
roots of their transfer function polynomials, or the positions of their zeros and poles,
shift in the complex plane. The amount of shift in the positions of poles and zeros
can be related to the amount of quantization errors in the coefficients. For example,
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for an Nth-order IIR filter, the sensitivity of the ith pole p, with respect to the kth
coefficient g, can be derived to be (see [1]),

L

B (5.3)

aak ﬁ(Pf _Pl)

=1
#i

This means that a change in the position of a pole is influenced by the positions of
all the other poles. That is the reason the implementation of an Nth order IIR filter
is normally achieved by having a number of second-order IIR filters in cascade or
series in order to decouple this dependency of poles.

Also, note that as a result of coefficient quantization, the actual frequency response

H eje) is different than the desired frequency response H (eje ) For example, for an
FIR filter having N coefficients, it can be easily shown that the amount of error in

the magnitude of the frequency response, ‘AH (eje )‘, is bounded by
|AH ()| = [H (") - Fi(e”)| < N2 (5.4)

In addition to the above effects, coefficient quantization can lead to limit cycles.
This means that in the absence of an input, the response of a supposedly stable
system (poles inside the unit circle) to a unit sample is oscillatory instead of dimin-
ishing in magnitude.

5.3 Floating-Point Number Representation

Due to relatively limited dynamic ranges of fixed-point processors, when using such
processors, one should be concerned with the scaling issue, or how big the numbers get
in the manipulation of a signal. Scaling is not of concern when using floating-point
processors, since the floating-point hardware provides a much wider dynamic range.

As an example, let us consider the C67x processor, which is the floating-point ver-
sion of the TI family of TMS320C6000 DSP processors. There are two floating-point
data representations on the C67x processor: single precision (SP) and double preci-
sion (DP). In the single precision format, a value is expressed as (see [2])

—1" %27 %1 frac (5.5)

where s denotes the sign bit (bit 31), exp the exponent bits (bits 23 through 30), and
frac the fractional or mantissa bits (bits O through 22). (See Figure 5-6.)
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31 30 23 22 0
‘ S ‘ exp ‘ frac ‘

Figure 5-6: C67x floating-point data representation.

Consequently, numbers as big as 3.4 x 10°® and as small as 1.175 x 107*® can be pro-
cessed. In the double precision format, more fractional and exponent bits are used as
indicated below

1" x 271029 5 1 frac (5.6)

where the exponent bits are from bits 20 through 30 and the fractional bits are all
the bits of a first word and bits O through 19 of a second word. (See Figure 5-7.) In
this manner, numbers as big as 1.7 x 10°® and as small as 2.2 x 107% can be handled.

31 30 20 19 0 31 0
s | exp | frac | frac |
L 1 ]

Odd register Even register

Figure 5-7: C67x double precision floating-point representation.

When using a floating-point processor, all the steps needed to perform floating-point
arithmetic are done by the floating-point hardware. For example, consider adding
two floating-point numbers represented by

exp

a=a,, X2 (5.7)
b=b,, x2"
The floating-point sum ¢ has the following exponent and fractional parts:
c=a+b
- (a ot (b X 2‘(““?‘[’“?))

= ((a e X 7 on o) ) +bg, ) x2' if a

2% if a

exp 2bexp (5‘8)

exp < bexp

These parts are computed by the floating-point hardware. This shows that, though
possible, it is inefficient to perform floating-point arithmetic on fixed-point proces-
sors, since all the operations involved, such as those in Equation (5.8), must be done
in software.
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5.4 Overflow and Scaling

As stated before, fixed-point processors have a much smaller dynamic range than
their floating-point counterparts. It is due to this limitation that the Q15 representa-
tion of numbers is normally considered. For instance, a 16-bit multiplier can be used
to multiply two Q15 numbers and produce a 32-bit product. Then the product can be
stored in 32 bits or shifted back to 16 bits for storage or further processing.

When multiplying two Q15 numbers, which are in the range of —1 and 1, as discussed
earlier, the product will be in the same range. However, when two Q15 numbers are
added, the sum may fall outside this range, leading to an overflow. Overflows can
cause major problems by generating erroneous results. When using a fixed-point
processor, the range of numbers must be closely examined and if necessary adjusted to
compensate for overflows. The simplest correction method for overflow is scaling.

The idea of scaling is to scale down the system input before performing any process-
ing and then to scale up the resulting output to the original size. Scaling can be
applied to most filtering and transform operations. An easy way to achieve scaling is
by shifting. Since a right shift of 1 is equivalent to a division by 2, we can scale the
input repeatedly by 0.5 until all overflows disappear. The output can then be rescaled
back to the total scaling amount.

As far as FIR and IIR filters are concerned, it is possible to scale coefficients to avoid

N-1

overflows. Let us consider the output of an FIR filter y[n] = z hlk]x[n —k], where h’s
k=0

denote coefficients or unit sample response terms and x’s input samples. In case of I[IR

filters, for a large enough N, the terms of the unit sample response become so small

that they can be ignored. Let us suppose that x’s are in Q15 format (i.e., |x[n — k]| <1).

N-1
Therefore, we can write |y[n]| < Z|h[k]| This means that, to ensure no output

k=0
N-1
overflow (i.e., |y[n]| <1), the condition Zl hlk]|< 1 must be satisfied. This condition
k=0

can be satisfied by repeatedly scaling (dividing by 2) the coefficients or unit sample
response terms.

5.5 Data Types in LabVIEW

The numeric data types in LabVIEW together with their symbols and ranges are
listed in Table 5-1.
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Table 5-1: Numeric data types in LabVIEW [4].

Terminal symbol Numeric data type Bits of storage on disk
Single-precision, floating-point 32
Double-precision, floating-point 64
Extended-precision, floating-point 128
Complex single-precision, floating-point 64
Complex double-precision, floating-point 128
Complex extended-precision, floating-point 256
Byte signed integer 8
Word signed integer 16
Long signed integer 32
Byte unsigned integer 8
Word unsigned integer 16
Long unsigned integer 32
128-bit time stamp <64.64>

Note that, other than the numeric data types shown in Table 5-1, there exist other
data types in LabVIEW, such as cluster, waveform, and dynamic data type, see Table

5-2. For more details on all the LabVIEW data types, refer to [3,4].

Table 5-2: Other data types in LabVIEW [4].

Terminal symbol

Data type

ik

Enumerated type

-
-

Boolean

String

Array—Encloses the data type of its elements in square brackets and takes the

color of that data type.

Cluster—Encloses several data types. Cluster data types are brown if all ele-
ments in the cluster are numeric or pink if all the elements of the cluster are

different types.

Path

Dynamic—(Express VIs) Includes data associated with a signal and the attri-
butes that provide information about the signal, such as the name of the signal

or the date and time the data was acquired.

Waveform—Carries the data, start time, and dt of a waveform.

HE B B8 B0EEE

Digital waveform—Carries start time, delta x, the digital data, and any attri-

butes of a digital waveform.
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Terminal symbol

Data type

Digital—Encloses data associated with digital signals.

Reference number (refnum)

Variant—Includes the control or indicator name, the data type information,
and the data itself.

!

I/O name—Passes resources you configure to I/O VIs to communicate with an
instrument or a measurement device.

(B E BE

Picture—Includes a set of drawing instructions for displaying pictures that can
contain lines, circles, text, and other types of graphic shapes.
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Lab 5: Data Type and Scaling

Fixed-point implementation of a DSP system requires one to examine permissible
ranges of numbers so that necessary adjustments are made to avoid overflows. The
most widely used approach to cope with overflows is scaling. The scaling approach is
covered in this lab.

L5.1 Handling Data types in LabVIEW

In LabVIEW, the data type of data exchanged between two blocks is exhibited by the
color of their connecting wires as well as their icons. A mismatched data type is rep-
resented by a coercion dot on a function or subVI input terminal, alerting that the
input data type is being coerced into a different type. In general, a lower precision
data value gets converted to a higher precision value. Coercion dots can lead to an
increase in memory usage and run time [1]. Thus, it is recommended to resolve coer-
cion dots in a VL.

An example exhibiting a mismatched data type is depicted in Figure 5-8. A double
precision value and a 16-bit integer are wired to the input terminals of an Add
function. As can be seen from this figure, a coercion dot appears at the y terminal of
the Add function since the input to this terminal is of 16-bit integer type while the
other input is of double precision type.

£ >

Figure 5-8: Data type mismatch.
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Let us build the VI shown in Figure 5-8. Place an Add function and create two input
controls by right-clicking and choosing Create — Control from the shortcut menu at
each input terminal. By default, the data types of the two controls are set to double
precision. In order to change the data type of the second Numeric Control,
labeled vy, right-click on the icon on the BD and select Representation — Word, which
is represented by I16.

Create a Numeric Indicator by right-clicking on the x+y terminal of the Add
function and choosing Create — Indicator from the shortcut menu. The data type of
the newly created Numerical Indicator is double precision since the addition
of two double precision values results in another double precision value.

Let us switch to the FP of the VI to demonstrate the importance of specifying the
correct data type to the Numeric Control/Indicator. If the value entered on
the FP control does not match the data type specified by the Numeric Control/
Indicator, the input value is automatically converted into the data type specified
by the Numeric Control. In the example shown in Figure 5-9, the value 1.5 is
entered in both of the Numeric Controls on the FP. As can be seen, the entered
value of the second Numeric Control, labeled y, automatically gets converted to
a 16-bit integer or 2.

B Data Typeod Front ... .._||'_-_"§ B Data Type.vi Front ... .._||':_|[§

Hs Edt Operste Took Browse WSS
':'I- . 136k Apphcat]

@ (b)

Figure 5-9: Data type conversion: (a) data typed in, and
(b) data is converted to 16-bit integer by LabVIEW.
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Coercion dots can be avoided if appropriate conversion functions are inserted in the
BD. For example, as shown in Figure 5-10, the addition of a double precision and

a 16-bit integer value is achieved without getting a coercion dot by inserting a To
Double Precision Float function.

& Data Type withoul coercion. ... E|E|E|

e Edt Cperate Took Growsa ‘Window |

Figure 5-10: Data type conversion.

L5.2 Overflow Handling

An overflow occurs when the outcome of an operation is too large or too small for
a processor to handle. In a 16-bit system, when manipulating integer numbers, they
must remain in the range —32768 to 32767. Otherwise, any operation resulting in a
number smaller than —32768 or larger than 32767 will cause overflow. For example,
when 32767 is multiplied by 2, we get 65534, which is beyond the representation
limit of a 16-bit system.

Consider the BD shown in Figure 5-11. In this BD, samples of a sinusoidal signal
having an amplitude of 30000 are multiplied by 2. To illustrate the overflow prob-
lem, the input values generated by the Sine Waveform VI are converted to
word signed integers or 16-bit integers (116). This is done by inserting a To Word
Integer function (Functions — All Functions — Numeric — Conversion — To Word
Integer) at the output of the Get Waveform Component function. After the
insertion of this function, the color of the wire connected to the output terminal of
the function should appear blue indicating integer data type.

In addition, the multiplicand constant should also be converted to the 116 data type
to avoid a coercion dot. To achieve this, right-click on the Numeric Constant
and select Representation — Word. As a result, the data type of the multiplication
outcome or product is automatically set to word signed integer (116).
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Figure 5-11: Signal multiplication data type conversion.

[t should be noted that the definition of data types is software/hardware dependent.
For example, the “word” data type in LabVIEW has a length of 16 bits, while it is
32 bits in the C6x DSP. That is, the “word” data type in LabVIEW is equivalent to
the “short” data type in the C6x DSP [2].

The multiplication of a sinusoidal signal by 2 is expected to generate another sinu-
soidal signal with twice the amplitude. However, as seen from the FP in Figure 5-12,
the result is distorted and clipped when the product is beyond the word integer (116)
range. Let us examine whether any overflow is caused by these multiplications. From
Figure 5-12, it can be seen that the output signal includes wrong values due to over-
flows. For example, —5536 is shown to be the result of the multiplication of 30000
(the maximum input value) by 2, which is incorrect.

B Overflow.vi Front Panel
Fis Edt Opersts Took Erowes Windos Help

Figure 5-12: Signal distorted by overflow.
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L5.2.1 Q-Format Conversion

Let us now consider the conversion of single or double precision values to Q-format.
As shown in Figure 5-13, a double precision input value is first checked to see
whether it is in the range of —1 and 1. This is done by using the In Range and
Coerce function (Functions — All Functions — Comparison — In Range and Coerce).
The input is scaled so that it falls within the range of 16-bit signed integer data type,
or =32768 to 32767, by multiplying it with its maximum allowable value, that is
32768. Then, the product is converted to 16-bit signed integer data type by using a
To Word Integer function. This ensures that the product falls within the range
of the specified data type. In the worst case, the product gets clipped or saturated to
the maximum or minimum allowable value.

& 015 _Conv_Scalar,vi Block Diagram
Bls Edt Operste Took: Browss Window Halp -

(D[] [ ][9] [ualm]os 130t sppication Fort |+ ][ 2a~ ][50

E‘ [i]- [inPRanoe and Coerce = cale Bw Power OF 2 |G-15 Output
I E‘} TE—i20k

Figure 5-13: BD of Q15 format conversion.

Edit the icon of the VI as shown in Figure 5-13. The connector pane of the VI has
one input and one output terminal. Assign the input terminal to the Numeric
Control and the output terminal to the Numeric Indicator. Save the Vlina
file named Q15_Conv_Scalar.vi and use it as a Q15 format converter for scalar inputs.

Next, the Q15_Conv_Scalar VIis modified to perform Q15 conversion for array
type inputs/outputs as follows. As shown in Figure 5-14, replace the scalar numeric
control and indicator with an array of controls and indicators, respectively. An array
of controls or indicators can be created by first placing an Array shell (Controls —
All Controls — Array & Cluster — Array) and then by dragging a control or indicator
into it. The icon and the connector pane of the modified VI should be reconfigured
accordingly. Save the modified VI in a file named Q15_Conv_Array.vi.
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(@) (b)

Figure 5-14: Q15 format conversion: (a) scalar input
and output, and (b) array input and output.

L5.2.2 Creating a Polymorphic VI

The two VIs just created are integrated into a so called polymorphic VI so that one
VI can handle both scalar and array inputs/outputs. A polymorphic VI is a collection
of multiple VIs for different instances having the same input and output connector
pane [3]. The multiplication function is a good example of polymorphism since it can
be applied to two scalars, an array and a scalar, or two arrays.

To create a polymorphic VI, select File — New — Other Document Types — Polymorphic
VI. This brings up a Polymorphic VI window, see Figure 5-15. Add the Q15_Conv__
Scalar and Q15_Conv_Array VlIs to include both the scalar and array cases.
Edit the icon of the polymorphic VI as shown in Figure 5-15, then save the VI as
Q15_Conv.vi. This polymorphic VI is used for the remaining part of this lab.

Next, a VI is presented to show how the overflow is checked. In the BD shown in
Figure 5-16(a), two input values in the range between —1 and 1 are converted to Q15
format by using the polymorphic Q15_conv VI. These inputs are converted into a
higher precision data type, long integer (I132), to avoid getting any saturation during
their addition. Consider that LabVIEW automatically limits the output of numerical
operations to the input range. The sum of the two input values is wired into the In
Range and Coerce function to check whether they are in the allowable range.
If the output does not fall in the range of 116, this indicates that an overflow has
occurred. The FP in Figure 5-16(b) illustrates such an overflow.
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Figure 5-15: Creating a polymorphic VI.
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L5.3 Scaling Approach

(b)

Test for overflow: (a) BD, and (b) FP.

Scaling is the most widely used approach to overcome the overflow problem. In
order to see how scaling works, let us consider a simple multiply/accumulate opera-
tion. Suppose there are four constants or coefficients that need to be multiplied with
samples of an input signal. The worst possible overflow case would be the one where

all the multiplicands C,’s and x[n]’s are

I’s. For this case, the result y[n] will be 4,

given that y[n]= 2::1 C,x[n—k]. Assuming that we have control over only the input
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signal, the input samples should be scaled for the result or sum y[n] to fall in the
allowable range. A single half-scaling, or division by 2, reduces the input samples by
one-half, and a double half-scaling reduces them further by one-quarter. Of course,
this leads to less precision, but it is better than getting an erroneous outcome.

A simple method to implement the scaling approach is to create a VI that returns
the necessary amount of scaling on the input. For multiply/accumulate type of opera-
tions, such as filtering or transforms, the worst case is multiplications and additions of
all I’s. This means that the required number of scaling is dependent on the number
of additions in the summation. To examine the worst case, one needs to obtain the
required number of scaling so that all overflows disappear. This can be achieved by
building a VI to compute the required number of scaling. For the example covered in
this lab, such a VI is shown in Figure 5-17 and is named Number of Scaling.vi.

b Humber of Scaling.vi Block Diagram
Bl Eot Operate Iook frowse Window Help

Figure 5-17: Computing number of scaling.

Here, the input is first converted into Q15 format via the Q15_Conv VI. Inside the
outer loop, the input is scaled. In each iteration of the inner loop, a new input sample
is taken into consideration and a summation is obtained. Then, the summation value
is compared with the minimum and maximum values in the allowable range. If the
summation value does not fall into this range, the inner loop is stopped and the input
samples are scaled down for a next iteration. The number of scaling is also counted.
After scaling the input, the summation is repeated. If another overflow occurs, the
input sample is scaled down further. This process is continued until no overflow
occurs. The final number of scaling is then displayed. Care must be taken not to scale
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the input too many times; otherwise, the input signal gets buried in the quantization
noise. Here, the auto-indexing is enabled to collect the output samples into an array
corresponding to each While Loop. As aresult, a 2D array is generated.

Figure 5-18 shows the FP for the computation of the number of scaling. The input
signal consists of the samples of one period of a sinusoid with an amplitude of 0.8
sampled at 0.125 in terms of normalized frequency. The elements of the column
shown in the output indicator represent the accumulated sums of the input samples.
Notice that an overflow occurs at the third summation since the value is greater
than the maximum value of a 16-bit signed integer, that is, 32767. The overflow
disappears if the input is scaled down once by one-half. Thus, in this example, the
required number of scaling to avoid any overflow is one.

b Mumber of Scaling.vi | ront Panel

< : ] B

Figure 5-18: Number of scaling for one period of sinusoidal signal.

[t is worth mentioning that, in addition to scaling the input, it is also possible to scale
the filter coefficients or constants in convolution type of operations so that the out-
come is forced to stay within the allowable range. In this case, the worst case for the
input samples is assumed to be one. Note that scaling down the coefficients by one-half
is equivalent to scaling down the input samples by one-half. An example of fixed-point
digital filtering as well as coefficients scaling is examined in the following section.

L5.4 Digital Filtering in Fixed-Point Format

The analyses of overflow and scaling discussed above are repeated here by using the
DEFD Fixed-Point Tools VIs. These Vs allow the quantization of filter coefficients
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and the fixed-point simulation of a digital filter. As an example of fixed-point digital
filtering, the FIR lowpass filter designed in Lab 4 is used here.

L5.4.1 Design and Analysis of Fixed-Point Digital Filtering System

To design an FIR filter, place the DFD Classical Filter Design Express
VI on the BD and enter the filter specifications on the configuration dialog box of
this Express VI. To display the filter response, a total of four VIs as part of the DFD
toolkit are used as shown in Figure 5-19.
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Figure 5-19: Computing number of scaling with DFD toolkit.

Let us explain each object of this BD. The DFD FXP Quantize Coef VI (Func-
tions — All Functions — Digital Filter Design — Fixed-Point Tools — DFD FXP Quantize
Coef) quantizes the filter coefficients according to the specified options. By default,

a 16-bit word length is used for quantization. The b, coefficients of the filter are
unbundled by using the Unbundle By Name function. Right-click on the Un-
bundle By Name function and choose Select ltem — quantized coef — coef h(v)
from the shortcut menu. Next, the quantized coefficients are scaled down to match
the number of scaling specified in the Numeric Control. The use of an array of
indicators labeled as Scaled Coefficient is optional. This can be used to export
the filter coefficients to other Vs easily. The original filter coefficients are replaced
with the scaled coefficients by using the Bundle by Name function.
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The DFD FXP Simulation VI (Functions — All Functions — Digital Filter Design

— Fixed-Point Tools — DFD FXP Simulation) simulates the filter operation and generates
its statistics using the fixed-point filter coefficient set. The filter statistics include min
and max value, number of overflow/underflow, and number of operation. A text report
of the filter statistics is generated via the DFD FXP Simulation Report VI
(Functions — All Functions — Digital Filter Design — Fixed-Point Tools — DFD FXP Simu-
lation Report) and displayed in the String Indicator. The DFD FXP Coef
Report VI (Functions — All Functions — Digital Filter Design — Fixed-Point Tools —
DFD FXP Coef Report) generates a text report on the quantized filter coefficients.

In order to consider the worst case scenario, an array of all ones are created and wired
to act as the input of the filter. The length of this array is determined by the number
of filter coefficients. The simulated result is shown in Figure 5-20. As seen in this fig-
ure, five overflows are reported at the output for the no scaling case. The sums of the
filter coefficients C,’s are listed in Table 5-3 with the overflows highlighted.

& Humber of Scaling (Filter Coefficients) with DFD.vi Front Panel
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Figure 5-20: Fixed point analysis using DFD toolkit (no scaling).
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Table 5-3: Scaling example.

C C
C, >, - >

2 2
—0.00878906 —0.00878906 —0.00439453 —0.00439453
0.0246582 0.01586914 0.0123291 0.00793457
0.021698 0.03756714 0.010849 0.01878357
—0.03970337 -0.00213623 —-0.01985168 -0.00106811
-0.07348633 -0.07562256 -0.03674316 —-0.03781127
0.05606079 -0.01956177 0.0280304 —0.00978087
0.30593872 0.28637695 0.15296936 0.14318849
0.43734741 0.72372436 0.21867371 0.3618622
0.30593872 1.02966308 0.15296936 0.51483156
0.05606079 1.08572387 0.0280304 0.54286196
—0.07348633 1.01223754 -0.03674316 0.5061188
—0.03970337 0.97253417 -0.01985168 0.48626712
0.021698 0.99423217 0.010849 0.49711612
0.0246582 1.01889037 0.0123291 0.50944522
—0.00878906 1.01010131 —0.00439453 0.50505069

Now, enter 1 as the number of scaling and run the VI. The outcome of this simula-
tion after scaling by one-half is shown in Figure 5-21. No overflow is observed after
this scaling. The scaled coefficient set is also shown in this figure. In addition, the
sums of the scaled coefficients are listed in Table 5-3 indicating no overflow.

L5.4.2 Filtering System

As stated previously, the coefficients of the FIR filter need to be scaled by one-half
to avoid overflows. For simplicity, two arrays of constants containing the scaled filter
coefficients are used on the BD as shown in Figure 5-22. One way to create an array
of constants corresponding to the filter coefficients is to change an array of indicators
to an array of constants. To do this, an icon of indicator, labeled as Scaled Coef-
ficient in Figure 5-19, is copied to the BD of a new VI. It should be verified that
the array of indicators displays the coefficients before it is copied to a new VI. Right-
click on the icon of the indicator on the BD and choose Change to Constant. This way
an array of constants containing the filter coefficients is created.

A filter object is created from the coefficient or transfer function of the filter. This is
done by placing the DFD Build Filter from TF VI (Functions — All Functions
— Digital Filter Design — Utilities — DFD Build Filter from TF) and wiring the copied
array constants to the numerator of the transfer function. Note that the denominator
of the FIR transfer function is a single element array of size 1. Once the filter cluster
is created, it is wired to the DFD Filtering VI to carry out the filtering operation.
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Figure 5-22: Fixed-point FIR filtering system.
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The input to the DFD Filtering VI consists of three sinusoidal signals. The
summed input is divided by 3 to make the range of the input values between —1 and
1, and then is connected to the FIR filter. The input and output signals are shown
in Figure 5-23. It can be observed that the fixed-point version of the filter operates
exactly the same way as the floating-point version covered in Lab 4. The difference
in the scales is due to the use of the one-half scaled filter coefficients and one-third
scaled input values.

B FIR Fixed Point.vi FIFEIE

Fhe Edt Cperate Tooks Browse Window Help

»[&][@[n]

|'||| dlﬂinm il rlllhb'h"fl '

Figure 5-23: Fixed-point FIR filtering output.
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L5.4.3 Fixed-Point IIR Filter Example

Considering that the stability of an IIR filter is sensitive to the precision used, an
example is provided here to demonstrate this point. This example involves the fixed-
point versions of an IIR filter corresponding to different filter forms.

Let us consider an IIR lowpass filter with the following specifications: passband
response = 0.1 dB, passband frequency = 1200 Hz, stopband attenuation = 30 dB,
stopband frequency = 2200 Hz, and sampling rate = 8000 Hz. The default form of
the IIR filter designed by the DFD Classical Filter Design Express VIis
the second-order cascade form. The filter can be converted to the direct form by us-
ing the DFD Convert Structure VI (Functions — All Functions — Digital Filter
Design — Conversion — DFD Convert Structure). The DFD Convert Structure
VI provides a total of 23 forms as the target structure. A Ring Constant is cre-
ated by right-clicking on the target structure terminal of the VI, followed by
choosing Create — Constant. Click on the created Ring Constant and select TTR
Direct Form IT asthe target structure.

Next, the filter coefficients in the direct form are quantized by using the DFD FXP
Quantize Coef VI. Notice that 16 bits is the default word length of the fixed-
point representation in the absence of a configuration cluster constant. Different
configurations of quantization can be set by creating and wiring a cluster constant at
the Coefficient quantizer terminal of the DFD FXP Quantize Coef VL
The floating-point (unquantized) and fixed-point (quantized) filter clusters are wired
to the DFD Filter Analysis Express Vs, which are configured to create the
magnitude responses. These magnitude responses are placed into one Waveform
Graph. This is done by creating a graphical indicator at the magnitude termi-
nal of one of the Express VIs and then by wiring the output of the other Express VI
to the same Waveform Graph. A Merge Signal function gets automatically
located on the BD. This normally occurs when two or more dynamic data type wires

are merged. The BD of the fixed-point IIR filter is shown in Figure 5-24.
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Figure 5-24: BD of fixed-point IIR filter in direct form.

