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Abstract 
Computer music is not the artistic expression of an exclusive set of composers that it used to be. Musicians 
and composers have grown to expect much more from electronics and computers than their ability to create 
"out-of-this-world" sounds for a tape piece. Silicon has already made its way on stage, in real-time musical 
environments, and computer music has evolved from being an abstract layer of sound to a substitute for 
real instruments and musicians. Within the past three decades, an eclectic set of tools for sound analysis 
and synthesis has been developed without ever leading to a general scheme which would highlight the 
issues, the difficulties and the justifications associated with a specific approach. A rush in the direction of 
incremental improvement of existing techniques has traditionally distinguished analysis and synthesis.  

Rather than confining ourselves to one of these arbitrarily exclusive tasks, we are pursuing an ambitious 
dream from a radically new perspective. The ultimate goal of this research is to infer virtual instruments 
from the observation of a real instrument without any strong pre-conception about the model's architecture. 
Ideally, the original observation should be a simple audio recording. We also want our inferred virtual 
instruments to exhibit physically realistic behaviors. Finally, we want the nature of the virtual instrument's 
control to be universal and perceptually meaningful.  

For this purpose, our investigation falls naturally into three steps. We first identify a set of perceptually 
meaningful musical gestures which can be extracted from an audio stream. In the case of a monophonic 
sound, we discuss the definition and the estimation of loudness, pitch contour, noisiness and brightness. 
The second step is to investigate means by which a physically meaningful model can be inferred from 
observed data. While doing so, we introduce embedding modeling as our general philosophy and reduce 
modeling to the characterization of prediction surfaces. We also suggest some general purpose 
interpretations, including an original cluster-weighted modeling technique. Finally, our third and last step is 
to suggest a strategy for applying such modeling ideas to musical audio streams parametrized by the 
perceptually meaningful musical gestures that we previously identified. We present pitch synchronous 
embedding synthesis (or Psymbesis), a novel approach to the inference of a virtual instrument, as a 
working sound synthesis algorithm and an interpretation of these suggestions. 

Psymbesis was designed specifically around musical instrument modeling but the general philosophy of 
embedding modeling extends beyond the field of computer music. For instance, we establish embedding 
modeling as a useful tool for the analysis of fairly small but highly non-linear deterministic dynamical 
systems of arbitrary nature. We expect that the introduction of embedding modeling will provide signal 
modeling with a new perspective, relaxing the constraint of linearity and filling the present gap between 
physical models and standard signal processing.  
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Chapter 1 

Introduction 

After situating musical sound analysis and representation in its historical context, we 
will highlight the central issues associated with these problems and present the scope of 
this work. A major step will be to articulate the motivations for the processing of musical 
sound and show how these motivations should influence the choice of a model for the 
representation for musical sounds. This chapter will end with a statement of the author's 
motivations and an overview of this document. 

Quick History 
Experimenting with the sound produced by a vibrating string a little over twenty-six centuries 
ago, Pythagorus applied his newly developed theory of proportions to "pleasing musical 
intervals," leading to his own tuning system. Twelve centuries later, the Roman philosopher 
Boethius reinforced the relationships between science and music, suggesting notably that pitch 
is related to frequency. By the middle ages, music (referring to harmony) was perceived as one 
of the four noble fields of mathematics, along with arithmetic, geometry and astronomy. The 
notion of frequency itself had to wait until the early seventeenth century before it was 
scientifically defined by Galileo Galilei, an Italian scientist whose work, believed to be the 
foundation of the modern study of waves and acoustics, clearly reflected his interest in music. 

This first demystification of pitch left the notion of tone color (or timbre) in its original 
obscurity until Helmoltz, at the end of the nineteenth century, suggested a characterization of 
timbre based on the set of sinusoidal components of the quasi-periodic part of a sound. Clearly 
influenced by the highly controversial series introduced by Fourier in 1822, this study gave 
birth to the classical conception of timbre. At the time of this suggestion, Helmoltz was 
already aware of the weaknesses of this approach and the importance of temporal information 
became obvious when technology provided recording and editing tools for sounds. Adding a 
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temporal dimension to this classical conception led to sonograms, an extensively used 
representation for sound ever since. 

After the early 1950s, the availability of general purpose computers and the refinement of 
electronics relieved composers from the rigid boundaries of acoustically produced sounds and 
sent them on a quest for timbre synthesis, representation and manipulation. Soon additive, 
subtractive, formantic,  wave-shaping and FM synthesis were born, each one offering a 
different representation for timbre and a different set of parameters for controlling it. Yet the 
growth of tone color's role in composition, from "musique concrète" to computer music and 
today's elaborately produced popular music, raised more questions than it resolved mysteries. 
Musicologists, psychoacousticians and computer musicians are left with the same frustration: 
in spite of timbre's omnipresence in composition throughout these numerous centuries of 
science and music history, there is still no satisfactory universal language, structure or 
characterization  for musical sounds past their loudness and their pitch. 

Musical Sound Representation: The Issues 
Perhaps this lack of structural understanding of the exact role of sound color in music comes 
from the wide variety of phenomena involved in any musical process. If music starts where 
words stop, it should be understood as a medium of ideas and emotions. The following figure 
is an attempt to illustrate this point by representing a musical process as a chain of 
communication. Very much like for language, this chain spans both the cognitive and the 
physical worlds, requiring both of them in order to make any sense. 
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Fig. 1.1 - Music as a chain of communication. 

In this diagram, Sound refers literally to the wave form produced by the instrument. By Low 
level auditory perception we refer to the set of features provided by the first stages of our 
auditory system (external and internal ear). This is not to be taken literally in its physiological 
sense; we refer hereby to some fairly straightforward signal processing artifacts (such as 
frequency analysis) which might be related to those taking place in our cochlea. This explains 
why "Low level auditory perception" was excluded from the "cognitive field" in the preceding 
figure. 
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This figure is also an opportunity to state clearly what the scope of this work is. It will not 
venture into the high spheres of psychology, cognitive science and musicology. 

Musical Intentions versus Musical Gestures 

Although the preceding diagram might look somewhat trivial, it is not rare to come across 
attempts to recover musical intentions from sounds via signal processing only, underestimating 
the role of human perception. This confusion illustrates the obscure boundary between 
Musical Intentions and Musical Gestures. Neither of these notions have the pretension to be 
universal. They reflect the author's convictions concerning the boundary between the roles of 
information theory and of psychology in this chain of communication. 

Musical Intentions 

Musical intentions are objects that require some knowledge or expectations about what music 
is supposed to be. If we decide to keep language as an analogy, these objects have a similar 
nature to the one of words, sentences and meaning. They can often be seen as the results of 
some decision making given the prior knowledge of a context. The lowest-level musical 
intention is probably a note played in a specific fashion on a specific instrument. 

In his discussion about words and ideas, Marvin Minsky [Min85] suggests that a word could 
be a polyneme which, once activated, would act as a switch for the multiple agencies it's 
connected to. This web of connections would be the result of a learning process that would be 
specific to the individual. In many ways, music and its ability to communicate ideas and 
emotions could be thought to fit a similar scheme. Once recognized, a particular musical 
intention would activate its associated polyneme and evoke ideas, or more likely emotional 
states in the case of music, through the subsequent activation of several agencies. The number 
and the nature of these musical polyneme/agencies connections would reflect the individual's 
personal musical experience. This would explain why music can sometimes sound desperately 
meaningless when it crosses cultural boundaries. Some might think that all rap music sounds 
the same while some others could probably argue that this month's MTV top 20 offers more 
musical diversity than all the music ever written before the 20th century. The diversity of 
musical understanding is undoubtedly much larger than for words as the associated learning 
process is not supervised as explicitly as for language. 

The nature of these musical intentions and the mechanism of their eventual connections with 
other agencies of the human mind will not be addressed in the context of this thesis. These 
issues will be religiously left to psychologists, musicologists and ethno-musicologists' 
expertise. We will hereby simply acknowledge the existence of such musical intentions and 
their ability to communicate ideas and emotions. Our ability to recover these intentions from 
audio streams implies that their nature is subject to the artifacts of our auditory perception. 
This work will attempt to identify a set of low-level measurements that are likely to reflect 
some of these artifacts in the hope that this set will lead to some perceptually meaningful 
musical gestures that can communicate musical intentions. 
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Musical Gestures 

There is a diversified set of objects spanning the gap between the lowest-level musical 
intention (cognition, psychology, musicology) and a simple wave form (physics). These 
objects will be referred to as musical gestures and they should be seen as the features based on 
which musical intentions will eventually be recovered through some decision making. Here, 
the terms "decision making" should be taken fairly loosely as the author not intending to 
trivialize the mechanism of the human mind. Back to our analogy with language, these objects 
have a similar nature to the one of formants, phonemes and intonation. 

Implied by the preceding diagram is also the claim that although the information fed to an 
instrument and to a listener's brain are of different nature, they are of similar levels (see the 
following figure). The gestures that are fed to the instrument are of physical nature (fingering, 
pressure, energy, etc.) whereas the gestures resulting from our auditory perception are not. 
However, both present the ability to communicate musical intentions at a higher level than an 
audio wave form. The similarity of their level of abstraction motivated the author to label them 
both as Musical Gestures. This assimilation will become crucial when we face the question of 
how to control a virtual instrument (sound production). 

Sound 
(wave form)

Instrument Low level 
auditory perception

Fingering

Energy Loudness

Pitch contour 
Timbre characteristics

Highest level

Lowest level

Musical 
Gestures

Musical 
Sounds  

Fig. 1.2 - Musical gestures 

Machine Listening versus Instrument Modeling 

As expressed in what precedes, the scope of this work is centered around the boundary 
between Musical Gestures and Musical Sounds. Crossing this boundary in one direction or the 
other defines the two major tasks of computers for music applications: Machine Listening and 
Instrument Modeling. 

Musical Gestures Musical Sounds

Machine Listening

Instrument Modeling
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Machine Listening 

This task is crucial in the context of the development of an interactive musical system that 
would be intended to follow, respond to or jam with a musician. Without pretending to 
understand the essence of music, such a system should be able to parse sound at a similar level 
than our lowest level of perception. It should capture the set of musical gestures that it needs 
in order to make any coherent musical decision. Its analysis of the incoming sound will lead to 
a set of features which can be seen as a representation (or model) for sound. 

It seems clear that given such a task of estimating perceptual features, an appropriate model 
for sound should try to reflect the artifacts of our own perception. As we will identify some 
musical gestures in Chapter 3, we will suggest a collection of approaches and algorithms that 
have been implemented and used for several projects at the Media Laboratory's 
Hyperinstrument group. 

Instrument Modeling 

This task is undoubtedly the oldest use of computers and technology for music. Ever since 
Max Mathew's first generation of the MUSIC program, people have turned bits into sounds, 
freeing music from the constrained world of acoustic instruments. Recording, transforming, 
stretching, cutting, pasting and sound wave editing raised a large enthusiasm due to their 
novelty. The boundless world of sound synthesis could appear as the sonic playground that 
musicians and composers had been dreaming of for a long time. Yet, the lack of navigational 
tools or language for sound quality prohibited any exploration of that world that could go 
beyond the empirical. The diversity of sound synthesis techniques allowed a set of parametric 
descriptions for subsets of this sonic world. Each synthesis algorithm can be seen as a 
navigational tool that will span a specific subset of timbre space by offering a set of controls 
which could be interpreted as a language, defining a model for sound. 

Its behavior as a dynamical system will determine the model's physical meaningfulness. The 
nature of its control set (i.e. its language and its relationship with music) will determine the 
model's musical meaningfulness. In the ideal case, the control set of a virtual instrument 
should be a comprehensible set of musical gestures and its resulting behavior should reflect 
the expectations one has about the behavior of a physical system. 

The diversity of the timbre subspace that it spans will measure the model's universality. The 
control set of an algorithm that will systematically produce similar sounds won't deserve the 
status of a language for timbre. An ideal universal model would span the entire space of 
sounds that can reasonably be qualified as musical. 

The last issue associated to the choice of a model is its ease of inference from a prototypical 
sound or system. Indeed, it is becoming rare to design a virtual instrument from scratch as the 
demand for "out-of-this-world" instruments has been replaced by a concern for realism.  
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Motivations and Overview 

Music and Media - Motivations 

The universal frustration raised by the constraints of frozen HTML documents and the 
flourishing of creative CGI scripts and Java applets on the Internet are only a small portion of 
the signs indicating that Multimedia requires interaction. If we want Multimedia to carry more 
than a fashion statement, it will have to offer content, features and experiences that couldn't be 
delivered without it. Interactivity may very well be what the point of Multimedia boils down 
to. At the same time, while entertainment cannot be considered a necessity to our survival, the 
overwhelming size of its industry is the clear sign of an addiction to it. In light of what 
happened with television, it leaves no doubt in the author's mind that the informative value of 
Multimedia will turn out to be an artifact of its entertainment power. 

Music evolved both as an art form and as a source of entertainment to match the constantly 
evolving technology of its time. From acoustic performance to recording, broadcasting and 
editing, music has always tried to use the latest media that were made available. Multimedia 
technologies are only another trend that music has to follow. Already, artists from the music 
industry were among the first ones to produce interactive CD-ROMs, and private CD 
collections were among the first few clichés of what people posted on the Internet. In order for 
music to become a coherent part of Multimedia, it needs to be delivered in a format that allows 
interactivity. MIDI and General MIDI have already pushed music in that direction and they 
already justify any effort put towards instrument modeling and machine listening. 

If silicon and bits are called to substitute acoustic instruments in the context of particular 
musical activities, it is crucial to capture the essence of the original instrument's behavior. The 
quality of a virtual instrument should not only be a function of its ability to reproduce a 
particular wave form, but rather a function of the realism of its behavior as a musical 
instrument. For this purpose, it is very important to identify the wide variety of concerns and 
issues associated with the modeling of a physical system. Because of its novelty, Embedding 
Modeling is a perfect opportunity to build a general framework from the ground up and 
identify these issues and concerns without the bias of previous traditional approaches (such as 
linear system theory for instance). 

Once the original instrument's behavior is dissociated from its physical body, it is dissociated 
from its interface as well, and the question remains as to how to play this virtual instrument. In 
an ideal case, one would want the virtual instrument to respond to some meaningful musical 
gestures. Because of the specificity of an acoustic instrument's interface, it takes years for a 
musician to learn how to control the musical gestures associated with that particular 
instrument. The nature of a virtual instrument's interface can be arbitrary and therefore, one 
could very well imagine a single interface that could control a variety of virtual instruments. 
To some extent, MIDI could have become this universal musical gesture (or interface) if it had 
not been so influenced by the omnipresence of keyboards in computer music.  
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Overview 

We recall that the ultimate goal of this research is to infer virtual instruments from observed 
audio streams, without any major pre-conception concerning the model's architecture. In 
addition to exhibiting physically meaningful (or realistic) behaviors as a dynamical system, we 
want these virtual instruments to be controllable by a set of perceptually meaningful musical 
gestures. Given this ambitious goal, both machine listening and Instrument modeling are 
relevant to this work. The three major steps of this investigation are 1) the identification of 
appropriate musical gestures; 2) the investigation of the inference of non-linear model in the 
wide context of dynamical systems; 3) the suggestion of an approach to the inference of virtual 
instruments that are controlled by our musical gestures. 

After a review of previous related work and notions, we dedicate Chapter 3 to the 
identification of perceptually meaningful musical gestures. While doing so, we highlight 
issues that are inherent to machine listening as well as real-time concerns. We also suggest 
means by which such musical gestures can be extracted in real-time from monophonic audio 
streams. The resulting tools for the analysis of musical audio streams have been used in the 
context of various projects at the Media Laboratory and although these don't necessarily refer 
to instrument modeling, we provide pointers to these applications as well. 

The core of this work discusses the inference of physically meaningful non-linear models from 
observations. Chapter 4 raises the issues and concerns that are associated to such a task. It sets 
the foundation of embedding modeling by applying Floris Takens' embedding theorem 
[Tak81] to the observation of time series. It is an opportunity to revisit some well-established 
notions in modeling and information theory, and to draw interesting concepts which lead to the 
philosophy underpinning embedding modeling. The concept of sampling the physics of a 
system rather than sampling the wave-form of an observation is the basis of our faith in 
embedding modeling's ability to lead to physically meaningful models. The two following 
chapters (Chapter 5 and Chapter 6) suggest general purpose interpretations of this modeling 
scheme. They also illustrate two extreme approaches by estimating respectively global and 
local models in the observation's state space. Cluster-based modeling is the central issue of 
Chapter 6, and we present a very promising, innovative and versatile scheme as cluster-
weighted modeling. 

Chapter 7 focuses back on the modeling of virtual instruments. We use the insights of the 
previous general approaches in order to suggest pitch synchronous embedding synthesis (or 
Psymbesis) as a means by which we can achieve our original goal. Psymbesis is an original 
scheme which can be seen as a set of constraints and hypotheses concerning the nature of a 
musical instrument. Rather than being imposed arbitrarily by the specifics of a modeling 
approach, these constraints are derived from typical observations of the data's nature. 
Psymbesis is presented in a way that may lead to various interpretations but it is also reduced 
to the simplest possible implementation in a concern for applicability and validation of the 
approach. 
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Chapter 2 

Background 

This chapter will survey some previous work that contributed to today's understanding of 
timbre and its relationship with musical expression. Timbre, as the ultimate 
characterization of the perceptual quality of a sound, is central to any investigation of 
synthesis and instrument modeling. Discussing timbre in the context of musical aesthetics 
will situate this work within computer music at large. We will then review quickly some 
of linear system theory's main notions and assumptions which are relevant to modeling. 
The definitions of entropy, information and redundancy will then be recalled as we will 
refer to them subsequently. Finally we will say a few words about dynamical systems 
before introducing Floris Taken's embedding theorem. 

Timbre and Musical Expression 
In 1911, Arnold Schoenberg wrote:  "The evaluation of tone color, the second dimension of 
tone, is in a much less cultivated, much less organized state than is the aesthetic evaluation of 
pitch.  Nevertheless, we go right on boldly connecting sounds with one another, contrasting 
them with one another, simply by feeling;  and it has never yet occurred to anyone to require 
of a theory that it should determine laws by which one may do that sort of thing.  Now, if it is 
possible to create patterns out of pitches, patterns we call "melodies," progressions, whose 
coherence evokes and effect analogous to thought processes, then it must also be possible to 
make progressions out of "tone color," progressions whose relations with one another work 
with a kind of logic entirely equivalent to that logic which satisfies us in the melody of 
pitches." 

In this quote, Schoenberg points out the lack of structure for the notion of "tone color" as 
opposed to the wide vocabulary and set of rules that surrounds pitch. He foresees the 
possibility of using color as the predominant element of a musical piece and of creating form 
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exclusively from a progression of tone color. Underlying this thought is the assumption that 
there should be a way to express or predict relationships between tone colors the same way 
classical solfège does it for pitch. 

Timbre-based composition 

The use of timbre and its ability to create form has been a source of experiments ever since 
instrumental music and vocal music were dissociated (between 1400 and 1600). The 
refinement of instrumental music in the 17th century stated clearly that there was more to 
music than simply harmony (as the "science of horizontal and vertical pitch arrangement"). 
Yet, the rigidity of acoustic musical instruments didn't allow composers to go very far in these 
experiments. As  recording technology made its appearance in the 20th century, one could no 
longer deny the ability for a sound alone (with no visual cues) to carry emotions, ideas and 
even convey images. This observation evoked the awareness of a sonic world populated by 
what are usually referred to as sound objects, a notion first introduced by J.P. Schaeffer in the 
60s. 

It can be argued however that composers didn't need to wait for modern technology in order to 
use timbre as a flexible component from which they could express their art. Varèse conceived 
of his music as "bodies of sound in space" before he even gained access to any electronic 
equipment. Still, the access to recording and editing techniques might have boosted composers' 
curiosity and helped Schoenberg's dream of timbre-based composition to become reality. In an 
initial euphoria, composers recorded as much of our sonic world as they could and Musique 
concrète was born. This almost "maniacal" recording and pasting of natural sounds provided a 
huge variety of material but "one can only transform these sounds in ways that are 
rudimentary in comparison to their richness" (J.C.Risset) [Ris88]. A little later, when 
computers appeared as musical tools of an apparently limitless flexibility, timbre structure 
could no longer be ignored and it became obvious to the musical, psychological and scientific 
populations that Schoenberg's concern had to be taken seriously. 

Some examples 

By the 1950s and with electronics, the rigidity of acoustical instruments' timbre being 
bypassed, it seemed that composers and musicologists were finally armed to make 
Schoenberg's dreams come true. Composers and scientists began an enthusiastic quest for 
timbre representations and manipulations. Soon additive, subtractive, and formantic synthesis 
were born, each one offering a different representation for timbre and a different set of knobs 
for controlling it. Then frequency modulation (John Chowning [Cho73]) and waveshaping 
(Daniel Arfib [Arf79]) appeared as simplifications or short-cuts and "tone color progressions" 
were no longer the dreams of an exclusive set of specialists. In 1968, with the collaboration of 
Max Mathews (the father of the MUSIC program's first generation), Risset composed 
"Computer Suite from Little Boy" where he clearly demonstrated his ability to use timbre 
progression as a source of musical form. Aware of some peculiar psychological aspects of 
sound perception, this piece is a perceptual puzzle where the composer clearly plays with the 
listener's mind. Risset's representation of timbre is exclusively based on additive synthesis 
which added a temporal dimension to the classical conception stated by Helmoltz. The 
flexibility and the coherence of such a representation can still be appreciated today and it has 
traditionally been the preferred representation of sound quality. This piece was also an 
opportunity for the composer to introduce inharmonic structuring of timbre as well as the 
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musical use of paradoxical perceptual behaviors. Around the same time John Chowning 
[cho73], while working on sound spatialization, stumbled upon frequency modulation (FM) as 
a sound synthesis technique. Being less intuitive an approach than the previously known 
synthesis techniques, it took Chowning a few years of experimenting before he could control 
this computationally cheap algorithm to his satisfaction. As he was building up his increasing 
expertise, he composed Sabelithe in 71, Turenas in 72, Stria in 77 and Phoné in 81. By the 
80's, he was able to produce sounds that had a human voice quality to them and Phoné can be 
heard as a large FM texture in constant motion from which or to which human voice-like 
sounds seem to appear and disappear in a very ambiguous way. This ambiguity is another 
game with the mechanisms of our perception and our ability to group and separate familiar 
information. We will come back to these perceptual issues later. Of course Risset and 
Chowning were not the only ones who pushed the doors of Schoenberg's dreams and we could 
evoke the works of many other composers: J.B. Barrière, T. Murail, etc. 

