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Abstract—We propose two H.264 bit rate prediction and
selection applications based on features extracted for our blind
video quality assessment (VQA) algorithm, Video BLIINDS. We
describe the blind VQA algorithm briefly, and we show that
is correlates highly with human judgments of quality. We then
demonstrate two applications: an H.264 bit rate predictor and
an H.264 bit rate selector.
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I. INTRODUCTION

The tumescent increase in video content that is being
transmitted over wired and especially wireless networks,
as a consequence of the rise in mobile device purchases
(smart phones with increasingly larger screens, tablets, PDAs,
laptops), has led to a tremendous increase in network traffic.
Consequently, providers have sought to manage this traffic so
as to ensure multimedia delivery at the available bandwidth
capacity while ensuring adequate quality of experience.

The limited availability of bandwidth, and the physical
properties of the transmission media and capture and display
devices means that some information from the original
source is likely to be lost. It is, however, important that the
perceived visual quality at the end-user be maintained at
an acceptable level, given rising consumer expectations of
the quality of multimedia content delivered to them. This
necessitates optimizing network and encoder parameters to
meet consumer expectations of multimedia experience.

Until recently, there did not exist blind VQA algorithms that
consistently and reliably correlate well with human judgments
of temporal visual quality. Towards designing such a model,
we have developed the Video BLIINDS framework, that uti-
lizes a spatio-temporal model of DCT coefficient statistics to
predict vidual quality. In this work, we will briefly review the
Video BLIINDS model, and we introduce two applications of
H.264 bit rate prediction and bit rate selection that rely on the
features extracted by our VQA model. In the first application,
bit rate selection, an H.264 encoding bit rate is selected given a
certain desired visual video quality. In the second application,
bit rate prediction, the bit rate at which an H.264 encoded
video is predicted after its visual quality is assessed.

II. THE VIDEO BLIINDS MODEL

The algorithm is explained in detail in [1]. We shall
however, briefly review it here.

Our approach “Natural Scene/Video Statistics” approach to
VQA assumes the hypothesis that the human vision system
has evolved in response to the physical properties of the
natural environment [2], [3], and hence, the study of natural
image/video statistics is highly relevant to understanding
visual perception.

We refer to pristine/undistorted videos that have not been
subjected to distortions as natural video scenes, and statistical
models built for natural video scenes as NVS (natural video
statistics) models. The approach to our VQA design leverages
the fact that natural, undistorted videos exhibit statistical
regularities that distinguish them from distorted videos where
these regularities are destroyed, and that deviations from
the NVS model, caused by the inflicting distortions, can be
used to predict the perceptual quality of videos. Specifically,
we propose an NVS model of DCT coefficients of frame-
differences, since differencing consecutive frames reduces the
high redundancy in videos, and captures the instantaneous
(frame-wise) change along the temporal dimension.

Figure 1 plots an example of the statistics of DCT
coefficient frame differences. Specifically, the empirical
probability distributions of frame difference coefficients
(from 5 x 5 spatial blocks) in a pristine video and in a
video distorted by a simulated wireless channel are shown.
This motivates VQA models that use statistical differences
between the DCT coefficients of frame differences in pristine
and distorted videos.

The new blind VQA model is summarized in Fig. 2.
A local 2-dimensional spatial DCT is applied to frame-
difference-patches, capturing spatially and temporally local
frequencies. The frequencies are spatially local since the
DCT is computed from n X n blocks, and they are temporally
local since the blocks are extracted from consecutive frame
differences. The frequencies are then modeled as generated
from a specific family of probability density functions,
namely the generalized Gaussian density.

The interaction between motion and spatio-temporal change
is of particular interest, especially with regards to whether
motion is implicated in the masking of distortions. The type
of motion which occurs in a video is a function of object
and camera movement. In our model, image motion is char-
acterized by a coherency measure which we define and use
to weight the parameters derived from the spatio-temporal
NVS model of DCT coefficients. Features extracted under the
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Fig. 1: Empirical probability distribution of frame-difference
DCT coefficients of pristine and distorted videos. Dashed line:
pristine video. Solid line: distorted video.

spatio-temporal NVS model are then used to drive a linear
kernel support vector regressor (SVR), which is trained to
predict the visual quality of videos.
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Fig. 2: The Video BLIINDS framework
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A. Prediction

Given a database of distorted videos and associated
human judgments, the extracted features are used to train
a linear kernel support vector regressor (SVR) to conduct
video quality score prediction. We address the question of
accounting for the temporal scale of the process by generating
temporal scores in two ways: 1) by generating scores on an
instantaneous (frame) basis, and 2) by integrating quality
scores over 10 second intervals.

Since DMOS scores on VQA databases are usually only
reported for complete video segments (10 seconds), we used
the MS-SSIM index [4] applied on a frame basis against the
reference video as a proxy for human scores. In this way it
is possible to train the SVR to generate frame quality scores.
Subjective DMOS scores were used to train another SVR to
predict quality scores over 10 second video intervals.