The quantized filter object is also wired to a DFD FXP Coef Report VI (Func-
tions — All Functions — Digital Filter Design — Fixed-Point Tools — DFD FXP Coef Report)
to generate a text report. This report provides reference coefficients, quantized coef-
ficients, and note sections such as overflow/underflow.

The FP of the VI after running the fixed-point filter is shown in Figure 5-25. Notice
that the line style of the fixed-point plot is chosen as dotted for comparison purposes.
This is done by right-clicking on the label or plotting in the plot legend and choos-
ing Line Style from the shortcut menu.

From Figure 5-25, the magnitude response of the fixed-point version of the IIR filter
is seen to be quite different than its floating-point version. This is due to the fact that
one underflow and one overflow occur in the filter coefficients, causing the discrep-
ancies in the responses.
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Figure 5-25: FP of fixed-point IIR filter in direct form.

Next, let us examine the fixed-point version of the IIR filter in the second-order
cascade form. This can be achieved simply by removing the DFD Convert
Structure VI from the BD shown in Figure 5-24. The magnitude responses of the
floating-point and fixed-point versions are illustrated in Figure 5-26. These magni-
tude responses appear to be identical. Also, no overflow or underflow are observed.
This indicates that the effect of quantization can be minimized by using the second-

order cascade form.
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B I Fixed point analysis [Second Order Cascade form).vi Front Panel
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Figure 5-26: Fixed-point IIR filtering response.
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CHAPTER

Adaptive Filtering

Adaptive filtering is used in many applications, including noise cancellation and
system identification. In most cases, the coefficients of an FIR filter are modified
according to an error signal in order to adapt to a desired signal. In this chapter,

a system identification and a noise cancellation system are presented wherein an
adaptive FIR filter is used.

6.1 System ldentification

In system identification, the behavior of an unknown system is modeled by accessing
its input and output. An adaptive FIR filter can be used to adapt to the output of the
unknown system based on the same input. As indicated in Figure 6-1, the difference
in the output of the system, d[n], and the output of the adaptive FIR filter, y[n],

constitutes the error term, e[n], which is used to update the coefficients of the filter.

Unknown d[n]

System N
Input x[n] — / @
Adaptive yln] T~

FIR filter

[

e[n]

Figure 6-1: System identification system.
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The error term, or the difference between the outputs of the two systems, is used to
update each coefficient of the FIR filter according to the equation below (known as
the least mean square (LMS) algorithm [1]):

h, k] =,y [k]+8e[n]x[n —k] (6.1)

where h’s denote the unit sample response or FIR filter coefficients, and  a step
size. This adaptation causes the output y[n] to approach d[n]. A small step size will
ensure convergence, but results in a slow adaptation rate. A large step size, though
faster, may lead to skipping over the solution.

6.2 Noise Cancellation

A system for adaptive noise cancellation has two inputs, consisting of a noise-
corrupted signal and a noise source. Figure 6-2 illustrates an adaptive noise
cancellation system. A desired signal s[n] is corrupted by a noise signal v,[n]

which originates from a noise source signal v,[n]. Bear in mind that the original
noise source signal is altered as it passes through an environment or channel whose
characteristics are unknown. For example, this alteration can be in the form of a low-
pass filtering process. Consequently, the original noise signal v,[n] cannot be simply
subtracted from the noise corrupted signal as there exists an unknown dependency
between the two noise signals, v,[n] and v,[n]. The adaptive filter is thus used to
provide an estimate for the noise signal v,[n].

Tttt T 'i
: + eln] 4
Signal s[n] —————®»O 4+ A
vl[n]/ [ :
! - l
Channel ( :
| . |
. o Adaptive yin] :
Noise vo[n] O™ FIR filter "
|
|
I

[
[
[
L

Figure 6-2: Noise cancellation system.

The weights of the filter are adjusted in the same manner stated previously. The error
term of this system is given by

e[n]=s[n]+w [n]=y[n] (6.2)
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The error e[n] approaches the signal s[n] as the filter output adapts to the noise
component of the input v,[n]. To obtain an effective noise cancellation system, the
sensor for capturing the noise source should be placed adequately far from the signal
source.
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Lab 6: Adaptive Filtering Systems

This lab covers adaptive filtering by presenting two adaptive systems using the LMS
algorithm, one involving system identification and the other noise cancellation.

L6.1 System ldentification

A seventh-order IIR bandpass filter having a passband from 7/3 to 27/3 (radians) is
used here to act as the unknown system. An adaptive FIR filter is designed to adapt
to the response of this system.

L6.1.1 Point-By-Point Processing

Before building a system identification VI, it is useful to become familiar with the
point-by-point processing feature of LabVIEW. As implied by its name, point-by-
point processing is a scalar type of data processing. Point-by-point processing is
suitable for real-time data processing tasks, such as signal filtering, since it allows
inputs and outputs to be synchronized. On the other hand, in array-based processing,
there exists a delay between data acquisition and processing [1].

Figure 6-3 shows the BD of an IIR filtering system utilizing point-by-point processing.
A single sample of the input signal gets generated at each iteration of the While
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Figure 6-3: BD of IIR filtering system.
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Loop by using the Sine Wave PtByPt VI (Functions — All Functions — Analyze
— Point By Point — Signal Generation PtByPt — Sine Wave PtByPt). This VI requires a
normalized frequency input. Thus, the signal frequency is divided by the sampling
frequency, 8000 Hz, and is wired to the f terminal of the VI. Also, the iteration
counter of the While Loop is wired to the time terminal of the VI.

The Butterworth Filter PtByPt VI (Functions — All Functions — Analyze
— Point By Point — Filters PtByPt — Butterworth Filter PtByPt) is used here to serve as
the IIR filter. The filter specifications need to be entered and wired to the VI. For
example, right click on the filter type terminal and choose Create — Constant
from the shortcut menu to create an Enum Constant (enumerated constant)
which enumerates the filter types: lowpass, highpass, bandpass, and bandstop, in a
pull-down menu. An enumerated constant is used to establish a list of string labels
and corresponding numeric values.

The filtered output signal is then examined in both the time and frequency domains.
The Real FFT PtByPt VI (Functions — All Functions — Analyze — Point By Point
— Frequency Domain PtByPt — Real FFT PtByPt) is used to see the frequency response.
Note that this VI collects a frame of the incoming samples to compute the FFT. A
total of 128 input samples are used to generate the magnitudes of 128 complex FFT
values. Only the first half of the values is displayed in normalized magnitude, consid-
ering that the second half is a mirror image of the first half. This is done by using the
Array Subset function. Notice that the index is set to its default value, 0, in the
absence of an input. The FFT outcome is then displayed in a Waveform Graph.

For the time domain observation of the signals, the Bundle function is used to
combine the input and output signals and display them in the same Waveform
Chart (Controls — Graph Indicators — Waveform Chart). Waveform Chart is discussed
in a later subsection.

The FP of the IIR filtering system is shown in Figure 6-4. In order to display the two
signals together in the same Waveform Chart, right-click on the chart and choose
Stack Plots. To modify the display length, right-click on the plot area of the Wave-
form Chart and choose Chart History Length.... This brings up a dialog window to
adjust the number of samples for the display. Enter 64 for the buffer length.

Let us change the properties of the FP objects. Rename the axes of the Waveform
Graphs as shown in Figure 6-4. The scale factor needs to be modified in order to
have a proper scaling of the frequency axis on the Waveform Graphs. The value
of 4000/64 = 62.5 is used as the multiplier of the X axis to scale it in the range 0
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Figure 6-4: FP of IIR filtering system.

to T (radians), that is 4000 Hz. This is done by right-clicking on the Waveform
Graphs, and choosing Properties. This brings up the Waveform Graph Property
window. Click the Scales tab and choose the Frequency (Hz) axis to edit its property.
Enter 62.5 for the multiplier under the Scaling factors field. The Autoscale
option for the Y axis of the Waveform Graphs also needs to be disabled to
observe the magnitude attenuation in the filter output.

The functionality of the filter can be verified by adjusting the frequency of the input
signal and running the VI. Observe the frequency response to make sure that the out-
put signal corresponds to the input signal in the passband (1333 to 2667 Hz), while the
input signal in the stopband (0 to 1333 and 2667 to 4000 Hz) should get filtered out.

L6.1.2 Least Mean Square (LMS) algorithm

Figure 6-5 shows the BD of the .MS VI, which is built by using the point-by-point
processing feature. The inputs of this VI include: desired output (Input 1), array of
samples in a previous iteration (x [n]), input to the unknown system (Input 2),
step size, and filter coefficient set of the previous iteration (h [n]) ordered from top to
bottom. The outputs of this VI include: updated array (x [n+11), error term, updated
filter coefficient set (h[n+1]), and FIR filter output ordered from top to bottom.
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Figure 6-5: BD of LMS VI.

The two array functions, Replace Array Subset (Functions — All Functions —
Array — Replace Array Subset) and Rotate 1D Array (Functions — All Functions
— Array — Rotate 1D Array), act as a circular buffer where the input sample at index O
gets replaced by a new incoming sample. To perform point-by-point processing, the
FIR Filter PtByPt VI (Functions — All Functions — Analyze — Point By Point —
Filters PtByPt — FIR Filter PtByPt) is used. This VI requires a single-element input and
a coefficient array.

The Subtract function on the BD calculates the error or the difference between
the desired signal and the output of the adaptive FIR filter. This error is multiplied by
the step size 0 and then by the elements in the input buffer to obtain the coefficient
updates. Next, these updates are added to the previous coefficients h[n]’s to compute
the updated coefficients h[n+1]’s as stated in Equation (6.1).

The icon of the LMS VI is edited as shown in Figure 6-5. The connector pane of the
VI is also modified as shown in Figure 6-6 for it to be used as a subVI.

=[n]
Input 1 w[n+1]
Inpuk 2 Oukput
Skep Size —Error
h[n] h[n+1]

Figure 6-6: Connector pane of LMS VI.
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L6.1.3 Waveform Chart

A Waveform Graph plots an array of samples while a Waveform Chart takes one or
more samples as its input and maintains a history so that a trajectory can be dis-
played, similar to an oscilloscope.

There are three different updating modes in a Waveform Chart. They include: Strip
chart, Scope chart, and Sweep chart. The Strip chart mode provides a continuous
data display. Once the plot reaches the right border, the old data are scrolled to the
left and new data are plotted on the right edge of the plotting area. The Scope chart
mode provides a data display from left to right. Then, it clears the plot and resumes it
from the left border of the plotting area. This is similar to data display on an oscillo-
scope. The Sweep chart mode functions similar to the Scope chart mode except the
old data are not cleared. The old and new data are separated by a vertical line. All
three modes are illustrated in Figure 6-7. These modes are configured by right-click-
ing on the plot area and then by selecting Advanced — Update Mode.

b charts.vi Froml Fnlml ;
Fie Im (gewate ook Orosese Windess Help
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Figure 6-7: Three different modes of Waveform Chart.

The length of data displayed on the chart is changeable. To do so, right-click on
the plot area and select Chart History Length. This brings up a dialog box to enter
data length.

L6.1.4 Shift-Register and Feedback Node

The BD of the overall adaptive system is shown in Figure 6-8. Note that two Feed-
back Nodes, denoted by 3=], are used. A Feedback Node is used to transfer
data from one iteration to a next iteration inside a For Loop or a While Loop. A
Feedback Node is automatically generated when the output of a VI is wired to its
input inside a loop structure. By default, an initializer terminal is added onto the left
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border of the loop for each Feedback Node. An initializer terminal is used to initialize
the value to be transferred by the Feedback Node. If no initialization is needed, the
terminal can be removed by right-clicking on it and unchecking Initializer terminal.

A Feedback Node can be replaced by a Shift Register. To achieve this, right-click on
the Feedback Node. Then choose Replace with Shift Register. This adds a Shift
Register at both sides of the While Loop. Also, the Shift Registers are
wired to the terminals of the LMS subVI.

b System ldentification. wi Block Diagram

Es [dt COparsts ool Growss Window Help

Figure 6-8: BD of system identification.

In the BD shown in Figure 6-8, the IIR filtering system built earlier is located to

act as the unknown system. The filter coefficient array and the input data array are
passed from one iteration to a next iteration by the Feedback Nodes to update
the filter coefficients via the LMS algorithm. Both of these arrays are initialized with
32 zero values, considering that the number of filter taps is 32. This is done by wiring
an Initialize Array function (Functions — All Functions — Array — Initialize
Array) to the initializer terminal. The initialization array is configured to be of length
32 containing zero values.
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For the step size of the LMS algorithm, a Numeric Constant is created and
wired. This value can be adjusted to control the speed of adaptation. In this example,
0.003 is used. Also, a Wait (ms) function is placed in the While Loop to delay
the execution of the loop.

As shown in Figure 6-9, the output of the adaptive LMS filter adapts to the output of
the IR filter and thus the error between the outputs diminishes.

b= System Identification, v
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Figure 6-9: FP of system identification.
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L6.2 Noise Cancellation

The design of a noise cancellation system is achieved similar to the system identi-
fication system mentioned above. A noise cancellation system takes two inputs: a
noise-corrupted input signal and a reference noise signal. The BD of the adaptive
noise cancellation system is shown in Figure 6-10. Again, as in the system identifica-
tion example, the point-by-point processing feature is employed here. This requires
using a Get Waveform Components function together with an Index Array
function at the output of the noise and signal sources. The number of samples of the
waveforms generated by the three Sine Waveform Vls is set to 1 for performing
point-by-point processing. The data type of the Y component is still of array type with
size 1. The Index Array function is used to extract a scalar element from the array.
This ensures that the numerical operations are done in a point-by-point fashion.

= Moise Cancellation. vi Block Do rom
Fie Edt Operate Tooks Browse Window Hely EaE |
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Figure 6-10: BD of noise cancellation system.

To be able to observe the adaptability of the system, a time-varying channel is added.
The noise source, which consists of the sum of two sinusoidal waveforms (400 and
700 Hz), is passed through the channel before it is added to the input signal. The BD

of the time-varying channel is shown in Figure 6-11.
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Figure 6-11: Time-varying channel.

The channel consists of an FIR lowpass filter with its passband and stopband varying
according to a discretized triangular waveform. The reason for the discretization is to
give the LMS algorithm enough time to adapt to the noise signal. The characteristic
of the channel is varied with time by swinging the filter passband from 100 to 900 Hz.
The bandwidth of the time-varying channel is shown in Figure 6-12.

& Chanmel Bandwidth.vi Front Pamal

Figure 6-12: Bandwidth of time-varying channel.
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The Waveform Graph shown in Figure 6-13 indicates that the adaptive filter
adapts to its input by cancelling out the noise component as the characteristic of the
channel is changed. As illustrated in Figure 6-13, the input signal to the system is a
50 Hz sinusoid and the noise varies in the range of 100-900 Hz. The step size & may
need to be modified depending on how fast the system is converging. It is necessary
to make sure that the characteristic of the channel is not changing too fast to give
the adaptive filter adequate time to adapt to the noise signal passed through it. As
seen in Figure 6-13, the system adapts to the noise signal before the channel changes.

S —— El@ﬂ
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Figure 6-13: FP of noise cancellation system.

136



Adaptive Filtering Systems

Note that the noise-cancelled signal is available from the Error terminal of the
LMS VL. If a DC input signal, in other words a O Hz signal, is applied to the system,
the output of the adaptive filter becomes the error between the noise signal passed
through the channel and the reference noise signal. This is illustrated in Figure 6-14.
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Figure 6-14: Error between input and noise cancelled output.
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CHAPTER

Frequency Domain Processing

Transformation of signals to the frequency domain is widely used in signal process-
ing. In many cases, such transformations provide a more effective representation and
a more computationally efficient processing of signals as compared to time domain
processing. For example, due to the equivalency of convolution operation in the
time domain to multiplication in the frequency domain, one can find the output of a
linear system by simply multiplying the Fourier transform of the input signal by the
system transfer function.

This chapter presents an overview of three widely used frequency domain transforma-
tions, namely fast Fourier transform (FFT), short-time Fourier transform (STFT), and
discrete wavelet transform (DWT). More theoretical details regarding these transfor-
mations can be found in many signal processing textbooks, e.g. [1].

7.1 Discrete Fourier Transform (DFT) and Fast Fourier
Transform (FFT)

Discrete Fourier transform (DFT) x[k] of an N-point signal x[n] is given by

N-1
X[k]=> x[n]Wy, k=0,1,...N-1

’ffH (7.1)
x[n]=NZX[k] o n=0,1,..,N-1

n=0

n
where W, = ¢ N. The above transform equations require N complex multiplications
and N — 1 complex additions for each term. For all N terms, N* complex multipli-
cations and N? — N complex additions are needed. As it is well known, the direct
computation of (7.1) is not efficient.
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To obtain a fast or real-time implementation of (7.1), a fast Fourier transform (FFT)
algorithm is often used which makes use of the symmetry properties of DFT. There
are many approaches to finding a fast implementation of DFT; that is, there are many
FFT algorithms. Here, we mention the approach presented in the TI Application
Report SPRA291 for computing a 2N-point FFT [2]. This approach involves forming
two new N-point signals x,[n] and x,[n] from a 2N-point signal g[n] by splitting it
into an even and an odd part as follows:

xl[n]:g[zn] 0<n<N-1 (7.2)
X, [n]z g[2n+1]

From the two sequences x,[n] and x,[n], a new complex sequence x[n] is defined to be

x[n]:xl[n]+jx2[n] 0<n<N-1 (7.3)
To get G[k], the DFT of g[n], the equation
G[k]=X[k]A[k]+X [N -k]B[Kk] (7.4)

k=0,1,..,N—1, with X[N]=X[0]

is used, where

A[k]=%(l—ijN) (7.5)
and
Blkl=> (1+5W,) (7.6)

Only N points of G[k] are computed from (7.4). The remaining points are found

by using the complex conjugate property of G[k], that is G[2N — k] = G'[k]. As a
result, a 2N-point transform is calculated based on an N-point transform, leading to a
reduction in the number of operations.

7.2 Short-Time Fourier Transform (STFT)

Short-time Fourier transform (STFT) is a sequence of Fourier transforms of a
windowed signal. STFT provides the time-localized frequency information for
situations when frequency components of a signal vary over time, whereas the
standard Fourier transform provides the frequency information averaged over the
entire signal time interval.
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The STFT pair is given by

—

-1
NXrpr [m,n] = x[k]g[k_m]e—jZnnk/L

k=

X [k] = ; zﬂ, Xsrer [m, n]g [k - m]ejznnk/L

where x[k] denotes a signal, g[k] an L-point window function. From (7.7), the STFT
of x[k] can be interpreted as the Fourier transform of the product x[k]g[k — m]. Fig-
ure 7-1 illustrates computing STFT by taking Fourier transforms of a windowed signal.

(7.7)

(=]

x(1)

» lnv'wmd,." J""'vn‘""n‘{,' ‘1"‘(’ =
y

¢ ¢ Time

£ n n
v v v
Luf m

Time
Figure 7-1: Short-time Fourier transform.

There exists a trade-off between time and frequency resolution in STFT. In other
words, although a narrow-width window results in a better resolution in the time
domain, it generates a poor resolution in the frequency domain, and vice versa.
Visualization of STFT is often realized via its spectrogram, which is an intensity
plot of STFT magnitude over time. Three spectrograms illustrating different time-
frequency resolutions are shown in Figure 7-2. The implementation details of STFT

are described in Lab 7.
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STFT with narrow window
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Figure 7-2: STFT with different time frequency resolutions.

7.3 Discrete Wavelet Transform (DWT)

Wavelet transform offers a generalization of STFT. From a signal theory point of
view, similar to DFT and STFT, wavelet transform can be viewed as the projection
of a signal into a set of basis functions named wavelets. Such basis functions offer
localization in the frequency domain. In contrast to STFT having equally-spaced
time-frequency localization, wavelet transform provides high frequency resolution at
low frequencies and high time resolution at high frequencies. Figure 7-3 provides a
tiling depiction of the time-frequency resolution of wavelet transform as compared to

STFT and DFT.
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Frequency

Time Time Time
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Figure 7-3: Time-frequency tiling for (a) DFT, (b) STFT, and (c) DWT.

The discrete wavelet transform (DWT) of a signal x[n] is defined based on so-called
approximation coefficients, W, [j,, k], and detail coefficients, W, [j, k], as follows:

W, [jo,k]:ﬁ;X[n](pjo,k [n] (7.8)

W, [j,k] = ﬁ;x[n]\mk [n] forj=j,
and the inverse DWT is given by
1 1
x{n|=—= D> W |ionk|o, ,|n|t——= W, kv, [n (7.9)
1= g ZW ko e 35w v,

wheren =0,1,2,... M-1,j=0,1,2,...,] =1,k =0,2,..., 22— 1, and M denotes the
number of samples to be transformed. This number is selected to be M = 2/, where |
indicates the number of transform levels. The basis functions {(p}.’k [n]} and {‘lf,-,k [n]}

are defined as
9 [1]=2"0[2n—k] (7.10)
v [n]=2"y[2n k]

where @[n] is called scaling function and y[n] wavelet function.

For the implementation of DWT, the filter bank structure is often used. Figure 7-4
shows the decomposition or analysis filter bank for obtaining the forward DWT
coefficients. The approximation coefficients at a higher level are passed through a
highpass and a lowpass filter followed by a downsampling by two to compute both the
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detail and approximation coefficients at a lower level. This tree structure is repeated
for a multi-level decomposition.

Gi(2) —= 12 — W,l[jn]

Wolj+1,n]

Go(2) > 12 —= W,lj,n]

Figure 7-4: Discrete wavelet transform decomposition filter
bank, G, lowpass and G, highpass decomposition filters.

Inverse DWT (IDWT) is obtained by using the reconstruction or synthesis filter
bank shown in Figure 7-5. The coefficients at a lower level are upsampled by two
and passed through a highpass and a lowpass filter. The results are added together to
obtain the approximation coefficients at a higher level.

Wyljn] = T2 —» Hi(2)
} Wlj+1,n]
Wolj.n] «— 12 —» Ho(2)
Figure 7-5: Discrete wavelet transform reconstruction filter
bank, H, lowpass and H, highpass reconstruction filters.

7.4 Signal Processing Toolset
Signal Processing Toolset (SPT) is an add-on toolkit of LabVIEW that provides use-

ful tools for performing time-frequency analysis [3]. SPT has three components: Joint
Time-Frequency Analysis (JTFA), Super-resolution Spectral Analysis (SRSA), and
Wavelet Analysis.

The Vs associated with STFT are included as part of the JTFA component. The
SRSA component is based on the model-based frequency analysis normally used for
situations when a limited number of samples are available. The VIs associated with
the SRSA component include high-resolution spectral analysis and parameter esti-
mation, such as amplitude, phase, damping factor, and damped sinusoidal estimation.
The Vs associated with the Wavelet Analysis component include 1D and 2D wave-
let transform as well as their filter bank implementations.
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Lab 7:

FFT, STFT and DWT

This lab shows how to use the LabVIEW tools to perform FFT, STFT and DWT as

part of a frequency domain transformation system.

L7.1 FFT versus STFT

To illustrate the difference between FFT and STFT transformations, a 512-point
input signal is formed by combining three signals: a 75 Hz sinusoidal signal sampled at
512 Hz, a chirp signal with linearly decreasing frequency from 200 to 120 Hz, and an
impulse signal having an amplitude of 2 for 500 ms located at the 256th sample. This
composite signal is shown in Figure 7-6. The FFT and STFT graphs are also shown in
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Figure 7-6: FP of FFT versus STFT.
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this figure. The FFT graph shows the time averaged spectrum reflecting the presence
of a signal from 120 to 200 Hz with one major peak at 75 Hz. As can be seen from this
graph, the impulse having the short time duration does not appear in the spectrum.
The STFT graph shows the spectrogram for a time increment of 1 and a rectangular
window of width 32 by which the presence of the impulse can be detected.

As far as the FP is concerned, two Menu Ring controls (Controls — All Controls
— Ring & Enum — Menu Ring) are used to input values via their labels. The labels
and corresponding values of the ring controls can be modified by right clicking and
choosing Edit Items... from the shortcut menu. This brings up the dialog window
shown in Figure 7-7.
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Figure 7-7: Properties of a ring control.

An Enum (enumerate) control acts the same as a Menu Ring control, except that
values of an Enum control cannot be modified and are assigned sequentially. A Menu
Ring or Enum can be changed to a Ring Constant or Enum Constant when

used on a BD.

Several spectrograms with different time window widths are shown in Figure 7-8.
Figure 7-8(a) shows an impulse (vertical line) at time 500 ms because of the relatively
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time-localized characteristic of the window used. Even though a high resolution in the
time domain is achieved with this window, the resolution in the frequency domain is
so poor that the frequency contents of the sinusoidal and chirp signals cannot eas-

ily be distinguished. This is due to the Heisenberg’s uncertainty principle [1], which
states that if the time resolution is increased, the frequency resolution is decreased.

Now, let us increase the width of the time-frequency window. This causes the fre-
quency resolution to become better while the time resolution becomes poorer. As a
result, as shown in Figure 7-8(d), the frequency contents of the sinusoidal and chirp
signals become better distinguished. It is also seen that as the time resolution becomes
poorer, the moment of occurrence of the impulse becomes more difficult to identify.

(c) (d)
Figure 7-8: STFT with time window of width (a) 16, (b) 32, (c) 64, and (d) 128.