A lack of structure for timbre 

Composers such as Risset and Chowning themselves admit the fact that their creativity with 
timbre manipulation was essentially driven by curiosity and intuition. In an interview he gave 
to Curtis Roads, Chowning reveals the timbre structures of most of his FM pieces directly 
reflect some aspects of his newest technical discoveries. In many other cases 
("Desintégrations" from Tristan Murail for instance) one can wonder if most of the creativity 
is not dictated by the tool. Some, like Chowning or Risset, simply admit it. After all there is 
nothing wrong with that; it shouldn't matter where the inspiration comes from. Still it does 
show one thing and that is the lack of structure for timbre. 

While retracing the history of Western music's evolution since antiquity, Hugues Dufourt 
[Duf88] points out the fact that these "new" representations for musical sounds introduce new 
bases that are radically independent from the long evolution of our pitch based musical 
system. They don't intrinsically carry a structure for timbre that resembles the one we inherited 
for pitch. Therefore he suggests that a structure for timbre should be built from scratch the 
same way our Greek ancestors dealt with pitch. When it comes to using these representations 
in order to sculpt a sound texture, the composer has still no other tool than his technological 
knowledge of the system and an abstract feeling that drives his creativity. There is nothing 
wrong with using one's feeling while trying to be creative. After all, art is a human expression 
and it should stay that way. The issue brought up by Schoenberg in his quote is not to prevent 
the use of one's feeling but rather to possess a vocabulary of "laws" that would allow an 
objective analysis of a given piece. Being able to put concepts down on a piece of paper, using 
symbols and rules, is a way for a human mind to relieve its memory (with a discrete set of 
symbols), clarify its knowledge, and therefore to build up new and more powerful notions and 
concepts. This is a common point on which people like McAdams [Mca88] and Lerdahl 
(p.182 of [Bar91]) insist clearly. The need for a symbolic representation reflects the internal 
mechanism of our mind and perception. As an illustration, knowledge and innovation start 
with literacy. 

At this point we can wonder if the second half of Schoenberg's dream about a structure for 
timbre is elusive or if it simply belongs to a later future. In what follows we will have a look at 
some of the major approaches that people have taken in that direction. 
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Suggested structures for timbre 

It is always easier to experiment with a phenomenon than it is to understand it. This is 
especially true when perception is the major key of the phenomenon. Even though one can't 
talk about revolutionary results concerning structure of timbre as a musical feature, the 
problem itself hasn't been ignored. In fact it has been addressed by a wide variety of people 
from a wide variety of angles. Among the works relevant to this problem, one can discern two 
major schools. The first one counts both musicologists and psychologists who choose a top-
down approach by identifying first a set of postulates that such a structure should satisfy and 
then by trying to fit musical sounds somehow in that scheme. The second school, which 
represents mostly scientists, is a bottom-up approach which starts with empirical 
measurements of sound perception before working itself up to higher levels of musical 
features and structures. We will now have a look at both of these approaches. 

The "top-down" school 

Pierre Schaeffer [Sch77] and his insightful notes about our auditory system has definitely 
influenced the majority of these works. One of his main insights was to say that it would be 
vain to consider that music could bypass the essential function of our auditory system, which 
is to inform us about surrounding phenomena. If our auditory system can provide us with an 
awareness of the physical world by grouping acoustic information in ways to identify familiar 
sources or objects, then our perception of tone color should be the result of  a similar process 
of grouping and separation. This observation of common sense gave birth to the notions of 
analytic versus synthetic listening, also referred to as fission versus fusion or global versus 
local listening. An analytic listening process will try to extract several elementary components 
from a given sound, leading to the perception of several simultaneous sound objects. A 
synthetic listening process will do the exact opposite, leading to the perception of a single 
complex sound object. McAdams (p.164 of Bar[91]) draws a figure representing the 
relationship between the dimension fission/fusion and the spectral density of a tone.  
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Fig. 2.1 - McAdams' fusion/fission diagram. The central shape stands for sound populations. 
For instance, fission is less likely to occur for sounds that exhibit dense spectra. 

It appears that fusion occurs for a rather complex but somehow coherent tone and allows the 
listener to group that complex information into a single sound object (synthetic listening). The 
perceptual frontier between fusion and fission is rather unclear and it has to do with the culture 
as well as the society that the listener belongs to. In his study of Transvaal Venda people's 
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music and society "How musical is man?", John Blacking [Bla73] writes: "The sound may be 
the object, but man is the subject; and the key to understanding music is in the relationships 
existing between object and subject, the activating principle of organization". Of course, this 
relationship between object and subject is a function of the subject's experience and culture. 
Psychologists argue that our perception is a heavily filtered version of our world and that 
rather than perceiving what things are, we tend to perceive what we want them to be. Playing 
with the threshold of recognition of sound objects is a game that some composers are already 
familiar with (Phoné by Chowning for instance).  

Related to this notion of fusion is the concept of consonance. When fusion occurs, this latest 
concept measures the stability of the perceived object. Consonance (or stability) is an essential 
notion when it comes to building a functional structure for timbre. Indeed, both McAdams and 
Lerdahl agree that elements can not carry form if their functional relationships don't allow 
phases of tension and release. These phases could be phases of instability and stability that 
allow the composer to provide his piece with a sense of direction. Going a little further in the 
use of this notion, Lerdahl proposes a hierarchical organization of timbre based on the 
relationships between lower level features (such as vibrato and harmonicity) and consonance. 
Harmonicity is indeed a straightforward component of tension as it was illustrated in various 
timbre-based pieces such as Le souffle du doux from D. Arfib or even some parts of Chréode I 
from J.B Barrière.  

This top-down school provides very valuable insights on perception as well as some directions 
for structure and functionality but it lacks an important element: representation. This family of 
works is still at a stage where it's defining the postulates of an eventual timbre structure. No 
concrete representation of timbre or sound is actually suggested, and any connection between 
these abstract postulates and wave-forms is still too vague to contribute in any useful way to 
sound synthesis. 

The "bottom-up" approach 

A classic reference for timbre representation is David Wessel's famous timbre space [Wes79]. 
The first idea is that a coherent quantitative model for a perceptual phenomenon should be 
based exclusively on perceptual data. Recording perceptual data requires a fair amount of skill 
and the awareness of a survey's weaknesses. The data recorded by Wessel and Grey were 
perceptual distances between pairs of sounds presented to a large number of subjects. This 
data was then fed into a multidimensional scaling procedure which outputs a collapsed version 
of a space and an arrangement of the original sounds in that space which respects the input 
distances as well as possible. This way, they ended up with a two-dimensional space of sound 
which has some perceptual value. The two axes of this space are unknown a priori and that's 
the main point: we don't know a priori what features are perceptually relevant because if we 
did, Schoenberg's dream would stop being a dream. In order to have a real continuous timbre 
space, one needs to interpolate between the original sounds that built that space. Here, Grey 
and Wessel chose to represent sounds in an additive synthesis fashion. By correlating these 
parameters along the two unknown axes of their timbre space, they were finally able to attach 
labels to these axes. The first axis was called brightness and is related to the width of the 
sound's spectrum. The second axis was called bite and has to do with the attack of the sound. 

The validity and coherence of this timbre space was made clear when Wessel submitted 
"transposed timbres" to the perceptual judgment of some subjects. Yet, this two dimensional 
space still lacks functional relationships and the "rules" that Schoenberg is referring to are still 
to be discovered. As the top-down approach was defining what timbre does but not what it is, 

Page 25 



Musical Sound Information – Eric Métois  October 1996 

this approach has the opposite problem. We have a representation (what it is) but we don't 
know much about its functionality (what it does). 

It may be that the main weakness of this representation come from its arbitrary relationship 
with additive synthesis. There are many reasons for referring to additive synthesis and 
spectrograms but none of these are related to the insightful notion of sound objects introduced 
by Schaeffer. Indeed, it seems reasonable to think that given the essence of our auditory 
system and its main function, a good representation of timbre should be linked to the physical 
world. As we will discuss it within this document, the investigation of embedding modeling in 
the context of musical signals' representation is primarily motivated by filing up this gap 
between perceptually meaningful and physically meaningful representations. Our approach 
can be qualified as "bottom-up" as well as we refuse to dictate a specific structure for timbre 
representation from pure musicology or aesthetics. Rather, we believe that such structures 
should be derived from the observation of a real system's behavior. 

Linear System Theory: Notions and Assumptions 
The analysis and the representation of musical signals have traditionally made an extensive use 
of Fourier transforms, spectral measurements, and similar types of time/scale representations. 
In order to elevate the analysis or the representation of musical sounds to a higher ground, we 
must first get familiar with the foundations of the tools that we usually take for granted (linear 
system theory). In the general context of modeling, issues such as determinism and 
stochasticity are systematically raised and identifying their interpretation within linear system 
theory will highlight the limitation of these tools and the need for alternative non-linear 
modeling techniques. 

Assumptions behind spectral analysis 

First of all let's recall that the nature of spectral analysis is based on an assumption concerning 
the randomness of the signals. Indeed, we are viewing sampled sounds here as discrete time, 
wide-sense stationary stochastic processes x. The spectral distribution of a stochastic process x 
is traditionally defined as the Fourier transform of its autocorrelation function. 

 
 
Sx (f) = Rx (n).e−2iπnf

n ∈Z
∑  

As the autocorrelation of an ergodic process can be written as a convolution product of the 
process with its reversed   R , it is fairly common to encounter the following 
expression for a process' spectrum: 

x (n ) = x(n ) ⊗ x(−n)

 
( )( ) ( )( ) 2*

xx FT[x(n)]FT[x(n)]FT[x(n)]  n)]FT[x(FT[x(n)](n)]FT[R(f)S ==−==
 

In fact this definition is not completely correct as this series may not always converge. The 
correct notion of the spectral distribution relies on the concept of the spectral measure and the 
foundation of this notion is the Bochner theorem. 
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Theorem: Let 
 r n( )n∈Z  be a sequence of elements of C. The sequence 

  
 is positive semi definite (i.e. the function  K  is 

positive semi definite) if and only if there is a positive measure µ on I 
such that 

r n( )n∈Z  (m ,n) = rm − n

 
r n = e2iπnfµ(df )      ∀ n ∈Z

I
∫  

In this case the measure µ is uniquely defined. 

 

If x=(xn) is a discrete-time stationary stochastic process and (Rx(n)) its autocorrelation, then 
this autocorrelation function is a positive semi definite sequence and one can define uniquely a 
positive measure µx(df) such that 

 
  
Rx (n ) = e2iπnfµx (df )      ∀ n ∈Z

I
∫  

this measure is called the spectral measure of the process x. When this measure is continuous 
with respect to the Lebesgue measure, one can find a positive function Sx(f) such that 
µx(df)=Sx(f)df. The process is then said to be purely non-deterministic and this function 
defines the spectral density of the process x. Substituting this into the previous integral gives 
us a familiar relationship between the spectrum and the autocorrelation function: 

 
 
R(n) = e2iπnfSx (f)df

I
∫  

So one should realize that the notion of spectrum as a positive (and bounded) function can 
break down easily if the spectral measure is not continuous with respect to df.  

In addition to the assumption that the analyzed sound is a wide sense stationary random 
process, the notion of spectrum relies also on the purely non-deterministic property of the 
process. We will see exactly what this means. 

Deterministic / non-deterministic processes 

Let x=(xn) be a discrete time wide sense stationary stochastic process and (Rx(n)) its 
autocorrelation, we recall that one can define uniquely its spectral measure µx(df) by 

 
  
Rx (n ) = e2iπnfµx (df )      ∀ n ∈Z

I
∫  
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Definition: Let's write Hf(x) the vectorial subspace of finite linear 
combinations of the random variables xn. H(x) is the Hilbert subspace 
of L2(µx) spread by the random variable (xn)n, i.e. the closure of Hf(x). 
Also, Hn(x) will designate the subspace spread by xk for k<=n. 

One observation is that L2(µx) and H(x) are isomorphic. In fact, one can find a unitary 
operator linking these two spaces. We'll skip the justification of this observation and introduce 
directly Kolmogorov's isomorphism. 

Definition: The Kolmogorov isomorphism associated to the process x 
is the unitary operator Vx from L2(µx) to H(x) defined as follows: 

 
a ne

2iπf

n
∑ 

 
  

 
↔ a nxn

n
∑ 

 
  

 
= Vx an e2iπf

n
∑ 

 
  

 
     

(sums are intended to be finite) 

The purpose of linear prediction theory is to evaluate the projection of the random variable xn 
onto the spaces Hn-p(x) spread by the random variables xk for k<=n-p (where p>=1). In 
general, it is fairly easy to evaluate the projection of a vector on a subspace for which we 
know an orthonormal basis. Therefore in our case where orthogonality is equivalent to 
uncorrelation, it would be ideal to extract a white random process ν of variance 1 which would 
be correlated with x and verify: 

 Hn(x) = Hn(ν) for any n 

In this case, the process x could be written under the causal form: 

 
  
xn = h k νn− k

k = 0

∞

∑    where   hk
2

k =0

∞

∑ < ∞  

because of the equality Hn(x) = Hn(ν), we'd get  

 
 
xn / H n− p (x) = h k νn − k

k= p

∞

∑   

(where   xn / H n− p (x) refers to the orthogonal projection of xn onto the Hn-p(x).) 

 In particular for p=1, we would observe that x n − xn / H n −1 (x)( )= h0 νn . This brings us to the 
definition of the innovation process. 
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Definition: The innovation of a process x is the process I defined as 
.   In = xn − xn / H n −1(x)

x is said to be deterministic (resp. non-deterministic) when In=0 
(resp. In!=0). When x is non-deterministic, we can define the 

normalized innovation process as  ν
 n n n

1/ 2
. = I E I2[ ]( )

Intuitively, the variance of the process In is a measure of the information brought by the 
realization of xn after the random variables xk had been observed for k<=n-1. The bigger this 
variance is, the more x will behave as a white noise. 

Remark: If x is deterministic, xn will belong to Hn-1(x); but xn-1 will belong to Hn-2(x), so 
by substitution, xn will belong to Hn-2(x). Iterating this scheme will prove that xn belongs to 
all the Hk(x), which is to say that H(

 k
. H k (x) = H n (x)

 n (

x) = ∩

If x is non-deterministic and ν is its normalized innovation, then by construction it is obvious 
that νn belongs to Hn(x), which is to say that H .  ν) ⊂ H n (x)

The random process x will be said to be purely non-deterministic when   . H n (ν) = H n (x)

Wold's decomposition 

With the following theorem, Wold states the existence of an orthogonal decomposition of 
Hn(x). Because of this decomposition, any stochastic process can be written uniquely as a sum 
of a deterministic and a purely non-deterministic processes. 

Theorem: For any random process x, Hn(x) has the following 
orthogonal decomposition: 

 
H n (x) = H n (ν) ⊕ ∩

k
H k (x) 

This decomposition is referred to as Wold's decomposition. This result 
shows us that x is purely non-deterministic if and only if 

 
∩
k kH (x) = {0}. 

Proof: To prove this statement, all we need to show is that a vector y of 
Hn(x) is orthogonal to all the νk for k<=n if and only if it belongs to all 
the Hk(x). By construction of the innovation, we clearly have 

. Therefore y is orthogonal to νn if and 
only if it belongs to Hn-1(x). The same way, 

  H n −1(x) = H n −2 (x)⊕ {νn− 1} and so forth. Iterating this process 

  H n (x) = H n −1(x) ⊕ {νn }
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shows that y of Hn(x) is orthogonal to all the νk for k<=n if and only if 
it belongs to all the Hk(x) (i.e. y

 k
H k (x)

µ (df ) = S (f)df

). 

 x
s (df )

)   and   zn = xn

)df   and   µz (df )

ak yn − k
k
∑

− ak z− k

k
∑

 z) =
e2i πf )

2

∈∩

Let's go back to the spectral measure of our process for a moment. As we saw, µx(df) doesn't 
have to be continuous with respect to Lebesgue's measure df but we can always decompose it 
uniquely as   x x x

s (df ), where µ  is a singular measure with respect 

to df (i.e. the support of  µ x
s (df ) is of measure zero with respect to df). There is a strong 

relationship between Wold's decomposition, the decomposition of the spectral measure, and 
the notion of determinism. 

+ µ

Theorem: Let x be a non-deterministic process and ν its normalized 
innovation. Then the two random processes defined by 

 
y n = xn / H n (ν / ∩

k
H k (x) 

are respectively purely non-deterministic and deterministic, moreover 
we have:  

 µ y (df ) = Sx (f = µx
s (df ) 

A few words about the proof: We already know from earlier that any 
element of Hn(ν) will be purely non-deterministic and that any element 
of ∩  will be deterministic.  

  k
H k (x)

An element of Hn(ν)  is a linear combination of a white noise, which 
can be seen as the output of a linear filter excited by a white noise. A 
recall to linear filtering will tell us that the power spectrum of such a 
process is the square of the absolute value of the transfer function of that 
filter and that therefore, it will be a nice continuous function.  

Any element y of 
 
∩
k

H k (x)

 
n

 being linearly predictable, it will obey a 

relationship of the form y =  which can be interpreted as 

G(z)Y(z)=0 where G(
 

z) = 1 . In the spectral domain, this 

last form (seen as a linear filtering scheme) implies that 

  
G(e2 iπf )

2
µ (dfy

I
∫

 

) = 0

G(e2iπf )

. The spectral measure of y being non-

negative, it should equal zero everywhere except on the countable set of 

points on which 
2
 is zero. If we are not convinced that this set 

is indeed countable, we can define S(  (which 

implies that S( e2iπf ) = G( ) and then realize that, being 
factorable, it should verify the Paley-Wiener condition which states that 

G(z)G*(1/ z)
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ln S(e 2iπf )( )df < ∞∫

I

  
µ y (df ) = ck

. This proves that the spectral density of Y will 

be singular with respect to df, being in the form: 
δ(f − f

k
∑ k ) . 

e
e

1

2

The final step to the proof of this theorem is to use the uniqueness of the 
spectral measure's decomposition and the orthogonality of Wold's 
decomposition. 

This is the essence of the relationship between the purely non-deterministic property of a 
process and the meaning of its power spectrum. 

Entropy, Information and Redundancy 

Entropy 

Let's consider a particular random variable x, S the set of its possible values, and pi its 
probability distribution. If the random variable is of discrete-type, its distribution pi implies a 
partition of S. The notion of entropy is an established measure of the uncertainty of this 
partition.  

e N

S

 

Fig. 2.2 - Partition implied by a discrete-type random variable (Pr{ek}=pk). 

The precise definition of entropy of a partition was derived from a set of postulates imposed 
by our understanding of uncertainty and the uniqueness of a function verifying these 
postulates. The entropy of a discrete-type random variable is defined as the entropy of this 
partition. 
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Definition: The entropy H(x) of a discrete-type random variable x is 
defined as: 

 
H(x) = − p i .ln(pi )

i
∑ = E − ln(p(x)){ } 

In the case where x is a continuous-type random variable, we can't directly relate a partition to 
it any longer. We are reduced to forming a discrete-type random variable by rounding x as 
follows:  

   x δ = nδ    if    (n − 1)δ < x ≤ nδ  

 which leads to P{
 

xδ = nδ}= px (X).dX
(n −1)δ

nδ

∫ ≈ δ.p x(nδ) 

but then,  

  

H(xδ ) = − δ.px (nδ)∑ . ln δ.p x(nδ)( )
         = − ln(δ) − δ.p x (nδ)∑ . ln px (nδ)( ) δ→0 →   ∞

 

Therefore, H(x) can't be defined as the limit of H(  when δ gets infinitely small, but as the 
limit of the sum : 

 xδ )

 
  
H(x) = lim

δ→0
H(xδ ) + ln (δ)[ ]= − px (X).ln p x (X)( )dX∫  

Definition: The entropy H(x) of a continuous-type random variable is 
defined as:  

 
H(x) = − p x(X).ln px (X)( )dX∫ = E − ln px (x)( ){ } 

The generalization from the discrete to the continuous cases is not intuitive. This should be 
kept in mind when one wants to estimate the entropy of a continuous-type random variable 
from a sampled and quantized version of its observation. After all, a computer will only 
manipulate discrete and finite resolution data and a blind estimation of the entropy of this 
discrete data might be a heavily biased measure of the original random variable's entropy. 