In both cases, a linear kernel SVR based on the implemen-
tation in [5] was used to conduct quality score prediction.

III. VIDEO BLIINDS EXPERIMENTS AND RESULTS

The algorithm was evaluated on the LIVE VQA database
[6]. The LIVE VQA database has a total of 160 videos
derived from 10 reference videos of highly diverse spatial
and temporal content. The database contains videos distorted
by four distortion types: 1) MPEG-2 compression, 2) H.264
compression, 3) wireless distortions, and 4) IP distortions.
We first evaluated Video BLIINDS by training it and
testing it on each distortion type in isolation (i.e. making it
distortion-aware), then we mixed the distortions together and
applied the method on the mixture (i.e. making it distortion
unaware). We split the database into content-independent
train and test sets: 80% of the content was used for training
and the remaining 20% was used for testing. We compute
the Spearman rank order correlation coefficient (SROCC)
between predicted scores and the ground truth scores of the
database for every possible combination of train/test split. We
report the median SROCCs in Table I, where we compare
a number of models including full-reference PSNR and
SSIM image quality indices. We also compare against two
top-performing reduced reference VQA approaches VQM
[7], Video RRED [8] and two leading full-reference VQA
indices MOVIE [9] and ST-MAD [10]. We computed the
median Spearman rank order correlation coefficient between
the predicted DMOS and the subjective DMOS scores of the
database. The results are shown in Table I. Our approach
outperforms PSNR, SSIM, and VQM, and is competitive with
the performance of the RR-VQA RRED and the FR-VQA
MOVIE and ST-MAD models. Of course, Video BLIINDS
does not rely on any information from the pristine version of
the video to make quality predictions. It does, however, rely
on being trained a priori on a set of videos with associated
human quality judgments.

IV. PRACTICAL APPLICATIONS

The SROCC results show that the Video BLIINDS features
are well suited for predicting the visual quality of videos
compressed using H.264 compression. Thus, we now show
how the features can be used in two useful applications
involving H.264 compression.

The first application addresses the problem: Given an
uncompressed video, how much can it be compressed to
achieve a desired level of quality (expressed as DMOS or
MOS)? Note that different videos generally require different
compression bit rates to be represented at a specific visual
quality, depending on their spatial and temporal content. The
second application addresses the problem: Given a video
compressed by H.264, can the bit-rate at which it has been
compressed be predicted? We demonstrate that the Video
BLIINDS features can be used to address these questions.



[ Distortion | Full/Reduced-Reference VQA [ Blind VQA ]
PSNR  SSIM VQM STMAD MOVIE RRED | Video-BLIINDS
MPEG-2 0.667 0.786 0.828 0.9484 0.9286 0.809 0.882
H.264 0.714 0.762 0.828 0.9286 0.9048 0.885 0.851
Wireless 0.680 0.714 0.714 0.7976 0.800 0.771 0.802
1P 0.660 0.600 0.770 0.7143 0.788 0.771 0.826
ALL 0.671 0.650 0.7451 0.825 0.807 0.826 0.821

TABLE I: Median SROCC correlations on every possible combination of train/test set splits (subjective DMOS vs predicted

DMOS). 80% of content used for training.

In the first application, which we dubb the Video BLIINDS
Bit Rate Selector, we design an algorithm that selects the
bit rate at which to compress a video at a given level of
perceptual quality. It takes as input an uncompressed video
and the desired quality level to be achieved by compression.
It then extracts global Video BLIINDS features (pooled over
10 second intervals), and uses a linear SVR to predict the bit
rate at which the video needs to be compressed. The overall
framework of the perceptual bit rate selection algorithm is
depicted in Fig. 3.
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Fig. 3: Application 1: Perceptual bit rate selector.
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Fig. 4: Application 2: Bit rate prediction.

The second application which we dubb the Video BLIINDS
Bit Rate Predictor, aims to predict the rate at which a video
has already been compressed, using Video BLIINDS quality
features. This process is summarized in Fig. 4.

The above two applications assume a particular choice of
the H.264 encoder parameters. These are specified in [12].
I.e. given a particular configuration of the H.264 encoder
parameters, it is possible to derive a mapping from visual
quality to bit rate. This is inherent to the encoder parameters
used on the videos comprising the training set from which
the mapping was derived. The same assumption applies for
both applications.

The applications were tested on the H.264 compressed
portion of the LIVE VQA database. The details of the H.264
encoding parameters can be found in [6]. The compressed
videos spanned bit rates between 0.2MB to 6MB. 80% of the
content was used for training and the remaining 20% was
used for testing. The process was repeated over 100 iterations
of randomly selected train and test sets. In Application 1
(Bit Rate Selector), a median SROCC of 0.954 was achieved

between the predicted and actual bit rates. The histogram of
the obtained SROCC values is shown in Fig. 5.
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Fig. 5: Application 1: Histogram of SROCC between predicted

and actual bit rates over 100 iterations of train/test splits.