The BD of this example is illustrated in Figure 7-9. To build this VI, let us first gener-
ate the input signal with the specifications stated above. The sinusoidal waveform is
generated by using the Sine Waveform VI (Functions — All Functions — Analyze
— Waveform Generation — Sine Waveform) and the chirp signal is generated by using
the Chirp Pattern VI (Functions — All Functions — Analyze — Signal Process-

ing — Signal Generation — Chirp Pattern). Also, the impulse is generated by using the
Impulse Pattern VI (Functions — All Functions — Analyze — Signal Processing
— Signal Generation — Impulse Pattern). These signals are added together to form a
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Figure 7-9: BD of FFT and STFT.

composite signal, see Figure 7-10. In order to use this VI as the signal source of the
system, an output terminal in the connector pane is wired to the waveform indicator.
Then, the VI is saved as Composite Signal.vi.

b Composite Sipnal.vi Block Diagram

Fba Edk Cpsrsts Tooks Growss Window Hele =
(o]@] @[ 1][@][uaf@]ot [ 135 topkcationfort - |[3o-][wax] (D]

W
3 .

Figure 7-10: Composite signal: sine + chirp + impulse.
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Now, let us create the entire transformation system using the Composite Signal
VI just made. Create a blank VI, then select Functions — All Functions — Select a
VI.... This brings up a window for choosing and locating a VI. Click Composite Signal.
vi to insert it into the BD. The composite signal output is connected to three blocks
consisting of a Waveform Graph, a FFT, and a STFT VI. The waveform data (Y
component) is connected to the input of the FFT VI (Functions — All Functions —
Analyze — Signal Processing — Frequency Domain — FFT). Only the first half of the
output data from the FFT VI is taken since the other half is a mirror image of the
first half. This is done by placing an Array Subset function and wiring to it one
half of the signal length. The magnitude of the FFT output is then displayed in the
Waveform Graph. Properties of a FP object, such as scale multiplier of a graph,
can be changed programmatically by using a property node. Property nodes are
discussed in the next subsection.

Getting the STFT output is more involved than FFT. The STFT VI (Functions —

All Functions — Advanced Signal Processing — Advanced JTFA — STFT), which is part

of the Signal Processing Toolkit (SPT), is used here for this purpose. To utilize the
STFT VI, several inputs as well as the input signal need to be connected. These
inputs are: time increment, extension, window, num of freq bin, initial condition,
and final condition. The time increment input defines a step size for sliding a window
along the time axis. A constant of 1 is used in the example shown in Figure 7-9. The
extension input specifies the method to pad data at both ends of a signal to avoid
abrupt changes in the transformed outcome. There exist five different extension
options: zero padding, symmetric, periodic, spline, and user-defined. For the user-
defined extension mode, an initial condition and a final condition input should be
specified as well. The periodic mode is used in the example shown in Figure 7-9. The
window input specifies which window to apply. In our example, a Hanning window is
considered by passing an array of all 1s whose width is adjustable by the user through
the Hanning window VI (Functions — All Functions — Analyze — Signal Processing
— Window — Hanning Window). Similar to FFT, only one half of the frequency values
are taken while the time values retain the original length. Additional details on us-
ing the STFT VI can be found in [2].

The output of the STFT is displayed in the Intensity Graph (Controls — All
Controls — Graph — Intensity Graph). Right-click on the Intensity Graph and
then uncheck the Loose Fit option under both X Scale and Y Scale from the shortcut
menu. By doing this, the STFT output graph is fitted into the entire plotting area.
Enable auto-scaling of intensity by right-clicking on the Intensity Graph and
choosing Z Scale — AutoScale Z.
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L7.1.1 Property Node

The number of FFT values varies based upon the number of samples. Similarly, the
number of frequency rows of STFT varies based upon the number of frequency bins
specified by the user. However, the scale of the frequency axis in FFT or STFT graphs
should always remain between O and f,/2, which is 256 Hz in the example, regardless
of the number of frequency bins, as illustrated in Figure 7-6 and Figure 7-8. For this
reason, the multiplier for the spectrogram scale needs to be changed depending on
the width of the time window during run time.

A property node can be used to modify the appearance of an FP object. A property
node can be created by right-clicking either on a terminal icon in a BD or an object
in a FP, and then by choosing Create — Property Node. This way default elements,
named visible, are created in a BD, which are linked to a corresponding FP object.
Properties of FP objects can be set to either read or write. Note that by default a
property node is set to read. Changing to the write mode can be done by right click-
ing on a property element and choosing Change to Write. The read/write mode of all
elements can be changed together by choosing Change all to Read/Write.

To change the scale of the spectrogram graph, the value of the element YScale.
Multiplier needs to be modified. Replace the element visible with YScale.Multiplier by
clicking it and choosing Y Scale — Offset and Multiplier — Multiplier. The sampling
frequency of the signal divided by the number of frequency bins, which defines the
scale multiplier, is wired to the element YScale.Multiplier of the property node. Two
more elements, XScale.Multiplier and XScale.Precision, are added to the property node
for modifying the time axis multiplier and precision, respectively.

A property node of the FFT graph is also created and modified in a similar way, con-
sidering that the resolution of FFT is altered depending on the sampling frequency
and number of input signal samples. The property nodes of the STFT and FFT graphs
are shown in Figure 7-9. More details on using property nodes can be found in [3].

L7.2 DWT

In this transformation, the time-frequency window has high frequency resolution
for higher frequencies and high time resolution for lower frequencies. This is a great
advantage over STFT where the window size is fixed for all frequencies.

The BD of a 1D decomposition and reconstruction wavelet transform is shown in
Figure 7-11. Three VIs including Wavelet Filter VI, Discrete Wavelet
Transform Ex VI, and Inverse Discrete Wavelet Transform Ex
VI, are used here from the advanced wavelet palette (Functions — All Functions —
Advanced Signal Processing — Advanced Wavelet).
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Figure 7-11: Wavelet decomposition and reconstruction.

A chirp type signal, shown in Figure 7-12, is considered to be the input signal source.
This signal is designed to consist of four sinusoidal signals, each consisting of 128
samples with increasing frequencies in this order: 250, 500, 1000, 2000 Hz. This
makes the entire chirp signal 512 samples. The Fourier transform of this signal is also
shown in Figure 7-12.
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Figure 7-12: Waveforms of input signal: (a) time domain, and (b) frequency domain.
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In Figure 7-13, the BD of this signal generation process is illustrated. Save this VI as
Chirp Signal.vi to be used as a signal source subVI within the DWT VI. Note that the
Concatenate Inputs option of the Build Array function should be chosen to build
the 1D chirp signal. This VI has only one output terminal.
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Figure 7-13: Generating input signal.

The Discrete Wavelet Transform Ex VIrequires four inputs including
input signal, extension, scales, and analysis filter. The input signal is provided by the
Chirp Signal VI. For the extension input, the same options are available as
mentioned earlier for STFT. The scales input specifies the level of decomposition.
In the BD shown in Figure 7-11, a three-level decomposition is used via specifying

a constant 3. The filter bank implementation for a three-level wavelet decomposi-
tion is illustrated in Figure 7-14. In this example, the Daubechies-2 wavelet is used.
The coefficients of the filters are generated by the Wavelet Filter VI. This VI
provides the coefficient sets for both the decomposition and reconstruction parts.

Gi(2) > 12 . LH ]

Gi(20 —» l2 $\i‘
LLH
Go(z) [» 12 Gi(z) = 2 (»
Go(2) —» l2
Go(2) M l2 » ECE

Figure 7-14: Waveform decomposition tree.
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The result of the Discrete Wavelet Transform Ex VIisstructured into
a 1D array corresponding to the components of the transformed signal in this order
LLL, LLH, LH, H, where L stands for low and H for high. The length of each com-
ponent is also available from this VI. The wavelet decomposed outcome for each
stage of the filter bank is shown in Figure 7-15. From the outcome, it can be observed
that lower frequencies occur earlier and higher frequencies occur later in time. This
demonstrates the fact that wavelet transform provides both frequency and time reso-
lution, a clear advantage over Fourier transform.

The decomposed signal can be reconstructed by the Inverse Discrete
Wavelet Transform Ex VI. From the reconstructed signal, shown in Figure
7-15, it is seen that the wavelet decomposed signal is reconstructed perfectly by using
the synthesis or reconstruction filter bank.

B DWT Lab.vi Front Pamel
Fis Edt Cperate Tools [rowss Window Help

Figure 7-15: FP of DWT VL.
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CHAPTER

DSP Implementation Platform:
TMS320C6x Architecture
and Software Tools

[t is often computationally more efficient to implement some or most components of
a signal processing system on a DSP processor. The choice of a DSP processor to use
in a signal processing system is application dependent. There are many factors that
influence this choice, including cost, performance, power consumption, ease-of-use,
time-to-market, and integration/interfacing capabilities.

8.1 TMS320C6X DSP

The TMS320C6x family of processors, manufactured by Texas Instruments, is built to
deliver speed. They are designed for million instructions per second (MIPS) intensive
applications such as third generation (3G) wireless and digital imaging. There are
many processor versions belonging to this family, differing in instruction cycle time,
speed, power consumption, memory, peripherals, packaging, and cost. For example,
the fixed-point C6416-600 version operates at 600 MHz (1.67 ns cycle time), deliver-
ing a peak performance of 4800 MIPS. The floating-point C6713-225 version operates
at 225 MHz (4.4 ns cycle time), delivering a peak performance of 1350 MIPS.

Figure 8-1 shows a block diagram of the generic C6x architecture. The C6x central
processing unit (CPU) consists of eight functional units divided into two sides: A
and B. Each side has a .M unit (used for multiplication operation), a .L unit (used for
logical and arithmetic operations), a .S unit (used for branch, bit manipulation and
arithmetic operations), and a .D unit (used for loading, storing and arithmetic opera-
tions). Some instructions, such as ADD, can be done by more than one unit. There
are sixteen 32-bit registers associated with each side. Interaction with the CPU must
be done through these registers.
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Figure 8-1: Generic C6x architecture.

As shown in Figure 8-2, the internal buses consist of a 32-bit program address bus, a
256-bit program data bus accommodating eight 32-bit instructions, two 32-bit data
address buses (DA1 and DA2), two 32-bit (64-bit for C64 version) load data buses
(LD1 and LD2), and two 32-bit (64-bit for the floating-point version) store data
buses (ST1 and ST2). In addition, there are a 32-bit direct memory access (DMA)
data and a 32-bit DMA address bus. The off-chip, or external, memory is accessed
through a 20-bit address bus and a 32-bit data bus.

The peripherals on a typical C6x processor include external memory interface
(EMIF), DMA, boot loader, multi-channel buffered serial port (McBSP), host port
interface (HPI), timer, and power down unit. EMIF provides the necessary timing for
accessing external memory. DMA allows the movement of data from one place in
memory to another place without interfering with the CPU operation. Boot loader
boots the code from off-chip memory or HPI to the internal memory. McBSP pro-
vides a high speed multi-channel serial communication link. HPI allows a host to
access the internal memory. Timer provides two 32-bit counters. Power down unit is
used to save power for durations when the CPU is inactive.
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Figure 8-2: C6x internal buses.

8.1.1 Pipelined CPU

In general, there are three basic steps to perform an instruction. They include: fetch-
ing, decoding, and execution. If these steps are done serially, not all of the resources
on the processor, such as multiple buses or functional units, are fully utilized. In order
to increase throughput, DSP CPUs are designed to be pipelined. This means that the
foregoing steps are carried out simultaneously. Figure 8-3 illustrates the difference in
the processing time for three instructions executed on a serial or nonpipelined and a
pipelined CPU. As can be seen from this figure, a pipelined CPU requires fewer clock
cycles to complete the same number of instructions.

The C6x architecture is based on the very long instruction word (VLIW) archi-
tecture. In such an architecture, several instructions are captured and processed
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Figure 8-3: Pipelined versus nonpipelined CPU.

simultaneously. For more details on the TMS320C6000 architecture, the interested
reader is referred to [1].

8.1.2 C64x DSP

The C64x is a more recently released DSP core, part of the C6x family, with higher
MIPS power, operating at higher clock rates. This core can operate in the range of

300-1000 MHz clock rates, giving a processing power of 2400-8000 MIPS. The C64x

speedups are achieved due to many enhancements, some of which are mentioned here.

Per CPU data path, the number of registers is increased from 16 to 32, AO~A31 and
BO-B31. These registers support packed datatypes, allowing storage and manipulation
of four 8-bit or two 16-bit values within a single 32-bit register.

Although the C64x core is code compatible with the earlier C6x cores, it can run
additional instructions on packed datatypes, boosting parallelism. For example, the
new instruction MPYU4 performs four, or quad, 8-bit multiplications, or the instruc-
tion MPY2 performs two, or dual, 16-bit multiplications in a single instruction cycle
on a .M unit. This packed data processing capability is illustrated in Figure 8-4.

8 bit 16 bit
32 32 32 32

\>>E€<</ S

16x16 16x16

// \\ / \

16 | 16 16 | 16 32 32

Figure 8-4: C64x packed data processing capability.
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Additional instructions have been added to each functional unit on the C64x for
performing special purpose functions encountered in wireless and digital imaging
applications. In addition, the functionality of each functional unit on the C64x has
been improved leading to a greater orthogonality, or generality, of operations. For
example, the .D unit can perform 32-bit logical operation just as the .S and .L units,
or the .M unit can perform shift and rotate operations just as the .S unit.

8.2 C6x DSK Target Boards

Given the availability of a DSP starter kit (DSK) board, appropriate components of a
DSP system can be run on an actual C6x processor.

8.2.1 Board configuration and peripherals

As shown in Figure 8-5, the C6713 DSK board is a DSP system which includes a
C6713 floating-point DSP chip operating at 225 MHz with 8 Mbytes of on-board
synchronous dynamic RAM (SDRAM), 512 Kbytes of flash memory, and a 16-bit
stereo codec AIC23. The codec is used to convert an analog input signal to a digi-
tal signal for the DSP manipulation. The sampling frequency of the codec can be
changed from 8 kHz to 96 kHz. The C6416 DSK board includes a C6416 fixed-point
DSP chip operating at 600 MHz with 16 Mbytes of on-board SDRAM, 512 Kbytes of
flash memory, and an AIC23 codec.
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Figure 8-5: C6713 DSK board [2].
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8.2.2 Memory Organization

The external memory used by a DSP processor can be either static or dynamic. Static
memory (SRAM) is faster than dynamic memory (DRAM), but it is more expensive,
since it takes more space on silicon. SDRAM (synchronous DRAM) provides a com-
promise between cost and performance.

Given that the address bus is 32 bits wide, the total memory space of C6x consists of
2°? = 4 Gbytes. For the lab exercises in this book, the DSK board is configured based

on the memory map 1 shown in Figure 8-6.

Address

0000 0000

0001 0000
0180 0000
0184 0000
0184 4000
0184 4020
0184 5000
0184 8200
0184 8240
0184 8280
0184 82C0
0188 0000
018C 0000
0190 0000
0194 0000
0198 0000
019C 0000
01A0 0000
01A0 FFEO
0200 0000
0200 0020
3000 0000
3400 0000
8000 0000
9000 0000
9008 0000
A000 0000
B000 0000

Block Size
Memory Map 1 (Bytes)
Internal RAM (L2) 64K
Reserved 24M
EMIF control regs 32
Cache Configuration regs 4
L2 base addr & count regs 32
L1 base addr & count regs 32
L2 flush & clean regs 32
CEOQ mem attribute regs 16
CE1 mem attribute regs 16
CE2 mem attribute regs 16
CE3 mem attribute regs 16
HPI control regs 4
McBSPO regs 40
McBSP1 regs 40
TimerO regs 12
Timer1 regs 12
Interrupt selector regs 12
EDMA parameter RAM 2M
EDMA control regs 32
QDMA regs 20
QDMA pseudo-regs 20
McBSPO data 64M
McBSP1 data 64M
CEO, SDRAM 16M
CE1, 8-bit ROM 128K
CE1, 8-bit I/O port 4
CE2-Daughtercard 256M
CE83-Daughtercard 256M

10000 0000

Figure 8-6: C6x DSK memory map [3].
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If a program fits into the on-chip or internal memory, it should be run from there to
avoid delays associated with accessing off-chip or external memory. If a program is
too big to fit into the internal memory, most of its time-consuming portions should
be placed into the internal memory for efficient execution. For repetitive codes, it is
recommended that the internal memory is configured as cache memory. This allows
accessing external memory as seldom as possible and hence avoiding delays associ-
ated with such accesses.

8.3 DSP Programming

Programming most DSP processors can be done either in C or assembly. Although
writing programs in C would require less effort, the efficiency achieved is normally
less than that of programs written in assembly. Efficiency means having as few
instructions or as few instruction cycles as possible by making maximum use of the
resources on the chip.

In practice, one starts with C coding to analyze the behavior and functionality of an
algorithm. Then, if the required processing time is not met by using the C compiler
optimizer, the time-consuming portions of the C code are identified and converted
into assembly, or the entire code is rewritten in assembly. In addition to C and
assembly, the C6x allows writing code in linear assembly. Figure 8-7 illustrates code
efficiency versus coding effort for three types of source files on the C6x: C, linear
assembly, and hand optimized assembly. As can be seen, linear assembly provides a
good compromise between code efficiency and coding effort.

Typical Coding
Efficiency Effort
c » COmpiler 50-80% Low
Optimizer
Linear | Assembly .
ASM "1 Optimizer 80-100% Med
o | Hand . .
ASM ™ Optimized 100% High

Figure 8-7: Code efficiency versus coding effort [1].
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More efficient code is obtained by performing assembly programming, fully utilizing
the pipelined feature of the CPU. Details regarding programming in assembly/linear
assembly and code optimization are discussed in [1].

8.3.1 Software Tools: Code Composer Studio

The assembler is used to convert an assembly file into an object file (.obj extension).
The assembly optimizer and the compiler are used to convert, respectively, a linear
assembly file and a C file into an object file. The linker is used to combine object
files, as instructed by the linker command file (.cmd extension), into an executable
file. All the assembling, linking, compiling, and debugging steps have been incor-
porated into an integrated development environment (IDE) called Code Composer
Studio (CCS or CCStudio). CCS provides an easy-to-use graphical user environ-
ment for building and debugging C and assembly codes on various target DSPs.
Figure 8-8 shows the steps involved for going from a source file (.c extension for C,
.asm for assembly, and .sa for linear assembly) to an executable file (.out extension).

During its set-up, CCS can be configured for different target DSP boards (such as
C6713 DSK, C6416 DSK, C6xxx Simulator). The version used in the book is CCS
2.2, the latest version at the time of this writing. CCS provides a file management
environment for building application programs. It includes an integrated editor for
editing C and assembly files. For debugging purposes, it provides breakpoints, data
monitoring and graphing capabilities, profiler for benchmarking, and probe points to
stream data to and from a target DSP.

Assembly |
¥ Optimizer H
e | Link.cmd
_-7 sa : !
|
Text . .
L eemem————————— - Assembler »  Linker » Debugging
Editor !_.asm .obj out
S\ ¢ !
N :
N | Code Composer Studio
A Compiler +—-14

.c=C source file

.sa= linear assembly source file
.asm= assembly source file

.obj = object file

.out = executable file

.cmd= linker command file

Figure 8-8: C6x software tools [1].
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8.3.2 Linking

Linking places code, constant, and variable sections into appropriate locations

in memory as specified in a linker command file. Also, it combines several object
files into a final executable file. A typical command file corresponding to the DSK
memory map 1 is shown below in Figure 8-9.

MEMORY
{
VECS: 0=00000000h 1=00000200h /* interrupt vectors */
PMEM: 0=00000200h 1=0000FE0O0h /* Internal RAM (L2) mem */
BMEM: 0=80000000h 1=01000000h /* External Memory CEO, SDRAM, 16
Mbytes */
}
SECTIONS
{
.intvecs > Oh
.text > PMEM
. far > PMEM
.stack > PMEM
.bss > PMEM
.cinit > PMEM
.pinit > PMEM
.cio > PMEM
.const > PMEM
.data > PMEM
.switch > PMEM
. sysmem > PMEM

Figure 8-9: A typical command file.

The first part, MEMORY, provides a description of the type of physical memory, its ori-
gin and its length. The second part, SECTIONS, specifies the assignment of various
code sections to the available physical memory. These sections are defined by direc-
tives such as . text, .data, etc.

8.3.3 Compiling

The build feature of CCS can be used to perform the entire process of compiling,
assembling, and linking in one step. The compiler allows four levels of optimizations.

Debugging and full-scale optimization cannot be done together, since they are in
conflict; that is, in debugging, information is added to enhance the debugging pro-
cess, while in optimizing, information is minimized or removed to enhance code
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efficiency. In essence, the optimizer changes the flow of C code, making program
debugging very difficult.

[t is thus a good programming practice to first verify the proper functionality of code
by using the compiler with no optimization. Then, use full optimization to make the
code efficient. It is recommended that an intermediary step be taken in which some
optimization is done without interfering with source level debugging. This intermedi-
ary step can re-verify code functionality before performing full optimization.

8.4 Bibliography

[1] N. Kehtarnavaz, Real-Time Digital Signal Processing Based on the
TMS320C6000, Elsevier, 2005.
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TMS320C6711D Floating-Point Digital Signal Processors, SPRSO88L, 2004.
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Lab 8: Getting Familiar with
Code Composer Studio

L8.1 Code Composer Studio

This tutorial lab introduces the basic features of CCS one needs to know in order to
build and debug a program running on a DSP processor. To become familiar with all

of its features, refer to the TI CCS Tutorial [1] and TI CCS User’s Guide manuals [2].

This lab demonstrates how a simple DSP program can be compiled and linked by
using CCS. The algorithm consists of a sinewave generator using a difference equa-
tion. As part of this example, debugging and benchmarking issues are also covered.
Knowledge of C programming is required for this and next lab. These labs may be
skipped if the reader is only interested in the LabVIEW implementation.

Note that the accompanying CD provides the lab programs separately for the DSP
target boards C6416 and C6713 DSK, as well as the simulator.

L8.2 Creating Projects

Let us consider all the files required to create an executable file; that is, . c (c),

.asm (assembly), . sa (linear assembly) source files, a . cmd linker command file,

a .h header file, and appropriate . 1ib library files. The CCS code development
process begins with the creation of a so-called project to integrate and manage all
these required files for generating and running an executable file. After opening CCS
by double-clicking the CCS icon on the Windows® desktop, the Project View panel
can be seen on the left-hand side of the CCS window. This panel provides an easy
mechanism for building a project. In this panel, a project file (. pjt extension) can
be created or opened to contain not only the source and library files but also the
compiler, assembler, and linker options for generating an executable file.

To create a project, choose the menu item Project — New from the CCS menu bar.
This brings up the dialog box Project Creation, as shown in Figure 8-10. In the dialog
box, navigate to the working folder, here considered to be C:\ti\myprojects, and type
a project name in the field Project Name. Then, click the button Finish for CCS to
create a project file named Lab08.pjt. All the files necessary to run a program should
be added to the project.
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Figure 8-10: Creating a new project.

CCS provides an integrated editor which allows the creation of source files. Some

of the features of the editor are color syntax highlighting, code block marking in
parentheses and braces, parenthesis/brace matching, control indentions, and find/
replace/search capabilities. It is also possible to add files to a project from Windows
Explorer using the drag-and-drop approach. An editor window is brought up by
choosing the menu item File — New — Source File. For this lab, let us type the follow-
ing C code into the editor window:

#include <stdio.h>
#include <math.h>

#define PI 3.141592

void main ()
{
short i, gain;
float fs, £f;
float yI[3], al2], bl, x;

short *output;
output = (short *) 0x0000FFO00;

// Coefficient Initialization

fs = 8000; // Sampling frequency
f = 500; // Signal frequency
gain = 100; // Amplitude gain
al0] = -1;

all] = 2 * cos(2*PI*f/fs);

bl = gain;
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// Initial Conditions

y[1l] = y[2] = 0;
x = 1;

printf (“BEGIN\n"”) ;

for (1 = 0; 1 < 128; i++ )
{
y[0] = bl*x + al[ll*y[1] + al0]l*y[2];
yl2] = y[1]1;
y[1l] = y[0];
x = 0;
output[i] = (short) yI[0];

}
printf (“END\n”) ;
}
This code generates a sinusoidal waveform y[n] based on the following difference
equation:

y[n]=le[n—1]+A1y[n—1]+A0y[n—2] (8.1)

where B, = 1, A, = -1, A, = 2cos(0), and x[n] is a delta function. The frequency of
the waveform is given by [1]

f= zf—;tarccos(Al/Z) (8.2)

By changing the coefficient A,, the frequency can be altered. By changing the coef-
ficient By, the gain can be altered.

Save the created source file by choosing the menu item File — Save. This brings up
the dialog box Save As, as shown in Figure 8-11. In the dialog box, go to the field
Save as type and select C Source Files (*.¢) from the pull-down list. Then, go to the
field File name, and type sinewave.c. Finally, click Save to save the code into a C
source file named sinewave.c.
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Figure 8-11: Creating a source file.

In addition to source files, a linker command file must be specified to create an
executable file and to conform to the memory map of the target DSP. A linker
command file can be created by choosing File — New — Source File. For this lab, let
us type the command file shown in Figure 8-12. This file can also be downloaded
from the accompanying CD, which is configured based on the DSK memory map.
Save the editor window into a linker command file by choosing File — Save or by
pressing <Ctrl + S>. This brings up the dialog box Save As. Go to the field Save as
type and select TI Command Language Files (*.cmd) from the pull-down list. Then, type
Lab08.cmd in the field File name and click Save.
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MEMORY

{
PMEM: 0=00000000h 1=0000FFOOh /* Internal RAM (L2) mem &y
PMEM2: 0=0000FFO00h 1=00000100h /* Defined for output value*/
BMEM: 0=80000000h 1=01000000h /* CEO, SDRAM, 16 MBytes */

}

SECTIONS

{
.text > PMEM
. far > PMEM
.stack > PMEM
.bss > PMEM
.cinit > PMEM
.pinit > PMEM
.cio > PMEM
.const > PMEM
.data > PMEM
.switch > PMEM
. sysmem > PMEM

b}

Figure 8-12: Linker command file for Lab 8.