When x is a random vector, these definitions generalize in a straightforward way through the 
notion of joint entropy (or block entropy) as follows: 

 
 
H(x, y) = E − ln p x, y (x,y)( ){ } 

We can also define conditional entropy using this expectation form. 
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Mutual information and redundancy 

Based on the notion of unions of partitions, the mutual information of two random variables x 
and y is defined from entropy as the function: 

   I(x, y) = H(x) + H(y) − H(x, y) 

which yields to:  I(
 

x, y) = E ln
px ,y (x, y)

p x(x)p y (y)

 
 
 

 
 
 

 

and also to   I(x, y) = H(x) − H(x| y) = H(y) − H(y| x) (using Bayes' rule) 

When more than two random variables are involved, the mutual information can be 
generalized to the notion of joint mutual information as:  

  
  
I(x1 ,x2 , .. , xd ) = H(xk ) − H

k= 1

d

∑ (x1 ,x2 , .. , xd )

and another useful object is the redundancy, defined as the increment of the joint mutual 
information as the number of random variable grows: 

 
  

R(x1 ,x2 , .. , xd ) = I(x1 ,x2 , .. , xd ) − I(x1 ,x2 , .. , xd − 1)
                       = H(xd ) + H(x1 ,x2 , .. , xd− 1) − H(x1 ,x2 , .. , xd )

 

The case of a sampled strict sense stationary stochastic process 

In order to become more familiar with the particular case that will interest us in what follows, 
let's look at these same objects when the random variables (xn)n are samples of a strict sense 
stationary stochastic process x. 

The strict sense stationarity of x states that all of its statistics (of any order) are invariant 
through time: 

   p x(t 1), x(t 2 ),. . ,x(td )( )= p x(t 1 − τ), x(t 2 − τ), .. , x(t d − τ)( )   ∀(d ,τ) ∈N × ℜ  

So when (xn)n designate successive samples of x, this property implies: 

   H xn , xn -1, . . ,xn -d+ 1( )= H xk ,xk -1, . . ,xk-d + 1( )   ∀(d ,n ,k) ∈N 3  

which allows us to simplify our notations: 
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p xn , xn-1 ,. . ,xn -d+ 1( )≡ pd (τ)

H xn , xn -1, . . ,xn -d+ 1( )≡ H d (τ)

I xn , xn -1 ,. . ,xn -d+ 1( )≡ Id (τ)

R xn , xn-1 , .. ,xn -d +1( )≡ Rd (τ)

 

where τ is the corresponding sampling period. 

Another aspect of a time-sampled observation is that it will always be quantized in amplitude. 
There is no such thing as an infinite resolution measurement and our observation will always 
look like the instance of a discrete-type random process. We know from before that there's no 
nice continuity between discrete-type and continuous-type processes when it comes to entropy 
measurement and so if N is the number of bins imposed by our finite resolution, it is only fair 
that N should be taken as an extra variable of our estimates: 

   H d (τ, N)  ;  Id (τ,N )  ;  Rd (τ,N)  

The last point concerns the estimation of the multi-dimensional statistics of the process. 
Indeed, one has very rarely access to several instances of the same process but rather a single 
observation in time. The best we can do is to estimate statistics by averaging measurements of 
this single observation in time. The validity of such an estimation rests on the assumption that 
the process is ergodic. 

Nonlinear Dynamics and the Embedding Theorem 

Dynamical Systems 

The notion of dynamics can be traced back to the fifteenth century when Newton invented 
differential equations. The initial enthusiasm surrounding this new invention was quickly 
replaced by the hopeless realization that most of these equations are impossible to solve in the 
sense of obtaining an explicit form for the solution. This frustration had to wait a couple of 
centuries until Poincaré suggested that these equations should be thought of as representations 
of systems' behaviors. As quantitative questions such as the state of the system at a particular 
time couldn't be answered, he emphasized qualitative questions such as overall behavior and 
stability. Any further experimentation and intuitive understanding of nonlinear systems had to 
wait for the development of high-speed computers in the fifties. Only then were scientists such 
as Lorenz armed to discover chaotic behaviors, strange attractors and fractals. 

There are two types of dynamical systems: differential equations and iterative maps (also 
referred to as difference equations). The appropriateness of each one depends on whether the 
problem is set in continuous or discrete time. 

A very general form for ordinary differential equations is the system 
  
∂x
∂t

= f x( ) , where: 
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x =
x1

|
xm

 

 

 
 

 

 

 
 

 is the set of the system's "state" variables.  

 and f

  

x( )=
f1 x1 , .. , xm( )

|
fm x1 , .. ,xm( )

 

 
 

 

 

  
 

 describes the system's behavior. 

Some of these state variables might be external inputs if the system is non-autonomous. An 
analog form for a general iterative map would be x  t +1 t . The linearity (resp. 
nonlinearity) of the system is the linearity (resp. nonlinearity) of the function f(). Partially due 
to their limitless variety, most nonlinear systems are unsolvable analytically. The difficulty of 
their analysis is mainly attributed to the fact that unlike linear systems, they can not be broken 
down into parts. Without this feature, none of the methods such as Laplace transforms and 
Fourier analysis hold. 

= f x( )

As much as we'd like everything to be a linear system for simplicity's sake, most things in 
nature don't work this way. As an amusing illustration of our world's nonlinearities, Steven 
Strogatz [Str94] notes that "If you listen to your two favorite songs at the same time, you don't 
get double the pleasure".  

The Embedding Theorem 

Given two spaces A and B, a mapping between them is a function f that associates every 
element α of A with the uniquely determined element β = f(α) of B. The element β is then 
called the image of α and α the preimage of β. When the spaces A and B are metric, the 
notions of continuity and smoothness can be introduced in that scheme. A Ck mapping that is 
bijective is called a diffeomorphism. A smooth mapping f that is injective is called an 
immersion. If we also want the mapping to preserve topological properties, it will have to be 
proper. A map is proper if the preimage of every compact set is a compact set. Finally, a 
proper immersion is called an embedding. If the details of the definition of an embedding 
seem a little tedious or obscure, one can think of an embedding as being a smooth local change 
of coordinates. It might disfigure a subset S of A but will keep its local properties and its fine 
structure intact. 

The following  result was stated and proved by Floris Takens in 1981 in his paper "Detecting 
strange attractors in turbulence" [Tak81] and we present it here in its original form. 
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Theorem: Let M be a compact manifold of dimension m. For pairs 
 a smooth diffeomorphism and y:  a smooth 

function, it is a generic property that the map φ , 
 (ϕ , y):M → ℜ2m + 1

defined by: 

  (ϕ, y),  ϕ:M → M  M → ℜ

 
φ(ϕ , y)(x) =  y(x), y(ϕ(x)), ... , y(ϕ2m (x))( ) 

is an embedding; by "smooth" we mean at least C2. 

This result being a "generic" property means that it is not always true but that the set of cases 
for which it'll break is of probability 0. In other words, perturbing an unlucky case in an 
infinitely small way will make the result hold. In the same paper, Takens proves two other 
theorems of the same flavor that generalize this result to different types of map φ. The same 
year, Mañé in an independent study came up with a similar result. 

In the context of a dynamical system 
  
∂x
∂t

= f x( ) , the manifold M would typically be the set 

of a system's states x(t) for which, as we said earlier, it is very rare to find an analytic form. 
The map φ is a very general means by which one can refer to a fairly arbitrary switch of the 
space's nature and this theorem states that in spite of this radical process, the new set 
φ(Μ) carries the same fine structure as the original manifold M. This implies that this new set 
in    can be interpreted as the solution of a dynamical system which exhibits a behavior 

that is very similar to the one of the original system 
  ∂t

= f x( ) . 

ℜ2m + 1

∂x
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Chapter 3 

Machine Listening - Real-time Analysis 

If a musical instrument is a sound producing device, it is also a medium of ideas and 
emotions used by musicians and composers. This vocabulary of musical gestures is 
directly linked to our ability to parse sound. Without pretending to implement an 
understanding of music on a machine, this chapter investigates means by which a 
machine could parse sound at a similar level to our lowest level of perception. The 
usefulness of such systems is often a function of their ability to run in real-time as their 
standard applications range from "jamming" with a computer to the development of a 
"hyperinstrument." As the first step toward the inference of virtual instruments that are 
controlled by perceptually meaningful parameters, we will identify appropriate 
perceptually meaningful musical gestures and suggest means by which one can estimate 
them from an audio stream in real time. 

Perceptual Components of a Musical Sound 
A musical sound is nothing but a meaningless acoustic wave until it reaches a human auditory 
system. The musical qualities of this wave are only defined through a set of perceptual 
components that can be seen as the artifacts of a complex biological mechanism that allows us 
be aware of these air pressure variations. These qualities are usually addressed in terms of 
three perceptual components: Volume, Pitch and Timbre. There is no universal or rigorous 
definition for any of these three components; they are merely assumed to be independent. For 
our identification of appropriate perceptually meaningful musical gestures, we'll suggest a set 
of measurements that addresses all three of these. 
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Volume 

Among all the possible perceptual components of a sound one can think of, volume is 
probably the easiest one to understand and to extract. It is common knowledge that our 
perception of volume is directly linked to the energy of the acoustic signal via a logarithmic 
scale and some correction due to the limited bandwidth of our auditory system. These 
empirical relationships provide a sufficient framework for an accurate measurement of this 
perceptual component. In other words, it seems straightforward to come up with a rigorous 
definition of volume that would allow a machine to perceive loudness the same way we do. 

Yet, an accurate simulation of human volume perception would take much more than this 
simple mapping procedure. Experiments on this subject have revealed some hidden 
complexities through phenomena known as post-masking for instance, and a very precise 
understanding of volume has been an active subject of study in psychoacoustics. 

Pitch 

Going one step further in terms of complexity, pitch has obviously played an important part in 
the development of music. It is directly linked to our ability to differentiate frequencies in 
sound waves. The study of the human external and internal ear have given clues to theories on 
how this information is fed to our brain. One observation is that the cochlea, due to its shape, 
can identify different frequency bands through the localization of its resonances. The tonotopic 
hypothesis is the belief that this phenomenon is responsible for our ability to distinguish 
between frequencies and it is mainly due to the works of Evans and Stevens. Another school 
of thoughts is that frequency might be encoded in the impulse trains sent by each nervous cell 
of the cochlea. This belief comes from the observation of temporal regularities of these 
impulses but this phenomenon does not occur for high frequencies. In other terms, the 
tonotopic and the temporal coding hypotheses are equally likely for frequencies up to 5 kHz 
but for higher frequencies, only the tonotopic hypothesis holds. 

Our ability to differentiate frequencies seems to obey a logarithmic rule. As a first 
approximation, if df is the frequency resolution of our auditory system around the frequency f, 
then one can observe that the ratio df/f if fairly constant along the full range of audible 
frequencies. Yet, a more precise study reveals that this ratio degrades as the duration of the 
stimulus decreases and also that it degrades systematically for frequencies higher than 5 kHz 
(maybe because the temporal encoding stops being helpful). 

The notion of pitch is only relevant in the case of periodic or pseudo-periodic sounds. The 
pitch of such a tone seems to be directly linked to the inverse of its period. In the case of a nice 
harmonic structure, this frequency corresponds to the fundamental but it is important to 
remember that this spectral component doesn't have to be a maximum of energy in order to be 
perceived as the pitch of a sound. In fact, this fundamental can even be missing completely 
from the spectral decomposition of the signal. For pseudo-periodic sounds, the best we can do 
is to associate the perceived pitch to the fundamental frequency of the "most likely" harmonic 
structure of the signal but we insist here on the fact that this association cannot be taken as a 
definition. Indeed, such a definition would fail at explaining the perceptual phenomena and the 
illusions that have been observed in human subjects. As an example, it seems that the 
perceived pitch of a simple tone may vary as a function of the ambient noise that surrounds the 
listener. It is a common belief that this curious phenomenon in the context of musicians tuning 
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their instruments in large orchestras may be partially responsible for the progressive increase 
of middle A's frequency throughout history.  

Timbre 

In our context of musical sound representation and characterization, timbre is by far the most 
interesting one of these perceptual components. It raises numerous questions that have yet to 
find good answers. This perceptual component needed to be stated, as people realized that 
there obviously had to be more than simply volume and pitch to musical sounds. A general 
agreement on a precise definition of this notion is even less realistic than for pitch, and the 
American Standard Association (ASA) decided in 1960 to define timbre by the negative. This 
is to say that timbre is the perceptive component that allows us to distinguish two sounds of 
the same volume and pitch. 

Early in the century the works of Helmholtz, inspired by Fourier's transform, led to the classic 
conception of timbre. Helmholtz, and a large number of physicists after him (Bouasse, 
Olson,...), considered that the majority of the timbral information was contained within the 
quasi-stationary part of a sound. Over this restricted temporal span, the signal can be written as 
a Fourier series and it was believed that the spectrum of this harmonic series would define 
timbre. The simplicity of this definition may seem attractive but when a more flexible 
recording technology became available, a few basic observations revealed its weaknesses. For 
instance, this spectrum can vary dramatically with the room's acoustical properties or the 
listener's position and yet, the timbre of a given instrument is perceived to be unchanged. 
Another observation is the timbre change one can perceive when playing a sound backwards 
even though this process doesn't alter the spectral structure given by this Fourier series. All 
these observations illustrated the fundamental role played by the temporal evolution of sound. 
Nonetheless, the classic conception of timbre was not completely abandoned, as it presented 
some interesting features in some cases, and most of the works that subsequently have dealt 
with timbre still refer to it. 

Pitch Extraction 
Pitch is undoubtedly the most obvious musical gesture we may want to extract. We shall 
dedicate this part to the task of pitch estimation and highlight the main issues that are 
encountered while investigating this well-established problem. 

The hidden difficulties 

A lack of rigorous definition 

Pitch extraction has been approached with a wide variety of methods, each one implying some 
assumptions about the sound to be analyzed and a definition for pitch. Although the 
performance of these algorithms has kept on improving, there is no rigorous and indisputable 
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definition for pitch. Pitched sounds are not always perfectly periodic (time domain) and they 
can often lack their fundamental frequency (frequency domain). Human auditory systems' 
ability to switch between analytic and synthetic listening is very often a source of ambiguity as 
for whether a sound should be considered monophonic or not. Time-domain versus 
Frequency-domain analysis is the closest analog phenomenon a computer can deal with. 

Real time: some intrinsic limitations 

It is wrong to consider that our auditory system is faster at recovering pitch from a sound than 
a computer. In fact, chances are that pitch extraction algorithms are not only more accurate but 
also much faster than our auditory system. The task of period or frequency analysis has some 
intrinsic limitations that even our ears have to deal with. The information of pitch needs some 
time to be resolved. This time is not related to computation but to the amount of sound that 
one has to listen to in order to make any decent decision concerning an eventual period of the 
sound wave. Both our auditory system and computers make decision errors, especially during 
the transitional stage at the beginning of a note. The main difference is the fact that our brain 
recovers more elegantly from these errors and ambiguities through some sort of post-masking 
phenomenon. One way to comprehend this perceptual artifact would be to say that our 
perception of time is flexible enough to allow the merging of related information into a 
simultaneous event, even when this information was collected during a substantial lapse of 
time. A machine could very well be programmed to behave similarly and listen passively to a 
stream of music but such a setup wouldn't meet the expectations one has about a real-time 
interactive musical system. For a usual task such as pitch following, computers are expected to 
respond to music much faster than we can. These algorithms are not given the time they need 
to recover from intrinsic ambiguities, leading to disappointing performances and to the widely 
spread bad opinion people have about pitch extraction in general. This is not to say that pitch 
following is an overly ambitious task which should be abandoned but rather that we should 
readjust our expectations and keep these limitations in mind in order to make a better use of 
what can be extracted. Decision errors should not systematically be attributed to the bad 
performance of a system, they should instead be treated as artifacts of our measurements from 
which much can be learnt. Such an understanding usually leads to more appropriate uses of the 
algorithms and in the long run, to better performances. 

MIDI: the keyboard influence 

Let's put ourselves back into the context of real-time pitch following. Once we finally accept 
the fact that the information set "a 110Hz A is being played on this instrument with loudness 
L" needs some time to be resolved in the incoming sound, we are entitled to ask the question 
of what to do while some of this information is still ambiguous. In order to be perceptually 
responsive, our system needs to "play something" within the next 10ms following the first 
burst of sound. Within this time-frame, a computer can probably make a decent guess 
concerning the loudness of the incoming sound but it is very unlikely that this incoming sound 
has already left its transitional stage. In other words, chances are that this first sound frame is 
not periodic at all. Furthermore, the period of a 110Hz signal is in the same range as the size of 
this frame. Therefore regardless of the CPU one has, there is no chance one can estimate 
accurately the pitch, and even less the timbral nature, of this incoming sound within 10ms. 

In the case of a keyboard, a complete description of the sound produced can be inferred from 
the initial physical action on a key and this justifies the concept of NOTE ON and NOTE OFF 
on which MIDI is based. Keyboard players were the first consumers of sound synthesis and 
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MIDI was developed around their needs, capturing physical actions on a keyboard-like 
controller and sending them to a large variety of computers and sound modules. This protocol 
(or language) was never intended to be extracted from an audio stream as it relies on a very 
strong assumption concerning the nature of the instrument that is being played. 

The omnipresence of MIDI in computer music misled us to believe that it stood for an atomic 
representation of a musical stream. People refer to "audio to MIDI" devices as if the space of 
sounds and the space of notes were related through some sort of systematic transform. The 
previous illustration of a 110Hz A illustrates the fundamental differences in nature of these 
two worlds. A complete description of a note is not a low-level musical gesture. It is already a 
musical intention. Of course, there are lots of instances where MIDI users have addressed 
these issues by using  continuous controllers; we are not criticizing MIDI as a transfer protocol 
but rather as an elementary language for musical events. 

From MIDI to musical gesture 

Given a small chunk of a monophonic signal, one can attempt to estimate the most likely 
period of the incoming sound in various ways. An ambiguity will always be associated with 
the result of this estimation. Again, this ambiguity should not be systematically attributed to a 
weakness of the chosen algorithm for pitch estimation. In fact, it is itself an additional 
measurement of the incoming sound stream and it shouldn't be ignored. As we receive 
successive chunks of audio, both of these values (most likely period and ambiguity) will 
provide us with a precious musical gesture. 

Given these specs, the system is now relieved, at least partially, from the difficult task of 
making perceptual decisions and it is more likely to provide us with what we expect. If we 
decide later that we need to infer a score of what is being played, we might decide to threshold 
this ambiguity value. If real-time is an issue (such as for a MIDI pitch follower), then we will 
have to accept the fact that such a process will introduce a delay. The only way to overcome 
this delay would be to avoid making this perceptual decision throughout the musical 
"communication chain" and leave it to the listener's brain which is subject to post-masking. 

Pitch contour estimation in the time-domain 

We will now describe an algorithm which estimates the pitch contour and the associated 
ambiguity of an incoming audio stream. This method does not use any Fourier decomposition, 
which is why it is qualified as being "time-domain". It was originally inspired by an algorithm 
described in [MYC91] in the context of speech signals. It was then modified and re-interpreted 
for music pitch following by the author for the purpose of a Hyperinstrument piece written by 
Tod Machover for the violin and orchestra "Forever and Ever", premiered in Saint-Paul in the 
fall '93. 

Statement of the problem - Approach 

This method assumes that the incoming sound is monophonic. Given this assumption, we 
hereby adopt the "most likely period" to be the basis of pitch. If the sound were not 
monophonic (more than one pitch) then this definition would not hold. Given this definition, 
we will now attempt to solve this estimation problem through a Bayesian scheme. 

Page 41 



Musical Sound Information – Eric Métois  October 1996 

Let s(t) be our input signal. Assuming that s(t) is quasi-periodic (with pseudo period T) 
implies that one can write s(t) ≈ a s(t+T) where 'a' is a scalar that accounts for eventual 
damping or other amplitude changes.  

Let's pick an arbitrary number of samples d, a sampling period τ, and let's define the following 
objects: 

For t,     v(t) = s(t), s(t + τ),. .. ,s(t + (d − 1)τ)[ ]T . 

For T,    is the class corresponding to the hypothesis that T is a pseudo period ωT
for s(t). 

Given what we consider a pseudo period to be, it seems reasonable to infer the following class 
conditional densities for v(t) given  ωT : 

 

    

p v( t )| ω T
v(t)| ωT( )=

1

2πσ2( )d
2
exp −

v(t ) − a(t ,T)v(t + T) 2

2σ2

 

 
  

 
  

where σ2 is a sort of "tolerance" and a(t,T) is such that it minimizes   v(t) − a(t ,T)v(t + T) 2 .  

 i.e.  ∂

    ∂a(t ,T)
v(t ) − a(t ,T)v(t + T) 2( )= 0   i.e.  a(

  
t ,T) =

vT(t)v(t + T)
v(t + T) 2

 

Given some observation of v(t) for various value of t, our estimation of the most likely period 
 will result from the choice of the hypothesis ωp which will maximize the posterior 

probability Pr[ωT|v(t)] to which we can apply Bayes' rule: 
  ̂  p 

 
    
ˆ p = arg max

T
Pr ωT| v(t)[ ]( )= arg max

T

p v( t )| ω T
(v(t)| ωT ) Pr[ωT ]
p v ( t) (v(t ))

 

 
  

 
  

  Pr [ωT ]

    p v( t ) (v(t

 is the prior for T being the period of a signal in general and it is fair to assume that 
across all possible periods T, this prior is uniform. Furthermore , the denominator 

 does not depend on T so we end up with: ))

 
    
ˆ p = arg max

T
p v( t )| ω T

(v(t)| ωT )( ) 

In view of the form of the class conditional densities for v(t) given  ωT , this leads to: 

 
    
ˆ p = arg min

T
v(t) − a(t, T)v(t + T) 2( )  , where a(

  
t ,T) =

vT(t)v(t + T)
v(t + T) 2

 

i.e.   p 
    

ˆ = arg min
T

v(t) 2 − 2
v T(t )v(t + T)

v(t + T) 2 vT (t)v(t + T) +
vT(t)v(t + T)

v(t + T) 2

 

 
  

 
 

2

v(t + T) 2
 

 
 

 

 
 
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i.e. 