It is important to note that although we might expect
subjective video quality to vary monotonically with
compression level, this relationship need not be strictly
monotonic. For example, the perceived quality of a video
might remain constant over a wide range of bit-rates. For
this reason, Video BLIINDS features may not necessarily be
expected to yield precision bit rate selection. However, they
can be expected to deliver reliable subjective quality in the
resulting compressed video.

There is a concentration of SROCC values between 0.8 and
1, with a few outliers below 0.5. The performance of Applica-
tion 1 depends on the cumulative error of first predicting the
visual quality of the video, and then using the predicted score
to predict the bit rate at which the video was compressed.
The median mean square error between predicted and actual
bit rates over the 100 iterations was also computed, and it
was found to be 0.374 MB. A scatter plot of predicted versus
actual bit rates is shown in Fig.6.

In Application 2 (Bit Rate Predictor), a median SROCC
of 0.860 was achieved between the selected bit rate and the
bit rate of the actual compressed videos in the database. The
challenge in the second application is that the SVM that learns
a mapping from the tuple of features plus desired quality to bit
rate only sees the features extracted from the pristine videos
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Fig. 6: Application 1: Scatter plot of predicted versus actual
bit rates.

of the database and not from the compressed videos. The
histogram of the obtained SROCC values is shown in Fig. 8.
The median mean square error between predicted and actual
bit rates over the 100 iterations was also computed, and it was
found to be 0.471 MB. A scatter plot of selected versus actual
bit rates is further shown in Fig.7.

6000 ; : o
5000} : : "
: : :
: o 8
4000} : : 9
B |
@ é ;
- 3000} 5
o 8
3 : ¢
3 g :
2000} ggggg s : 8
°fc gsgg 6
o o0 =R :
Sog o 8
1000F - .So.g..g..
£388
[s1=]
.
0 §°g g i i i i i
0 1000 2000 3000 4000 5000 6000

Actual Bitrate

Fig. 7: Application 1: Scatter plot of selected versus actual bit
rates.

Similar to the results for Application 1, while the SROCC
scores are concentrated above 0.8, there are a number of
outliers below 0.5, showing the challenge in learning the
mapping from desired quality to bit rate given only a few
features from the original non-compressed video.

These two applications are good examples of how Video
BLIINDS features can be used in practical ways. It remains
for future work to explore how NVS features such as those
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Fig. 8: Application 1: Histogram of SROCC between selected
and actual bit rates over 100 iterations of train/test splits.

used in Video BLIINDS can be exploited for other perceptual
optimization problems, such as tracking, denoising, deblock-
ing, and so on.

V. CONCLUSION

We have described a natural scene statistic model-based
approach to the no-reference/blind video quality assessment
problem. The new Video BLIINDS model uses a small num-
ber of computationally convenient DCT-domain features. The
method correlates highly with human visual judgments of
quality. Additionally, we demonstrated two interesting appli-
cations of the Video BLIINDS features.

REFERENCES

[1] M.A. Saad and A.C. Bovik, “Blind quality assessment of natural videos
using motion coherency,” in IEEE Asilomar Conference on Signals,
Systems, and Computers, November 2012.

[2] B.A. Wandell, Foundations of Vision, Sinauer Associates Inc., Sunder-
land, MA, 1995.

[3] R. Blake and R. Sekuler, Perception, McGraw Hill, 5th edition, 2006.

[4] Z. Wang, E.P. Simoncelli, and A.C. Bovik, “Multiscale structural
similarity image quality assessment,” in Asilomar Conf. Sig, Syst., and
Comp., November 2003, vol. 2, pp. 1398-1402.

[5] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “Kernlab — an S4
package for kernel methods in R,” J. Statistical Software, vol. 11, no.
9, pp. 1-20, 2004, http://www.jstatsoft.org/v11/i09/.

[6] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Proc., vol. 19, no. 6, pp. 1427-1441, June 2010.

[7]1 M.H. Pinson and S. Wolf, “A new standardized method for objectively
measuring video quality,” /EEE Trans. Broadcasting, vol. 10, no. 3, pp.
312-322,, September 2004.

[8] R. Soundararajan and A.C. Bovik, “Video quality assessment by reduced
reference spatio-temporal entropic differencing,” IEEE Trans. Circ. Syst.
Video Technol., 2012, (to appear).

[9] K. Seshadrinathan and A.C. Bovik, “Motion tuned spatio-temporal

quality assessment of natural videos,” IEEE Trans. Image Process.,

vol. 19, no. 2, pp. 335-350, February 2010.

P.V. Vu, C.T. Vu, and D.M. Chandler, “A spatio-temporal most apparent

distortion model for video quality assessment,” in [EEE Int’l Conf.

Image Process., 2011, pp. 2505-2508.

M.A. Saad, A.C. Bovik, and C. Charrier, “Blind image quality assess-

ment: A natural scene statistics approach in the dct domain,” [EEE

Trans. Image Proc., vol. 21, no. 8, pp. 3339 — 3352, August 2012.

H.264/MPEG-4 AVC reference software manual, 2007, Available:

http://iphome.hhi.de/suehring/tml/JMX072).pdf.

[10]

(11]

(12]