Now that the source file sinewave.c and the linker command file Lab08.cmd are
created, they should be added to the project for compiling and linking. To do this,
choose the menu item Project — Add Files to Project. This brings up the dialog box
Add Files to Project. In the dialog box, select sinewave.¢ and click the button Open.
This adds sinewave.c to the project. In order to add Lab08.cmd, choose Project — Add
Files to Project. Then, in the dialog box Add Files to Project, set Files of type to Linker
Command File (*.cmd), so that Lab08.cmd appears in the dialog box. Next, select
Lah08.cmd and click the button Open. In addition to sinewave.c and Lab08.cmd files,
the run-time support library should be added to the project. To do so, choose Project
— Add Files to Project, go to the compiler library folder, here assumed to be the default
option C:\ti\c6000\cgtools\lib, select Object and Library Files (*.0*,*.1*) in the box
Files of type, then select rts6700.1ib and click Open. If running on the TMS320C6416,
select rts6400.1ib instead.

After adding all the source files, the command file and the library file to the project,
it is time either to build the project or to create an executable file for the target DSP.
This is achieved by choosing the Project — Build menu item. CCS compiles, assem-
bles, and links all of the files in the project. Messages about this process are shown in
a panel at the bottom of the CCS window. When the building process is completed
without any errors, the executable file Lab08.out is generated. It is also possible to do
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incremental builds—that is, rebuilding only those files changed since last build, by
choosing the menu item Project — Rebuild. The CCS window provides shortcut but-

Although CCS provides default build options, all the compiler, assembler, and linker
options can be changed via the menu item Project — Build Options. Among many
compiler options shown in Figure 8-13, particular attention should be paid to the
optimization level options. There are four levels of optimization (0, 1, 2, 3), which
control the type and degree of optimization. Note that in some cases, debugging is
not possible due to optimization. Thus, it is recommended to debug a program first to
make sure that it is logically correct before performing any optimization.
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Figure 8-13: Build and compiler options.

Another important compiler option is the Target Version option. When implementing
on the floating-point target DSP (TMS320C6713 DSK), go to the Target Version field
and select C671x (-mv6710) from the pull-down list. For the fixed-point target DSP
(TMS320C6416 DSK), select C64xx (-mv6400).

When a message stating a compilation error appears, click Stop Build and scroll up
in the build area to see the syntax error message. Double-click on the red text that
describes the location of the syntax error. Notice that the sinewave.c file opens, and
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the cursor appears on the line that has caused the error, see Figure 8-14. After cor-
recting the syntax error, the file should be saved and the project rebuilt.
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Figure 8-14: Build error.

L8.3 Debugging Tools

Once the build process is completed without any errors, the program can be loaded
and executed on the target DSP. To load the program, choose File — Load Program,
select the program Lab08.out just rebuilt, and click Open. To run the program, choose
the menu item Debug — Run. You should be able to see BEGIN and END appearing in
the Stdout window.

Now, let us view the content of the memory at a specific location. To do so, select
View — Memory from the menu. The dialog box Memory Window Options should
appear. This dialog box allows one to specify various attributes of the Memory win-
dow. Go to the Address field and enter 0x0000FF00. Then, select 16-bit Signed Int
from the pull-down list in the Format field and click OK. Note that a global variable

173



Lab 8

name should be used in the Address field. A Memory window appears as shown in
Figure 8-15. The contents of the CPU, peripheral, DMA, and serial port registers can
also be viewed by selecting View — Registers — Core Registers.
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Figure 8-15: Memory Window Options dialog box and Memory window.

Data stored in the DSP memory can be saved to a PC file. CCS provides a probe
point capability, so that a stream of data can be moved from the DSP to a PC host
file or vice versa. In order to use this capability, a probe point should be set within
the program by placing the mouse cursor at the line where a stream of data needs to
be transferred and by clicking the button Probe Point 7. . Choose File — File I/0 to
invoke the dialog box File 1/0. Select the tab File Output for saving the data file, then
click the button Add File and type the name of the data file. Next, the file should be
connected to the probe point by clicking the button Add Probe Point. In the Probe
Point field, select the probe point to make it active, then connect the probe point
to the PC file through File Qut:... in the field Connect To. Click the button Replace
and then the button 0K, see Figure 8-16. Finally, enter the memory location in

the Address field and the data type in the Length field. For storing the data in short
format, 64 words needs to be stated in the length field for 128 short data. A probe
point connected to a PC file is shown in Figure 8-17.
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Figure 8-16: Probe Points window.
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Figure 8-17: File 1/0 window.

The probe point capability can be used to simulate the execution of a program in
the absence of a live signal. A valid PC file should have the correct file header and
extension. The file header should conform to the following format:

MagicNumber Format StartingAddress PageNum Length
MagicNumber is fixed at 1651. Format indicates the format of samples in the file:
1 for hexadecimal, 2 for integer, 3 for long, and 4 for float. StartingAddress

and PageNum are determined by CCS when a stream of data is saved into a PC file.
Length indicates the number of samples in memory. A valid data file should have the
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extension .dat. Data files having the same format can be transferred by choosing File
— Data — Load..., instead. However, data transfer with this capability of CCS needs to
be reinvoked manually while the probe point does data updates automatically.

A graphical display of data often provides better feedback about the behavior of a
program. CCS provides a signal analysis interface to monitor a signal. Let us display
the array of values at 0xOO00FFQO as a signal or a time graph. To do so, select View —
Graph — Time/Frequency to view the Graph Property Dialog box. Field names appear in
the left column. Go to the Start Address field, click it and type 0x0000FFFF. Then,
go to the Acquisition Buffer Size field, click it and enter 128. Also, enter 128 in the
Display Data Size field. Finally, click on DSP Data Type, select 16-hit signed integer from
the pull-down list, and click 0K, see Figure 8-18. A graph window appears based on
the properties selected. This window is illustrated in Figure 8-19. Properties of the
graph window can be changed by right-clicking on it and selecting Properties at any
time during the debugging process.
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Figure 8-18: Graph Property Dialog box.
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Figure 8-19: Graphical Display window.
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To access a specific location of the DSP memory, a memory address can be assigned
directly to a pointer. It is necessary to typecast the pointer to short since the values
are of that type. In the code shown, a pointer is assigned to 0xO000FFQO.

When developing and testing programs, one often needs to check the value of a vari-
able during program execution. This can be achieved by using breakpoints and watch
windows. To view the values of the pointer in sinewave.c before and after the pointer
assignment, choose File — Reload Program to reload the program. Then, double-click
on sinewave.c in the Project View panel to bring up the source file, see Figure 8-20.
You may wish to make the window larger to see more of the file in one place. Next,
put the cursor on the line that reads output = (short *) 0x0000FFO00 and
press <F9> to set a breakpoint. To open a watch window, choose View — Watch Win-
dow from the menu bar. This will bring up a Watch Window with the local variables
listed in the Watch Locals tab. To add a new expression to the Watch Window, select
the Watch 1 tab, then type output (or any expression you desire to examine) in
the Name column. Then, choose Debug — Run or press <F5>. The program stops at
the breakpoint and the Watch Window displays the value of the pointer. This is the
value before the pointer is set to 0xO000FF00. By pressing <F10> to step over the
line, or the shortcut button #*, one should be able to see the value 0x0O000FFQ0 in
the Watch Window.
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Figure 8-20: Project View panel.
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To add a C function that sums the values, we can simply pass a pointer to an array
and have a return type of integer. The following C function can be used to sum the
values and return the result:

#include <stdio.h>
#include <math.h>

#define PI 3.141592

void main ()
{
short i, gain;
int ret;
float fs, £;
float y[3], al2], bl, x;

short *output;
output = (short *) 0x0000FFO00;

// Coefficient Initialization

fs = 8000; // Sampling frequency
f = 500; // Signal frequency
gain = 100; // Amplitude gain
al0] = -1;

all]l] = 2 * cos(2*PI*f/fs);

bl = gain;

// Initial Conditions

y[1l] = y[2] = 0;
x = 1;

printf (“BEGIN\n"”) ;
for (1 = 0; 1 < 128; i++ )

{
y[0] = bl*x + alll*y[1] + al0]l*y[2];

yl2] = y[1]1;

y[1l] = yl[0];

x = 0;

output[i] = (short) vyI[0];

ret = sum(output,128) ;
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printf (“Sum = %d\n”, ret);
printf (*END\n”) ;
}

int sum(const short* array,int N)
{

int count, sum;
sum = 0;

for (count=0 ; count < N ; count++)
sum += arrayl[count];

return (sum) ;

}

As part of the debugging process, it is normally required to benchmark or time a pro-
gram. In this lab, let us determine how much time it takes for the function sum ()

to run. To achieve this benchmarking, reload the program and choose Profiler — Start
New Session. This will bring up Profile Session Name. Type a session name, My Ses -
sion by default, then click OK. The Profile window showing the code size and the
cycle statistics will be docked at the bottom of CCS. Resize this window by dragging
its edges or undock it so that all the columns can be seen. Now select the code area
of the function to be benchmarked, then right-click and choose Profile Function —

in MySession Session from the shortcut menu. The name of the function is added to
the list in the Profile window. The same step can be achieved by clicking Profile All
Functions on the MySession Profile window, and deleting unnecessary functions from
the list. Finally, press <F5> to run the program. Examine the number of cycles shown
in Figure 8-21 for sum () . It should be about 161 cycles (the exact number may vary
slightly). This is the number of cycles it takes to execute the function sum () .
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Figure 8-21: Profile window.

179



Lab 8

There is another way to benchmark codes using breakpoints. Double-click on

the file sinewave.c in the Project View panel and choose View — Mixed Source/ASM

to list the assembled instructions corresponding to the C code lines. Set a break-
point at the calling line by placing the cursor on the line that reads ret =

sum (point, 128), then press <F9> or double-click Selection Margin located on
the left-hand side of the editor. Set another breakpoint at the next line as indicated
in Figure 8-22. Once the breakpoints are set, choose Profiler — Enable Clock to enable
a profiler clock. Then, choose Profiler — View Clock to bring up a window displaying
Profile Clock. Now, press <F5> to run the program. When the program is stopped at
the first breakpoint, reset the clock by double-clicking the inner area of the Profile
Clock window. Finally, click Step Out or Run in the Debug menu to execute and stop
at the second breakpoint. Examine the number of clocks in the Profile Clock window.
[t should read 4189. The difference in the number of cycles between the breakpoint
and the profile approaches originates from the extra procedures for calling functions,
for example passing arguments to functions, storing return addresses, branching back
from functions, and so on.

# gine_sum.c vimer-only)

ﬁ ret = (output.l128):

n printf| » TR

bLel s ' o céaie IJI

Figure 8-22: Profiling code execution time using breakpoints.

A workspace containing breakpoints, probe points, graphs and watch windows can
be stored and recalled later. To do so, choose File — Workspace — Save Workspace As.
This will bring up the Save Workspace window. Type the workspace name in the File
name field, then click Save.

Table 8-1 provides the number of cycles it takes to run the sum () function using
several different builds. When a program is too large to fit into the internal memory,
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it has to be placed into the external memory. Although the program in this lab is
small enough to fit in the internal memory, it is also placed in the external memory
to study the change in the number of cycles. To move the program into the external
memory, open the command file Lab08.cmd and replace the line . text > PMEM
with . text > BMEM. As seen in Table 8-1, this build slows down the execution to
37356 cycles. In the second build, the program resides in the internal memory and
the number of cycles is hence reduced to 4180. By increasing the optimization level,
the number of cycles can be further decreased to 161. At this point, it is worth point-
ing out that the stated numbers of cycles in this lab correspond to the C6713 DSK
with CCS version 2.2. The numbers of cycles vary depending on the DSK target and
CCS version used.

Table 8-1: Number of cycles for different builds.

Type of Build Code size  Number of Cycles
C program in external memory 148 37356
C program in internal memory 148 4180
-0 60 1085
—-ol 60 1078
—02 128 198
-03 404 161
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CHAPTER

LabVIEW DSP Integration

A DSP system designed in LabVIEW can be placed entirely or partially on a hard-
ware platform. This chapter discusses the implementation process on a DSP hardware
platform consisting of a TMS320C6713 or TMS320C6416 DSK board. Such an
implementation or integration is made possible by using the LabVIEW toolkit DSP
Test Integration for TI DSP.

9.1 Communication with LabVIEW: Real-Time Data Exchange
(RTDX)

Communication between LabVIEW and a C6x DSK board is achieved by using
the real-time data exchange (RTDX™) feature of the TMS320C6x DSP. This
feature allows one to exchange data between a DSK board and a PC host (run-
ning LabVIEW) without stopping program execution on the DSP side. This data
exchange is done either via the joint test action group (JTAG) connection, or the
universal serial bus (USB) port emulating the JTAG connection.

RTDX can be configured in two modes: noncontinuous and continuous. In
noncontinuous mode, data is written to a log file on the host. This mode is normally
used for recording purposes. In continuous mode, data is buffered by the RTDX

host library. This mode is normally used for continuously displaying data. Here, to

view the processed data on the PC/LabVIEW side, RTDX is configured to be in

continuous mode.

9.2 LabVIEW DSP Test Integration Toolkit for Tl DSP

The DSP Test Integration for TI DSP toolkit provides a set of VIs which enable
interfacing between LabVIEW and Code Composer Studio [1]. The VIs provided in
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this toolkit are categorized into two groups: CCS Automation and CCS Communi-
cation. These VI groups are listed in Table 9-1.

Table 9-1: List of Vis in the LabVIEW DSP Test Integration toolkit.

CCS Automation VIs CCS Communication VIs

CCS Open Project VI CCS RTDX Read VI

CCS Build VI CCS RTDX Write VI

CCS Download Code VI CCS RTDX Enable VI

CCS Run VI CCS RTDX Enable Channel VI
CCS Halt VI CCS RTDX Disable VI

CCS Close Project VI CCS RTDX Disable Channel VI
CCS Window Visibility VI |CCS Memory Read VI

CCS Reset VI CCS Memory Write VI

CCS Symbol to Memory Address VI

The VlIs in the CCS Automation group allow automating the CCS code execution
process through LabVIEW. They include: (a) open CCS, (b) build project, (c) reset

CPU, (d) load program, (e) run code, (f) halt CPU, and (g) close CCS. The flow of
these steps is the same as those in CCS.

The VIs in the CCS Communication group allow exchange of data through the
RTDX channel. For example, the CCS RTDX write Vland CCS RTDX read
VI are used for writing and reading data to and from the DSP side, respectively. Note
that these VIs are polymorphic. Therefore, data types (such as single precision, dou-
ble precision, or integer) and data formats (such as scalar or array) should be matched

in LabVIEW and CCS in order to establish a proper LabVIEW DSP integration.

9.3 Combined Implementation: Gain Example

In this section, a LabVIEW DSP integration example is presented to show the basic
steps that are required for a combined LabVIEW and DSP implementation. From the
main dialog of LabVIEW, open the NI Example Finder shown in Figure 9-1 by choos-
ing Help — Find Examples.

Open the Gain_dsk6713 VI by clicking on Directory Structure from the category
Browse according to of the Browse tab, and by choosing DSPTest — dsk6713 — Gain —
Gain_dsk6713.vi. If using a C6416 DSK, open the dsk6416 folder.

In this example, an input signal along with a gain factor are sent from the LabVIEW
side to the DSP side. On the DSP side, the input signal is multiplied by the gain
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Figure 9-1: NI Example Finder—Gain example.

factor, then sent back to the LabVIEW side. The gain factor, the frequency of the
input signal, and the signal type can be altered by the controls specified in the FP.
Also, the original and scaled signals are displayed in the FP as shown in Figure 9-2.

b Gadn_dek 713w

Figure 9-2: FP of Gain example.
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9.3.1 LabVIEW Configuration

To better understand the LabVIEW DSP integration process, let us examine the BD
of the Gain_dsk6713 VI, which is shown in Figure 9-3.
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Figure 9-3: BD of Gain example.

There are two major sections associated with this BD. The first section consisting

of a Stacked Sequence structure, shown to the left side of the While Loop,
corresponds to the CCS automation process. This section includes a CCS Open
Project VI,aCCS Build VI,aCCS Reset VI,aCCS Download Code VI,
and a CCS Run VI. In addition, a CCS Halt Vland aCCS Close Project
VI, shown to the right side of the While Loop, are a part of the CCS automation
process. The three functions (Strip Path, Build Path, and Current VI’s
Path) of the File I/O palette are used in the Stacked Sequence structure to
create a file path to a CCS project file that can be opened from the CCS side. With
these VIs and functions in place, the process of opening CCS, building a project,
loading a program to the DSP and running it on the DSP can be controlled from
the LabVIEW side. The CCS Automation VIs are located in the DSP Test Integra-
tion Palette (Functions — All Functions — DSP Test Integration). Note that the CCS
automation process just described can be used for all the LabVIEW DSP integration
examples presented in Lab 9.

The second section of the BD shown in the While Loop involves signal genera-
tion and CCS RTDX communication. The Basic Function Generator Vlis
used to generate waveform samples. Two CCS RTDX read VIs and one CCS RTDX
write VIare located in the While Loop. The channel name of each CCS RTDX
VI is wired to this VI. This allows the generated samples to be continuously sent to
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the DSP side, and the DSP processed samples to be continuously read from the DSP
side. The scaled signal is displayed in a Waveform Graph. Note that the original
and scaled signals are of array type, while the gain factor is scalar. Thus, one of the
CCS RTDX read/write Vlsis set to 32-bit integer array, indicated by [I32] on
its icon, and the other is set to 32-bit integer, indicated by I32 on its icon.

9.3.2 DSP Configuration

A CCS Project implemented on the DSP side should include four components: a
linker command file, an interrupt service table which defines the interrupt vector
for RTDX, the RTDX library along with the run-time support library, and the source
code as shown in Figure 9-4.

+ (L) GEL fibes
' Projects
= g3 nainpit (Debua)
] Deperdert Projcts
] CaPfEICS Confeg
) Genersted Files
#[] Inchude
=i Libwraries
[ 2y gt it
?-E :::L-J'if;il b
|5 H
=| 3 Sourcs
_:'j gan.c
E_"} rdtvacs., &

1] cb713dsk.cmd

i L Fila o ]z"‘ﬁuuhmarks ]

Figure 9-4: Project view of CCS.

The source code of the Gain example running on the DSP side is shown below.

#include <rtdx.h> /* RTDX &y
#include "target.h" /* TARGET_INITIALIZE () &y

#define kBUFFER_SIZE 49
RTDX_CreateInputChannel (cinput) ;
RTDX_CreateInputChannel (cgain) ;
RTDX_CreateOutputChannel (coutput) ;
// Gain value scales the wavefrom

void Gain (int *output, int *input, int gain)

{
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int 1i;
for (i=0; i<kBUFFER_SIZE; i++)
output [i]=input[i] *gain;

}

void main ()

{
int input [kBUFFER_SIZE] ;
int output [KkBUFFER_SIZE] ;
int gain = 10;

// Target initialization for RTDX
TARGET_INITIALIZE() ;

/*enable RTDX channels*/
RTDX_enablelInput (&cgain) ;
RTDX_enablelInput (&cinput) ;
RTDX_enableOutput (&coutput) ;

for (;;) /* Infinite message loop. */
{
/* Read new gain value if one exists */
if (!RTDX_channelBusy (&cgain))
RTDX_readNB (&cgain, &gain, sizeof (gain)) ;
/* Wait for input waveform */
while (!RTDX_read (&cinput, input, sizeof (input)));

Gain (output, input, gain) ;

/* Write scaled data back to host. */
RTDX_write (&coutput, output, sizeof (output)) ;

}

In this code, several application program interfaces (APIs), which are part of

the CCS RTDX library, are used to allow data exchange between the DSP and
LabVIEW side. First, the RTDX_CreateInputChannel () and RTDX__
CreateOutputChannel () APIs are used to declare the input and output
channels. Second, the DSP board is initialized with the TARGET INITIALIZE ()
API. Both of the RTDX channels are enabled by the RTDX_enableInput () and
RTDX_enableOutput () APIs. To get scalar data from the LabVIEW to the DSP
side, the RTDX_readNB () API is used with the arguments being channel, buffer
pointer, and buffer size. In addition, the RTDX_read () API is used with the argu-
ments being channel, array pointer, and array size. The RTDX_write () API is used

to send data back to the LabVIEW side.
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Bear in mind that the name assigned to the RTDX communication channel should
be the same as the one used in LabVIEW. Also, the data types of polymorphic Vls,
i.e. CCS RTDX Read Vland CCS RTDX Write VI, as well as the array lengths
should be the same as the ones defined in LabVIEW. For example, the input array
input [] in the above source code should be defined as follows:

int input [kBUFFER_SIZE] ;

That is, input [] must be declared as 32-bit integer, and the array size must be
configured to be kBUFFER_SIZE, which is specified as 49 at the beginning of the
Gain example code.
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Lab 9: DSP Integration Examples

This lab includes four DSP integration examples. These examples correspond to the
DSP systems built by LabVIEW in the previous labs, that is, digital filtering, integer
arithmetic, adaptive filtering, and frequency processing.

L9.1 CCS Automation

Figure 9-5 illustrates the CCS automation process. In this lab, all the examples are
assumed to have the sub-diagrams shown to the left and right of the While Loop
and thus are not explicitly mentioned.
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Figure 9-5: Generic structure of CCS Automation.

Let us explain the CCS automation process in more detail. In order to specify a proj-
ect to be used by the CCS Automation Vls, a file path to the project file should be
built. Two methods of creating a path are mentioned here. The first method involves
using a relative path by assuming that the CCS project file is located in the folder
where the VI resides. Place a Current VI’s Path function (Functions — All
Functions — File I/0 — File Constants — Current VI’s Path) in the BD to get the entire
file path of the project file and wire the output of this VI to the path terminal of

a Strip Path function (Functions — All Functions — File 1/0 — Strip Path), which
returns a stripped path by removing the VI’s name from the path. The stripped path
is wired to the base path terminal of the Build Path function (Functions — All
Functions — File I/0 — Build Path). This function appends the name of the file, wired
to the name or relative path terminal of the function as a string constant,
to the stripped path. Now, the output of the function indicates the entire path of the
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CCS project file. The created file path is then wired to the Path to Project ter-
minal of the CCS Open Project VI to allow access by the CCS Automation Vls.

The second method of creating a project path involves using an absolute path.

Wire a Path Constant (Functions — All Functions — File 1/0 — File Constants —
Path Contant) to the Path to Project terminal of the CCS Open Project
VI or create a file constant by right-clicking and choosing Create — Constant on the
Path to Project terminal of the VI. Enter the absolute path of the CCS project
file in the Path Constant. The absolute path can also be generated by browsing
the project file path. To do this, right-click on the Path Constant and choose
Browse for Path... from the shortcut menu. A file dialog box appears to select the path
via file browsing.

Next, place the CCS Automation VIs (CCS Open Project VI,CCS Build
VI, ccs Reset VI, CCS Download Code VI, and CCS Run VI) from the
DSP Test Integration Palette (Functions — All Functions — DSP Test Integration) in
the order shown in Figure 9-5. These Vs are wired to each other via the terminals
CCS references out (or dup CCS references)and error out to
the terminals CCS references inand error in. The VlIs are used to open

a CCS project, build a project, reset CPU, download a program to the DSP, and run
the program. The CCS references cluster, wired to all the CCS Automation Vls,
contains the CCS IDE references, while the error in/out cluster carries the error
information of the CCS Automation VIs. Consequently, if an error occurs in one of
the CCS Automation VlIs, the error information is passed through the CCS Automa-
tion VIs to the Simple Error Handler VI (Functions — All Functions — Time &
Dialog — Simple Error Handler) located at the end of the CCS Automation VIs. This
VI displays a description of the error.

A String Indicator is placed in the FP in order to display the current status of
the CCS automation process. A Control Reference for this indicator is created
by right-clicking on it and choosing Create — Reference from the shortcut menu. This
reference should be wired to the Status String Refnum terminal of the CCS
Open Project VIin order to post a status string to this indicator.

Now, let us explain the exchange of data between LabVIEW and the DSP. Data is
continuously exchanged using the CCS Communication VIs, CCS RTDX Read VI
and CCS RTDX Write VI, when both the VI and CCS are running. As mentioned
earlier, data types should be carefully configured on the LabVIEW and CCS sides
since the CCS RTDX Read VIand the CCS RTDX Write VI are data type poly-
morphic. The read/write data type can be specified from the Select Type menu as part
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of the shortcut menu. This menu can be brought up by right-clicking on the cCS
RTDX Read VIor CCS RTDX Write VI. Another way to change the data type is
by using a Polymorphic VI Selector. This selector can be displayed by right-clicking
on it and choosing Visible ltems — Polymorphic VI Selector from the shortcut menu.
The string constants indicate the names of the RTDX channels that are wired to the
CCS RTDX Read VlorCCS RTDX Write VI

The execution of the While Loop structure is stopped by pressing a stop button in
the FP or if an error is generated by the CCS Automation or CCS Communication
VIs. In such cases, the CCS needs to be halted and closed. This is done by locating
and wiring a CCS Halt Vltoa CCS Close Project VI. These Vls appear to
the right side of the While Loop structure.

L9.2 Digital Filtering

In this section, the filtering code written in C is used to run the filtering block or
component of the Lab 4 filtering system on the DSP.

L9.2.1 FIR Filter

The BD of the FIR lowpass filtering system that was built in Lab 4 is illustrated in
Figure 9-6.
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Figure 9-6: Filtering system in Lab 4.
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Let us modify this BD to send the generated samples to the DSP and then to receive
the filtered samples from the DSP. This is achieved by inserting the CCS automation
process to the left and right sections of the While Loop structure. As indicated in
Figure 9-7, a portion of the DFD Filter VI is replaced with the CCS RTDX Write
VI and the CCS RTDX Read VI. Both of these VIs are configured to write and read
single precision floating-point array data, which means configuring the polymorphic
VIsas CCS RTDX Write Array SGLand CCS RTDX Read Array SGIL,
refer to Figure 9-7. Consider that the number of samples in the sampling info cluster is
reduced to 128 in order to reduce the time associated with the RTDX communication.