    

ˆ p = arg min
T

v(t) 2 1−
vT (t)v(t + T)
v(t + T)  v(t)

 

 
  

 
 

2 

 
 

 

 
 

 

 
 

 

 
  

and as     v(t) 2
 isn't a function of T, this leads us to: 

    , where λ  
ˆ p = arg max

T
 λ2(t ,T)

  
(t ,T) =

vT (t)v(t + T)
v(t + T)  v(t )

 ∈ −1,1[ ] 

Note: λ(t,T) will have the same sign as a(t,T). When we introduced the scalar a(t,T) as a way 
to account for eventual amplitude changes, we obviously implied that it should be positive. A 
negative sign for a(t,T) would indicate an opposition of phase and not a pseudo period. 
Therefore λ(t,T) should also be positive in order for T to be considered a pseudo period and 
this leads us finally to: 

  , where  λ  
ˆ p = arg max

T
 λ(t, T)

  
(t ,T) =

vT (t)v(t + T)
v(t + T)  v(t )

 ∈ −1,1[ ] 

In the real world however, s(t) is sampled (i.e. t is an integer) and in order to estimate the 
integer value of the pseudo period of s(t), we will have to look for a maximum of this 
"normalized correlation" between fixed and sliding windows on a chunk of signal s(t) 
(t=0,...,N-1). These two windows (or vectors) are defined as follows: 

s(t)

d

u v(t )1 2v(t )

t21t time

fixed 
window

sliding 
window

 

     u = s(0),.. . ,s(d − 1)[ ]T   and  v(n ) = s(n),.. . ,s(n + d − 1)[ ]T

, 

Once again, d is some integer (length of these windows). The "normalized correlation" 
between these two windows will be given by: 

 
  
λ(n ) =

u Tv(n)
u  v(n)

   ∈ [-1,1], 

and the integer part of the period will be some integer p0 (preferably the smallest one) which 
will maximize λ(p0). 

Page 43 



Musical Sound Information – Eric Métois  October 1996 

Simplifications and short-cuts 

The maximization of the correlation λ(n) doesn't necessarily imply that one should compute 
this function for all possible values of n (n=0,...,N-d). In fact, a very quick (and 
computationally cheap) observation of s(t) can already provide us with some insights that will 
suggest a small number of prior candidates (t1, t2,...,tk) for the period of s(t). 

We can choose to align our reference window u with the first local maximum we observe in 
the current chunk of s(t) we have access to. With this choice, we already know that it is no use 
to consider sliding windows that are not aligned with a local maximum of s(t). Furthermore, 
we can also decide that we will consider only the sliding windows that are aligned with a local 
maximum of the "same range" (amplitude check) than the one the reference u was aligned 
with. This very simple and computationally cheap local maximum lookup will provide us with 
a fairly small set of prior candidates. The process is illustrated by the following figure. 

s(t)u

time

Ig
no

re
d

First local max

1v (t ) 5v(t )3v (t )

2v(t ) 4v(t )

t t t tt1 2 3 4 5

Prior Candidates 
(local max)  

Note: The presence of parasite high frequency components (noise) might obviously confuse 
the process of finding these local maxima and it is recommended for the signal s(t) to be 
previously low-pass filtered. The particular choice of this low-pass filter is not a big issue and 
in the context of this work, a simple IIR of order 2 works fine. 

Resolution - Fractional part of the pseudo period 

Let p0 be the integer period that we've estimated through the previous process and p be the 
real period of the incoming sound. We know that  0  but let's evaluate this error in 
the frequency domain: 

p − p ≤ 1

 

  

∆f
f

=
1

p − 1
p0

1
p

=
p − p0

p 0

≤ 1
p0

 

So if we recall that a semi-tone corresponds to a 
 
∆f
f

= 212 − 1  (= 0.0595)

 0

, we realize that 

the resolution given by this integer period is not acceptable if p ≤ 15 or 20 (the frequency 
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resolution becomes comparable to a semi-tone). Increasing this resolution will require us to 
interpolate between samples of s(t) in order to find the α such that: 

 

    
α = arg max

β∈[0,1]

 λ(p 0 + β) = arg max
β∈[0,1]

 
u T ˜ v (p0 +β)
u  ˜ v (p 0 + β)

 

(This assumes of course that p0 is indeed the integer part of p i.e. p0<=p) 

The choice of a linear interpolation is by far the most elegant as it avoids another recursion 
and the computation of the correlations λ(p0+β). Indeed, a linear interpolation would give us: 

     ∀β ∈ 0,1[ ],    ˜ v (p0 + β) = (1− β) v(p 0 ) + β v(p 0 + 1)    ∈ Π 

where Π is the plane that v  1 = v(p0 ) and v  2 = v(p 0 + 1) span. Therefore the optimal 
value α should correspond to the minimum angle between the vector u and vectors belonging 
to Π. We already know (from Pythagorus) that this minimum is achieved by the orthogonal 
projection w of u onto Π. 

v

v

u

2

1

w

Π

Minimum 
angle

 

Hence, α doesn't need any recursion to be estimated as we already know that it will be such 
that     (1− α) v1 + α v2  and w are parallel. In the non-orthonormal basis (v1, v2) of Π, this 
property is equivalent to the equality: 

 
  

w 1

(1− α)
=

w 2

α
 where w  = w 1v1 + w 2v 2  

The coordinates (w1,w2) of w in (v1,v2) are derived from: 

  where Y
    

w 1

w 2

 

  
 

  = YTY[ ]−1
YTu   = v1 ;v 2[ ] 

And by combining this with the previous relationship, we finally get a closed form for α: 

 

    

α =
u Tv 2( ) v1

2 − u Tv1( ) v1
Tv 2( )

u Tv 2( ) v 1
2 − v1

Tv 2( )[ ]+ u Tv 1( ) v2
2 − v1

Tv2( )[ ]
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Although this expression might look somewhat tedious, half of the scalar products it involves 
have previously been computed in order to estimate the integer part of the period. 

Note: This expression does not guarantee that the computed value for α will be in [0,1]. It 
could be, for instance, that the estimated integer part of the period is off by 1 (or more). If the 
computed value for α is negative, then we will try again using (p0-1) for the integer part. If the 
computed value for α if greater than 1, we will try (p0+1). 

Recapitulation 

Adopting the most likely period as the basis for pitch contour estimation, we've discussed the 
mechanism of a time-domain pitch follower. At any time, the most likely period of the audio 
stream is estimated by the means of the maximization of an intercorrelation between a fixed 
and a sliding window of samples. In addition, the frequency resolution of such an estimator is 
not limited by the sampling of the audio stream as one can estimate the fractional part of the 
most likely period in terms of an orthogonal projection. Finally, this method provides naturally 
a notion of pitch ambiguity in terms of the measured maximum of intercorrelation, We will see 
in what follows that this ambiguity deserves the status of a perceptually meaningful musical 
gesture as much as the pitch contour itself. 

The use of intercorrelation measurement for pitch extraction is by no means an original idea. 
Most pitch extraction techniques make reference to similar ideas ([MYC91]) and they often 
only differ in their philosophy and implementation. 

Timbre Listening 

Pitch ambiguity/Noisiness 

As we pointed it out earlier, an ambiguity will always be associated with the estimation of the 
signal's pitch. In the context of the time-domain approach that we've presented, this ambiguity 
is related to the maximum correlation between a fixed and a sliding window. There is a clear 
relationship between this maximum of correlation and the notion of a signal to noise ratio. 
Indeed, we will hereby pose the pitch estimation problem in terms of a maximization of signal 
to noise ratio and show that the outcome is rigorously equivalent to the maximization of the 
normalized correlation we defined previously. 

Keeping the previous notations for our fixed and sliding window, let's write: 

     u = a(t )v(t) + e( t)   where a (t) is a scalar  

e(t) can be interpreted as an additive noise which will get smaller as t reaches the period of our 
signal. As we saw earlier, a(t) is a scaling factor which will attempt to minimize the energy of 
e(t). Let's define the signal over noise ratio: 
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SNR (t) =

u 2

e(t) 2 =
u 2

u − a(t )v(t) 2 =
u 2

u 2 − 2 a(t ) (u Tv(t )) + a 2(t ) v(t ) 2
 

Maximizing SNR in terms of a(t) will be achieved by minimizing the denominator of the 
preceding expression. Of course we end up with the same expression that we got earlier: 

 
    

∂
∂a(t )

u 2 − 2 a(t)  (u Tv(t )) + a2 (t ) v(t) 2( )= 0   ⇒    a(t) =
u Tv(t)
v(t ) 2

 

which leads us to the following expression for SNR(t): 

 

    

SNR (t) =
1

1 − 2 
u Tv(t)( )2

v(t) 2 u 2 +
u Tv(t)( )2

v(t) 4 u 2  v(t ) 2

=
1

1− λ2 (t )
 

It is now clear that the maximization of this signal over noise ratio is rigorously equivalent to 
the maximization of our normalized correlation. In other words, the ambiguity resulting from 
our pitch estimation is not only a measurement of reliability but it is a true measurement of 
timbre which deserves the status of musical gesture. To the author's knowledge, such 
measurement has never been used before in the context of musical sounds' characterization. In 
Chapter 7, we will refer to it in terms of "noisiness" and use it as a control parameter to virtual 
instruments in conjunction with loudness, pitch, and brightness, which we are about to discuss. 

Brightness 

The usage of brightness in the context of musical sound is clearly inspired from the works of 
David Wessel. After having built his 2-dimensional timbre space from perceptual data, 
Wessel[Wes79] observed a clear correlation between the width of a sound's spectrum and one 
axis of his timbre space. This led him to define brightness as a measurement of the energy 
distribution among a sound's harmonics. Such a measurement implies some frequency domain 
representation of the incoming sound and although the usage of an FFT jumps to mind, we 
should be aware of some artifacts. 

Artifacts of a short-term FFT  

First of all, let's recall that an FFT is equivalent to circular convolutions with truncated sine 
waves. This implies that the FFT of our fixed size chunk of signal will be the Fourier 
transform of a virtual signal obtained by multiple concatenations of this chunk. If the size of 
this window is much larger than the signal's period, then the effect of this phenomenon will be 
minimal but in the context of real-time machine listening, the window size is very often 
comparable to the signal's period and the effect of circular convolution can be catastrophic. 
Let's illustrate this effect with a specific case study. 
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Fig. 3.1 - Vocal recording (period around 505 samples i.e. around 87.3 Hz) 

The preceding plot is a quasi-periodic chunk of a 44.1 kHz voice recording. It is obviously 
pitched and we'd like to measure its brightness in real time based on the center frequency of its 
spectrum. Once again, "real time" means that we'd like to make an estimation within a 10ms 
time frame and in this case, this means that this estimation will be based on the observation of 
no more that 512 samples. 

Picking 512 samples from our audio input (this audio recording in our case study) and 
applying a Hanning window prior to an FFT might sound like a reasonable idea... It's not. 
Following are two examples of 512-samples chunk we could end up with. 

  

Fig. 3.2 - Two examples of windowed 512-samples taken from the input 1 ms apart. 

As we can see, these two chunks already look fairly different although they were taken from 
the same audio input only 1ms apart. It gets even worse once we realize that feeding these two 
chunks of signal to an FFT will imply a period of 512 samples for the corresponding analysis. 
The following plots illustrate this implication. 
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Fig. 3.3 - Corresponding signals "implied" by the FFT analysis. Their period now matches the 
arbitrary length of the windows and not the pitch of the input.  

Each different choice for our 512-samples chunk will result in a different estimate for our 
spectrum. The following plot illustrates this variety. It was produced by considering 100 
different choices for the 512-samples chunk of signal. These successive chunks are only 5 
samples apart (about 0.1 ms) and the whole diagram spans only 10 ms of sound. 

 

Fig. 3.4 - A variety of spectral estimations. 

If we decided to rely on any of these spectral estimations in order to measure the sound's 
center frequency (the basis of brightness the way we defined it), then we would end up with a 
variety of different values as illustrated by the following figure. 
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Fig. 3.5 - A variety of estimation of the input's center frequency. 

These variations can obviously not be attributed to some variations in our signal given this 
incredibly short time-frame. Furthermore, this input is quasi-stationary. Given that our 
"brightness analyzer" will base its estimation on a single frequency analysis, this diagram tells 
us that it will provide us with any frequency from 425 Hz to 640 Hz as its estimate of the 
input's center frequency. 

Pitch synchronous frequency analysis 

However, assuming that we already estimated the period of this sound from what precedes, we 
can adjust the size of our window in order to match a multiple of this period. This will validate 
the implicit concatenation of our chunk of sound and justify the FFT's circular convolutions. 
Such an adjustment of the Fourier window size to the signal's period is known as a pitch-
synchronous frequency analysis. The idea of pitch synchronous analysis of musical sounds can 
be traced back to Michael Portnoff's FFT-based phase vocoder [Por76]. 

 

Fig. 3.6 - Long-term estimate of the input's spectrum. 

Keeping the same example of our vocal recording and based on a long-term frequency 
analysis, we find that the center frequency of our input is somewhere around 551 Hz. 
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Fig. 3.7 - Result of a pitch synchronous short-term (i.e. 10 ms) frequency analysis. 

Based on a single pitch-synchronous frequency analysis, we estimate that the input's center 
frequency is somewhere around 542 Hz. 

Brightness estimator 

We recall that we define brightness as a measurement of a sound's center frequency with 
respect to its fundamental frequency. What precedes clearly justifies the use of pitch-
synchronous analysis for our purpose of the extraction of brightness. The estimation of the 
pitch will result from the time-domain pitch contour follower we introduced previously. The 
following figure illustrates the mechanism of the brightness estimator. 
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Fig. 3.8 - Brightness estimation by means of a pitch-synchronous frequency analysis. 

By now we have gathered enough tools to estimate the major musical gestures that might 
interest us from a monophonic audio stream. As we defined them in what precedes, volume, 
pitch, noisiness and brightness determine the set of gestures that we will use later on to control 
virtual instruments. Of course, in spite of what we've restricted our attention to so far, a 
musical audio stream is very rarely monophonic and it wouldn't be fair to simply ignore 
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polyphonic audio streams. Without venturing to far in its complexity, the following section is 
a very fast glance at the problem of polyphonic audio stream analysis. 

Analytic Listening 
Once again, this section is flirting with the boundaries of this work's scope. In fact, audio 
scene analysis is a Ph.D. subject on its own and the author recommends the reading of Dan 
Ellis's dissertation [Ell96] for any further detail on the subject. Throughout our previous 
sections on pitch extraction and timbre listening, we have implied that the incoming audio 
source was a single "Sound Object". Back to the notions of Fusion and Fission we reviewed in 
Chapter 2, this means that we have restricted our attention to perfect cases of auditory fusion 
(or synthetic listening). When confronted to a lack of obvious harmonic relationships or 
ambiguous variations in a slightly longer time scale, our auditory system provides us with the 
ability to switch from synthetic to analytic listening, partitioning sonic elements into multiple 
sound objects which are perceived to be distinct. 

Analytic Listening and the Frequency Domain 

Whether we are listening to an entire orchestra or to a chord played on a single instrument, we 
can no longer rely on the existence of a meaningful periodic behavior exhibited by the 
incoming audio stream. Therefore, most of what we suggested earlier in the case of 
monophonic signal no longer holds. At this point, everything from the notion of harmonic 
relationships to MacAdams' observations in Bar[91] points us once again to some sort of 
frequency domain representation. Whether we decide to use Fourier's decomposition or an 
alternative constant-Q filter bank or wavelet analysis, a time/scale representation of the 
incoming audio stream stands for our last hope to emulate our analytic listening ability. Such a 
representation will systematically break the input sound into multiple "partials" and the 
remaining task consists of grouping these numerous narrow-band signals into separate but 
coherent entities. In identifying these entities, one should take both harmonic relationships and 
coherence of modulations in account. 

In a sketchy but successful attempt, the author developed a "harmony analyzer" in the context 
of an improvisational piece performed by Tod Machover (electric cello) and Anthony Davis 
(MIDI keyboards) at San Francisco's Yerba Buena center in January '95. The question of 
analytic listening was raised as the system was expected to extract the overall harmonic 
content of what was played on the cello (double stops and resonating strings) from nothing but 
the sound it produced. The real-time constraint prohibited any long windowing of the input 
signal and any frequency domain estimation had to be very short term.  

The resulting harmony analyzer is based on the following mechanism. After a short-term FFT 
analysis of the input stream, the dynamics of the frequency bins' energy was used to indicate 
possible new notes and related partials. By "frequency bins" we refer to the coarse frequency 
resolution filter-bank that is implied by such a short-term spectral estimation. By a simple 
observation of these bins and a process of "masking" and "grouping" which we'll describe 
later, the system was able to extract its idea of the "principal notes", taking harmonic 
relationships in account as well as time occurrences. However, the coarse resolution of the 
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frequency analysis that was used required a more precise estimation of frequency within each 
"active" bin of the analysis. For this purpose and given one frequency bin, the system used an 
approximation for that bin's instantaneous frequency. 

Instantaneous frequency approximation 

What follows may appear as old news to some readers. However, it is striking to see how 
many works using FFTs ignore the simple and yet very useful approximation that we are about 
to discuss. Considering the resolution of an FFT as being an upper limit for the resolution of 
any further estimated frequency component is a very common mistake. Not only can the 
instantaneous frequency of a component be estimated within a bin, but in lots of cases, this 
estimate can be obtained from a single FFT. We shall now illustrate this approximation with a 
case study. 

The following is a plot of the sum of six sinewaves where frequencies and amplitudes were 
chosen arbitrarily. The values of these frequencies are given in Hz with respect to a 10kHz 
sampling frequency Fs. 

 

Fig. 3.9 - Sum of six sinewaves (310Hz, 550Hz, 800Hz, 1000Hz, 2425Hz and 3210Hz) at a 
10kHz sampling rate (Fs). 

Let's consider the discrete Fourier transform of the sampled signal s(n), weighted by a 
Hanning window: 

 
  
Xk (n ) = s(m + n ) h(m ) e− jωmk

m = 0

N − 1

∑ , 

where N is the number of points taken in account, ω =
 

2π
N

 and h( m ) = 1− cos(ωm ). 

Based on this short term FFT with N taken to be 256, an estimation of the signal's spectral 
distribution from the squared amplitude of the Fourier transform leads to the following 
diagram (Fig. 3.10). This figure is a plot of the energy associated with the first 85 frequency 
bins of our 256-point FFT. The first axis is labeled in Hz with respect to a 10kHz sampling 
frequency. 
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Fig. 3.10 - Spectrum estimation resulting from a 256pts FFT applied to the previous signal. 
(Bins, numbered from 1 to 256, with energy over 1000: 9, 15, 21, 22, 26, 27, 63, 83.) 

An N-point FFT applied to a signal sampled at Fs implies that the bandwidth of each 
frequency bin is Fs/N. In our particular case study, this means that any frequency estimation 
based uniquely upon the previous estimation of the signal's spectrum will be biased by a 
resolution of a little over 39Hz. Furthermore, one can easily observe that we get a few 
occurrences where two successive bins share a comparable amount of energy, leading to an 
even greater ambiguity. Blindly using this spectrum estimation may lead us to think that the 
signal is a weighted sum of the following frequencies: 312.5Hz, 546.88Hz, 781.25Hz, 
820.31Hz, 976.56Hz, 1015.63Hz, 2421.88Hz, and 3203.13Hz. 

Finally, in the context of musical signals, recall that a semi-tone corresponds to 
; which is to say that for a pitch in the neighborhood of 100Hz, an 

ambiguity of 39Hz leads to an ambiguity of almost 7 semi-tones (a fifth). Needless to say, we 
need much better than this. We will achieve better results by computing the instantaneous 
frequencies associated with the frequency bins of high energy. 

  ∆f / f = 0.0595

If we write   Xk (n ) = αk (n) e jβ k (n )  (polar form) then the instantaneous frequency associated 
with the k-th bin can be expressed as: 

 
  
F inst (k) =

Fs

2π
βk (n) − βk (n − 1)( )=

F s

2π
 Arg

Xk (n)
Xk (n − 1)

 

  
 

  
 (3.1) 

This expression implies the computation of two FFTs. The first one corresponds to a window 
of samples starting at time 'n' and the other one corresponds to the same window shifted by 
one sample (time 'n-1'). FFTs are not that expensive and one could very well stop at this 
expression for the estimation of the instantaneous frequencies. However, a very simple 
approximation enables us to estimate these instantaneous frequencies from a single FFT.  

Let's consider the discrete Fourier transform of s(n) without the Hanning window: 

 
 
Yk (n) = s(m + n ) e− jωmk

m = 0

N −1

∑  
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The first observation is a simple relationship between our non-windowed FFT and the 
previous windowed FFT (using a Hanning window): 

 

  

Yk (n) − 1
2

Yk −1(n) + Yk +1(n)[ ]= s(m + n) 1− e jωm + e −jωm

2
 
 
  

 
 e− jωmk

m = 0

N − 1

∑

                                                = s(m + n) 1− cos(ωm )( ) e− jωmk

m =0

N −1

∑
                                                = Xk (n)

 

The second observation is an approximation relating Yk(n-1) to Yk(n). This approximation 
holds especially because of the absence of any special window applied to s(n) prior to the 
FFT: 

 
  
Yk (n − 1) = s(m + n − 1) e− jωmk

m =0

N −1

∑ = e −jωk  s(m + n) e − jωmk

m = 1

N

∑ 
 
  

 
≈e 

−jωk  Yk (n) 

Combining these two observations allows us to express both Xk(n-1) and Xk(n) (implying two 
FFTs) in terms of Yk(n), Yk-1(n) and Yk+1(n) (only one FFT) as follows: 

  
Xk (n ) = Yk (n ) −

1
2

Yk −1(n ) + Yk +1(n )[ ]  and X
 

k (n − 1) = e −jωk Yk (n) −
1
2

e jω Yk− 1(n) + e− jω Yk +1(n )[ ] 
 

 
 

 

Substituting these into the expression (3.1) for the instantaneous frequencies finally leads us to 
the following estimate for a bin's instantaneous frequency: 

 
  
F inst (k) = F s 

k
N

+
1

2π
 Arg

A
B

 
 

 
 

 
 
  

 
 

where A
  

= Yk (n) −
1
2

Yk −1(n) + Yk +1(n)[ ] and B
 

= Yk (n) −
1
2

e jωYk− 1(n) + e− jωYk +1(n )[ ] 

Back to our case study, the application of the previous estimate will lead to the following 
estimation of each bin's instantaneous frequency. 
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Fig. 3.11 - Estimation of each bin's instantaneous frequency (using a single non-windowed 
FFT) 

Therefore, by looking up the frequency bins that have high energy (from the estimated short 
term spectrum estimation) and computing the instantaneous frequencies associated with these 
same bin, we can recover the frequency components of the signal with a much greater 
resolution than the one implied by the size of the FFTs. The following diagram is the result of 
such a process applied to our case study. 