= DS FIR Hllw"ijq'_rI Systom, v Block IZI'iuLl;ru'llll

Fle Edt Cperste ook [rowse Window Help

Figure 9-7: BD of filtering system with DSP integration.

An array of signal samples consisting of the sum of the three sinusoids is wired to
the Data terminal of the CCS RTDX Write Array SGL VI. Also, a string
constant containing the name of the input channel, cinput, is wired to the
Channel terminal.

In the CCS RTDX Read Array SGL VI, the data transmitted via RTDX is read
from the Data terminal of the VI. This terminal is wired to a Waveform Graph
as well as to a Spectral Measurements Express VI for frequency analysis.
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To check the status of errors generated by the CCS Automation or CCS Communi-
cation Vs, observe the status element of the error cluster. This is made possible
by locating an Unbundle By Name function (Functions — All Functions — Cluster
— Unbundle By Name). Wire the error out cluster from the CCS RTDX Read
Array SGL VItothe Unbundle By Name function. This way the status
element of the error out cluster is selected by default. The result of an OR opera-
tion of two Boolean values, corresponding to the status element of the cluster and
a stop button, is wired to the conditional terminal of the While Loop. Whenever
the stop button is pressed or an error occurs while accessing CCS or communicating
via RTDX, the execution of the loop stops.

Notice the importance of the timeout value of the CCS RTDX Read Array SGL
VI. If the RTDX communication speed is too slow or the number of data samples is
large, the timeout value should be changed to avoid getting a RTDX error as shown
in Figure 9-8. The default timeout value is 2000. To change the timeout value, wire
aNumeric Constant to the timeout terminal of the CCS RTDX Read
Array SGL VI, and enter a desired timeout value in milliseconds. Save the com-

pleted VI as DSP FIR Filtering System.vi.

= X

Error 14311 occurred at CCS RTDX Check Status
Code .vi -> CCS RTDE Read Array SGL.vi -> DSP
Filtering System.yi

Possible reason(s):

LY DSPTest Toolkit: RTDX Error: No data avaishls, The

requested amount of data doss not exist,

Figure 9-8: RTDX error.
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Next, let us state how to operate in CCS. Create a new project and name it FIR.pjt.
Add the linker command file c6713dsk.cmd, the interrupt service vector intvecs.asm,
the source code FIR.c, and the library files rtdx.lib (ti\c6000\rtdx\lib) and rts6700.
lib (6:\\c6000\cgtools\lib), into the project. The linker command file and interrupt
service vector are located in the folder ti\examples\dsk6713 \rtdx\shared. This folder
should also include the header file target.h. The path to this folder needs to be added
in Include Search Path of Build Options, as shown in Figure 9-9.

Bulld Optians for FIR.pjt

Gereral  Cemgdnr | Linker | Link Ouder |
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Figure 9-9: Build Options of CCS.

The FIR filtering C source code is shown below:

#include <rtdx.h> /* RTDX “ )
#include “target.h” /* TARGET INITIALIZE() “ )

#define kBUFFER_SIZE 128
#define N 15

float b[N] = {-0.008773, 0.0246851, 0.0217041, -0.0396942, -0.0734726,
0.0560876, 0.305969, 0.437322, 0.305969, 0.0560876, -0.0734726,
-0.0396942, 0.0217041, 0.0246851, -0.008773};

float samples[N];

RTDX_CreateInputChannel (cinput) ;

196



DSP Integration Examples

RTDX_CreateOutputChannel (coutput) ;

void FIR(float *input,
{

float *output)
int i, J;
float result;

for(

{

j = 0; j < kBUFFER_SIZE;
for(i = N-1; 1 > 0;
samples[i]

i-- )

samples[0] = input[j];

result = 0;

for( i =0 ; 1 < N ; i++ )
result += samples|[i]

output[j] = result;

void main ()
{
float input [kBUFFER_SIZE] ;
float output [KBUFFER_SIZE] ;
int 1i;
for( i = 0; i < N ; i++ )
samples[i] =0;

// Target initialization for RTDX
TARGET INITIALIZE() ;

/*enable RTDX channels*/
RTDX_enablelInput (&cinput) ;
RTDX_enableOutput (&coutput) ;

J++ )

= samples[i-1];

* b[i];

sizeof (input))) ;

*/
sizeof (output)) ;

for (;;) /* Infinite message loop. */
{
while (!RTDX_read (&cinput, input,
FIR(input, output) ;
/* Write filtered data back to host.
RTDX_write (&coutput, output,
}
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After creating the VI for the signal source and the CCS project for the FIR filtering
block, run the VI from LabVIEW. One should see the outcome depicted in Figure
9-10. Notice that the amplitudes of the frequency components in the stopband
(2200-4000 Hz) appear attenuated by 30 dB. This agrees with the filter specification.
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Figure 9-10: FP of FIR filtering system with DSP integration.

L9.2.2 IIR Filter

The bandpass IIR filter designed in Lab 4 is modified here. The previously used DSP
FIR Filtering System VIis modified in order to run the IIR filtering project,
IIR .pjt, on the DSP. The modified VI is then saved as DSP IIR Filtering System.wi.
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As mentioned in Chapter 4, by default, the DFD Classical Filter Design
Express VI of the DFD toolkit provides the IIR filter coefficients in the second-order
cascade form. In the C source code shown below, the IIR filter comprises three sec-
ond-order IIR filters in cascade. The advantage of the second-order cascade form lies
in its lower sensitivity to coefficient quantization. In this implementation, the output
from a second-order filter becomes the input to a next second-order filter.

#include <rtdx.h> /* RTDX %/
#include “target.h” /* TARGET_ INITIALIZE() 2V

#define kBUFFER_SIZE 128

float al[2]={-0.955505, 0.834882};
float b1([3]={0.545337, -0.735242, 0.545337};

float a2[2]={0.954255, 0.834810};
float b2[3]={0.545337, 0.734702, 0.545337};

float a3[2]={-0.000622, 0.372609};
float b3[3]={0.545337, 0, -0.545337};

float ITRwindowl[3] = {0,0,0};
float y_prevl[2] = {0,0};

float ITRwindow2[3] = {0,0,0};
float y_prev2([2] = {0,0};

float ITRwindow3[3] = {0,0,0};
float y_prev3[2] = {0,0};

RTDX_CreateInputChannel (cinput) ;
RTDX_CreateOutputChannel (coutput) ;

void main ()

{
float input [KBUFFER_SIZE] ;
float output [KBUFFER_SIZE] ;
int i, n;
float ASUM, BSUM;

// Target initialization for RTDX
TARGET INITIALIZE() ;

/*enable RTDX channels*/
RTDX_enableInput (&cinput) ;
RTDX_enableOutput (&coutput) ;

for (;:) /* Infinite message loop. */
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while (!RTDX_read (&cinput, input, sizeof (input)));
// IIR filtering

for (i=0; i1<kBUFFER_SIZE; i++)
{

// Stage #1

for (n=2;n>0;n--)
ITIRwindowl [n] = IIRwindowl [n-1];

IIRwindowl [0] = inputl[i];

BSUM = O0;
for(n = 0; n <= 2; n++)
{
BSUM += bl[n] * IIRwindowl[n];
}
ASUM = 0;
for(n = 0;n <= 1; n++)

{
ASUM += al[n] * vy _prevl[n];

v_prevl[l] = yv prevl[0];
v_prevl[0] = BSUM - ASUM;

// Stage #2

for (n=2;n>0;n--)
ITIRwindow2 [n] = IIRwindow2 [n-1];

IIRwindow2 [0] = y_prevl[0];

BSUM = O0;
for(n = 0; n <= 2; n++)
{
BSUM += b2[n] * IIRwindow2[n];
}
ASUM = 0;
for(n = 0;n <= 1; n++)

{
ASUM += a2[n] * vy _prev2[n];
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v_prev2[l] = y prev2[0];
v_prev2[0] BSUM - ASUM;

// Stage #3

for (n=2;n>0;n--)
IIRwindow3 [n] = IIRwindow3[n-1];

IIRwindow3 [0] = y_prev2[0];

BSUM = 0;
for(n = 0; n <= 2; n++)
{
BSUM += b3 [n] * IIRwindow3[n];
}

ASUM = 0;
for(n = 0;n <= 1; n++)
{
ASUM += a3[n] * y _prev3[n];
}

output[i] = BSUM - ASUM;
v_prev3[l] = y_prev3[0];
v_prev3[0] = output([i];

}

/* Write data back to host. */
RTDX_write (&coutput, output, sizeof (output)) ;

}

The output of the IIR bandpass filter is depicted in Figure 9-11. Considering that the
passband of this filter is between 1333 and 2667 Hz, the amplitude of any signal in
the stopband is attenuated by about 25 dB, which matches the outcome in Lab 4.
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Figure 9-11: FP of IIR filtering system with DSP integration.

L9.3 Fixed-Point Implementation

In this section, an example is shown to demonstrate fixed-point arithmetic opera-
tions on the DSP. The FIR filtering system in the previous section is modified here to

achieve fixed-point filtering on the DSP.

The BD of the fixed-point version of the FIR filtering system is shown in Figure 9-12.
In this BD, the amplitude of the sum of the three sinusoids is multiplied by 10000 to
represent it as a 16-bit integer while not exceeding the representable range of 16-bit

integer numbers.

202



DSP Integration Examples

B Flxed-Point FIR DSP.vi Block Diagram
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Figure 9-12: BD of fixed-point FIR filtering system with DSP integration.
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[t is worth mentioning that, if a C6416 DSK is used, the files and libraries to be
added to the project are different from those required when using a C6713 DSK.
These files include the linker command file c6416.cmd, the interrupt service vector
intvecs6416.asm, the source code FIR.c, and the library files rtdx64xx.lib (ti\c6000\
rtdx\lib) and rts6400.1ib (t\c6000\cgtools\lib). Also, the file path, ti\examples\
dsk6416\rtdx\shared, should be added in Include Search Path of Build Options.

The source code of the fixed-point version of the FIR filtering system is shown below.
In this code, the filter coefficients originally expressed in floating-point format are
first converted into Q15 format. Then, they are scaled by one-half to avoid overflows.
The number of scaling is obtained to be one by considering that all the inputs are 1s
as discussed in Lab 5.

#include <rtdx.h> /* RTDX “
#include "target.h" /* TARGET_INITIALIZE () 2y

#define kBUFFER_SIZE 128
#define N 15

float b[N] = {-0.008773, 0.0246851, 0.0217041, -0.0396942, -0.0734726,
0.0560876, 0.305969, 0.437322, 0.305969, 0.0560876, -0.0734726,
-0.0396942, 0.0217041, 0.0246851, -0.008773};

short samples[N];
short coeff[N];
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RTDX_CreateInputChannel (cinput) ;
RTDX_CreateOutputChannel (coutput) ;

void FIR(short *input, short *output)
{

int i, Jj;

int result;

for( j = 0; j < kBUFFER_SIZE; Jj++ )
{

for(i = N-1; i > 0; i-- )
samples[i] = samples[i-1];

samples[0] = input[j];

result = 0;
for( i =0 ; i < N ; i++ )

result += ( samples[i] * coeff[i] ) << 1;
result = result >> 16;

// Scale the Output to Compensate Scaling of Coefficients.
output[j] = (short) ( result << 1 );

void main ()

short input [kBUFFER_SIZE] ;
short output [KBUFFER_SIZE] ;
int i;

for( i = 0; 1 < N ; i++ )
samples[i] =0;

// Convert to Q-15
for( i = 0; 1 < N ; i++ )
coeff[i] = bl[i] * Ox7fff;

// Scale by Half
for( i = 0; 1 < N ; i++ )
coeff[i] = coeff[i] >> 1;

// Target initialization for RTDX
TARGET INITIALIZE();

/*enable RTDX channels*/

RTDX_enablelInput (&cinput) ;
RTDX_enableOutput (&coutput) ;
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(a5

for

{

while (!RTDX_read (&cinput,

FIR (input,

/* Infinite message loop. */

input,

output) ;

/* Write filtered data back to host. */

RTDX_write (&coutput,

}

output, sizeof (output)) ;

sizeof (input))) ;

The multiplication of two Q15 numbers results in a Q30 format number with an
extended sign bit being at the most significant bit. The extended sign bit is removed
by shifting left this output number by one bit, which makes it a Q31 format number.
To store it in Q15 format, it is right shifted by 16 bits.

The FP corresponding
to the fixed-point DSP
integration is shown in
Figure 9-13. As can be
seen from this figure,
the displays match those
in the floating-point
version shown in

Figure 9-10.

Figure 9-13: FP
of fixed-point
FIR filtering
system with DSP
integration.
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L9.4 Adaptive Filtering Systems

The DSP integration of the adaptive filtering systems in Lab 6 is presented in this
section. Though one can implement adaptive filtering by sending one sample at a
time to the DSP, this approach is very inefficient due to the overhead associated with
RTDX communication. It is thus more efficient to send an array of input data to the
DSP where a point-by-point processing is performed.

L9.4.1 System Identification

An IIR filter is used to act as the unknown system by using the Butterworth
Filter VI Note that unlike the Butterworth Filter PtByPt VIusedin
Lab 7, this VI processes an array input. A 64-sample sinusoidal signal is used as the
reference input via the RTDX channel cinl, and the output of the IIR filter is sent
to the DSP via the RTDX channel cin2. The output of the LMS FIR filter and the
error between the filter output and the desired output are read via the cout1 and
cout?2 channels, respectively.
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Figure 9-14: System identification with DSP integration.

A True Constant is wired to the init/cont terminal of the Butterworth
Filter VI. This disables the initialization of the internal state of the filter, thus
avoiding the group delay effect at the beginning of each output array. The BD of the
system identification system with DSP integration is shown in Figure 9-14.

206



DSP Integration Examples

The C code for performing adaptive filtering on the C6x DSP is shown below. This
code updates two arrays, consisting of the coefficients and input samples, at each

iteration, similar to the LabVIEW implementation.

#include “target.h”
#include <rtdx.h>

#define N 32 //filter length
#define kBUFFER_SIZE 64

float h[N] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0};
float samples[N];
RTDX_CreateInputChannel (cinl) ;
RTDX_CreateInputChannel (cin2) ;
RTDX_CreateOutputChannel (coutl) ;
RTDX_CreateOutputChannel (cout2) ;
void main ()
{

float inputl [KBUFFER_SIZE] ;

float input2 [KBUFFER_SIZE] ;

float output [KBUFFER_SIZE] ;

float e[kBUFFER_SIZE];

int 1, J;

float stemp, stemp?2;

for( i =0 ; 1 < N ; 1i++ )

samples[i] = 0;
// Target initialization for RTDX

TARGET_ INITIALIZE() ;
/*enable RTDX channels*/

RTDX_enablelInput (&cinl) ;
RTDX_enablelInput (&cin2) ;
RTDX_enableOutput (&coutl) ;
RTDX_enableOutput (&cout?2) ;
for (;:)

{

/* Infinite message loop. */
/* Wait for input sample */

while (!RTDX_read(&cinl, inputl,
while (!RTDX_read(&cin2, input2,
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}

The output of the IIR filter and the adaptive FIR filter are shown in Figure 9-15.
The output of the adaptive FIR filter adapts to the output of the IIR filter (unknown
system) when the input is suddenly changed. Notice that the speed of convergence is

for
{

}

(3

= 0; j < kBUFFER_SIZE; j++)

// Update array samples

for(i = N-1; i > 0; i-- )
samples[i] = samples[i-1];

samples[0] = inputl[j];

stemp =0;

// FIR Filtering

for( i =0 ; 1 < N ; i++ )
stemp += (samples[i] * h[i]);

output[j] = stemp;

e[j] = input2[j] - stemp;

stemp = (0.001 * e[j]);

// Update Coefficient

for(i = 0; i < N; i++)

{

stemp2 = (stemp * samples[i]);
h[i] = h[i] + stemp2;

/* Write scaled data back to host. */
RTDX_write (&coutl, output, sizeof (output)) ;
RTDX_write (&cout2, e, sizeof(e));

governed by the step size specified in the C code.
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Figure 9-15: System identification with DSP integration.
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L9.4.2 Noise Cancellation

For the DSP integration of the noise cancellation system, the same CCS project,

LMS .pjt, is used here. As shown in Figure 9-16, the noise signal acts as the reference
signal and is sent to the DSP via the cin1 channel. The filtered noise signal, generat-
ed by passing the noise signal through a time-varying channel, is sent to the DSP via
the cin2 channel. The LMS filter output then becomes available from the cout1
channel, and the noise cancelled output signal is read from the cout2 channel.

= Moise Cancellation DSP,vi Block Diagrom
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Figure 9-16: BD of noise cancellation with DSP integration.

In the Channel VI, introduced in Lab 6, the time duration between the steps is
modified. This is done by changing the frequency of the Basic Function Gen-
erator VI to 25. As shown in Figure 9-17, the LMS filter adapts to the noise signal
in such a way that the difference between its output and the noise corrupted signal
approaches zero.
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Figure 9-17: FP of noise cancellation with DSP integration.

L9.5 Frequency Processing: FFT
In this section, the DSP integration of the FFT algorithm is presented.

The BD of the combined implementation is shown in Figure 9-18(a). In this BD, a
128-sample sinusoidal signal having a 16-bit integer array format is sent to the DSP.
Notice that the samples read from the DSP are in the 32-integer array format since the
FFT magnitude values are quite large as indicated in the FP shown in Figure 9-18(b).
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B FET D5P.wi Block Diagram
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Figure 9-18: FFT DSP integration: (a) BD, and (b) FP.
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For the DSP implementation, it is required to have the C source code of the FFT
algorithm presented in Chapter 7. This code appears below and is provided on the
accompanying CD [3]:

#include <math.h>

#include "twiddleR.h"
#include "twiddleI.h"

#include <rtdx.h> /* RTDX %/
#include "target.h" /* TARGET INITIALIZE() %/
#define kBUFFER_SIZE 128

#define NUMDATA 128 /* number of real data samples */

#define NUMPOINTS 64 /* number of point in the DFT, NUMDATA/2 */
#define TRUE 1

#define FALSE O

#define BE TRUE

#define LE FALSE

#define ENDIAN LE /* selects proper endianaess. If building

code in Big Endian, use BE, else use LE */
#define PI 3.141592653589793 /* defineition of pi */

typedef struct { /* define the data type for the radix-4 twiddle factors */
short imag;

short real;

} COEFF;

/* BIG Endian */
#if ENDIAN == TRUE

typedef struct {
short imag;
short real;
} COMPLEX;

#else

/* LITTLE Endian */

typedef struct {
short real;
short imag;

} COMPLEX;

#endif

#pragma DATA_ALIGN (x, NUMPOINTS) ;
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COMPLEX x[NUMPOINTS+1]; /* array of complex DFT data */
COEFF W4 [NUMPOINTS] ;
short g[NUMDATA] ;

COMPLEX A[NUMPOINTS] ; /* array of complex A coefficients */
COMPLEX B[NUMPOINTS] ; /* array of complex B coefficients */
COMPLEX G[2*NUMPOINTS] ; /* array of complex DFT result */

unsigned short IIndex[NUMPOINTS], JIndex[NUMPOINTS] ;
int count;

int magR[NUMDATA] ;
int magI [NUMDATA] ;

int output [KBUFFER_SIZE] ;

void make_gl5 (short out[], float in[], int N);

void R4DigitRevIndexTableGen (int, int *, unsigned short *, unsigned short
) 5
void splitl (int, COMPLEX *, COMPLEX *, COMPLEX *, COMPLEX *);

void digit_reverse(int *, unsigned short *, unsigned short *, int);
void radix4 (int, short[], short[]);

void fft();

RTDX_CreateInputChannel (cinput) ;
RTDX_CreateOutputChannel (coutput) ;

void main ()
{
int i,k;
short tr [NUMPOINTS], ti[NUMPOINTS];

// Target initialization for RTDX
TARGET_ INITIALIZE() ;

/*enable RTDX channels*/
RTDX_enablelInput (&cinput) ;
RTDX_enableOutput (&coutput) ;

//Read Twiddle factors to COMPLEX array and make Q-15;
make_qgl5(tr, TR, NUMPOINTS); //Data in Header files from Matlab
make_qgl5(ti, TI, NUMPOINTS) ;

for (1=0; i<NUMPOINTS; i++)
{
W4 [i] .real tr[i];
WA[i].imag = ti[i];

/* Initialize A,B, IA, and IB arrays */
for (k=0; k<NUMPOINTS; k++)
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{

A[k].imag = (short) (16383.0 * (-cos(2*PI/(double) (2*NUMPOINTS) *
(double)k))) ;

A[k].real = (short) (16383.0* (1.0 - sin(2*PI/ (double) (2*NUMPOINTS) *
(double)k))) ;

B[k].imag = (short) (16383.0* (cos(2*PI/

(double) (2*NUMPOINTS) * (double)k))) ;

B[k].real = (short) (16383.0* (1.0 + sin(2*PI/(double) (2*NUMPOINTS) *

(double)k))) ;

}

/* Initialize tables for FFT digit reversal function */
R4DigitRevIndexTableGen (NUMPOINTS, &count, IIndex, JIndex) ;

for(;;) /* Infinite message loop. */

{
while (!RTDX_read (&cinput, g, sizeof(g)));

/* Call FFT algorithm */
ffe () ;

for (k=0; k<NUMDATA; k++)

{

(G[k] .real*G[k] .real) << 1;
(G[k] .imag*G[k] .imag) << 1;

magR [k]
magl [k]

output [k] = magR[k] + magIl[k];

/* Write scaled data back to host. */
RTDX_write (&coutput, &output, sizeof (output)) ;

}

void fft ()
{

int n;

/* Forward DFT */

/* From the 2N point real sequence, g(n), for the N-point complex
sequence, x(n) */

for (n=0; n<NUMPOINTS; n++)
{

x[n] .imag gl2*n + 11; /* x2(n) = g(2n + 1) */
x[n].real = g[2*n]; /* x1(n) = g(2n) */

}

/* Compute the DFT of x(n) to get X(k) -> X(k) = DFT{x(n)} */
radix4 (NUMPOINTS, (short *)x, (short *)W4);
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digit_reverse((int *)x, IIndex, JIndex, count) ;

/* Because of the

X(k) . */

x [NUMPOINTS] .real = x[0].real;
x [NUMPOINTS] .imag = x[0].imag;
/* The split function performs the additional computations required to
get G(k) from X(k). */

splitl (NUMPOINTS, x, A, B, G);

/* Use complex conjugate symmetry properties to get the rest of G(k)

G[NUMPOINTS] .real = x[0].real - x[0].imag;
G [NUMPOINTS] .imag = 0;

for (n=1;

{

G[2*NUMPOINTS-n] .real

n<NUMPOINTS; n++)

G[n] .real;

G[2*NUMPOINTS-n] .imag = -G[n].imag;

void radix4 (int n, short x[], short wl[])

{

int nl, n2,

short t,
n2 = n;
ie = 1;
for (k =
{

ia2

rl,

n;

ia3 =

col
sil
co2
si2
co3
si3
ial
for

il
i2

ie, ial, ia2, ia3, i0, i1, 12, i3, 3j, k;
r2, sl, s2, col, co2, co3, sil, si2, si3;

k> 1; k >>= 2)

0; j < n2; j++)
ial + ial;
ia2 + ial;
wlial * 2 + 17;
wlial * 2];
wlia2 * 2 + 17;
wlia2 * 2];
wlia3 * 2 + 11];
wlia3 * 2];
ial + ie;

(i0 = j; 10 < n; 10 += nl)
= 10 + n2;
= 11 + n2;
= 12 + n2;

i3
rl
r2

x[2 * 10] + x[2 * i2];
<2 * 10l = =[2 * 12];
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t = x[2 * 11] + x[2 * 1i3];
x[2 * 10] = rl + t;

rl = rl - t;

sl = x[2 * 10 + 1] + x[2 * 12 + 1];

s2 = x[2 * 10 + 1] - x[2 * 12 + 1];

t = x[2 * 11 + 1] + x[2 * 13 + 17;

x[2 * i0 + 1] = sl + t;

sl = sl1 - t;

x[2 * i2] = (rl * co2 + sl * si2) >> 15;
x[2 * 12 + 1] = (sl * co2-rl * si2)>>15;
t = x[2 * 11 + 1] - x[2 * 13 + 17;

rl = r2 + t;

r2 = r2 - t;

t = x[2 * 11] - x[2 * i3];

sl = s2 - t;

s2 = s2 + t;

x[2 * 11] = (rl * col + sl * sil) >>15;
x[2 * 11 + 1] = (sl * col-rl * sil)>>15;
x[2 * i3] = (r2 * co3 + 82 * si3) >>15;
x[2 * i3 + 1] = (s2 * co3-r2 * gi3)>>15;
}
}
ie <<= 2;

void digit_reverse(int *yx, unsigned short *JIndex, unsigned short *IIndex,
int count)
{
int i;
unsigned short I, J;
int YXI, YXJ;
for (i = 0; i<count; i++)
{
I = IIndex[i];
J = JIndex[1i];
YXI = yx[I];
YXJ = yx[J];
vx[J] = YXI;
vx[I] = YXJ;

void R4DigitRevIndexTableGen (int n, int *count, unsigned short *IIndex,
unsigned short *JIndex)

{
int j, nl, k, 1i;
j=1;
nl =n - 1;
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*count = 0;
for(i=1; i<=nl; i++)

{

if(i < 3)

{
IIndex[*count] = (unsigned short) (i-1);
JIndex[*count] = (unsigned short) (j-1);
*count = *count + 1;

}

k =n > 2;

while(k*3 < 3j)

{
=3 - k*3;
k =k > 2;

}

J=3 + k;

void splitl (int N, COMPLEX *X, COMPLEX *A, COMPLEX *B, COMPLEX *G)
{

int k;

int Tr, Ti;

for (k=0; k<N; k++)
{

Tr = (int)X[k].real * (int)A[k].real - (int)X[k].imag * (int)A[k].imag
+
(int)X[N-k] .real * (int)B[k].real + (int)X[N-k].imag * (int)B[k].
imag;
G[k] .real = (short) (Tr>>15);
Ti = (int)X[k].imag * (int)A[k].real + (int)X[k].real * (int)A[k].imag
+
(int)X[N-k] .real * (int)B[k].imag - (int)X[N-k].imag * (int)B[k].
real;
G[k] .imag = (short) (Ti>>15) ;

}

void make_gl5 (short out[], float in[], int N)
{

int i;
for (1i=0; i<N; i++)

{
out [1]=0x7fff*in[i]; //Convert to Q-15, good approximate
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Care must be taken to avoid overflows if the algorithm is running on a fixed-point
DSP. The amplitude of the input signal needs to be scaled properly in order to avoid
overflows in the computations of the FFT on the DSP. In the example shown in
Figure 9-18, 256 is used as the amplitude of the input signal. Figure 9-19 illustrates an
overflowed FFT outcome when the amplitude is set to 4096.

s Cdt Operste Tools Qrowse YWindow Help

» & @[u]

4000 =} 3 ' ' . :
0.000 2500 5000 7.500 [0.000 fZ2.500
T {ms)

100 2000 3000 4000 SH00 K000 7000 000
Fregquency (M)

Code Composer Stabus A i+
LT 1500 2000 ceng
#

D 1000 /3000

Figure 9-19: Overflow in computing FFT.