 

Fig. 3.12 - Recovery of the original frequencies by keeping only bins with high energy (from 
spectrum estimation) and looking up their instantaneous frequency. The new approximations 
for the frequency components are: 310Hz, 550.4Hz, 800Hz, 1000Hz, 2425Hz, and 3210Hz. 

This instantaneous frequency approximation was extensively used in the context of the 
harmony analyzer which we are about to discuss. 

Harmony Analyzer 

This system was originally inspired by fact that the author couldn't afford any commercial 
MIDI converter for guitar. The idea was to provide a computer with the ability to add a 
synthetic layer of sounds to any type of guitar playing, without any proprietary hardware such 
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as a special pickup. The system (named appropriately "GuitarSynth") was fed with the 
composite sound of the guitar's six strings and was expected to estimate the major harmonic 
components that were being played. The result of this real-time polyphonic analysis was then 
plugged directly into a fairly simple wave-table-based synthesis module implemented in 
software along with the rest of the system. The initial and surprisingly satisfying results of this 
toy project motivated the author to incorporate it along with the rest of the real-time analysis 
tools described previously in this chapter. Replacing the sketchy software synthesis part with a 
full blown MIDI capability (including playing/looping scores and scheduling) eventually led 
to yet another toy project called the "FunkJammer". This last toy project had the ability to loop 
a drum track (imposing a tempo) while improvising a bass line based on what was being 
played on the guitar. In January '95, this harmony analyzer grew out of its original toy status 
and was incorporated into an improvisational piece played by Tod Machover and Anthony 
Davis at San Francisco's Yerba Buena center. 

A System Walk-Through 

The system could be qualified very loosely as a frequency-based multi-pitch extractor. The 
dynamics of a coarse spectrum estimation based on a short term FFT is used to detect "new 
notes". This notion of "notes" is to be taken fairly loosely as the system may mask a new note 
that is in harmonic relationship with a note that is currently playing. Each frequency bin 
resulting from the initial FFT can potentially become an "active voice". However, at any time, 
the system keeps track of a frequency mask which attempt to prevent multiple "voices" to be 
activated by a single sound that has a few harmonics.  

The initial FFT is not pitch synchronous (the signal can potentially be polyphonic) and we 
already know from earlier in this chapter that the estimate for the signal's instantaneous 
spectrogram will be modulated as an artifact of the window size we chose. In order to 
minimize the impact of this annoying side-effect, the estimated spectrogram is smoothed (or 
averaged) in time via a non-linear smoothing process (this is because we want the smooth 
version to respond more quickly to increasing rather than to decreasing of energy). In addition, 
the "differential spectrogram" should be regularized before it is passed through some threshold 
in order to take into account the fact that energies associated with higher frequency bin will 
tend to be more spastic than for lower frequencies. 
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Fig. 3.13 - Walk through the "harmony analyzer" 

Chapter Summary 

Perceptual Musical Gestures and Real-time Issues 

More important than the description of the algorithms suggested in this chapter for the 
extraction of musical gestures from a sound stream, is the realization that any method will be 
based on a choice of definition for the values which will be measured. As predicted in the 
introductory chapter of this document, the fine line between musical gestures and musical 
intentions is the main source of ambiguity for any machine listening task. We clearly stated 
the lack of indisputable definition for perceptual components such as volume, pitch and timbre 
and therefore, any specific choice for the definition of a measurement will appear as a coarse 
simplification over our complex perception of sounds. 
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A major lesson that should be learned from attempts such as the preceding ones is that rather 
than ignoring the simplifications and short-cuts imposed by an initial choice of definition, one 
should keep them in mind and try to take as much advantage of their artifacts as possible. A 
perfect example was the realization that the ambiguity resulting from the suggested pitch 
extractor turned out to be a precious measurement of timbre. 

As for real-time issues, our flexible and somewhat puzzling perception of time tends to 
mislead us in expecting much more from a computer than we can achieve ourselves. It is the 
author's strong belief that delays associated with any machine listening system have very little 
to do with the quality of the implemented algorithm or even the amount of CPU that was 
thrown at it. These delays have a more fundamental origin, and that is the non-causal nature of 
the perceptual components that we're attempting to extract. Our auditory perception is subject 
to the same non-causality and to probably even worse ambiguities but the fuzzy computer that 
is our brain has the ability to recover from these ambiguities in a more elegant manner that 
makes it imperceptible to us. In his discussion of auditory perception, Stephan Handel 
[Han89], specifically addresses this phenomenon in terms of the identification of perceptual 
events. In that process, he refers to some experiments that were conducted by Rash in 1978, 
and which suggested that the perception of a single onset could result from a succession of a 
couple of audio stimuli that are as much as 30 milliseconds apart. This is related  once again to 
the notion of fusion that we reviewed quickly in Chapter 2 of this document. It turns out that 
this phenomenon is not proper to auditory perception and that similar artifacts can be observed 
throughout the whole range of human perception. Handel goes even further relating auditory 
fusion to the early works of the Gestalt psychologists on the articulation of visual scenes. 
From these elaborate discussions and theories, an interesting statement is that perception 
(including auditory perception) is probably not a hierarchical process in terms of levels of 
abstraction. Instead, all levels of abstraction would coexist simultaneously and collaborate in 
order to recover the most plausible (or simplest) cause that could explain the stimuli. In other 
words, no perception ever goes without a context. 

Such an observation is a plea to reconsider the exact role of a computer in the context of real-
time machine listening, by humbly readjusting our expectations. Eventually, a clearer 
understanding of what we might consider at first as annoying artifacts or weaknesses will 
always turn in our advantage as we substitute frustration with appropriateness. 

Resulting Software Package 

All the previously suggested algorithms were compiled along with some underpinning utilities 
into a musical sound-oriented digital signal processing tool box, as a standard C library 
("libtsd.a"). This tool box was originally developed on an SGI Indigo but low level utilities 
that deal with the audio hardware and audio files represent the only machine specific elements 
throughout this library. This package was ported successfully and fairly painlessly to the 
Windows platform by John Yu (EE MS at MIT) for its use in Tod Machover's the Brain 
Opera. 
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typedef struct 
{ 
  int nbPitch; 
  double p[15]; 
  double e[15]; 
  double f[15]; /* freq for multi-pitch and 
period for pitch */ 
} PitchSet; 

typedef struct 
{ 
  double F[3];   /* Estimated frequencies of the 3 first 
formants in Hz */ 
  double LpF[3]; /* Low-passed versions of the same 
frequencies */ 
  double Amp[3]; /* Associated amplitudes (log scale) */ 
} Formants; 

typedef struct  
{ 
  double real,imag; 
} CompSig; 

typedef struct 
{ 
  AFfilehandle f; 
  AFfilesetup fsetup; 
  long nbframes, channels; 
  double rate; 
  long framePtr; 
} TdsAudioFile; 

/*** The Basics (TdsBasics.c) ***/ 
 
void TdsHamming(double *sig, int N); 
void TdsPermut(double *sig, CompSig *Fft, int N); 
void TdsFourier(double *sig, CompSig *Fft, int N); 
void TdsInvFourier(double *sig, CompSig *Fft, int N); 
double TdsInstFreq(CompSig *Fft,int N,int k); 
double *TdsLpSpectrum(CompSig *Fft, int N2); 
double TdsAmpToLoudness(double amp); 
double TdsFreqToPitch(double freq); 
double TdsPitchToFreq(double pitch);

/*** Time-domain Pitch extraction from either 
audio or file (TdsPitch.c) ***/ 
 
PitchSet *TdsPitchExtract(double *buffer_ptr,  
     char *ConfigFile, TdsAudioFile *audioFile); 

/*** The Advanced (Tds.c) ***/ 
 
PitchSet *TdsMultiPitch(double *Sf, CompSig *Fft, int N2); 
double TdsBright(double *Sf, int N2, double lambda); 
double TdsSyncBright(double *signal, double period, char *ConfigFile); 
PitchSet *TdsFindPitch(double *buffer_ptr, char *ConfigFile); 

/*** The Voice Utilities (TdsVoice.c) ***/ 
 
Formants *TdsFormant(double *sound, int nbSamples); 

/*** The Audio Utilities (TdsAudio.c) ***/ 
 
void TdsAudioInit(int rate); 
void TdsAudioClose(); 
double TdsGetSomeSig(double *buffer,int n); /* returns 
the max amplitude */ 
void GetSmoothSamples(double *buffer, int n, int TRIM);  

/*** The File Utilities (TdsFile.c) ***/ 
 
TdsAudioFile *TdsOpenInputFile(char *filename); 
void TdsCloseFile(TdsAudioFile *audioFile); 
void TdsCueFile(TdsAudioFile *audioFile, double sec); 
double TdsLoadSomeSig(double *buffer, int n, TdsAudioFile *audioFile); 
void TdsLoadSmoothSig(double *buffer, int n, TdsAudioFile *audioFile); 

 

Fig. 3.14 - Real-time sound-oriented digital signal processing tool box (libtds.a) 

The "TdsBasics" part of the package implements most of the underpinning tools upon which 
the more sophisticated functions are based. It includes some general utilities such as Fourier 
and inverse Fourier transforms, Hanning windows and instantaneous frequency estimation as 
well as music-oriented converters such as frequency/pitch or amplitude/loudness. The time-
domain pitch extractor that we previously discussed is implemented in such a way that it can 
transparently deal with audio streams from the machine's hardware of audio files (AIFF or 
AIFC). Brightness estimation and the harmony analyzer are implemented in the 
"TdsAdvanced" part of the package. Although we will always prefer to apply some pitch-
synchronous frequency analysis in order to determine brightness, this package implements a 
more general version as well which doesn't require the knowledge of the sound's pitch (at the 
cost of an inferior accuracy and a bigger latency). 

A formant follower was added to this package in anticipation of its usage for the Brain Opera. 
This system is based on a Cepstrum analysis and a chirp Z-transform followed by some peak 
tracking. Although this piece of code is original, the author didn't feel the necessity to describe 
precisely the mechanism of this formant tracker as similar systems have been described many 
times throughout the speech processing literature. For further details, we refer the reader to 
[SR70] which introduced the chirp Z-transform in this context. 

The only machine dependent parts of this package are the utilities that deal with audio 
hardware ("TdsAudio") and audio files ("TdsFiles"). 
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Applications 

"Forever and Ever" (September '93) 

The time-domain pitch extraction algorithm was first implemented as a standalone application 
for the purpose of Tod Machover's third Hyperstring piece "Forever and Ever". This piece was 
premiered in Saint Paul (Minnesota) in the fall '93, featuring Any Kavafian on the violin and 
the Saint Paul orchestra. It was also performed along with the two previous pieces of this 
trilogy ("Begin Again Again", "Song of Penance" and "Forever and Ever") at the Lincoln 
Center in New York City in July '96. At various stages of this piece, the computer would 
decide to enhance or sustain notes that were played on the violin. The pitch extraction 
algorithm we discussed earlier was implemented on an SGI Indigo which was communicating 
the results of its analysis back to the master computer (Macintosh) of the piece via MIDI. 
Decisions concerning onset and offset of notes were made locally on the SGI which had no 
knowledge of the score played by Any Kavafian ahead of time. This setup was an eye opener 
for the author concerning the intrinsic difficulties associated with the incorporation of such 
decisions in a real-time environment and the trade-off between responsiveness and ambiguity. 
However, this software implementation ended up out-performing any commercial alternative 
that was available at the time (IVL "Pitch Rider" for instance). The expertise of the audio 
analysis in the context of this piece was limited to pitch and loudness. The pitch ambiguity that 
resulted from the maximum correlation within the method was used in the context of local 
decisions concerning onsets and offsets but we hadn't yet realized that this measurement could 
qualify the timbre of the analyzed sound. 

Improvisation for Cello, Keyboards and a Disklavier (January '95) 

When San Francisco's Yerba Buena center decided to organize a concert featuring both Tod 
Machover's and Anthony Davis' compositions, the two composers/musicians suggested the 
development of an improvisational setup which they would both conclude the concert with. 
The resulting system (implemented by the author in C and C++ on an SGI Indigo) was a 
collection of algorithms that would feed on the two musicians' inputs and react appropriately 
on a Yamaha Disklavier (MIDI controllable grand piano). In addition to providing the minimal 
set of utilities that is necessary for such MIDI applications (including scores and scheduling), 
the system needed to make sense out of the cello's output which was nothing but sound. This 
was a perfect opportunity to consolidate the author's DSP ideas into a single and uniform 
package.  

This project was also a stepping stone for the "harmony analyzer" which we described earlier. 
The most challenging part of this project was the last section of its third (and last) movement. 
For this section, the computer had to compare musically the "togetherness" of the two 
instruments without any previous knowledge concerning what the musicians would play. The 
harmony analyzer was used to provide the harmonic content of the music played on the cello. 
This harmonic content would then be wrapped around one octave, leading to a 12-dimensional 
vector where each component stood for the amount of energy associated with a note in a 
chromatic scale. A similar measurement was derived from the MIDI stream flowing from 
Anthony Davis' electronic keyboard. With the help of David Waxman (MAS MS - MIT) and 
his expertise in music theory, the author came up with a change of coordinate (or linear 
transformation) for this 12-dimensional vector after which the resulting space would be 
"harmonically orthogonal". This change of coordinates was derived from a perceptual rating of 
pitch intervals that David provided. Once projected onto this new set of coordinates, the angle 
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between the vectors associated to both instrument in that new basis provided the computer 
with a surprisingly satisfying real-time measurement of the desired "togetherness". 

The "Brain Opera" (July '96) 

By far the most ambitious project undertaken by Tod Machover and the Music and Media 
group at the Media Laboratory to this day, the Brain Opera is a 40-computer setup which 
mobilized a team of no less than fifty people. Based on an interpretation of Marvin Minsky's 
Society of Mind, the project is a large musical interactive installation (the "mind forest") 
followed by the performance of a trio using alternative gestural instruments which are based 
on the sensor technology developed by Professor Neil Gershenfeld's Physics and Media group 
and by Joe Paradiso. The "mind forest" is a set of suspended organic-looking musical 
experiences which the audience interacts musically with ("Rhythm trees", "Marvin stations", 
"Melody easels", "Harmonic driving", "Gesture walls", and "Singing trees"). 

The "singing tree", designed and implemented by John Yu (EE MS - MIT) and William Oliver 
(EE MS student - MIT), is a system which uses singing as a gestural control over music. Once 
again, the package described in this chapter was used as the basis for the signal analysis that 
was required for this project. The designers of this station suggested measuring the voice's 
formantic structure in order to distinguish between a few phonemes, so the author added a 
formant tracker to the algorithms that we've described. This package was then ported to the 
Windows platform which was running the rest of the experience. The music was generated on 
the fly by a parametric musical engine designed and implemented by John Yu. The parameters 
of this musical engine were controlled by the output of the voice's analysis via some 
appropriate mappings developed by William Oliver. The result is a rather involving experience 
which enables any one to create a rich and responsive musical texture from nothing but their 
singing. As he or she approaches a custom-designed suspended hood (designed by Maggie 
Morth, MAS PhD student - MIT) where a microphone, headphones and an LCD screen are 
embedded, the user is asked to sing and sustain a note of his or her choice. Loudness, pitch 
contour, noisiness and formantic structures are analyzed on the fly, leading to a set of 
parameters that characterizes the audio input. As the user attempts to sustain a note, the overall 
stability of these parameters gets rewarded both musically and visually. On a musical level, 
this reward consists in a harmonically coherent and stable embellishment of the sung note as 
opposed to a harsher and more chaotic sound texture which occurs when modulations are 
detected from the audio analysis. Visually, the user is rewarded by stepping smoothly through 
video frames towards the end of a sequence while any detected modulation steps the visuals 
backwards within this sequence. 

The simplicity of their purpose and their responsiveness are the major keys to the singing trees' 
success. The choices that were made concerning the analysis of the incoming audio stream and 
the mapping to the musical engine turned out to be appropriate. Audience members have no 
trouble figuring out how to use this installation as they become quickly involved with the 
musical experience it provides. Yet, the same simplicity has some drawbacks as people 
sometimes feel they have explored to whole range of the experience too quickly. The trade-off 
between building self-explanatory setups and systems that provide a sustained degree of 
involvement is a difficult compromise that one encounters endlessly in the context of 
interactive installations, but the author will leave this debate open as we are digressing from 
the scope of this document. 

Page 62 



Musical Sound Information – Eric Métois  October 1996 

Perceptually and Physically Meaningful Synthesis 

Finally, we will see how these perceptually meaningful musical gestures can be used as direct 
controls over a synthesis engine in Chapter 7. 
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Chapter 4 

Towards Physically Meaningful Models 

Taken as a time series, a sound can be described and modeled in limitless ways. 
Although it might seem that our primary concern in building a synthesis model should be 
its accuracy for resynthesis, the real challenge is to make it both universal (its ability to 
represent the widest variety of sounds) and meaningful (its behavior as a musical 
instrument). In this chapter, we will identify the issues and concerns that should be 
addressed. We will also introduce the general philosophy behind embedding. 

The Challenge 
There is a clear distinction between modeling a system from observed data and measuring a 
specific set of features from the data set. Ideally, modeling should be approached without any 
pre-conception about the system's architecture. The training data should stand for the unique 
relevant source of information from which our task is to derive as much knowledge and 
understanding about the system's mechanism as possible. Measuring a specific feature from 
input data implies the prior choice of a definition for a supposedly relevant feature. Ironically 
though, these two tasks are traditionally so closely related that their distinction resides only in 
their purposes and not all that much in their implementation or mechanism. Until recently, 
linear system theory was the only modeling tool available and its extensive use made us forget 
about the strong assumptions it relies upon. We shall re-visit these quickly and state their 
limitations. 
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The power spectrum/sonogram fascination 

Among the most classic references in the domain of timbre characterization are the works of 
Wessel [Wes79], Grey [Gre75], Slawson [Sla68], Risset [RW82]. All of these make reference 
to some time/frequency representations (such as sonograms, pitch-synchronous analysis or 
more rarely wavelets) which add the notion of temporal evolution to Helmoltz' classic 
conception of timbre. Pitch synchronous analysis can be seen as a special case of a sonogram 
for which the signal is locally re-sampled at a multiple of its fundamental frequency and 
assumed to be perfectly periodic.  

 

Fig. 4.1 - Example of a sonogram analysis applied to a short melody played on a cello. 

Sonograms are nothing but a short-time Fourier analysis applied to a sound. Sonograms 
involve sliding a short temporal window on the signal and decomposing the windowed 
observation with Fourier's tool as if it were a piece of an infinite support stationary time series. 
This representation offers a set of interesting features related to human perception of sound. 
The main reasons for referring to the Fourier transform of a sound are the following popular 
beliefs: 

 
(i) The sine functions which are the basis on which Fourier 

decomposes a signal play a very important physical and perceptive 
role. 

(ii) The spectrum of a sound is a set of n couples (amplitude An, 
frequency fn) which leads to a multidimensional representation of 
timbre. Additionally, the spectral envelope (i.e. the series An) 
carries a lot of information in some cases (such as voice for 
instance). 

(iii) The separation between amplitude and phase for each spectral 
component was confirmed by some studies on phase perception. 

(iv) The perceptual notion of harmony within a complex sound can be 
interpreted through a model based on a set of distinct sine waves in 
a satisfying way. 
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Another argument for the use of a spectral representation is the fact that estimates of higher 
order statistics can seem to be computationally expensive and to require a prohibitive amount 
of data.  

Standard digital signal processing in the real world 

In Chapter 2, we reviewed quickly some of the major foundations of linear system theory. In 
that review, we highlighted the close relationships between the notions of power spectrum, 
second order statistics, linear systems, innovation, Wold's decomposition and determinism. 
Although it was short and incomplete, this overview was sufficiently detailed to illustrate how 
all of these notions are tied up together and how they depend strongly upon each other in order 
to make any sense. 

When observed samples replace stochastic processes and when the analyzing tool is a 
computer, objects such as autocorrelation functions, measures and the Fourier transform lose 
most of their theoretical meaning (leaving the clean world of Mathematics for the dirty reality 
of sampled and quantized measurements). Any estimate of statistics relies on the ergodicity of 
the system, allowing averages over instances and averages over time on a single instance to be 
equivalent. Expectations become averages over a limited number of observations and the 
eventual singularities of the spectral measure become spikes in the periodogram (or other 
approximate measure of the spectrum). The boundary between determinism and non-
determinism introduced earlier relies on a decision rule that detects spikes. But besides these 
limitations imposed by the nature of digital signal processing, the notions of deterministic and 
non-deterministic processes suffer from some more intrinsic limitations. 