[t should be noted that the overall timing of a typical DSP integration is often not so
efficient due to the overhead associated with RTDX communication. Nevertheless,
the discussed DSP integration allows one to examine code execution on the C6x

DSP hardware platform.
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CHAPTER -I O

DSP System Design: Dual-Tone
Multi-Frequency (DTMF) Signaling

In this and the next two chapters, three DSP system project examples are discussed
and designed using LabVIEW. These examples show how a complete DSP system can
be built in a relatively short amount of time by using LabVIEW. In increasing order
of complexity, they consist of dual-tone multi-frequency signaling, software-defined
radio, and MP3 player.

Dual-tone multi-frequency (DTMF) signaling is used extensively in voice commu-
nication applications such as voice mail and telephone banking. A DTMF signal is
made up of two tones selected from a low and a high tone group. Each pair of tones
contains one frequency from the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and

one frequency from the high group (1209 Hz, 1336 Hz, 1477 Hz). Figure 10-1 shows
the frequencies allocated to the telephone pad push buttons.

1209 Hz 1336 Hz 1477 Hz

697 Hz

770Hz

852 Hz

941 Hz

Figure 10-1: Keypad and allocated frequencies.

The implementation of the DTMF receiver system is normally done by using the
Goertzel algorithm [1]. This algorithm is more efficient than the FFT algorithm for
DTMEF detection both in terms of the number of operations and amount of memory
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usage. Furthermore, unlike the FFT, it does not require access to the entire data
frame, leading to faster execution. As indicated in Figure 10-2, seven Goertzel filters
are used here in parallel to form a DTMF detection system. Each Goertzel filter is
designed to detect a DTMF tone. The output from each filter is squared and fed into
a threshold detector, where the strongest signals from the low and high frequency
groups are selected to identify a pressed digit on the keypad.

Detector for 697 Hz

»| Goertzel Filter |—»| ()2 |—»| Threshold Detector =

- Detector for 770 Hz >

Digitized -

Signal Input > Detector for 852 Hz >

—_—

Decision Logic

- Detector for 941 Hz >

o Detector for 1209 Hz >

o Detector for 1336 Hz >

L Detector for 1477 Hz »

Figure 10-2: DTMF system using Goertzel algorithm.

The difference equations of a second-order Goertzel filter, see Figure 10-3, are given by

v, [n]= Zcos[%]vk [n—l]—vk [n—2]+x[n], n=0,1,...,N (10.1)
Yy [n] =, [n]—Wﬁvk [n—l] (10.2)

where x[n] denotes input, y,[n] output, v,[n] intermediate output, the subscript k

2mk
indicates frequency bin, N is the DFT size, and W}, = exp(—j %)

The initial conditions are assumed to be zero, i.e., ¥\ [-1]=9v,[-2]=0. Considering
that only the magnitude of the signal is required for the DTMF tone detection, the
following equation is used to generate magnitude squared outputs:

INT = N -2 S Ju NI N1 10
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*[n]

Vi [n]

)y

2cos ﬂ
N

z -1

v [n]

-1

Figure 10-3: Structure of a second-order Goertzel filter.

The coefficients are selected based on the DTMF tones. They are listed in Table 10-1.

Table 10-1: Fundamental frequencies.

Fundamental Frequency (Hz) Coefficient
697 1.703275
770 1.635585
852 1.562297
941 1.482867
1209 1.163138
1336 1.008835
1477 0.790074
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In this lab, the DTMF system just explained is built in the LabVIEW graphical pro-
gramming environment.

L10.1 DTMF Tone Generator System

Before building a BD for the DTMF system, let us begin by creating a keypad as
shown in Figure 10-4. The twelve buttons shown are grouped into a cluster so that
their outputs are wired via a cluster wire. This is done by placing a Cluster shell
(Controls — All Controls — Array & Cluster — Cluster) on the FP, and then by locating
Text Buttons (Controls — Buttons & Switches — OK Button) in the cluster area.

B Untitled 1 Front Panel ®
B Gt Cperale Tooks frowse Window Hep

Figure 10-4: Creating a cluster control.

The width and height of a button can be adjusted to have a larger display on the FP.
This is achieved by choosing the buttons and then by selecting the option Set Width
and Height from the Resize Objects menu of the FP toolbar as shown in Figure 10-4.
In this example, both the width and height of the buttons are set to 30. Also, the
mechanical action of the buttons is configured to be Latch When Released by right-
clicking on the buttons and choosing Mechanical Action from the shortcut menu.
Once the configuration of a button is complete, the button is copied multiple times
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to construct a keypad. Change the Boolean text of the buttons appropriately. Align
and distribute the buttons via Align Objects and Distribute Objects on the FP toolbar.

Next, the output value of the cluster control is specified for each button, in other
words the value coming out of the output of the cluster control when one of the
buttons is pressed. To accomplish this, right-click on the border of the cluster and
choose Reorder Controls In Cluster from the shortcut menu. This brings up the window
shown in Figure 10-5. The numbers shown in the black background correspond to
the modified order and the numbers in the white background to the original order.
The number assigned to a key is displayed next to Click to set to shown on the toolbar.
Click the buttons in sequential order to specify the value shown in the toolbar area.
After finishing the assignment of the values to the buttons, click the 0K button to
finish reordering controls, or the X button to cancel the changes.

B Untitled 1 Front Panal ® |;|rE|EI

Fia Tocks Browse Window Help ' '
M_E Chick bo st to [

Figure 10-5: Reordering cluster control.

Right-click on the border of the cluster, and choose Auto Sizing — Size to Fit to resize
the cluster, if desired. Also, rename the label of the cluster as Keypad.

The BD of the built DTMF system is shown in Figure 10-6. Note that the keypad
cluster control is shown as an icon on the BD. This VI generates a tone depending
on the number pressed on the keypad in the FP. The DTMF decoder based on the
Goertzel algorithm can be seen in the lower half of the BD.
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To build the BD, wire the output value of the cluster to an array by using the
Cluster to Array function (Functions — All Functions — Array — Cluster to
Array). This is done in order to have the value of each button as an element of an
array. The array is then wired to a Search 1D Array function to search for the
True values among the array elements. In other words, this is done to check the
status of the buttons considering that the index of the array which is greater or equal
to zero is returned when a button is pressed, otherwise —1 is returned.

Thus, if the index of the array becomes greater than or equal to zero, that is, any
button is pressed, a DTMF signal is generated and the decoding part in the True case
of the Case Structure is executed. In the False case of the Case Structure,
a time delay is included to continue the idle status until a key is pressed.

E= DTRF. v Block Diagram
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| Bagech 1D Aur E%J
| ez
m T =i
EEl
N
—
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[ ] I @
-
-
-
[cae
1447 =] |
E)
w
m 3
€ ¥

Figure 10-6: BD of DTMF system.
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Now, let us go through the DTMF signal generation for the True case of the Case
Structure. The value of the array index is wired to the Quotient & Remain-
der function with 3 as divisor. Since the numbers on the keypad are arranged in
three columns and four rows, the remainder of this operation becomes the column
index, and the quotient becomes the row index. Based on the column and row indi-
ces, a high and a low tone value are chosen using two 1D array constants. The low
and high tone values are wired to a Sine Waveform VI to generate a waveform
based on the chosen frequencies.

The generated waveform is scaled to 8-bit integer so that it can be played at an
audible volume level. An Expression Node (Functions — All Functions — Numeric
— Expression Node) is used for scaling the waveform. An Expression Node is
useful for evaluating a simple equation or expression containing a single variable [1].
A Snd Write Waveform VI (Functions — All Functions — Graphics & Sound —
Sound — Snd Write Waveform) is located to send out the waveform to the PC sound
card. Create a constant on the sound format terminal to specify the sound
format including stereo/mono, sampling frequency, and bits per sample. Here, the
8-bit mono format with a sampling frequency of 8000 Hz is used. For spectral analysis
of the generated samples, a Spectral Measurement Express VI and a Wave-
form Graph are used. The Spectral Measurement Express VI is configured
as linear amplitude spectrum with no windowing.

At this stage, the DTMF generator is complete. In the next section, the decoding
module is covered.

L10.2 DTMF Decoder System

The Goertzel algorithm is used for the decoding of DTMF signals. The BD shown in
Figure 10-7 illustrates the Goertzel algorithm described by Equation (10.3). Notice
that to access the two previous values of v, [n], i.e., v, [n—1] and v,[n-2], two Shift
Registers are stacked by right-clicking on the Shift Register and selecting
Add Element on the shortcut menu.

The inputs of this subVI consist of a 1D array of 205 samples and the coefficients of
the Goertzel algorithm. A Text Ring control (Controls — All Controls — Ring &
Enum — Text Ring), labeled as Freq/Coeff, is located on the FP. Its data represen-
tation and properties are then modified as illustrated in Figure 10-8. This is done by
right-clicking on the Text Ring in the FP, and then by choosing Edit ltems... from
the shortcut menu. Note that this Goertzel subVI is designed to incorporate only
the first harmonic. It uses 205 input samples and its coefficients are calculated based
on 205 frequency bins.
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B Goertzel.vi Block Dlagraen ['_llg |£|

Figure 10-7: BD of Goertzel algorithm.

B Ring Properties; Ring

Appearance | DataRangs | Formab and Pracsion | Edit Thems | Dooumentstion

R nank srion
AL
===}
[ Sequertisl vaues Svghe precison
el
"ot
B52 He [1sezs97
41 e [1.482887 [ Hewlp
1209 Mz [1.163138
LX36 Hz |1, 00SE3S I Merve Down
1447 HE 0. 790074
|
[7] Boww uindafirad vakies sk rin Hee

Lox ][ camcsl [ reo |

Figure 10-8: Ring Properties.

The output of the Goertzel subVI is a Boolean value which indicates whether the
specified frequency component is present in the input samples or not. This is decided

by comparing the squared output of this subVI with a threshold value. The threshold
value here is empirically set to 5000.
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In the BD of the DTMF system shown in Figure 10-6, a total of seven Goertzel subVIs
are placed to detect each frequency of a DTMF signal. The outputs of the Geortzel
subVIs are grouped as two arrays to incorporate the row and column frequencies.
From these arrays, indices of the True values are searched to determine a pressed
key. A string constant is referred to by the indices of the 2D array of string constants.

To create the 2D array of string constants, first place an Array Constant shell
(Functions — All Functions — Array — Array Constant) on the BD. Then, place a
String Constant (Functions — All Functions — String — String Constant) in the
Array Constant. Asaresult, a 1D array of string constants is created. In order
to increase the dimension of the array, right-click on the Array Constant and
choose Add Dimension from the shortcut menu. Now, enter the corresponding strings
in the 2D array.

The output of the DTMF is shown in Figure 10-9. Notice that when the button ‘#’ is
pressed, two frequencies are observed at 941 Hz and 1477 Hz in the decoded output.
Furthermore, the decoded output matches the expected outcome.

B DTRF.wi

Fie Edt Operate Took Growse ‘Window Help ——
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Figure 10-9: FP of DTMF system.
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DSP System Design:
Software-Defined Radio

This chapter covers a software-defined radio system built using LabVIEW. A soft-
ware-defined radio consists of a programmable communication system where
functional changes can be made by merely updating software. For a detailed descrip-
tion of software-defined radio, the reader is referred to [1], [2].

4-QAM (Quadrature Amplitude Modulation) is chosen to be the modulation
scheme of our software-defined radio system, noting that this modulation is widely
used for data transmission applications over bandpass channels such as FAX modem,
high speed cable, multi-tone wireless and satellite systems [2]. For simplicity, here the
communication channel is considered to be ideal or noise-free.

11.1 QAM Transmitter

For transmission, pseudo noise (PN) sequences are generated to serve as our message
signal. A PN sequence is generated with a five-stage linear feedback shift register
structure, see Figure 11-1, whose connection polynomial is given by

h(D)=1+D’+D’ (11.1)

where D denotes delay and the summations represent modulo 2 additions.

hy h,

x(n)
D » D » D >
y(n-1) ¥(n=2) y(n—=3)

J
v

» D
y(n—4) y(n=5)

y(n)
Figure 11-1: PN generation with linear feedback shift register.
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The sequence generated by the above equation has a period of 31(= 2° - 1). Two PN
sequence generators are used in order to create the message sequences for both the
in-phase and quadrature phase components. The constellation of 4-QAM is shown
in Figure 11-2. For more details of PN sequence generation, refer to [2].

Q
A
. 1 .
1 10
. L1 .

Figure 11-2: Constellation of 4-QAM.

Note that frame marker bits are inserted in front of the generated PN sequences. This
is done for frame synchronization purposes, discussed shortly in the receiver section.
As illustrated in Figure 11-3, a total of ten frame maker bits are located in front of

each period of a PN sequence.

Amplitude

) H‘HH ‘ ‘ ‘ H‘ H ‘ H H ‘HH
\ I I |

Frame Frame
Marker Bits PN Sequence (Length = 31) Marker Bits

Figure 11-3: PN sequence generator.

The generated message sequences are then passed through a raised-cosine FIR filter
to create a band limited baseband signal. The frequency response of the raised cosine

filter is given by

G(f)

1 for |f|<(1-a)f.

cosz[ifﬂﬂ—(l—a)fc)] for (- <fl<(+0)f  (112)

40,

0 elsewhere
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where o€ [0,1] denotes a roll-off factor specifying the excess bandwidth beyond the
Nyquist frequency f..

The output of the raised cosine filter is then used to build a complex envelope, 3(t),

of a QAM signal expressed by

oo

$(t)= D cugr (t—KkT) (11.3)

k=—c0

where ¢, indicates a complex message, made up of two real messages q, and b,
C.=aq,+ ]bk

By modulating 3 (t) with ¢, an analytical signal or pre-envelope, s,(t), is generated,

s, (1) =5(c)e™ = i c.gr (t—kT )™ (11.4)

k=—co

The transmitted QAM signal, s(t), is thus given by

(1) =Fe[s, (1)] (11.5)
= a(t)cos(wct) - b(t)sin(coct)

where Re[-] corresponds to the real part of the complex value inside the brackets.

Figure 11-4 illustrates the block diagram of the QAM transmitter just discussed.
Notice that the two data paths, indicated by a solid line and a dotted line, represent
complex data. Again, the reader is referred to [2] for more theoretical details.

PN a, eju)ct
Generator . - !

_ 1. Impulse |- (t)= Pulse Shaping 5(1) % s, (1) - s (1)
=@ F O p=> Modulator == =" Fiter /(1) T~ —— Re() -
PN ___:

Generator |5

Figure 11-4: QAM transmitter [2].
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11.2 QAM Receiver

11.2.1 Ideal QAM Demodulation

Here, it is assumed that the exact phase and frequency information of the carrier is
available. The received QAM signal is denoted by r(t). To simplify the system, an
ideal channel is assumed between the transmitter and the receiver, i.e., r(t) = s(t).

If r(nT) is considered to be the sampled received signal, the analytic signal r,(nT) is
given by

r, (nT)=1r(nT)+ j#(nT) (11.6)

where #(-) indicates the Hilbert transform of 7(-). Thus, the complex envelope of the
received QAM signal can be expressed as

?(nT) =, (nT)e_ijnT (11.7)
= a(nT)+jb(nT)

Such a QAM demodulation process is illustrated in Figure 11-5.
r, (nT)‘ .

a
r(nTY X === F(nT)=a, + jb,
b
L Hilbert | | b
Transform f(nT) :

o jonT

\A

Figure 11-5: Ideal demodulation [2].

11.2.2 Frame Synchonization

Frame synchronization is required for properly grouping transmitted bits into an
alphabet. To achieve this synchronization, a similarity measure, consisting of cross-
correlation, is computed between the known marker bits and received samples. The
cross-correlation of two complex values v and w is given by

oo

R, [i]= 2 @lnp[n+]] (11.8)

where the bar denotes complex conjugate.

An example of the cross-correlation outcome for frame synchronization is shown
in Figure 11-6. The maximum value is found to be at the location of index 33. The
subsequent message symbols are then framed from this index point.
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Figure 11-6: Cross-correlation of frame
marker bits and received samples.

11.2.3 Decision Based Carvrier Tracking

Let us now consider the phase offset, denoted by 6, between the transmitter and the
receiver. Based on this offset, the received signal can be written as

F(nT)=r, (#T)e‘j(“""T+9) (11.9)

-j0
=¢ e’
n

where ¢, indicates the output of a slicer mapping a received sample to the nearest
ideal reference in the signal constellation. As a result, the baseband error at the
receiver is given by

¢(nT)=¢, —7(nT) (11.10)

Next, the LMS update method is used to minimize a decision directed cost function,
Jpp(0), consisting of the mean squared baseband error

T (6) = avg] [e (T |

(11.11)
= avg[ ¢(nT)e (nT) |
By differentiating J,,,(0) with respect to 0, we get
U (0)_ d[2(nT)z(nT)]
49 49 (11.12)
= Zavg [Ske {é )& Eng)H
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where
dé(”T):i én—F(nT)]:—d?(nT) (11.13)
de do de
and
d;g;T) =—jt,e® = =i (nT) (11.14)

Equation (11.12) can thus be rewritten as

(UL(G) = 2avg I:ERe {

do (
= —2avg [Sm {5 (nT)? (nT)}:l
{

o
3
)-_]
=7
=
—~
3
)-_]
4
—
1

(11.15)

where 3m[-] corresponds to the imaginary part of the complex value inside the
brackets.

By writing the term Sm {c_j (nT)} in polar form, we get

Im{e,F(nT)}=3m {@R;fﬁ }

(11.16)
=RR sin(B,—B.)
Thus,
Smiei (7)) 1.1
sin(p, =P, )=————— 17
(B.-B)="4 (L)
Note that for small B, — B,
sin(B, =B.) =B, B, (11.18)
R =R =|c ‘
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As a result, the phase error AB(n) is given by

_ Sm {e(nTJ(nT)} (11.19)

2

Ae(n)

C

n

Figure 11-7 shows a block diagram of the above tracking equations.

F(nT )= =¥ Slicer _ci — ﬁ N A6 (n) k. 4»: Ag (n)
1:____T.:%.>~
] § e(T) . v (n)
I n -
i 0
I -~
Jﬁ:é_—: Sm() v (n-1)

Figure 11-7: Decision directed carrier phase and frequency tracking.

When both phase and frequency tracking are considered, the carrier phase of the
receiver becomes

¢(n+1)=0(n)+Ap(n) (11.20)
In this case, the phase update A@(n) is given by
Ag(n) =k A0 (n)+ v (n) (11.21)

where y(n) denotes the contribution of frequency tracking, which is expressed as
y(n)=y(n—1)+k,A0(n) (11.22)

The scale factors k; and k, are configured to be small here and usually k, /k, > 100 is
required for phase convergence [2].
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Lab 11: Building a 4-QAM Modem

The design of a 4-QAM modem system is covered in this lab. As shown in Figure
11-8, this system consists of the following functional modules: message source, pulse
shape filter, QAM modulator, Hilbert transformer, QAM demodulator, frame synchro-
nizer, and phase & frequency tracker. The system is divided into two parts: transmitter
and receiver. The first three modules (message source, pulse shape filter, and QAM
modulator) make up the transmitter side and the other modules the receiver side. The
building of each functional module is described in the sections that follow.

B OAM Modem.vi Block Dagram
Bl Edt Opevale Took Browse Window Heb

Figure 11-8: System-level VI of 4-QAM modem.

L11.1 QAM Transmitter

The first component of the QAM modem is the message source. Here, PN sequences
are used for this purpose. Frame marker bits are inserted in front of these sequences to

achieve frame synchronization. The BD of the Message Source VI is shown in
Figure 11-9.

The generated samples are oversampled 4 times. This is done by comparing with O
the remainder of the global counter, indicated by n, divided by 4. Thus, out of four
executions of this VI, one message sample (frame marker bit or PN sample) is gener-
ated. For the remaining three executions of the VI, zero samples are generated. The
total length of the message for one period of a PN sequence and frame marker bits
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b= Harasapp Source.vi B lmck rli.||_:_r.'n|| X
Bl Edt Qperste Took frowse Wiedew Help E
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Figure 11-9: Message Source VI.

is 164, which is obtained by 4 (oversampling rate) x [10 (frame marker bits) + 31
(period of PN sequence)]. A constant array of ten complex numbers is used to specify
the marker bits. Note that the real parts of the complex values are used as the frame
marker bits of the in-phase samples and the imaginary parts as the frame marker bits
of the quadrature-phase samples. In order to create complex constants, the repre-
sentation of a numeric constant is changed by right-clicking on it and choosing
Representation — Complex Double (or Complex Single).

The BD of the PN Generator VI is shown in Figure 11-10. With this subVI, a
pseudo noise sequence of length 31 is generated by XORing the values of the second
and fifth shift registers.

b= PH Generator, wi Block Diagrom

Ble Gt Coeale Joob Prowse Wndw feo
o] || 130t Avplcation Ford

Figure 11-10: PN Generator VI.
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The shift Register, Rotate 1D Array, Index Array, and Replace
Array Subset functions are used to compute a new PN sample and to rotate

the shift register. A For Loop with one iteration and a First Call? function
(Functions — All Functions — Advanced — Synchronization — First Call?) are used in
order to pass the shift register value of a current call to a next call of the subVI. The
First Call? function checks whether a current call is occurring for the first time
or not. If that is the case, the shift register values are initialized by their specified
initial values. Otherwise, the old values of the shift registers are passed from the pre-
vious execution of the subVI. Notice that the PN Generator VI shown in Figure
11-10 is built with the consideration of porting the algorithm to a DSP hardware
platform. Alternatively, the built-in Binary MLS VI, (Functions — All Functions —
Analyze — Signal Processing — Signal Generation — Binary MLS), can be used for the
LabVIEW implementation.

Next, the generated samples are passed to a pulse shape filter shown in Figure 11-11.
A raised cosine filter is used to serve as the pulse shape filter. The FIR Filter
PtByPt VI is utilized for this purpose. The two outputs of the pulse shape filters
are combined to construct the pulse shaped message signal by using the Re/Im to
Complex function (Functions — All Functions — Numeric — Complex — Re/Im to
Complex).

B Pulse Shape Filter.vi Block Ddegram

Figure 11-11: D0 % Dpecits ook Jeowss Bnoow i .
Pulse shape filter. D[] @[] [§] [afet|os 13 sppkcatonrort |« 2w
m A
Poalia To Complye]
ot =3 - ¥
H
_f:";?|.
u 1. ZFHE-]
'3
t ¥

As for the filter coefficients, they can be designed by a filter design tool, such as the
one discussed in Lab 4, and stored in an array of constants.

The signal passed through the pulse shape filter is then connected to the QAM
modulator shown in Figure 11-12. The QAM modulated signal s(t) is obtained by
taking the real part of the pre-envelope signal s,(t). This is achieved by performing a
complex multiplication between the complex input and a complex carrier consisting
of a cosine and a sine waveform. This completes the modules of the transmitter. In
the next section, the modules of the receiver are built.
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B &M Modulator.vi Block Diagram
Bl R Optvake Tooh Brovee Window Help

B 0 T e e | = [ e B

Figure 11-12: QAM modulator.

L11.2 QAM Receiver

The first module on the receiver side is the Hilbert transformer. This module builds
the required analytic signal for demodulation based on the transmitted QAM signal.

A Hilbert transformer is built by using the DFD Remez Design VI (Functions —
All Functions — Digital Filter Design — Filter Design — Advance FIR Filter Design — DFD
Remez Design) of the DFD toolkit. To have an integer group delay, an even number,
such as 32, is specified as the filter order. The DFD Filter Analysis Express
VI is wired to analyze the group delay of the filter as well as its magnitude and phase
response, see Figure 11-13.

= Design Hilber1. vi Block Diagram
fe £ g-m Tock rosse W b

| _phes  w
Il‘l"_rl’H.H v
I'.\rE-H [ bgv'l
Bl e
. b
£ »

Figure 11-13: Building Hilbert transformer.
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The specifications of the Hilbert transformer are similar to a bandpass filter as indi-
cated in Figure 11-14. Notice that only one element of the cluster array is needed

to design the Hilbert transformer. However, when a control is created at the band
specs terminal of the DFD Remez Design VI, there are two default cluster val-
ues. The second element, indexed at 1, should thus be deleted. To do this, select the
element of the cluster array to be deleted, then right-click and choose Data Operation
—> Delete Element from the shortcut menu.

By running the VI, the magnitude, phase response and group delay of the Hilbert
transformer can be seen as shown in Figure 11-14.

Figure 11-14: Analysis of Hilbert transformer.

The array of indicators corresponding to the Hilbert transform coefficients is con-
verted to an array of constants to be used by the other VIs. Note that the design and
analysis of the Hilbert transformer are needed only in the designing phase not in the
implementation phase of the modem system.
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The BD of the Hilbert transformer using the coefficients obtained from the DFD
toolkit is shown in Figure 11-15.

= Hilbert Transform.vi Block Diagram

Fie Edt Operste Took Browse Window Help it
o e e | ™ e e A
-
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XTI g
-
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Figure 11-15: Hilbert Transform VI.

A Data Queue PtByPt VI (Functions — All Functions — Analyze — Signal Pro-
cessing — Point By Point — Other Functions PtByPt — Data Queue PtByPt) is employed in
order to synchronize the input and output of the Hilbert transformer. In other words,
the input samples are delayed until the corresponding output samples become avail-
able. This is needed due to the group delay associated with the filtering operation.
For an FIR filter of 33 taps, the group delay is 16. An array of numeric constants cor-
responding to the filter coefficients is set up based on the text file generated by a filter
design tool. Here, an FIR filter has been used for the implementation of the Hilbert
transformer instead of the built-in VI of LabVIEW. This is done to allow its DSP

hardware implementation.

The analytic signal achieved from the Hilbert transformer is demodulated by the
QAM demodulator as illustrated in Figure 11-16. The demodulation process is
similar to the modulation process illustrated in Figure 11-12 except for the negative
frequency part.

Next, the QAM demodulated signal is decimated by 4. To do this, a Case Struc-
ture is used so that every fourth sample is selected for processing, as illustrated in
Figure 11-8. The decimated signal is sent to the Sync & Tracking VI for frame
synchronization and phase/frequency tracking. The Sync & Tracking Vlisan
intermediate level subVI incorporating several subVIs/functions and operating in two
different modes: frame synchronization and phase/frequency tracking. Let us exam-
ine the BD of this VI displayed in Figure 11-17. The input samples are passed into
the receiver queue, implemented via the Complex Queue PtByPt VI (Functions
— All Functions — Analyze — Signal Processing — Point By Point — Other Functions
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= 0AM Demmodulator . vi Block Disgram

El= Edt Qoersle Took Browse Window Help

[ [a] @] §] walm]os [ 150t repication Fore

pesae

|
-

Figure 11-16: QAM demodulator.

PtByPt — Complex Queue PtByPt), in order to obtain the beginning of a frame by
cross-correlating the frame marker bits and received samples in the queue. Filling the
queue is continued until the queue is completely filled. Extra iterations are done to
avoid including any transient samples due to the delays associated with the filtering
operations in the transmitter.

B Sync B Tracking,. v Block Diagram
Fie Edk Crerats Took Erowss Widoes Help
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Figure 11-17: Sync & Tracking VI—frame synchronization mode.
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The length of the queue is configured to be 51 in order to include the entire marker
bits in the queue. This length is decided based on this calculation: 31 (one period

of PN sequence) + 2 x 10 (frame marker bits). Also, sixteen extra samples are taken
to flush out any possible transient output of the filter as mentioned previously. Bear
in mind that the length of the queue or the number of extra reads varies based upon
the specification of the transmitted signal such as the length of the frame marker bits
and the number of taps of the phase shape filter. A counter, denoted by the Loop
Count VI in Figure 11-18, is used to count the number of samples filling the queue.
Once the queue is completely filled and extra reads are done, the frame synchroniza-
tion module is initiated.

b Loop Counter.vi Block Diagram

Figure 11-18: Loop Flo £t Operste Tools frowss Wndow Heb _'
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The subVI for frame synchronization is shown in Figure 11-19. In this subVI, the
cross-correlation of the frame marker bits and the samples in the receiver queue are
computed. The absolute value of the complex output is used to obtain the cross-
correlation peak since the location of this peak coincides with the beginning of the

B Frama Synchonization. v Block Diagram

Figure 11-19: Frame
Synchronization VI.
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frame. The Array Max & Min function is used to detect the index corresponding
to the maximum cross-correlation value.

In Figure 11-20, the Complex CrossCorrelation VIisshown. This VI
accomplishes the complex cross-correlation operation by evaluating Equation (11.8).

B Complex CrossCorrelation. vi Block Diagram r;.r_ﬁlg]
Bo [t Qperate Toos Drowse Window Help Catrge
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Figure 11-20: Complex CrossCorrelation VI.

Once the index of the maximum cross-correlation value is obtained, all the data samples
are taken at this location of the queue. Consequently, the data bits are synchronized.

The initial phase estimation is achieved using the phase of the complex data at the
beginning of the marker bits. Considering that the ideal reference is known for the
first bit of the frame marker, 1 + i in our case, this allows us to obtain the phase dif-
ference between the ideal reference and the received frame marker bits. The real
and imaginary parts of data at the beginning of the marker bits are also passed to the
Phase and Frequency Tracking VI to provide the initial constellation.

The subVI of the frame synchronization is now complete. Locate the subVI on the
BD of the Sync & Tracking VI shown in Figure 11-17. Notice that three local
variables are created in order to pass the indicator values to the other parts of the VI
which cannot be wired. In the Sync & Tracking VI, a Rounded LED indica-
tor, labeled as Sync, is placed on the FP. A local variable is created by right-clicking
either on the terminal icon in the BD or on the Rounded LED indicator in the FP
and choosing Create — Local Variable. Next, a local variable icon is placed on the BD.
More details on using local and global variables can be found in [1].

The local variable Sync is used to control the flow of data for the frame synchro-
nization. The initial value of the local variable is set to True to execute the frame
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synchronization. Then, it is changed to False within the Case Structure so
that it is not invoked again. The other two local variables, Initial Const and
Delay Index, are used as the inputs of the phase and frequency tracking module,
see Figure 11-21.

B Sync B Tracking.vi Block Diagram
Fis Edt Operate Took Erosss Window Heip
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Figure 11-21: Sync & Tracking VI - phase and frequency tracking mode.

Now, let us describe the Phase and Frequency Tracking VlIillustrated in
Figure 11-22. A Formula Node (Functions — All Functions — Structures — Formula
Node) is shown in the upper part of the BD, which acts as a slicer to determine the
nearest ideal reference based on the quadrant on the I-Q plane. A Formula Node
structure is capable of evaluating a script written in text-based C code. There are
numerous built-in mathematical functions and variables which can be used in a
Formula Node. For example, pi represents T in the formula node script shown in
Figure 11-22. Further details on Formula Node can be found in [1].

The phase error, see the BD in Figure 11-22, is computed from Equation (11.19).
This error is multiplied by a small scale factor to determine the phase update A@(n)
in a second Formula Node implementing Equation (11.20).

Now, all the components of the modem system are completed. As the final step,
aWaveform Chart and an XY Graph (Controls — All Controls — Graph — XY
Graph) are added to the system-level BD shown in Figure 11-8. In Figure 11-23, the
FP of the system is shown. After updating the phase, the received signal becomes
nearly a perfect reproduction of the transmitted signal except for the time delay.

If there exist a phase and a frequency offset with no tracking, the received signal
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Figure 11-23: Initial phase estimation.
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appears as shown in Figure 11-24. As displayed in this figure, the constellation of the
received signal is rotated, and the amplitudes of some of the received samples become
too small. Obviously, the received signal will change by introducing channel noise.

B DA Modem, v
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Figure 11-24: Received signal with no phase & frequency tracking.

The change in the constellation via the phase and frequency tracking is illustrated in
Figure 11-25. The constellation of the samples in the [-Q plane becomes that of the
ideal reference as the tracking operation progresses.

In summary, a 4-QAM transmitter and receiver system is built in LabVIEW by
adopting a hierarchical approach. A simplified version of the system hierarchy, dis-
played by choosing Browse — Show VI Hierarchy, is shown in Figure 11-26. Using the
phase and frequency tracking module, the phase and/or frequency offset between the
transmitter and receiver is successfully compensated.
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Figure 11-26: Hierarchy of QAM Modem VI.

As the final remark, all the subVIs discussed in this lab can be saved in a LabVIEW
Library (LLB) file, such as Lab 11.llb. A new LLB file can be created by choosing New

VI Library and naming it from the Name the VI window, which is brought up dur-
ing the save operation.
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CHAPTER -I 2

DSP System Design: MP3 Player

The International Organization of Standardization (ISO) standard MPEG-I Layer-III,
known as MP3, is one of the most widely used standards for digital compression and
thus storage of audio data. The MP3 standard was developed by the Fraunhofer Insti-
tute to provide compression of audio files without any perceptible loss in audio quality
[1]. This standard gives a compression ratio of 12:1 and yet preserves CD quality
audio. There exist many software tools, in addition to portable MP3 players, that are
capable of playing MP3 files.

This chapter presents a LabVIEW software implementation of single channel (mono)
MP3 player after providing an overview of its theory. The overview presented below
is not meant to be a detailed description of MP3 decoding, rather to provide enough
information for one to understand the building components or blocks associated
with MP3 decoding. The interested reader can refer to [1-4] for theoretical details

on MP3 decoding.

Lab 12 in this chapter covers the LabVIEW implementation of the entire MP3
decoding system. The last part of this lab involves the steps taken for the real-time
implementation of the system. The functional blocks associated with an MP3 player
are depicted in Figure 12-1. In what follows, the function of each block is briefly
mentioned.
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Figure 12-1: Functional blocks associated with MP3 player [2].

576 Samples

12.1 Synchronization Block

The first block is the Synchronization block. This block serves the purpose of receiv-
ing the incoming bitstream, extracting certain information from it and passing the
extracted information to the succeeding blocks. This information consists of the
Header Information, the Cyclic Redundancy Check (CRC) Information, and the
Side Information. The Header Information specifies the type of the MP3 file, the
bitrate used for transmission, the sampling frequency, and the nature of the audio.
During decoding, the Header Information is identified by the occurrence of 12
consecutive ‘1s’ [3]. The CRC Information provides details about the integrity of the
data while the Side Information provides the necessary parameters for decoding the
data as well as the reconstruction of scale factors.

An MP3 file is divided into smaller units called frames, as shown in Figure 12-2. Each
frame is divided into five sections: Header, CRC, Side Information, Main Data, and
Ancillary Data. Main Data is the coded audio, while Ancillary Data is optional and

MP3 Bit Stream
Frame 1 Frame 2 Frame k | --------mscmmmommeemneeees Frame n
Frame sub -parts/
Header CRC Side Information Main Data Ancillary Data
Main data sub -sections/
Granule O (Scale factors + Huffman coded data ) ‘ Granule 1 (Scale factors + Huffman coded data )

Figure 12-2: Anatomy of an MP3 File.
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contains user-defined attributes such as song title, artist name or song genre. Main
Data is further divided into two granules: Granule 0 and Granule 1.

Let us first mention some details on the Side Information. The Side Information
is divided into four parts: Main Data Begin Pointer, Private bits, SCFSI bits, and
Granule 0/Granule 1 information. The length of the Side Information varies depend-
ing upon the nature of the audio signal; 17 bytes for mono and 32 bytes for stereo, as

indicated in Figure 12-3.

/ Main Data Private SCFSI Side Information Side Information
17/32 Bytes Begin (9) (5,3) (4,8) Granule0 (59, 118) Granule1 (59, 118)
34/68 Bits part2_3_length | big_value | global_gain|scalefac_compress |window_switch _flag
! (12,24) (9, 18) (8,16) (4,8) (1,2)
) block_type | mix_block_flag table_select sub _block_gain
Short window | 5 7y (1,2 (10, 20) (9,18)
22/44 Bits
Long windo table_select region0_count region1_count
g window (15,30) @8) (3.6)
. preflag scalefac_scale count1_table_select
30 B'ts{ (1,2 (1,2) (1,2)

Figure 12-3: Side Information bit mapping (humber of
bits for mono/stereo) and its fields.

The Main Data Begin Pointer indicates the beginning of Main Data in the bitstream.
Noting that the MP3 encoding uses the ‘bit reservoir’ technique [1], Main Data for

a current frame does not necessarily begin after the Side Information for that frame
but may reside in another frame, as illustrated in Figure 12-4. This is done to obtain
more compression, as data from a current frame may not completely fill that frame.
The Main Data Begin Pointer provides a negative offset in bytes from the header of
a current frame to the location where Main Data for the current frame begins. This
pointer is 9 bits long, so the bit reservoir can be at most 2° — 1 bytes long.

H: Header
| Frame1 | Frame2 | Frame3 | Frame4 | Sl: Side information
\ > > > > MD: Main Data
H1|SI|MD1|MD2 |H2 |SI| MD2 | MD3 |H3 |SI|MD4 |H4 |SI| MD4 | MD5 | H5 | SI

Main Data Pointer 2 Main Data Pointer 3 Main Data Pointer 4 Main Data Pointer 5

Figure 12-4: Bit reservoir technique [1].
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Private bits are used for private use and not normally used for decoding. The SCale
Factor Selection Information (SCFSI) determines whether the same scale factor
bands are transmitted for both granules considering that the scale factors for Granule
0 can be sometimes reused by Granule 1 in the Layer III standard. At encoding time,
a total of 576 frequency lines of a granule are sorted into four groups of scale factor
bands. Each group of scale factor bands corresponds to a bit of the 4-bit long SCFSI
as shown in Table 12-1. If the bit corresponding to a group is set, this means the scale
factors for that group are common to both granules and are transmitted only once. If
it is zero, then they are transmitted separately for the granules.

Table 12-1: Scale factor bands corresponding to SCFSI bits [1].

SCEFSI bits Scale factor band
0 0,1,2,3,4,5
1 6,7,8,9,10
2 11,12,13,14,15
3 16,17,18,19,20

The fields for the Granule 0/Granule 1 side information is illustrated in Figure 12-3.
These fields are grouped into three categories based on their functions: Huffman
decode (part2_3_length, big_value, table_select, region0O_count, region1_count,
countltable_select), window selection (window_switch_flag, block_type, mix_
block_flag), and requantization (global_gain, scalefac_compress, subblock_gain,
scalefac_scale, preflag). These fields are discussed further in the following sections.

12.2 Scale Factor Decoding Block

The Scale Factor Decoding block, see Figure 12-1, decodes the scale factors to allow
the reconstruction of the original audio signal. Scale factors are used to mask out the
quantization noise during encoding by boosting the sound frequencies that are more
perceptible to human ears.

Scale factors are decoded after the coded scale factors portion is separated from Main
Data. The number of bits used for coded scale factors is specified by the part2_length
field which is obtained from the slenl and slen2 values. These values are determined
from the table of scale factors by using the scalefac_compress field, displayed in Fig-
ure 12-3, as an index to the table. Note that the method to calculate part2_length
changes depending on the type of window used at encoding. The windowing is done
during encoding to reduce the effect of aliasing and the type of window (short or long)
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is determined by the block type. In the following sections, the scale factor output is re-
ferred to as scalefac_l and scalefac_s for long windows and short windows, respectively.

12.3 Huffman Decoder

The Huffman decoding is the most critical block in the decoding process. This is due
to the fact that the bitstream consists of contiguous variable length codewords which
cannot be identified individually. Once the start of the first codeword is identified,
the decoding proceeds sequentially by identifying the start of the next codeword at
the end of a previous codeword. Consequently, any error in decoding propagates, in
other words the remaining codewords cannot be decoded correctly. To understand
better how this block functions, some necessary information regarding the format of
Huffman coded bits is mentioned next.

12.3.1 Format of Huffman Code Bits

In the MP3 standard, the frequency lines are partitioned into three regions called
rzero, countl and big_value. As Huffman coding is dependent on the relative
occurrence of values, coding in each region is done with the Huffman tables that
correspond to the characteristics of that region.

A continuous run of all zero values is counted and grouped as one of the regions
called rzero. This region is not coded, because its size can be calculated from the size
of the other two regions. The second region, countl, comprises a continuous run of
—1, 0, or 1. The two Huffman tables for this region encode four values at a time, so
the number of values in this region is a multiple of 4. Finally, the third region, big_
value, covers all the remaining values. The 32 Huffman tables for this region encode
the values in pairs. This region is further subdivided into three sub-regions: region0,
regionl, and region2. The region boundaries are determined during encoding. Figure
12-5 depicts the output of the Huffman Decoder splitted into the regions.

// 576 Frequency lines \

‘ X X KAXXKKXXKKXKKX ‘ ———————————— ‘ 000000000000

B L

»le -t »!
region0 region 1 \ region2 count1 ! rzero

- >
<} I

big_value

=}<

Figure 12-5: Regions of Huffman Decoder output [4].

In the big_value region, a parameter called Escape is used in order to improve the
coding efficiency. In this region, values exceeding 15 are represented by 15, and the
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difference is represented by the Escape value. Notice that the number of bits required
to represent the Escape value is called Linbits, which is associated with the Huffman
table used for encoding. A sign bit follows Linbits for nonzero values.

12.3.2 Huffman Decoding

The Huffman Decoding block consists of two components: Huffman Information
Decoding and Huffman Decoding. Huffman Information Decoding uses the Side
Information to set up the fields for Huffman Decoding. It acts as a controller and
controls the decoding process by providing information on Huffman table selection,
codeword region, and how many frequency lines are decoded. This decoding is illus-
trated in Figure 12-6.

Table Select

Huffman Information Current Region Huffman Decoding

Decoding Block Linbits Block

Stop/Continue

Yes

576 samples decoded or
all bits exhausted?

Figure 12-6: Huffman Information Decoding block as a controller.

Huffman Information Decoding starts by determining the part3_length value, which
indicates the number of Huffman coded bits present in the current granule. This
value is obtained by subtracting part2_length of the Scale Factor Decoder from
part2_3_length of the Side Information.

The next step involves determining the codeword region considering that the selec-
tion of the Huffman tables is region specific. The decoding always starts with region0
of the big_value region. The start of regionl and region? is determined using the
region0_count and regionl_count fields of the Side Information. The start of the
countl region is not explicitly defined and begins after all the codewords in the
big_value region have been decoded. The countl region ends when the number of
bits exceeds part3_length.
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The third step consists of obtaining the table numbers for each region. The table_
select field of the Side Information gives the table numbers for all the three regions of
the big_value region. For the countl region, 32 is added to the countl_table_select
field of the Side Information to get the table number for this region. This block
terminates the decoding process if 576 lines are decoded or part3_length bits are
used. If the decoding stops before 576 lines are decoded, zeros are padded at the end
so that 576 lines are generated.

Huffman Decoding requires 34 Huffman tables for decoding Main Data. Since two
of the 34 tables (table number 4 and 14) are not used, only 32 tables are required
for decoding. Two tables out of these 32 tables are used for the countl region while
the rest are used for the big_value region. The process of Huffman Decoding can
be understood better with the help of Figure 12-7, which shows the pattern of the
Huffman coded bitstream.

‘Codeword (X, Y)‘ Escape X ’ Sign X ‘ Escape Y ’ Sign Y ‘

e [

Linbits X Linbits Y

Figure 12-7: Bit format of Huffman coded bits.

The decoder fetches one bit at a time and compares it with all the codewords in the
selected table. The fetched bits represent the codeword(x, y) in the figure. If there is
a match, then the corresponding value is returned. If there is no match, then another
bit is fetched and the process is repeated. If the returned value for the big_value
region equals 15, the next bits are fetched and the number represented by them is
added to the decoded value. As discussed earlier, the Linbits field is determined by
the Huffman table in which a codeword match exists.

As the last step, the sign of the decoded codeword is determined. The same proce-
dure is carried out for the codewords in the count] region with the difference that
Linbits are not used and one codeword from this region gives four decoded values.

12.4 Requantizer

The MP3 encoder incorporates a quantizer block that quantizes the frequency lines
so that they can be Huffman coded. The output of the quantizer is multiplied by the
scale factors to suppress the quantization noise. The function of the requantizer block
is to combine the outputs of the Huffman Decoder and Scale Factor Decoder blocks,
generating the original frequency lines. Figure 12-8 illustrates the function of the
Requantization block.
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Huffman Decoding

Block
Side Prefag | Frequency
Information

Requantizer Lines

Block
Scale Factor Bands
Scale Factor

Decoding Block

Figure 12-8: Block diagram of Requantization block.

The Requantizer block is one of the most computationally intensive blocks of MP3
decoding, since every output sample from the Huffman Decoder block needs to be
raised to the power 4/3. This power is the inverse of the one used in the encoder
quantization process, i.e., 0.75. The result is then multiplied by the sign of the
Huffman decoded value and logarithmically quantized.

Requantization can be described by two equations, one for long and one for short
windows, which are stated below [1]

1(global _ gain[gr]-210)
290

. . Y. V3
For long Wll’ldOW, Xri = Sign (151) abs (I’SL) z(scalﬂfac_mul(scal@fac_l[gr][sfb]+Preﬂdg[grl+[>‘f@tab[$fb])) (12 1)

|+

2%(3’1013“[ _gain[gr]—ZlO—S'wbblock_gain[gr][sfb][wmduw])

For Short WindOW, Xri = Sigﬂ (iSi) ~abs (iSi)3 ' Z(SCalefac7mul~scakfac75[g1][5fb][window]) (12‘2)

(EN

where xr’s, is’s, and gr denote requantized arrays, Huffman decoded arrays, and
granule, respectively. The remaining terms are explained below. The preflag and
global_gain parameters are obtained from the Side Information. The value 210 is

a system constant and is defined in the ISO/IEC 11172-3 document [1]. The scal-
efac_mul parameter depends on the scalefac_scale field of the Side Information. If
scalefac_scale is O, then scalefac_mul is 0.5. If scalefac_scale is 1, then scalefac_mul
is 1. Thus, in the above equations, the Huffman values are scaled by 2 or /2. The
parameter pretab is used for further amplification of higher frequencies and is speci-
fied as follows:

pretab[21]={0, 0, 0,0, 0,0,0,0,0, 0,0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2} (12.3)

The 21 elements in this array correspond to the 21 scale factor bands. The param-
eters scalefac_1 and scalefac_2 represent the decoded scale factors for long and short
windows, respectively. The parameter sfb indicates the current scale factor band. The
selection of the scale factor bands depends on the sampling frequency. One thing
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that must be ensured before requantization is that the scale factor bands should cover
all the 576 frequency lines.

12.5 Reordering

Huffman coding gives better results if its inputs are ordered in an increasing order

or have similar values. This is the reason the frequency lines are ordered in increas-
ing order of frequency during encoding as values closer in frequency have similar
values. Normally, the output of the Modified Discrete Cosine Transform (MDCT) in
the encoder is ordered into subbands with increasing frequency values. However, for
short blocks, the output samples are ordered into subbands first by increasing win-
dows and then by frequency. In order to remove this dependency of the window type
on the output samples, the output of the MDCT is ordered first by subband then by
frequency and lastly by window. Figure 12-9 illustrates the effect of the reordering
block on the frequency lines.

Frequency Lines (Before reordering)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Low Frequency High

Frequency Lines (After reordering )

0 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14 17

Low Frequency High Low Frequency High | Low Frequency High

Figure 12-9: Reordering of frequency lines for short blocks [4].

Note that reordering is done only for subbands with short windows. Hence, the main
task of the reordering block is to search for short windows to reorder the frequency
lines. The output of the requantizer, for short windows, gives 18 samples in a sub-
band. These samples are not dependent on the window used. The reordering block
simply picks up the samples and reorders them in groups of six for each window,
thereby generating them as they were before reordering.

12.6 Alias Reduction

During the encoding process, the pulse code modulated (PCM) samples are filtered
into subbands using bandpass filters. However, due to the non-ideal nature of the
bandpass filters, aliasing effects occur. To minimize aliasing artifacts, windowing

is done after the MDCT block. That is why during the decoding process, an alias
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reduction block is used to generate the frequency lines similar to those generated by
the MDCT in the encoder. This block adds the alias components to each frequency
line to produce the original frequency lines. The alias components are specified in

the ISO/IEC 11172-3 document [1]. Alias reduction is applied to all windows other

than short windows.

Basically, the Alias Reduction block consists of eight butterfly calculations, described
in [2], per subband, similar to that in the FFT calculation. The alias components cor-
respond to the scale factors with which the frequency lines are scaled. The formula to
calculate the two scale factors ca;, and cs; is stated below,

cs, = 1 ,Cai:CSi'Ci, OSlS? (124)
Jl+c’

where ca; and cs;, denote the aliased components and ¢;s are defined in [1].

12.7 IMDCT and Windowing

The Inverse MDCT (IMDCT) block is responsible for generating samples which
serve as the input to the Polyphase filter. The IMDCT takes in 18 input values and
generates 36 output values per subband in each granule. The reason for generating
twice as many output values is that the IMDCT contains a 50% overlap. This means
that only 18 out of 36 values are unique, and the remaining 18 values are generated
by a data copying operation. For a fast implementation of the IMDCT block, its
symmetry property is used, which is described by the following equation:

—x[g—i—l], i=O,...,%—1
xli] = ; ; (12.5)
—x[—n—i—l], i=0,..., 21
2 4

After performing IMDCT, windowing is done so as to generate time samples that are
similar to those obtained after the filter bank in the encoder. This is because window-
ing is carried out on the output of the filter bank which provides the input to the
MDCT block during encoding. The type of window used depends on the block_type
field in the Side Information being long or short. The window functions that are used
for different blocks are stated as follows [1],
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for block type = 0,

il = xm.sin(%(ﬁ%)], 0<i<35 (12.6)
for block type = 1,
x[i]-sin(i(i+l)} 0<i<17
6 2
x[i], 18<i<23
zlil = . (12.7)
x[i]-sin(—(i—18+z)), 24<i<29
0, 30<i<35

for block type = 2,

dlwin]li] = x[win][i]-sin(%(i—18+%)), 0<i<Il,0<win<2  (12.8)

for block type = 3,

0, 0<i< 5
x[i]-sin(—(i—6+%)), 6<i<l11

A1=10 12<i<17 (12.9)
x[i]-sin(%(i+%)), 18<i<35

After the output of the IMDCT is multiplied with a window function, the 36 output
values per subband are overlapped and added to produce 18 output values for every
subband of a granule. The upper 18 values of the previous subband are stored and
added to the lower 18 values of the current subband. Figure 12-10 illustrates the flow
diagram for this overlap and add operation.
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Figure 12-10: Overlap and Add operation.