Indeed, the definition of the innovation, as being a white noise uncorrelated with the past 
values of the process, only takes second order statistics into account. It is constructed on the 
orthogonality principle which finds its foundation in linear mean-square estimation and can be 
related to the Wiener-Hopf equation (where the purpose is to match correlation functions). 
While innovation is related intuitively to a measure of the additional information brought by a 
new observation when the past is known, we ought to be skeptical. Being uncorrelated with 
the past doesn't imply being independent from it. In fact, a correct measurement of this 
additional information requires the ability to estimate the joint probability of an increasing 
number of successive (xn)n and to compute the corresponding entropies. These joint entropies 
lead to the notions of redundancy and information which are more likely to give a better 
answer to the "deterministic vs. stochastic" question.  

The notion of a deterministic (or predictable) process that is introduced by Wold's 
decomposition characterizes only a subclass of deterministic systems: deterministic and linear 
systems (the future is a linear combination of the past). A process which, through Wold's tool, 
may appear to be non-deterministic or even purely non-deterministic, is not guaranteed to be 
stochastic at all. It might be the chaotic output of a non-linear deterministic dynamical system. 
The estimates of the second order statistics of a deterministic, but chaotic, system can be 
amazingly similar to the ones of a random white noise. 

We are now aware that the linear approach to signal modeling will give up determinism as 
soon as the system presents some non-linearities. 
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So why does linear modeling "work"? 

In the context of speech processing as well as musical sound analysis, the incoming signal 
presents long harmonic or periodic stages. During these stages, the signal fits Wold's 
decomposition perfectly and it can be qualified as deterministic in the "linear" sense. We will 
now see how any harmonic or periodic process can be expressed as the output of an 
autonomous linear system (auto-regressive or AR model). 

The exercise 

Let xn be our harmonic stochastic process. xn being harmonic means that it can be expressed 
as follows: 

 
 
xn = λ ke

2iπnf k

k = 1

p

∑  

where the λk are centered, uncorrelated random variables of variances γ2k. We can observe 
that a specific arrangement of the fk and λk will be required if xn takes only real values but 
what follows can apply regardless. If xn is a periodic signal, the fk should follow a harmonic 
series; the finite sum (k=1 to p) is justified by the assumption of a finite bandwidth for the 
signal. 

As in Chapter 2, the spectral measure of this process will be: 

 
 
µ x (df ) = γ k

2 δ(f − fk )
k = 1

p

∑ , 

where   δ(f)  refers to Dirac's distribution. Given that expression, let's built the following finite 
impulse response filter H(z) as follows: 

 
  
H(z) = (1 − z −1e−2iπfk )

k =1

p

∏ = 1− hk z− k

k =1

p

∑  

Let's apply this linear filter to the process xn and let yn be the output of this filter. Then yn will 
have the following expression: 

 
 
y n = xn + hk xn −k

k =1

p

∑   

and the energy of yn will be given by: 

 
  
E yn

2[ ]= H(e −2iπf )
2
µx(df )∫ = H(e−2iπfk )

2

k =1

p

∑  
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Of course, the filter H(z) was designed to make sure that the sum would be equal to zero and 
we end up simply with yn=0; in other words: 

 
 
xn = − hk xn −k

k =1

p

∑  

Therefore xn is a linear combination of its past values. This relationship is an AR (auto-
regressive) linear model for this process and it will lead (at least theoretically) to a perfect 
reconstruction of the time-series xn given p initial conditions.. 

The lesson 

This little exercise illustrated how any harmonic or periodic signal can be expressed as the 
output of an autonomous linear system. If the extent to which an approach "works" is 
measured in terms of prediction errors, it is the author's strong belief that this phenomenon is 
the main reason why linear modeling "works". 

A call for non-linear modeling 

Looking back a little more suspiciously at the previous exercise will lead to a few 
observations. The degrees of freedom and the general architecture of the resulting linear model 
are the artificial products of the approach; they don't necessarily reflect the physical (or 
dynamical) nature of the system that produced this signal. 

Any lack of stationarity exhibited by the signal will lead to some energy between the major 
frequency components which, through the previous scheme, will automatically be assimilated 
as an additive noise. Therefore, any transitional stage or any modulation may be attributed to 
some random behavior regardless of their true predictability.  

In terms of prediction error, these might not seem to be all that important due to the sound's 
strong tendency to be quasi-periodic over time. However, any quick listening exercise will 
convince a listener that purely stationary harmonic sounds (no modulation or envelope) don't 
carry much information musically. No matter how many harmonics a stationary wave may 
have, it will always tend to sound the same to us. Sounds only come to life when they start 
exhibiting modulations or peculiar transitional stages. In a way, it is their deviation from pure 
stationarity (no matter how small) that provides sounds with their identity. 

Modeling Spaces - Embedding 
Inferring non-linear models from observed data without any pre-conception concerning the 
architecture of an eventual model is no longer a dream. In what follows, we will see how 
Floris Takens' Embedding theorem can be applied to time-series and lead to a general scheme 
for the inference of physically meaningful models from observed behaviors. 
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State space and lag space 

Let's consider a dynamical system described by its state variables x related to each other in a 
general fashion: 

 
  
dx
dt

= f(x)  

The evolution of the system from a given initial state can be monitored by the trajectory of the 
vector x as time passes by. This vector x lives in the state space and the observation of this 
trajectory can teach us a lot about the internal mechanism of this dynamic system (i.e. about 
the relationship f). However, the nature and even the number of these internal states (or 
degrees of freedom) are usually unknown and we only have access to a subset of them if not 
only one. Let's suppose the only observation we have is a single variable z=g(x). Even though 
the dimension of our observation is one, we can choose to build a vector of arbitrary 
dimension d by using lag values of z:  

     l(t ) = z(t ),z(t + τ),.. . ,z(t + (d − 1)τ)( )T  

This vector l(t) lives in the lag space in which it will draw another trajectory as time passes by. 

Application of the embedding theorem 

Let's recall the formulation of Floris Takens' original embedding theorem from Chapter 2. 

Theorem: Let M be a compact manifold of dimension m. For pairs 
 a smooth diffeomorphism and y:  a smooth 

function, it is a generic property that the map φ , 
 (ϕ , y):M → ℜ2m + 1

defined by: 

  (ϕ, y),  ϕ:M → M  M → ℜ

 
φ(ϕ , y)(x) =  y(x), y(ϕ(x)), ... , y(ϕ2m (x))( ) 

is an embedding; by "smooth" we mean at least C2. 

Keeping the same notations as above, x(t) represents the system's state at time t, z(t) = g(x(t)) 
is our scalar observation at time t. The system has a general dynamical behavior: 

 
  
dx
dt

= f(x)  

Let's pick the manifold M to be the set of our system's states x(t). Let's chose the map 
 to be such that   ϕ:M → M   ϕ . This map represents the system's internal x(t )( )= x(t + τ)
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dynamics and is obviously related to the function f(). Finally, as suggested in the previous 
theorem, let's define 

  
 
φ(ϕ , g):M → ℜ2m + 1   

 and  

 
    
φ(ϕ , g)(x) =  g(x ), g(ϕ(x)), ... , g(ϕ2m (x))( ) 

  ϕ:M → M  and    verify the hypotheses of the embedding theorem and given that m 
is picked to be big enough, the map 

g:M → ℜ

 
φ(ϕ , g)  should be an embedding. 

Given the choices we made concerning ϕ() and g(), it turns out that 
 
φ(ϕ , g)  maps the system's 

state space to the observation's lag space: 

 

    

φ
(ϕ , g)

(x(t )) =  g(x(t )), g(ϕ(x(t ))), ... , g(ϕ2m (x(t )))( )
                       = g(x(t)), g(x(t − τ)),. .., g(x(t − 2mτ))( )
                       = z(t ), z(t − τ),.. ., z(t − 2mτ)( ) = l (t )

 

In other words, the trajectory of a 1D observation in a d-dimensional lag space and the 
trajectory of the system's state in its state space differ only by a smooth local change of 
coordinates (given that d is big enough). In the context of modeling, classification or 
resynthesis, this result tells us that there is no need for "hidden variables" other than the lag 
values of the time series we are studying. Furthermore, the number of necessary lag values is 
directly related to the number of the system's  degrees of freedom and this number can also be 
estimated by measuring statistics on the initial observation. We can also note that any 
invertible transformation of these lag vectors will also work. If this transformation were to be 
linear, this means that any linearly filtered version of the observation works just as well. 

The state space of a system is an object we will never have access to whereas the lag space 
doesn't give us any such problem. This strong relationship between these two objects will 
allow us from now on to forget completely about the state space and to manipulate lag values 
of an observation as if they were directly state variables of our system. This is to say that the 
behavior of our observation in this new space obeys laws similar to those which the instrument 
obeys to in the physical world. Therefore, characterizing the behavior of our observation in 
this new space (as a dynamical system) will lead to a physically meaningful model for the 
instrument. 

Embedding Dimension 

The sufficient dimension d of the lag space and the number of degrees of freedom are now 
taken to be equivalent. Let's consider a deterministic system that produces the discrete time 
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observation xn=x(nτ). By "deterministic," we mean here that the past values of this 
observation allow the prediction of its future values with no error. Unlike the case of Wold's 
decomposition, no assumption concerning linear relationships is implied in what follows. This 
can be written as: 

   p xn| xn −1 ,xn −2 , . ..( )= δ xn − f(xn −1 ,xn −2 , .. . )( )  (Dirac distribution) 

For this system to have a finite number of degrees of freedom, there has to be a dimension d 
such that: 

 
  

p xn| xn −1 ,xn −2 ,. ..( )= p xn| xn −1 ,xn −2 , . . ,xn −d( )
                              = δ xn − fd (xn −1 ,xn −2 ,. . ,xn −d )( )

 

If such a dimension exists, and given what we said before about sampled strict sense stationary 
stochastic processes in Chapter 2, then we'd have: 

  

  

p k +1(τ) = p xn ,xn −1 ,xn −2 , .. , xn− k( )
           = δ xn − fd (xn −1 ,xn −2 , . . ,xn −d )( ).p xn − 1, xn − 2 , .. , xn − k( )
           = δ xn − fd (xn −1 ,xn −2 , . . ,xn −d )( ).p k (τ)      for any k ≥ d

And therefore, for any k>=d, we'd have:  

 

  

H k +1(τ) = H k (τ)
Ik +1(τ) = (k +1)H 1(τ) − H k +1(τ) = H 1(τ) + Ik (τ)
Rk +1(τ) = Ik +1(τ) − Ik (τ) = H 1(τ)

 

In that case, this dimension is referred to as the embedding dimension. A natural way to 
determine this embedding dimension is to evaluate the observation's joint entropy for various 
successive dimensions and watch its evolution as the dimension increases. The estimation of 
the embedding dimension is a quest for a maximum of predictability. While discussing general 
concerns associated with modeling (later within this chapter), we will see the notion of 
predictability  (or at least determinism) can be approached from the point of view of 
conditional variance instead of entropy. 

Binary tree method for entropy estimation 

Having gone through the precise definition of entropy for continuous-type random variables in 
Chapter 2, we are now aware that its estimation from a quantized (i.e. finite resolution) 
observation can be tricky. Considering our quantized observation as the instances of a 
discrete-type random variable can mislead us to a biased measure of the system's entropy 
(especially for chaotic systems for which the attractor has a fractal dimension). However, in 
our particular context, it is very unlikely that we should encounter such dramatic behaviors 
and it seems reasonable to estimate the data's entropy from a histogram-like representation. 

The internal representation of a multidimensional histogram of our data in a lag space can be 
very large and tedious to use but as an alternative, Neil Gershenfeld [Ger92] suggests the 
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usage of a binary tree for the estimation of the data's joint entropy in lag spaces of increasing 
dimension.  

l1 = (7,4,5)         
i.e. (111,100,101)

  ;  
l2 = (7,4,4)         
i.e.  (111,100,100)

  ;   
l3 = (7,6,5)         
i.e. (111,110,101)
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Fig. 4.2 - O(N) sorting of fixed resolution data on a binary tree [Ger92] 

Much like for regular histograms, the first issue concerns the data's resolution. Deciding on a 
bin size for a histogram or on a binary representation for the data are essentially the same 
thing. Our observed and recorded data has already gone through a quantization stage, 
imposing an upper bound to the resolution we have access to. 

Let b be the number of bits required to represent a single observation; Dmax the maximum 
size of the joint entropy we are trying to estimate (Dmax is also maximum dimension of the 
lag space);     l(t ) = z(t ),z(t + τ), .. . ,z(t + (D max − 1)τ)( )T

 the lag vector of the 
observation at time t. 

To each lag vector l(t) let's associate a (b.Dmax)-long binary word w(t)=1001...110... by 
concatenating the binary expressions of the successive elements of the vector l(t). The various 
words w(t) can then be sorted lexicographically in a binary tree in which each node contains a 
counter keeping track of how many times it's been visited. A histogram-like representation of 
the data's joint probability for successive dimensions (from 1 to Dmax) will be provided by the 
appropriate level of this tree. From these joint probabilities, the associated entropy is then 
estimated. 

  , where p

  

H d = − p i .ln (p i)
   visited  nodes i on
level (b.d )  of the tree

∑

 

i =
counter i

counter j
   a ll nodes j on the
same level than node i

∑
 

The previous figure illustrates this process with b=3, Dmax=3 and three arbitrary lag vectors 
l1, l2 and l3. 
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Computationally, in addition to providing an O(N) sorting procedure for the data, this 
approach also implies that memory is allocated only for occupied nodes, leading to a much 
more conservative storage requirement than a brute-force histogram. 

Example 

As an example, let's consider a sampled audio recording of a bowed violin string. We  
restricted our attention to the quasi-periodic part of this recording, which we normalized 
between -1.0 and 1.0. The following figure shows a plot of this data in a three-dimensional lag 
space as well as an estimate of its spectrum. 

z(t)

z(t-2T)

z(t-T)

  
Frequency

 

time

A
m

pl
itu

de

 

Fig. 4.3 - Lag space plot, spectrogram and wave form of a quasi-stationary chunk of a violin 
recording. 

Applying the binary tree method that we discussed previously to this audio data with a 8 bits 
of resolution, we obtain the following plots an estimating of the data's joint entropy and 
redundancy. 
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Fig. 4.4 - Joint entropy and redundancy estimations versus dimension. 

Regardless of the accuracy of the previous measurement, a first qualitative observation already 
leads to an interesting and disturbing result. The obvious saturation of redundancy past a lag 
space dimension of 4 or 5 implies that the observed chunk of data doesn't have more than 4 
degrees of freedom. Looking back at the data's spectrogram, one can count at least 12 or 13 
harmonics. We recall that a linear system of dimension 4 can not have more than 2 peaks in its 
spectrum. It turns out that, indeed, through a cluster-based method that we will introduce later 
on in Chapter 6, we were able to infer a non-linear model of dimension 4, that reconstructs that 
data accurately. 

Resolution 

An evaluation of entropy based on an estimated parametric form for the data's probability mass 
function might be more reliable but it is important to keep in mind the fact that the finite 
resolution of our observation can mislead us anyway. The following figure is an attempt to 
illustrate two cases where such a phenomenon happens. The points linked by a continuous line 
represent the "real" infinite resolution trajectory of the observation in a lag space whereas the 
boxes are the quantized version of the same trajectory. 
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(a) (b)  

 
Case (a): We are locally observing two separate trajectories that don't cross. The 

system could very well be deterministic but if we only have access 
to the quantized observation, it will appear that the trajectory 
splits, which could mislead us to believe that the system displays 
some random behavior. 

Case (b): The trajectory really splits but this split can not be detected through 
the low resolution of our observation. We might end up 
concluding that the system is deterministic whereas it's not. 

The evolution (or should we say growth) of entropy with an increasing resolution is related to 
the attractor's dimension. Indeed, if d is big enough (i.e. at least the embedding dimension) 
then the object 

 
  
lim
N →∞

pd (xi).ln(pd (xi))x i
∑

− ln(N)
= lim

N →∞

H d (τ,N )
ln(N)

 

will measure the dimension of the set of our system's solution (i.e. the dimension of the set 
corresponds to the attractor's dimension if the system were deterministic). 
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Autonomous / Non-autonomous systems 

In all that precedes, we've implied that the observed system had the following general form: 

    
dx
dt

= f(x)     x(t)

 

 

This expression implies that the observed system is autonomous; the evolution of the state x is 
only a function of this same state. Yet in most cases, we will be called to consider non-
autonomous systems. Such systems have inputs u and it would sound more general to write the 
dynamics of a system as: 

    x(t)    u (t)

    
dx
dt

= f(x ,u )
    
dx
dt

= fu (x)or

 

 

As illustrated by the previous expressions, there are basically two schools of thoughts for 
dealing with non-autonomous systems. The first is to consider a composite lag space of input 
and output (i.e. inputs are just extra observations). The other school could be qualified as 
parametric embedding (i.e. the input conditions the dynamics of the system). Most of what 
follows can be generalized to either one of these points of view so we will stick to our original 
notations, keeping in mind that the observed system doesn't need to be autonomous. 

Data Characterization and Modeling Space Evaluation 
The application of the Embedding theorem provided us with the confidence that we can 
reconstruct from observations a space which exhibits dynamics that are very closely related to 
the physical mechanism of the original system that we observed. We shall now look into ways 
to characterize the system in this reconstructed (modeling) space. 
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Local linear modeling as an evaluation scheme 

Local linear modeling is a computationally expensive approach to the characterization of the 
function f(). However, this method was suggested as a means to evaluate the validity of a 
deterministic approach for a given system. A precise description of its implementation is 
provided by Tim Sauer in [GW93] p.175 -194. In a lag space of sufficient dimension d, let's 
consider instantaneous (d-1)-dimensional state 

. The basic idea behind local linear modeling 
is to predict the value z(t+(d-1)τ) by identifying an appropriate set of neighbors, regressing a 
linear model over these neighbors, and using the regressed model in order to predict this value. 

    l *(t ) = z(t ),z(t + τ), .. . ,z(t + (d − 2)τ)( )T

The following is a slightly more detailed explanation of this process as it is suggested by Tim 
Sauer: 

 
(i)  Identify some of l*(t)'s nearest (d-1)-dimensional neighbors 

  n *1 ,. .. , n *k( ) among the training data and compute the 

associated d-dimensional center of mass c
  

=
1
k

n i
i =1

k

∑ . 

(ii)  Regress a linear model from   n 1, . .. ,n k( ) (and c). Tim Sauer 
suggests the usage of singular-value decomposition in order to 
identify the smallest dimension for that linear model over this 
restricted neighborhood. Such a decomposition should lead to the 
identification of a basis for that subspace. 

(iii)  Use the projection of l*(t) on that subspace in order to predict the 
future state. This prediction will lead to a d-dimensional lag vector 
l(t) which will be a linear combination of the neighbors 

  n 1, . .. ,n k( ). 

If k is the number of neighbors used to construct the local linear model around each possible 
lag vector of dimension d, the evolution of the performance (for prediction) of the local linear 
model with the number k can reveal important information about the system. When k is the 
smallest (i.e. k=1), the model is a lookup of the closest neighbor in lag space. When k is very 
large (i.e. k=number of observation), the model is a global linear model (auto regressive). The 
plot of this evolution for different dimension was introduced by Casdagli in 1991 in terms of 
"deterministic vs. stochastic" plot (DVS). 

If we restrict this study to a given dimension d for our lag space, the following figure 
illustrates what these plots might look like for three different systems. This figure is only an 
illustration, it is not the result of a particular analysis. 
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Fig. 4.5 - Example of DVS plots for three systems. 
Case (a): The prediction error reaches a low minimum for the dimension d with 

which the plot was made, which tells us that the system is fairly 
deterministic. The error increases with k and that means that the 
system in non-linear. 

Case (b): The failure of a local linear model with a small k can be seen as 
overfitting. The flat part for large k tells us that the system is fairly 
linear. The globally poor performance tells us that the system is 
most probably stochastic. 

Case (c): This case falls between the two previous. It could be a higher 
dimension non-linear deterministic system or a non-linear 
stochastic system. 

This example illustrates the eventual ambiguity between stochasticity and high dimension non-
linearity of these plots. As we can recall, linear system theory could not differentiate between 
stochasticity and non-linearities (even for low dimension system) so this new ambiguity is still 
an improvement. 

Probability Mass Function (PMF) estimation 

Rather than interpreting the success or failure of a particular modeling approach like local 
linear models, one might consider estimating the data's probability mass function in a lag 
space. In addition to providing valuable information concerning the data and the modeling 
space, such an estimation could be used as our final model for the system. Furthermore, the 
stochastic nature of a probability distribution relieves us from making any a priori guess 
concerning the predictability of the system. 

Given a sampled instance of a stationary ergodic stochastic process x and a dimension d, the 
problem here is to estimate a parametric form of the PMF pd(x). Natural objects to think of are 
a histogram and Parzen windows. A histogram counts occurrences of particular values, leading 
to a sparse estimate of the data's probability distribution. Overcoming this sparse property is 
the goal of a Parzen window, and it will do so by smoothing the histogram. Here, "smoothing" 
can be taken quiet literally as in most cases, the application of such a window is rigorously 
equivalent to the application of a non-causal finite impulse response filter. We recall that given 
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a kernel (or Parzen window)   γ (z)  and a number N of observations x(i), this approach will 
lead to the following estimate for the data's probability mass function: 

 
  
˜ p (x) =

1
N

γ x − x( i )( )
i = 1

N

∑  

In order for this estimate to be a valid probability mass function, it is implied of course that the 
kernel  should integrate to one. If we started with a histogram of "infinite resolution," 
then we could interpret the previous expression as a convolution product between the kernel 
and our histogram. This is to say that the outcome can be seen as a filtered version of an 
infinite resolution histogram; the filter (for which γ (z)  stands for the impulse response) is the 
means by which we generalize the estimated probability density to areas where no data was 
observed. 