12.8 Polyphase Filter Bank

Finally, a Polyphase filter bank is used to transform the 32 subbands, each with 18
time samples from every granule, to 18 bands of 32 PCM samples. PCM is a standard
format of storing digital data in uncompressed format, CD audio being the prime
example. PCM samples are defined depending on the sampling frequency and bitrate.
A higher sampling frequency implies that higher frequencies are present and a higher
bitrate produces a better resolution. Generally, CD audio uses 16 bits at 44.1 kHz.
Here, after a brief overview of the PCM format, the generation of PCM samples is
briefly explained with the help of the flow diagram shown in Figure 12-11.

12.8.1 MDCT

The MDCT block transforms the 32 input samples, one from each subband, to a
64-point V vector given by the following equation:

V[i]= cos[m(16+1)(2k+1)/2n S[k], 0<i<63 (12.10)

where S[k| denotes 32 input samples and n = 64.

For a fast implementation of this block, as mentioned earlier, the symmetry property
of MDCT is used which requires only the computation of 50% of the values. An
alternative way for a fast computation of MDCT is via the Lee’s method [5], which
uses a FFT type approach. In this method, an n-point MDCT is calculated using two
n/2-point MDCTs. Such a reduction is repeated till a single point is reached.
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Figure 12-11: Steps in generation of PCM samples [4].

12.8.2 FIFO Shifting

The 64 output values (V vector) from the MDCT block are then fed to a 1024 sam-
ple first-in-first-out (FIFO) shift register. The MDCT operation is repeated 18 times
per granule. However, due to the size of the shift register, only the last 16 V vectors
are saved. Each time a V vector is generated, the shift register is shifted by 64 places
to accommodate for a new V vector. The shift register is reset only at the beginning
of the decoding process and not during the decoding of each frame. The last part of
the IMDCT block involves the generation of a 512-sample U vector. This vector is
generated by selecting alternate subbands from the shift register.

12.8.3 Windowing and Adding

As the last part towards generating PCM samples, the windowing shown in Figure
12-11 is done. This consists of multiplying the U vector by a 512-point window
function. The resulting 512 point vector is transformed into 16 vectors consisting of
32 values each. The 16 vectors are then added sample-wise to generate one subband
of PCM samples. The sum is then represented in 16-bit format. This operation is
repeated 18 times to generate the 18 subbands of the 32 PCM samples.
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Lab 12: Implementation of
MP3 Player in LabVIEW

In this lab, the entire MP3 decoder system for mono MP3 files is implemented in
LabVIEW. The last section of this lab covers the modifications made in order to
obtain a real-time throughput from the decoder.

L12.1 System-Level VI

Figure 12-12 illustrates the system-level BD of the implemented MP3 decoder. The
subVIs located in the For Loop are repeated as many as number of frames.

& MPIPlayer.vi Black Diagram (=119
Pl ot r;pemtu Iod: firowrs '!'El-'m Hslo
: i |lbafmot [ 130t ousog Font

Figure 12-12: System-level Block Diagram of MP3 decoder.

The Frame Type VI finds the frame header from the bit stream and extracts the
decoding bitrate and sampling frequency. The location of the frame header is passed
to the Dec Side Info VIto identify its beginning. The Dec Side Info VI
decodes the Side Information and bundles the decoded parameters into a cluster for
easy access by the other Vls.

A Shift Register is placed to serve as a buffer for Main Data as part of the

bit reservoir technique. The Circ Buffer Vlis used to fill the buffer with Main
Data, to calculate a pointer marking the start of Main Data of a current frame, and to
provide Main Data and its starting index as outputs to the other Vls.
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The Scale Factor Decode VI decodes the scale factors that are used to
suppress quantization and any other noise. The output of this VI consists of two
arrays: scalefac_1 and scalefac_s. The Huf fman Decode VI incorporates
a number of subVIs to determine the required information about Huffman decod-
ing, to calculate the length of Huffman coded bits, and to decode different regions
of Huffman coded data. The Requantization VI combines the output of the
Scale Factor Decode and Huf fman Decode VlIs. This VI implements the
requantization equations.

The Reorder VI arranges the frequency lines of short blocks in the same order as
in the MDCT block of the encoder. The Alias Reduction VI computes the
antialias coefficients and weighs the frequency lines accordingly. The IMDCT VI
computes IMDCT, does windowing on the IMDCT output, and performs overlap/add
on the windowed output to generate the polyphase filter input.

The Poly & PCM VI carries out three operations. It multiplies every odd sample of
each odd subband by ‘~1’ (referred to as Frequency Inversion), implements the poly-
phase filter, and generates PCM samples.

L12.2 LabVIEW Implementation

L12.2.1 MP3 Read

As the first step of the MP3 decoding process, an MP3 file is opened and read by

the MP3 Read VI, see Figure 12-13. This VI reads an MP3 file as specified by the
File Path control via the Read Characters From File VI (Functions —
All Functions — File I/0 — Read Characters From File). The data stream is converted to
unsigned integer byte using the String to Byte Array function (Functions —
All Functions — String — String/Array/Path Conversion — String to Byte Array).

& Mp3 Read,vi Block Diagram EIFEIE
Do B Dpevolo. Joois fyoows Wncow [he EI
[&]@] @ IﬂlﬂlhlﬂLﬁ? [ 13pt Application Font | Ferd
0 Fead Characters From Fie.w | oli |
el —= Tl
. m‘ m_j':' L
L4 > 5

Figure 12-13: BD of MP3 Read VI.

268



Implementation of MP3 Player in LabVIEW

L12.2.2 MP3 File Info

The MP3 File Info VI extracts and displays the information about an MP3 file
that is present in the file header, see Figure 12-14. It consists of two VIs: Frame
Type and MP3 Info Display. The former finds the header and extracts the
decoding information, while the latter displays this information in an ordered fashion.

b MP3 File Infio,vi Block Diapram  [= (B[]

Figure 12-14: BD of MP3 File Info VI.

The Frame Type VI, see Figure 12-15, uses the Find Header subVI to find the
new location of the header by searching for twelve consecutive ones. Once the head-
er is found, three bytes of the header which contain the frame information are passed
to the Find Type VI. Next, the Find Type VI performs the actual decoding of
the header information using table look-ups.

B Frame Type.vi Block Diagram
E&. Qperm Ioos Erowse Wiedow Help
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Figure 12-15: BD of Frame Type VI.
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The MP3 Info Display VI generates a string array based on the output of the
Frame Type VI. The output string array of this VI is displayed on the FP.

L12.2.3 Dec Side Info

The Dec Side Info VIextracts the 17 bytes of the Side Information from the
bit stream and decodes it in a sequential order. Figure 12-16 illustrates the extraction
of the 17 bytes of the Side Information using the Array Subset function. In case
an optional CRC is present, indicated by the Protection bit, the starting location of
the Side Information is moved by two bytes after the header. Next, each byte of the
17-byte long Side Information is wired to the Get Bits subVlIs in order to extract
the individual parameters.

= Dec Side Info.vi Alock Diagram
Fi= [dt Operstée Took Drowse YWindow Help
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Figure 12-16: A BD section of Dec Side Info VI.

The Get Bits subVI performs ‘logical AND’ to extract bits from the input byte.
This VI provides a mask that contains ones at the positions to be extracted from the
input byte. The length and location of the ones in the mask are specified by the input
parameters to the VI. Notice that the MSB and LSB of the byte are indicated by the
indices 8 and 1, respectively. If a field is split into two bytes, the bits extracted from
the higher byte is logically shifted and added to the bits from the lower byte to form
one value. All the parameters of the Side Information extracted from the bit stream
are bundled to form a cluster, indicated by Side Info.
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L12.2.4 Circ Buffer

Main Data of a frame can be obtained from previous frames as well as a current frame
depending on the value of the Main Data Begin Pointer. The Circ Buffer VI,
see Figure 12-17, extracts the Main Data section of the current frame and fills a

1024 point buffer. Thus, a total of 1024 Main Data samples from the previous frames
and current frame are stored in the buffer. This buffer is rotated in such a way that

a new Main Data section is inserted to the end of the buffer. In order to fetch Main
Data for decoding of a current frame, the index of the start of Main Data is provided
by subtracting the sum consisting of the size of the new Main Data section and Main
Data Ptr from the length of the buffer.

B Cire Buffer.vl Block Diogram

Figure 12-17: BD of Circular Buffer VI.

L12.2.5 Scale Factor DeCOde B Scale Factor Decode(, vi Block Diagram

Bl Cdt Cperste Took (rowss Window Help L= |
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Factor Decode0 and Scale
Factor Decodel, which
are used for decoding GranuleQ
and Granulel, respectively.
Considering that the basic
components of these Vls are
the same, here only a general
description for the Scale
Factor Decode0 VIis
mentioned. A BD section of the Figure 12-18: A BD section of
VI is illustrated in Figure 12-18. Scale Factor DecodeO VI.
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The Side Information input of the VI is unbundled to obtain the individual fields.
Find Part2 LengthO VI calculates part2_1length, which forms the length
of the coded scale factors in Main Data. Once part2_length is calculated, the
scale factors are extracted. Note that the equivalent C code for extracting the scale
factors is provided as part of the BD on the accompanying CD. The Byte to
Boolean Array VI converts each element of the integer array to Boolean digits
and concatenates them to form a Boolean array.

Once the scale factor decoding for GranuleO is done, the scale factor decoding for
Granulel is done creating two scale factor outputs, scalefac_1 and scalefac_s.

L12.2.6 Huffman Decode

The Huf fman Decode VI decodes coded data by performing a table look-up
using thirty-four standard Huffman tables. This VI consists of the following subVIs:
Part2 Length,Byte to Boolean Array,Huffman Info,Big Value
Search,Big Value Sign, Countl Search, and Countl Sign.In what
follows, this VI and its subVIs are described. Considering that the Part2 Length
and Byte to Boolean Array subVlIs are already explained, we begin by the
Huffman Info VI

The Huffman Info VI, see Figure 12-19, extracts the individual table_select for
each of the three sub-regions of the big_value region from the table_select field of
the Side Information.

& Hulfman Info.vi Block Diagram
Be Lt Opersie Tooks Prowse YWindow Help
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Figure 12-19: A BD section of Huffman Info VI.
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Note that the two parameters region0O_count and regionl_count are used to deter-
mine the boundaries of the big_value region. Once table_select and the boundaries
are determined in the Huf fman Info VI, the decoding of the Big Value and
Countl regions begins.

The big_value stage of the Huf fman Decode VI consists of the search loop
section which is located in the While Loop shown in Figure 12-20. This section
searches for a codeword match in the big_value region. Before this search takes place
in the search 1loop, the current region to be decoded must be determined. This is
achieved by using the Formula Node exhibited in Figure 12-20. This is important,
as the table_select value is region dependent. The search loop extracts one bit
at a time, appends it to the previously extracted bit, and passes it to the Big Value
Search VI. The search loop terminates when a match is found.

B Huffman Decode.vi Bleck Diagram
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Figure 12-20: Search loop section of big_value stage.

The Big Value Search VI performs the search for the bit string generated in
the search 1loop using the tables and generates the decoded values as its output.
Figure 12-21 illustrates the BD of the Big Value Search VI. It uses the standard
Huffman tables with table_select being used as an index.

The Search 1D Array function (Functions — All Functions — Array — Search 1D
Array) is used to search for the codewords in the selected tables. Once a match is found,
the VI extracts the decoded values, X and Y, from the selected table at the index
produced by the Search 1D Array function. The Boolean indicator, denoted by
Match, is used to terminate the search loop of the Huf fman Decode VI.

Next, the Big Value Sign VI, see Figure 12-22, is used to determine the Escape
and the sign value for X and Y. As mentioned earlier, the Escape value is only evalu-
ated when the decoded value is equal to fifteen. This value is determined by fetching
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Figure 12-21: BD of Big Value Search VI.

Linbits number of bits. Then, the value represented by the fetched bits is added to
the decoded outputs as shown in the Escape Value case structure in the BD. The
decoded outputs are updated with the Escape and sign value to form the final output.

B Dig Value Sign.vi Bleck Diagram
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Figure 12-22: Escape and Sign bit decoding.

After the big_value stage, the decoding of the countl stage follows. This stage is
similar to the big_value decoding, except that this time four decoded outputs, v, W,
X, and Y are obtained. The process of determining the sign bit is similar to the big_
value sign process. Figure 12-23 illustrates the countl stage of the Huffman decoding.
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Figure 12-23: Countl sage of Huffman Decoding.

L12.2.7 Requantization

The Requantization VI combines the outputs of the Scale Factor
Decode and Huf fman Decode VIs to implement the requantization equations
given by Equations (12.2) and (12.3). Figure 12-24 shows one section of the
Requantization VI, which illustrates the implementation of the requantization
equation for long blocks.
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Figure 12-24: A BD section of Requantization VI.
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This VI calculates the overall scaling factor and raises the Huffman decoded outputs
to the power 4/3. Then, it multiplies them with the overall scaling factor and the
sign of the Huffman decoded outputs. An array consisting of all the outputs is built to
serve as the output of the requantization block.

In the other section of the Requantization VI shown in Figure 12-24, the
MainSI Params VlIisused. This VI is created to extract the frequently used
fields of the Side Information including global_gain, window_switch_flag,
block_ type, mix_block_flag, scalefac_scale, and preflag. The
MainSI Params subVIis used in the other decoding stages, e.g. IMDCT VI, as
well as in the requantization block.

L12.2.8 Reordering

The Reorder VI changes the order of frequency lines or the output of the requan-
tization block. Since reordering is required for short blocks and mix blocks only, the
Reorder VI first identifies the block type before performing reordering. The BD of
the Reorder VI for short blocks is illustrated in Figure 12-25. Note that this VI sim-
ply copies the frequency lines to a new array having a reordered index.
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Figure 12-25: BD of Reorder VI.

For mix blocks, the reordering is not carried out for the first two subbands, as they
consist of long blocks.
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L12.2.9 Alias
Reduction

The Alias Reduc-
tion VI scales the
reordered frequency lines

with the alias coefficients.

Since alias reduction is
performed only for long
blocks, this VI identifies
such blocks and performs
alias reduction on them.
The BD shown in Figure
12-26 carries out the

butterfly calculation. Note

Figure 12-26: A BD Section of Alias Reduction VL.

that the alias coefficients are defined in the arrays ca and cs, see Figure 12-26.

L12.2.10 IMDCT

The IMDCT VI converts the frequency domain samples to time domain samples,
thereby providing the input samples to the Polyphase filter. This VI also performs win-
dowing and an overlap/add operation on the output samples as shown in Figure 12-27.
The global variable PrevB1ck is used to pass the output values used for the overlap/
add operation from one frame to another. Note that this value is initialized only once
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Figure 12-27: BD of IMDCT VI.
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at the beginning of decoding. The MainSI Params VI, mentioned earlier, is located
to obtain the main Side Information fields used for the IMDCT operation.

The IMDCT Calc subVI performs the actual IMDCT computations. Since the
formula used for the calculation of IMDCT is different for long and short blocks, the
implementation of each case is done separately.

The BD for calculating IMDCT for long blocks is illustrated in Figure 12-28. Input
values are convolved with the IMDCT coefficients denoted by Cos_1. The window-
ing is performed on the convolution output. This is done by multiplying the IMDCT
output with the predefined window coefficients, denoted by win.
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Figure 12-28: BD of IMDCT Calc VI (long block case).

For short blocks, the three outputs of IMDCT are overlapped and added for the final
IMDCT array.

L12.2.11 Poly & PCM

The Poly & PCM VI generates the final output of the MP3 decoding process, i.e.,
PCM samples. This VI transforms the thirty-two subbands of eighteen samples each to
eighteen subbands of thirty-two PCM samples. It consists of three subVIs: FreqInv,
MDCT & Wvec,and Add & PCM. Figure 12-29 displays the BD of the Poly &
PCM VI and its associated subVIs. Two global variables, a 1024 point Vvector and
bufferOf fset, are created for transferring the data of the current frame to the
next frame.
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Figure 12-29: BD of Poly & PCM VI.

The FregInv VI performs frequency inversion on the input samples by negating
every odd sample of every odd subband. This inversion is done to compensate for the
negation of values during the MDCT stage.

The MDCT & Wvec VI, see Figure 12-30, computes the MDCT array and generates
the windowed vector, indicated by Wvector. The global variable Vvector plays

a circular buffer role where the elements are shifted circularly and a new element

is inserted at the index specified by bOf. Sixteen 32-point arrays of the replaced
Vvector are extracted to form the pre-windowed vector. This vector is then mul-
tiplied with the window function to form the Wvector as illustrated in Figure 12-30.
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Figure 12-30: BD of MDCT & Wvec VI.
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The Add and PCM VI adds the elements of the Wvector. The addition of the
16x32 Wvector takes place column wise so that the sixteen values in each column
are added to generate one value for the final output array as previously illustrated in
Figure 12-11. This operation is repeated eighteen times to form the final 18x32 out-
put array. This array is then converted to the 116 format for the final PCM samples.

L12.2.12 PCM Out

This VI writes the output of the Poly & PCM VI to afile. It uses the Build Path
function (Functions — All Functions — File 1/0 — Build Path) and the Write to I16
File VI (Functions — All Functions — File 1/0 — Binary File VIs — Write to 116 File).
The controls are connected to the appropriate functions as illustrated in Figure 12-31.
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Figure 12-31: BD of PCM Out VI.

L12.2.13 MP3 Player

The MP3 Player Vlis the top-level VI of the MP3 decoder system. It integrates
all the discussed VIs. A new VI is opened and the MP3 Read VI is placed in its

BD. The file path of the MP3 file is obtained from the path terminal of the File
Dialog function (Functions — All Functions — File 1/0 — Advanced File Functions —
File Dialog). The output of the MP3 Read VI is wired to an Array Size function
and the MP3 Frame Info VI. The output of the Array Size function is wired
to the MP3 frame Info VI Indicators for all the outputs of the MP3 Frame
Info VI are created to display the MP3 file information on the FP. A 1024 point
array, Buf fer, and the global variable used in the IMDCT and Poly & PCM VIs
are initialized with zeros. The buf ferOf fset global variable in the Poly & PCM
VI is initialized to 64.

Finally, a For loop is created and the Frame # output of the MP3 Frame
Info Vlis wired to the loop count N. All the VIs are wired together as shown in
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Figure 12-12. Two Shift Registers are located in the For Loop. The initial-
ized Buf fer array is wired to one of the shift registers and a constant ‘0’ to the other.

Running the VI brings up a file dialog to choose an MP3 file to play. The decoded
PCM file can be played by any audio application software, such as Adobe® Audi-
tion™. Figure 12-32 displays the FP of the MP3 Player VI.
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Figure 12-32: FP of MP3 Player VL.

L12.3 Modifications to Achieve Real-Time Decoding

By profiling the VI built in the previous section, one can find that four of the sub-
VIs account for over 93% of the execution time. The time consuming subVIs along
with their time usage (in percentage) are listed in Table 12-2. The overall decoding
time for an examined file of 21 seconds takes 58 seconds, which means not having a
real-time throughput. The following VI modifications are thus carried out in order to
decode MP3 files within their play times.

Table 12-2: Processing time percentages for the time consuming Vls.

SubVI Relative time consumption (%)
Huffman Decode VI 47.34

Requantization VI 4.50

IMDCT VI 8.90

Polyphase VI 32.28

Other VIs 6.8
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L12.3.1 Huffman Decode

In the above version of this VI, the section for the codeword table look-up in the
Huffman tables is quite slow. Also, the search algorithm employed is not efficient,
which results in a very slow execution. In this section, a faster way of implementing
the Huffman Decoding block is presented. The outer structure of the VI remains the
same. The changes made are in the search loop, the Big Value Search VI,
and the Count1l Search VL

In the search 1loop, the search is done at bit level. However, a faster version can
be obtained by performing the search on multiple bits of Huffman coded data. The
length of the bits to be extracted is determined by the predefined codeword lengths
in the selected table. As a result, all the redundant searches for codewords whose
lengths are not specified in the selected table are avoided. A Case Structure

is created where its contents are arrays corresponding to the codeword lengths of
the tables. The array for a table is selected using the tableout parameter. Figure
12-33 illustrates the implementation of this new search loop.

> Huffman Decode.vi Block Diagram r.IEI‘F|
Fle Edt Operate Tools Browse Window Help E

[ ]@] @[] ]luc]e]s | 130t kg Fort ~[2or

Figure 12-33: Faster search loop for Huffman Decode VI.

The Big Value Search VI creates the 2D Huffman tables consisting of integers
instead of strings, thereby improving the speed of this VI by a factor of ten. This VI
uses a new style of look-up tables (LUTs), whose description follows next.

Divide the Huffman tables such that codewords with the same length occur together.
Construct a 2D array with two columns and rows given by the number of codewords
of the selected length. The elements are specified by the decoded values, X and Y.
Construct another 1D array with the integer values of the codewords. For example,
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the codeword ‘111001’ is represented in the array as 57. Combine the two arrays into
a cluster and form a 2D array of all such clusters. The clusters in the 2D array are
indexed by table_select and 1ength. As a result, the search is only done on
the table specified by table_select and 1ength. This makes the VI run quite
fast. Also, create a 1D array whose elements are Linbi ts for each table.

After indexing the correct table, codeword searching is carried out using the
Search 1D Array VI This VI returns ‘-1’ for no match. Figure 12-34 shows the
BD of the Big Value Search VI

b= Hig Value Search.vi Block Diagram
Bl Et Cperabs Tooks frowss Window Help

@-i@ - III,E?' unjmu.:hmm;m

< »

r

Figure 12-34: BD of faster Big Value Search VI.

Now, create three controls: table_select, length,and Bits to search.
Next, place three functions: Index Array, Unbundle, and Search 1-D
Array. Implement the Big Value Search VI using these functions as illustrat-
ed in Figure 12-34. Link the Big Value Search VItothe Big Value Sign
VI. Make the same changes in the search 1oop of the countl region as done in
the big_value region earlier. Similarly, place the Count1l Search VI and repeat
the above steps to construct a cluster of LUTs. The difference is that the 2D array in
the cluster has four columns. The four columns correspond to the decoded values v,
W, X, and Y. Search for the bits as before and index out elements from the 2D array
at the row index given by the output of the Search 1-D Array function and
columns 0, 1, 2, and 3. Place all the indicators and complete the updated version of
the Huf fman Decode VI by linking this VI to the Count1 Sign VI.
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L12.3.2 IMDCTDLL

The IMDCT VI consumes an excessive amount of execution time because of the
number of loops in the code. Also, reading and writing to a global variable adds
to the overall time of the VI. Therefore, to speed up the IMDCT VI, the Call
Library Function Node feature of LabVIEW is utilized here. This function
improves the speed by a factor of four.

Open a new VI and save it as IMDCTDLL.vi. Place all the controls and connect

them to the functions in the VI as shown in Figure 12-35. Place the Call Library
Function Node function (Functions — All Functions — Advanced — Call Library Func-
tion). Before using this function, a Dynamic Link Library (DLL) must be created to
carry out the desired operation. To create a DLL, use Visual C++. Open a new Win32
Dynamic Link Library project (File — New — Projects — Win32 Dynamic Link Library).
Give the project a name and click OK. Select Empty DLL Project in the next window.
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Figure 12-35: BD of IMDCTDLL VL.

The source code of the IMDCTDLL project is provided on the accompanying CD.
Add the files from the IMDCT folder in the project (Project — Add to Project —
Files...). Build the project (Build — Rebuild All). Then, double-click on the Call
Library Function Node function. Select the DLL just created using the
Browse button. The function in the DLL will be displayed in the Function Name
field. Select C in the Calling Convention field. Click on Add Parameters After in that
window and provide a name to be entered in the Parameter field. Select the param-
eter type (array, number or string etc.) and the data type. Also, select the method of
passing arguments to the function. For numbers, select Pass by Value or Pass
by Reference. However, for arrays, select Array Data Pointer. Addall
the controls as defined in the C function. Click OK when finished. Attention should
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be paid to the data type matching in LabVIEW and C. For example, Float in C
corresponds to Single Precision in LabVIEW. Also, when outputs are arrays,
an array initialized with zeros must be passed to the Call Library Function
Node function as input. For more details on the use of DLL in LabVIEW), refer to [1].

L12.3.3 Poly & PCM

The Poly & PCM VI is also modified using the Call Library Function
Node function to improve its speed. First, open a new VI. Then, implement this
VI as illustrated in Figure 12-36 with the use of the Call Library Function
Node function. Now, create a project that builds a DLL to perform the function
of the Poly & PCM VI as just described in the IMDCTDLL VI. The original code
used to build the DLL is provided on the accompanying CD. Add the files from the
Polyphase folder and build the project to create the DLL. After the completion of
the DLL project, add appropriate parameters to the Call Library Function
Node function as done in the IMDCTDLL VI. Use the Reshape Array func-
tion to convert the 2D output of the library function to a 1D array of length 1152
as shown in Figure 12-36. Place an indicator, POLYOUT, at the output of the first
Shift Register.
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Figure 12-36: Polyphase VI using Call Library Function Node.

The above modifications allow the 21-second MP3 file to be decoded in 3.2 seconds.
Table 12-3 provides five other MP3 files and their decoded times. Note that all these

files are decoded in shorter times than their durations.
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Table 12-3: Decoding times for different MP3 files.

MP3 File Specs Play time (sec) Decoding time (sec)
32 kHz, 48 kbps, 330 Frames 11 3.0
44.1 kHz, 56 kbps, 1075 Frames 27 9.2
44.1 kHz, 128 kbps, 454 Frames 11 4.0
44.1 kHz, 128 kbps,2573 Frames 67 47.4
48 kHz, 128 kbps,1099 Frames 26 15.9

L12.4 Bibliography

[1] National Instruments, LabVIEW User Manual, Part Number 320999E-01,
2003.
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