    γ (z)

  

Yet, as the dimension d increases, the internal representation of the histogram with a decent 
resolution requires an exploding amount of memory (Ld where L is the number of bins given 
by our resolution). Therefore a straightforward application of Parzen's idea becomes quickly 
unfeasible. Kris Popat and Rosalind Picard [PP93] adapted Parzen's technique "by replacing 
the original data with a smaller set of representative points and by adapting the sizes and 
shapes of the kernel to match the statistics of the regions they represent". These most 
representative points are chosen by a standard clustering algorithm. The general form for the 
resulting estimation of the probability distribution is almost the same as for the Parzen 
technique with the expectation that the sum is over the number M of identified clusters instead 
of the number of data points and c(i) the centroids of these clusters. 

 
  
˜ p (x) =

1
M

γ x − c (i )( )
i =1

M

∑  

In addition to this dramatic reduction of our problem's size, the kernels they propose are 
separable probability density functions, which allows a recursive estimation of the conditional 
probabilities.  

Without any deep structural information within each identified cluster, a possible form for the 
estimate of the data's probability mass function could be the following: 

 
  
p xn , xn− 1, .. , xn −d +1( )= w m . K m ,k .e−(x n−k −µ m ,k )2 / (2σ m ,k

2 )

k =0

d − 1

∏
m = 1

M

∑  

where M is the number of representative points, wm>0, and .  
 

w m
m = 1

M

∑ = 1

Of course, the approach of cluster-based PMF estimation is not limited to this specific choice 
for the kernels. We will come back to this approach later on in this document and provide a 
few examples and alternative choices for the form of the PMF that could result from such a 
process.  
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Assuming that we now possess a fair parametric estimate of our observation's joint probability 
distribution for different dimensions, the question is what we'll use it for. The estimated PMF 
is an elegant summary of the original data set and the first type of use one can think of is data 
characterization. We could use it to evaluate entropies for the successive dimensions in the 
hope of finding the system's embedding dimension.  

Once this embedding dimension is detected (or estimated) we could then consider that the 
system is deterministic and forget about these joint probabilities when we model it. This would 
be a deterministic approach. The other option is to use our estimates of these joint 
probabilities as a model of the system. Unless the parametric form of these probabilities have 
some Dirac distribution terms (which is very unlikely as the method is a "smoothing" of the 
original histogram) the model they will describe will carry some uncertainty. In other words, 
the system would be modeled as a random number generator which probability distribution is 
derived from the conditional probability distributions of the data. This would be a stochastic 
approach. 

Deterministic approach 

As we pointed out earlier, this approach assumes the existence of an embedding dimension. 
Having gone several times through the difficulties involved in entropy estimations, we know 
that the existence of such an object might not appear from our data as clearly as we'd like. This 
dimension d will be the result of a fairly arbitrary decision rather than an unquestionable 
observation. This assumption can be stated as: 

   p xn| xn −1 ,xn −2 , . . ,xn −d( )= δ xn − f(xn −1, xn− 2 , .. , xn− d )( ) 

 or simply  x n = f(xn− 1, xn − 2 , .. , xn − d )  

Our system is therefore entirely characterized by a set of d initial conditions and a 
representation of the function f(). In order for our model to generalize the behavior of our 
system with variations on the initial conditions for instance, the representation of f() should be 
defined on a wider set than the training data (i.e. our observation). Given also that we want to 
avoid a prohibitive size of this representation, the goal of this training should be to estimate a 
parametric form for f().  

For this purpose, there are two basic sets of approaches, the global and the local approaches. A 
global approach assumes some fixed architecture for a closed form of the function f() on the 
entire set on which it's defined, and tunes the parameters of this architecture in order to fit the 
training data by minimizing some criteria. An example would be to fit a polynomial of 
dimension d and fixed order N to the observation with a least mean square criteria. A local 
approach will typically use the training data as the model and an interpolating method as the 
means to generalize it. Local linear modeling is an example of a local approach. These 
approaches are not mutually exclusive as one can choose to take a local approach on a 
representative subset of the training data. Each one of these representative points carries some 
information about the system's behavior in the corresponding neighborhood to the rest of the 
model. These points are sometimes referred to as the anchor points of radial basis functions. If 
the number of anchor points is fixed, than there is an assumption concerning the closed form 
of the model even though it is based on interpolations between observed data. We could 
qualify this method as being "glocal" if we felt like inventing a word. 
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A local approach usually gives better performance as it doesn't constrain the model as much as 
a global method. Yet, the representation it provides is just as big as the training data, which 
makes it heavy and rigid. By rigidity we mean here that the model often lacks a restricted 
number of knobs allowing mutations of the system. In that respect, global models are 
preferable because of their smaller size, their usually smaller computation requirements, and 
their limited fixed number of parameters (knobs). 

Stochastic approach 

Supposing that we have an estimation of the data's probability mass function in a (d+1)-
dimensional lag space, deriving conditional expectations from that estimate would be a way to 
express a d-dimensional deterministic model. However, we might decide to keep the estimated 
PMF as our model itself. Instead of taking expectations, deriving conditional probability 
distributions is a way to express a stochastic model for our system. Given some current state 
(in lag space) for our system, the next predicted state becomes the instance of a random 
variable which behaves accordingly to these conditional probability distributions. 

Given the values (Xn-1,..,Xn-d) of the last d lag values, the prediction of the next lag value 
will be the output of a random number generator whose PDF matches the following 
conditional PDF: 

 

  

p(xn| xn −1 ,. . ,xn −d ) =
p(xn ,xn −1, . . ,xn −d )

p (Xn , xn − 1, .. , xn− d )dX n
X n

∫
 

Note: We recall here how easily one can create instances of an arbitrary 
PDF random variable from the instances of a uniformly distributed 
random variable. Let's consider two random variables x and y related to 
each other by x=g(y) where g() is a diffeomorphic function g:R->[0,1]. 
Let's suppose also that x is uniformly distributed on [0,1]. The 
relationship px(X)dX=py(Y)dY gives us: 

 

  

∀X∈[0,1] ,  dy
dx

= d
dx

g −1(X)( )= 1
p y (Y)

                            =
1

g ' g−1(X)( )=
1

p y (Y)

                            = 1
g '(Y)

= 1
p y (Y)

 

and so   ∀Y ∈R , p y (Y) = g' (Y) i. e. Py (Y) = g(Y)   (the 
cumulative function of y). 

This tells us that if we possess a typical random number generator 
providing us with instances X (in [0,1]) of x, we can create an instance 
Y of y (with arbitrary PDF py(Y)) by applying the simple mapping : 
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  Y = P y
−1(X) 

It is important to note that such an approach to the system might not be an improvement over 
the deterministic approach. As an illustration, let's see what happens when the observation is 
the output of a simple 2D deterministic system. Let's even chose that system to be linear, 
namely: 

   xn = (2cos θ)xn− 1 − λ.xn −2    (where λ ∈]0,1[) 

 (xn is a damped sine wave) 

If we decide to estimate the probability distribution of this variable based on some cluster 
analysis like we suggested earlier and decide not to use any specific structural information 
(such as local linear or others) within each cluster, then we will end up with a limited number 
of clusters (or zones) over which the data will be summarized via some averaging. The next 
figure illustrates the estimate of the conditional probability distribution of xn given xn-1=v and 
xn-2=u. 

u

v
region associated 

with (u,v)

probability distribution 
associated with the 

region

  xn − 2

  xn −1

  xn

 

Fig.4.6 - Illustration of the "pessimism" of the PMF approach for modeling in the context of a 
damped sine-wave.  

In the previous figure, the box is a representation of the spatial zone associated with a specific 
cluster. Chances are that given the finite number of "representative points" used for the 
estimation of the PMF, the variance of the estimate of this conditional probability distribution 
will not be zero (as it should be). The resulting conditional variance of xn given (xn-2,xn-1) is 
the artifact of a model mismatch as local regions are summarized by a single scalar 
(conditional mean) instead of capturing the linear structure of the system. This is why the 
figure is called "pessimism" of the PMF approach. The next figure illustrates the same point in 
terms of the prediction surface itself.  
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(a) (b)  

Fig.4.7 - Stochastic model of a deterministic linear 2D system. 

(a) represents the true deterministic system, a simple plane, whereas (b) represents the model 
induced by the PMF approach, a fuzzy plane. Again, the predictor's fuzziness is only an 
artifact of a model mismatch. Instead of characterizing the behavior of the observed system, it 
is a function of the size of the clusters that were identified. 

General Concerns 
In the following, we will discuss some of the major issues and concerns that one encounters 
when attempting to build a non-linear model from the observation of an arbitrary system. The 
author doesn't pretend to be exhaustive at this point as most of the following concerns point 
rapidly to very involved material which we might not need to worry about in our restricted 
context. We shall simply take a quick overview of these concerns to develop an intuitive 
understanding and a general awareness. 

Predictability versus Determinism 

With the access to powerful computers, the study of non-linear dynamics has captivated the 
attention of an increasing number of scientists from various fields. Along with this new 
interest appeared a new set of notions and concerns; some of which are useful and others 
which are plain frustrating. 

In 1963, Lorenz was the first to experiment with a simple non-linear system which, although it 
was deterministic, would never settle down to equilibrium or to a period state. This led to the 
definition of chaos which, in addition to captivating science fiction writers, questioned the 
relationship between the notions of determinism and predictability. The system being 
deterministic implies that there is a strict relationship between its past and its future; no 
randomness or ambiguity occurs concerning the state that follows the present state. In the case 
of a deterministic but chaotic system, tiny variations applied to the initial conditions result 
rapidly in dramatically different behaviors in spite of this non-ambiguous causality. From an 
experimental point of view, this means that the system is inherently unpredictable because no 
measurement of a system's current state can pretend to be error-free. This is not to say that no 
useful information can be extracted from the observation of a chaotic system. Short-term 
predictions could still be fairly accurate if its chaotic behavior is not too dramatic and a global 
analysis of its behavior can lead to a good understanding of its mechanism. Indeed, chaotic 
systems are not deprived from a structure. The set of states that a chaotic system visits (in its 
own state space or another embedding) turns out to be a fractal. 
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The present work is fairly free with the intuitive assimilation of determinism and 
predictability. This is mainly due to the fact that in the context of the systems that one 
encounters with musical instruments, chaotic behaviors are very unlikely. 

Entropy versus Variance 

In the light of the previous remark, we are now aware that the sentence "The estimation of the 
embedding dimension is a quest for a maximum of predictability" in our earlier introduction of 
the embedding dimension, should be taken with caution. All we meant to express is the desire 
to find the smallest dimension with which the system can be modeled as a deterministic system 
with a conservative out-of-sample error. We also related the search of the embedding 
dimension to some maximization of joint entropy. 

Let's consider the stochastic approach which we introduced earlier. Keeping the model in the 
form of a conditional probability function can be seen as describing an ambiguous prediction 
function via a "fuzzy" hyper-surface. Intuitively, the "skin depth" of this fuzzy surface is 
related to the ambiguity (or predictability or deterministic property) of the model. This 
visualization of "ambiguity" seems to be pointing more towards a conditional variance than it 
does towards entropy. Instead of staying confused, let's work out the relationship between 
variance and entropy in the Gaussian case and realize that these two points of view are not as 
different as they might sound. 

General relationship in a Gaussian case 

Let x and y be two jointly Gaussian random vectors. It is a well known fact that under these 
circumstances, x, y and x|y are gaussian random vectors as well. Through substitution and 
identification, we get: 

     E x| y = Y[ ]= x + ΛxyΛy
−1(Y − y )  and   Λx| y = Λx − ΛxyΛy

−1Λxy
T , 

where   ,   ,  and Λx Λ y   Λxy   Λx| y  stand respectively x and y's covariance matrices, joint and 
conditional covariance matrices. If N is the dimension of the Gaussian random vector x, then 
we have the following expression for the conditional probability distribution: 

 

    

p x| y (X| Y) =
1

(2π)N / 2 Λx| y

1/ 2  exp −
X− E x| y = Y[ ]( )T

 Λx| y
−1  X− E x| y = Y[ ]( )

2

 

 
 

 

 
 

 

We recall (Chapter 2) that the entropy of a continuous-type random variable (or vector) is 
defined as the expectation of the natural log of its probability distribution: 

 
    
H c(u ) = − pu (U ) ln pu (U )( ) dU

U
∫ = E − ln pu (u )( )[ ], 
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and we also recall that there is no elegant continuity between the definition of entropy for 
discrete-type and continuous-type random variable without the introduction of an extra term 
taking quantization (or resolution) in account: 

 
  
H c(u ) = lim

δ→ 0
H d (uδ ) + ln δ[ ] 

Implied by what precedes, we'll never have access to anything other than an estimate of the 
"discrete-type version" of entropy so when we refer to entropy in our context, we refer to Hd 
and not Hc. This point being clarified, let's find an expression for the conditional entropy of 
x|y and relate it to the corresponding conditional covariance matrix: 

     
H d (x| y) = H c(x| y) − ln δ = E − ln px| y (x| y( )[ ]− ln δ  

which, given the form of this conditional probability, leads to: 

 
    
H d (x| y) =

N
2

ln (2π) +
1
2

ln Λx| y − ln δ +
1
2

E x − E x| y[ ]( )T
 Λx| y

−1  x − E x| y[ ]( )[ ] 

Let's define the following temporarily for notation simplification purposes: 

     a = (ai )i = x − E x| y[ ]( );   Λx| y
−1 = (gi , j )i ,j ;   Λx| y = (li , j )i ,j  

Then 

  
E x − E x| y[ ]( )T

.Λx| y
−1 . x − E x| y[ ]( )[ ]= E a i

i =1

N

∑ g i, ja j
j= 1

N

∑
 

  
 

  = gi ,jE a ja i[ ]
j =1

N

∑
i= 1

N

∑
     

but of course,    by definition of the covariance matrix and therefore: E a jai[ ]= lj ,i

 
  

gi ,jE a ja i[ ]
j =1

N

∑
i= 1

N

∑ = gi ,jl j,i
j= 1

N

∑
i= 1

N

∑ = Tr Λx| y
−1 Λx| y[ ]= N , 

and we end up with:  

     
H d (x| y) =

N
2

ln (2π) +
1
2

ln Λx| y − ln δ +
N
2  

The case of lag spaces 

In the context of the estimation of a prediction surface in an embedding, x will stand for the 
next sample that we wish to predict. It will most likely be a scalar and therefore, N will be 
equal to 1 and the covariance matrix will reduce to a scalar variance. The previous relationship 
will then reduce to the following: 

Page 86 



Musical Sound Information – Eric Métois  October 1996 

   
H d (x| y) =

1 + ln 2πσx| y
2 / δ( )

2  

Although this expression was worked out from the assumption of Gaussian distributions 
(which is often justified), it suffices to illustrate a striking relationship between conditional 
entropy and conditional variance. 

Data resolution and other artifacts of measurements can lead to serious difficulties in the 
estimation of entropy. Hence, estimating the data's probability distribution and building a 
model in the form of a conditional probability distribution appear as a more robust technique 
to get similar information about a system's predictability in terms of conditional variances. In 
Chapter 6 of this document, we'll discuss Cluster-Weighted Modeling, a novel approach to the 
estimation of such probability distributions. 

Stability / Non-locality 

Non-locality and stability issues are inherent to the modeling of a prediction function, whether 
it is linear or not. Let z(t) be the time series we wish to model and the vector U(t) be lag 
vectors of z(t) with appropriate dimension (embedding dimension). We wish to model our time 
series via a prediction function which maps U(t) to z(t). Let's suppose we estimate a form for 
this prediction surface from some observed data and let's suppose that we achieve a very 
acceptable accuracy in terms of out-of-sample prediction: 

 
  
z(t) − ˜ f U(t)( ) < ε , 

where     
˜ f U(t )( ) stands for our estimated prediction surface applied to the input U(t). 

As soon as we feed the estimation of a new sample back into the prediction function in order 
to predict a large amount of successive samples, the once acceptable prediction error can 
propagate in a dramatic way, eventually leading to instabilities for the system. 

  ̃ f ()

  ̃ z (t )    ̃  U (t)

 

Even if the estimated model doesn't exhibit instabilities, it can't be relied upon in terms of the 
error   z(t) − ˜ z (t)  or 

    
U(t ) − ˜ U (t)  as t increases. This is what we refer to as non-locality.  

In the case of a linear model, the prediction function can be written as the scalar product of 
two vectors, or even more generally with a matrix H such that U  in the   ̃  (t +1) = H. ˜ U (t )
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case of discrete time or     d
˜ U (t ) dt = H. ˜ U (t )

ε = U(0) − ˜ U (0)

 in the continuous case. The largest eigen value 
of this matrix will provide an upper bound for the rate at which an initial error 

    0  may propagate through this recursion. 

In the case of non-linear models, the best we can do is not all that different. A local 
linearization around any relevant point on the prediction surface will lead to a similar (but 
local) matrix form. Averaging sorted eigenvalues of these local matrices along the relevant 
points of the prediction surface (i.e. observed data) leads to the definition of the Lyapunov 
Exponents. For any further discussion about these exponents, the reader should consult 
literature on non-linear dynamics. The author suggests Steven Strogatz' text book "Non-linear 
Dynamics and Chaos" [Str94]. 

As for stability, while heavenly properties of a linear model could turn the study of stability 
into the geometrical distribution of a rational function's poles, non-linear systems are out of 
luck. A non-linear system can be forced not to diverge as one can constrain it with conditions 
that satisfy stability but to this date, there is no general necessary and sufficient condition for 
the stability of a non-linear system. Furthermore, unlike for linear-systems, the stability of a 
non-linear system can depend upon its initial conditions. 

Generalization 

The data from which a prediction function may be estimated will always be finite and sparse 
while the support of the estimated prediction function will eventually be continuous. This is to 
say that our model will implicitly generalize the observed data. Because generalization is by 
essence not dictated by the training data, it will have to be based upon convictions and 
common sense. This generalization will be implied by the chosen architecture of our model 
and we will encounter this issue several times in the following chapters. 

Chapter Summary 
Applying Floris Takens' embedding theorem to the relationship between the state space of a 
dynamical system and a lag space reconstructed from the time-series of an observation 
provides a general and solid ground for the inference of physically meaningful models. We've 
introduced some ideas which provide means by which one can analyze and characterize a 
dynamical system's behavior without the bias of an initial choice of architecture. Given this 
basis, modeling a system from observed behavior is turned into a prediction surface estimation 
problem which can lead to, but is not limited to, the construction of more familiar linear 
models. We've also introduced a few objects which are more likely to characterize the 
stochasticity of a system than the ones that linear system theory has to offer. 

Embedding modeling is a new approach to building universal and meaningful models from an 
observation. Although the various notions that we discussed here are well established in the 
literature ([ABST93], [Bro94], [Cas92], [ER85], [Ger88], [Ger92]), such an inference of non-
linear systems is still considered marginal and controversial. This approach should be 
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understood as sampling the physics of the system, retaining exactly the information needed to 
reproduce its behavior and no more. To the author's knowledge, embedding modeling has 
never been applied to the modeling of musical sounds, but has been confined within the area 
of non-linear dynamics and chaos theory. This chapter presents the convictions upon which 
any synthesis or modeling ideas that will follow in this document are based. The remaining 
questions concern the choice of a specific approach to the estimation of a prediction surface. 
These questions are not minor as one could argue that they constitute the heart of the modeling 
task; but whether we choose global, local, deterministic, stochastic, general or specific 
architectures for our prediction surfaces, the resulting models will exhibit a faith in their 
ability to capture physical behavior. This is a major step from something like the minimization 
of an out-of-sample prediction error.  

Finally, we referred to time-series and dynamical systems throughout the entire chapter rather 
than sounds and musical instruments. This was a way to emphasize the generality of the 
suggested modeling scheme. Any physical system which can be observed is a potential subject 
for embedding modeling.  
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Chapter 5 

Global Polynomial Models 

To construct global non-linear prediction functions for time series, multi-dimensional 
polynomials appear as reasonable and general choices in the absence of any specific 
knowledge about the data. The use of polynomial functions in this context is not original 
but we present an original approach in what follows. We'll show how the estimation of a 
polynomial model, in spite of its non-linear nature, can be turned into a linear estimation 
task. More specifically, this chapter examines the use of a Kalman filter for this task, 
leading to a recursive estimator of non-linear models from a data stream as it is being 
observed. We will review the mechanism of a standard Kalman filter and evaluate the 
behavior of the estimated predictors. 

Global polynomial models 
In order to build a global parametric representation of the prediction function f() we 
introduced earlier, we need to state clearly what these parameters are and what the generic 
architecture of the model is. As we might not have access to any specific knowledge about the 
system that produced our data, this architecture should be as general as possible. By "general" 
we refer to its ability to describe any arbitrary surface. Multi-dimensional polynomials appear 
to be a reasonable and general enough architecture. Once we make that choice of architecture, 
we need an approach to estimate of this polynomial's coefficients from the observed data.  

There are two obvious ways to view this problem. The first way is to try to build a basis of 
orthonormal polynomial functions on which we will project f() (which is sampled by our data) 
. As our training data for f() will obviously not span the entire d-dimensional space, the term 
"orthonormal" for our basis has to be taken carefully. Indeed, our basis will have to be 
orthonormal with respect to some measure in the d-dimensional space that will be related to 
the support of our training data. This approach has been taken by Reggie Brown [Bro94]. 
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Given a particular dimension d for the lag space, Brown recursively builds an orthonormal 
basis of polynomial functions through a Gram-Schmidt orthonormalization process. This 
approach requires an estimate of the observation's probability mass function which will be 
used to define a scalar product for the d-dimensional lag space. Brown's approach is 
expectation-based, which is equivalent to taking the data's histogram as an estimate of its 
probability mass function. 

For the same goal, we chose an effortless alternative based on the realization that this task can 
be stated in a linear form. 

As a linear estimation problem 

Another way to estimate the coefficients of this polynomial is to fit a parametric form directly 
to the data. This is the approach we took in this work. In order to limit the size of our problem 
we will make an arbitrary decision concerning the maximum order q of that polynomial 
function. The order q is nothing else than a fitting control parameter for our method. The 
smaller q is, the smoother our estimated surface will be. The ability to control the value of this 
parameter might be a good way to avoid overfit. Our goal is now to fit a polynomial function 
P() of d variables and order q to our data with respect to some criteria. 

   z n ≈ P z n −1, zn − 2 , .. ,z n −d( ) 

Let's write as (fn,k) the set of all the possible cross-products of our d variables of order q or 
less: 

   fn ,k = (z n− 1)
b k,1 (zn − 2 )b k,2 .. .(zn −d )b k,d    (≠ xn , j  if j ≠ k), 

 (where the bk,l are integers such that∀ ) 
 

k ∈{1,.. ,M}, b k, l
l = 1

d

∑ ≤ q

Then in terms of these cross-products fn,k, an equivalent expression of our desired polynomial 
model is the following weighted sum: 

  , 
 
z n = xkfn ,k

k =1

M

∑

And the problem of model fitting is now turned into the estimation of the coefficients xk, 
which is a linear problem. With the help of this elementary writing artifact, we have essentially 
reduced our non-linear modeling task to a very familiar linear fit. 
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∑   z n

Linear 
system

    x = x1 , .. ,xM[ ]
T

Parameter set

(Non-linear) Polynomial Model

 

Fig. 5.1 - Reducing a polynomial model to a linear system. 

Let's illustrate this simple point with an example. More specifically, let's imagine the 
polynomial function P() takes a single variable and is such that P( .  X) = X2 − X

X

X - X2

1 2

1

2

0

 

Fig. 5.2 - 2D plot of the simple polynomialP( X) = X2 − X. 

The following figure (Fig. 5.3) illustrates the expression of the same polynomial function as a 
linear function of the two variables  and .  2Xv =Xu =
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u =
 X

v = X2

w

1D non-linear function

2D linear function

w
 =

 v
 - 

u

w
 = f(X

) = X
 - X

2

 

Fig. 5.3 - A 2D linear expression of a 1D non-linear function. This figure is a geometrical 
interpretation of the same function as linear combination of cross-products. 

Let N be the number of observations we have in our training set and let's define the following 
objects: 

  

    

A =
fd + 1,1 − fd +1,M

| . .. |
fN ,1 − fN ,M

 

 

 
 

 

 

 
 

  ,   x =
x1

|
xM

 

 

 
 

 

 

 
 
  and  z =

z d +1

|
zN

 

 

 
 

 

 

 
 

Our problem reduces to solving the linear equation Ax=z for x. Of course, chances are that the 
number of training data points N will be much bigger than M and therefore, this problem is ill-
conditioned. At this point, one can think of pseudo-inversion and methods such as singular 
value decomposition. Indeed, a singular value decomposition would give us 

 
    

       A(N −d )× M = U (N − d )× M ΣM ×M  V M× M
T  

where Σ  diagonal and U TU = V V T = I
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and we could then estimate x as follows: 

 
    
x = V ˜ Σ −1 U T z  ,  where ˜ Σ −1( )

ii
=

1 Σ( )ii  if Σ( )ii ≠ 0
0        otherwise

 
 
 

 

But given that N might in the order of 10,000 or more, we can foretell the potential heaviness 
of such an approach. These computations could be simplified by noticing that the rank of A 
can't be any bigger than M but even then the method wouldn't posses the flexibility of an 
adaptive algorithm (the estimation has to be done from scratch for each new set of 
observations). Instead, we will introduce a recursive method, namely a Kalman filter, that will 
solve our problem as we acquire new data. 

Cross-products 

Given a number of variables d and an order q, it might sound useful to compute the number 
M(d,q) of terms (fn,1,...,fn,M) corresponding to the list of possible cross-products of order q 
or less. Having an idea concerning the number of these terms will tell us how the size of our 
problem grows with the dimension d and the order q. 

We wish to count all the possible z 1
b1 .z 2

b 2 .. .zd
b d  such that  ∀k, bk ∈Ν  and . 

This is equivalent to counting all the possible cross-products 1
  

bk
k =1

k = d

∑ ≤ q

 
b0 − 1z1

b1 −1.z 2 .. .zd
b d −1 such 

that: 

b2 −1

   ∀k,  bk ∈Ν*  and 
 

(bk − 1)
k= 0

k = d

∑ = q   i.e. bk
k= 0

k = d

∑ = q + d + 1
 
 
  

 
 

At this point, we can recall that there are 
 

n −1
k −1

 
 

 
 
  ways to choose k non-zero positive integers 

that sum to n. Therefore a simple expression for M(d,q) is the following: 

 
 
M(d ,q) =

q + d
d

 
 
  

 
  

Pascal's famous triangle, based on the property: 
 

n
k

  
 
 +

n
k + 1 

  
 
  

 
 =

n +1
k + 1

 
 
  

 
 , leads to: 

 M(d+1,q) + M(d,q+1) = M(d+1,q+1) , 

which allows us to build a table for M(d,q) very quickly. 
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M(d,q) = 2 M(d,q) = 3

M(d,q) = 3 M(d,q) = 6 M(d,q) = 10 M(d,q) = 15

M(d,q) = 5M(d,q) = 4

M(d,q) = 4 M(d,q) = 10 M(d,q) = 20 M(d,q) = 35

M(d,q) = 70M(d,q) = 35M(d,q) = 15M(d,q) = 5

d = 1

q = 1

q = 2

q = 3

q = 4

d = 2 d = 3 d = 4

 

Fig 5.4 - M(d,q) table is Pascal's triangle. 

Recursive estimation 
Without pretending to be exhaustive, we will hereby introduce a standard Kalman filter by 
first tracing it back to its origins in detection and estimation theory and stating clearly the 
problem it solves. We will then work our way rapidly through its mechanism. 

The origins 

One of the original concerns of estimation theory was the estimation of the realizations of a 
stochastic process x(t) based on the observation (for Ti<t<Tf) of another related process y(t). 
In that context, and because of a lack of tools for non-linear systems, the best answer to that 
problem was a linear least square estimate which should lead to the description of a linear 
filter (impulse response h(t,τ)): 

ˆ x (t)y(t) Linear filter
h(t,τ)

 

The impulse response h(t,τ) is chosen such that the error is orthogonal to the observation:  

   E[(x(t) − ˆ x (t)) y(τ)] = 0    (Where E[.] refers to the expectation) 

Rewriting this condition with covariances (Kxy(t,τ) and Kyy(t,τ)) and the impulse response of 
the filter (h(t,τ)) leads to the very famous Wiener-Hopf equation: 
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K xy(t, τ) = h(t,σ).K yy (σ,τ)dσ

Ti

Tf

∫

Wiener gave his name to two versions of a filter that solves this equation in specific cases but 
Kalman suggested an alternative with an original recursive approach. The main originality of 
his approach was probably the introduction of a matrix (usually referred to as "F" - see below) 
which allows one to solve a wide variety of linear estimation problems. Later, extensions and 
modifications of this approach were used to solve non-linear estimation tasks. 

The problem 

Let's consider the following linear system: 

 
 x(t+1) = F x(t) + v(t) (5.1) (Evolution of parameters) 
 and 
 z(t) = H(t) x(t) + w(t) (5.2) (Observation) 

where F is a pxp matrix, H(t) is a nxp matrix and v(t) and w(t) are white noises, usually 
assumed to be Gaussian. In our case, we would have:  

 
 p=M : the number of parameters "p" is the number of coefficients 

in the polynomial. 
 n=1 :our observation z(t) and the additive noise w(t) are scalars. 

   H(t ) = f t ,1 − ft ,M[ ] : the polynomial is written as a linear 
combination of all the possible cross products. 

 F=I : the coefficients of the polynomial are constant. 

 

We will estimate the parameters x() given our observations of z() through the following 
model: 

 

   ̂ x (t + 1 |  s) = F ˆ x (t |  s)  (5.3) 

 and   

   ̂ z (t |  s ) = H(t) ˆ x (t |  s)  (5.4) 

(Note: refers to the estimation of u(  based on the observation of z(  for s)|(tû t) τ) s≤τ ) 
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Depending on the value of s with respect to t, solving that problem will accomplish different 
tasks: 

 • if s = t, we are filtering. 
 • if s < t , we are forecasting. 
 • if s > t, we are smoothing. 

The solution that we're about to state relies on the assumption that v(t) and w(t) are centered 
white noises that are not correlated to x(t): 

   and E [      E [v(t) vT(s)] = δ ts Q   w (t ) w T(s)] = δts  R

 (Note: δts = 1 if t=s ; 0 otherwise) 

One should keep in mind that even though it might be tempting to set R and Q to be diagonal, 
the only thing one we can say for sure is that R and Q will be symmetric. 

As for any estimation problem, we need to state clearly what our criteria is. Let's define the 
error covariance matrix for t given s as: 

      P(t |  s) =  E [ (x(t) - ˆ x (t| s )) (x(t) - ˆ x (t| s ))T  ]

Our criteria will be to minimize the trace of this matrix. One can notice that this minimization 
is equivalent to a least mean square criteria applied to the parameter set x(). 

The solution 

The solution is known as a Kalman filter:  

  (5.5)     ̂ x (t |  t ) =  ˆ x (t |  t - 1) +  L(t)  (z(t ) -  ˆ z (t | t - 1))

It was rigorously demonstrated that this system was optimal in the case where the different 
white noises introduced earlier were Gaussian. It is not our intention in this paper to present 
the demonstration of this result but we can provide a few hints that should at least provide a 
intuitive understanding for the relation (5.5). 

Hints: 

We're trying to solve the Bayes least square estimate in the Gaussian 
case (which is equivalent to the linear least square estimate). 
Furthermore our system is linear: 

 ⇒    ˆ X L (Z) = m x + Λxz Λz
−1(Z − m z ) 
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Let's write : X 

 

ˆ 
L

z1

|
zM

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

  =
∆

  ˆ X (M) 

So rather than inverting the growing MxM matrix each time we get a 
new observation, we can use Gram-Schmidt to find a recursive 
relationship for the estimate: 

  

Λ z = Γ.Λe .ΓT    i.e.     

e1 = z 1

e2 = z 2 - γ 21e1  (γ 21 =
z2 , e1

e1 ,e1

)

|
eM = z M − ˆ z (M| M − 1)

 

 
  

 
 
 

 

which will end up giving us a recursive relationship on the estimate: 

 X  
ˆ (i + 1) = ˆ X (i) + Λxe i +1

λ e i+1

−1 ei +1 ... 

which justifies the form of our solution in equation (5.5). 

It will be the task of L(t) to make sure the trace of P(t|t) is minimized. Determining what this 
minimization implies on L(t) will give us its optimal expression. 

From (5.1) and (5.3), the error of prediction has the following expression: 

 (     (  x(t) - ˆ x (t|t -1) ) =  F  (x(t -1)- ˆ x (t -1| t -1)) +  v(t -1)

 

This relation leads to the following expression for the error covariance matrix:  

  (5.6)   P(t|t −1) = F  P(t −1| t −1)  FT + Q

In addition, combining (5.1) and (5.5) will lead to: 

    ( x(t) - ˆ x (t|t)  )  =  ( I -  L(t) H(t) ) ( x(t) - ˆ x (t -1|t -1)) -  L(t) w (t -1) 

 i.e. 

  P(t|t) =  (I −L(t)H(t))  P(t|t −1)  (I − L(t)H(t))T +  L(t) R LT(t) (5.7) 
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We now wish to derive an expression for L(t) from the previous expression based on the 
minimization of the trace of this matrix. (5.7) is a quadratic equation (where the unknown is 
L(t), a nxp matrix). The minimization of Tr[P(t|t)] can sound complicated a priori. Yet, as for 
simple second degree equations, we can write (5.7) in its canonical form: 

  (5.7Bis)     P (t |  t) =  ( L S -  T )  ( L S -  T )T  +  M

As we know that P(t|t) is positive semi-definite, we are sure that M will also be positive semi-
definite and the minimization of Tr[P(t|t)] falls into the zeroing of the term (L S - T). 

By identification between (5.7) and (5.7Bis), we get: 

  (5.8)   S ST =  [ R +  H P(t|t -1) HT ]

 and 

  (5.8bis)  S TT =  [ H P(t|t -1) ]

(5.8bis)         ⇒  ⇒  TT =  S-1 [ H P(t| t − 1) ]   T =  P(t| t - 1)  HT S -T  

   ⇒  L(t) =  T S-1 = P(t|t −1) H T (S ST )−1 (5.9) 

So finally, injecting (5.8) in (5.9) will provide an expression for the desired value for L(t): 

   L(t) =  P(t|t -1) H T[R +  H P(t|t -1) H T] -1
 (5.10) 

Recursive computation of P(t|t-1) 

The last step we need to introduce is a recursive relationship which will update our estimate of 
the error covariance matrix. Lets write P(t|t-1) as Σ(t). As we will see, the equations (5.6), 
(5.7) and (5.10) give us a simple recursion on Σ(t). 

From (5.7), 

    P(t|t) =  Σ(t)- Σ(t) H T LT - L H Σ(t)  + L H Σ(t) HT LT + L R LT

and from (5.10), 

     P(t|t) =  Σ(t)- L H Σ(t) - Σ(t) H A -TH Σ(t) + L A  LT

 where A + H    =  [R  Σ(t) H T]
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R and Σ(t) are symmetric and therefore, A is too. A 
T = A  ,     

ΣT (t ) = Σ(t )

= Σ Σ Σ T

A -T = A -1 and 

. So by applying the relation (5.10) once again, we finally get:   

    P(t| t) (t) - L H (t ) - (t)  H A  H (t) + (t) H A A A H (t)
 

−1 ΣT Σ T −1 −1 ΣT

which, after simplifications, leads to: 

   P(t| t) = Σ(t) - L H Σ(t )  (5.11) 

By injecting this expression for P(t|t) in the equation (5.6) we will finally get a recursion on 
Σ(t) (i.e. P(t|t-1)): 

     Σ(t +1) =  F  [ Σ(t ) - L(t )H(t )Σ(t) ]  FT  +  Q  (5.12) 

The algorithm 

By now, we have gathered all the pieces we need and by putting them back together, we will 
describe the recursive method that will solve our estimation problem. After having guessed 
some initial values, the algorithm implied by this method is provided by the expressions (5.3), 
(5.5), (5.10) and (5.12) we've just derived. 

More specifically here is a recapitulation of the steps which constitute our algorithm: 

(i)   L(t)  =  P(t| t - 1) H T [ R +  H P(t|t -1) H T ] -1
 

(ii)    ̂ x (t |  t ) =  ˆ x (t |  t - 1) +  L(t) (z(t ) -  ˆ z (t | t - 1))

(iii)   Σ(t +1) =  F  [ Σ(t ) - L(t )H(t )Σ(t) ] FT  +  Q  

 and x   ̂ (t + 1 |  t) = F ˆ x (t |  t)  

 and update H to H(t+1)  (i.e. compute the new values of the cross 
products) 

This system will fit a polynomial function of arbitrary dimension and order to the data without 
requiring the construction of an orthonormal set of functions. 

Implied Generalization in the Modeling Space 

Rather than interpolating/extrapolating the original data set based on local structures, fitting a 
polynomial surface will imply a generalization scheme based on the data's global distribution. 
The maximum order of the polynomial function we wish to fit can be seen as a regularization 
term which will favor smoothness over out-of-sample error. The typically limited value for 
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this order compared to the size of a typical training data set suggests that this method will 
usually be safe from data over-fitting; however, one cannot say the same about eventual under-
fitting. In a way, the regularization imposed by this method will tend to be predominant over 
the actual data-fitting unless the system itself fits a polynomial hypothesis or we choose an 
insanely large value for the maximum order. 

A few words about the Criterion 

As we can recall from our derivation of a standard Kalman filter, the entire method is centered 
around the minimization of the trace of the prediction error covariance matrix, which is 
equivalent to a least mean square estimation. In the general context of data fitting, such a 
criterion is justified and its outcome can be satisfying, however, the surface we are estimating 
is not just any type of surface, it's a prediction surface.  

In the light of what we've discussed in Chapter 4 concerning non-locality, we are entitled to 
wonder if such a criterion is justified in our context. In other words, just because an area of the 
modeling (or lag) space hasn't been visited very frequently by our data doesn't necessarily 
mean it is less important than another area over which a lot more data has been observed. In 
fact, it would even sound reasonable to expect that the less populated areas of the state space 
correspond to places where the system's state moves more rapidly, suggesting that local 
Lyapunov exponents would tend to be larger in these areas. We recall that these Lyapunov 
exponents are derived from the eigenvalues of a local linearization of the system. These can be 
seen as a measurement of the rate at which a "volume" around this area will evolve in short 
term through the dynamics of the system. In many cases, this is actually taken to be these 
exponents' definition rather than a point of view. If instead of "volume" we were to think in 
terms of error of prediction, large Lyapunov exponents would lead to a more dramatic error 
propagation throughout the predictive performance of the estimated model. Of course, this line 
of thoughts is rather intuitive and open to counter-arguments, but it sounds reasonable enough 
to question the appropriateness of least mean square as a valid criterion in the context of 
prediction surfaces estimation. 

If we were to convince ourselves that every visited area of the state space is just as important 
to us regardless of its associated population, then an alternative approach would be to insure a 
uniform distribution of the original training data (at least over the support of our observation). 
The time constraint of the present work hasn't left the author much time to experiment with 
such an alternative but a possible path would be to pre-cluster the training data in order to 
identify uniformly distributed representative data prior to the surface estimation. 

Implementation and evaluation 

Software 

The previous algorithm was implemented in C and tested on an SGI Indigo. It was 
incorporated along with an X/Motif interface with which the user can select the dimension of 
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the modeling lag space, the maximum order for the polynomial fit and the file which will be 
used as training data.  

 

The result of the estimation can be plotted in three dimensions using SGI's GL library. Along 
with these features, the system computes the out-of-sample error distribution associated with 
the estimation. It can also plot a preview of the forecast which may result from the estimated 
model. This software was never intended for anything more general than the evaluation of the 
proposed method and its set of features reflect the authors curiosity concerning the 
performance of a Kalman filter in the context of polynomial prediction surfaces estimation. 

The core of this system is, of course, the Kalman filter itself. From the expressions that we 
derived earlier, the actual software implementation is fairly straightforward. The specificity of 
what one could call the "feature vector" H was intentionally kept out of the main Kalman 
filter's implementation.  

We recall that in the context of our polynomial fit in d dimensions with a maximum order q, 
this feature vector is derived from d successive observations as the set of all the possible cross-
products of order q of less. The number of features (i.e. length of H) and the architecture (in 
terms of exponents) of all the valid cross-products are computed once and for all based on the 
user's choices concerning (d,q).  
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Dimension d 
Order q

Cross-products 
architecture set 

estimation

  
M =

q + d
d

 
 
  

 
 (Number of "features")

Initialization of the problem 
in the context of a polynomial 
prediction surface estimation

  

b1,1 ,b1,2 , . .. , b1,d[ ]    ↔ f1 = z i
b1,i

i= 1

1=d

∏
 
 
  

 

b2,1 ,b2 ,2 , .. . ,b2 ,d[ ]    ↔ f2 = zi
b 2,i

i =1

1= d

∏
 
 
  

 
|

bM ,1, bM, 2 , ... , bM ,d[ ]    ↔ fM = zi
bM, i

i =1

1=d

∏
 
 
  

 

 

 

 
  

 

 
 
 

 

After posing the problem in terms of these cross-products, we only need to initialize the 
polynomial surface's parameter with some arbitrary values and let the Kalman filter do the 
rest: 

 
 
void Kalman(float *Observations, int NbObs) 
{ 
  int k,l,n,m,nbObs; 
  double TheObservation,tmp; 
  float *data; 
 
  nbObs = NbObs; data = Observations; 
 ... 

 

The first feature vector is computed from the first d observations by our problem-specific 
process. In our case, this process is derived from the cross-product architectures we found 
previously. 

 
 ... 
  MakeFeatureVector(Observations, H); 
  NbObs += -Dimension; 
 
  while(NbObs>0)    /* loop on the full set of 
observations */ 
    { 
      TheObservation = (double) 
(Observations++)[Dimension]; 
 
      /* Step one: Compute L(t) */ 
      for(k=0;k<NbParam;k++) 
 { 
   Stemp = 0.0; 
   for(l=0;l<NbParam;l++) Stemp += Sigma[k][l] 
* H[l]; 
   Vtemp[k] = Stemp; 
 } 
      Stemp = R; 
      for(k=0;k<NbParam;k++) Stemp += H[k] * 
Vtemp[k]; 
      for(k=0;k<NbParam;k++) L[k] = Vtemp[k] / Stemp; 
       
      /* Step two: New Estimation */ 
      Prediction = 0.0; 
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      for(k=0;k<NbParam;k++) Prediction += H[k] * 
Estimate[k]; 
      Stemp = (TheObservation - Prediction); 
      for(k=0;k<NbParam;k++) Estimate[k] += L[k] * 
Stemp; 
 
      /* Step three: Update Sigma */ 
      for(k=0;k<NbParam;k++) 
 { 
   Stemp = 0.0; 
   for(l=0;l<NbParam;l++) Stemp += H[l] * 
Sigma[l][k]; 
   Vtemp[k] = Stemp; 
 } 
      for(k=0;k<NbParam;k++) 
      for(l=0;l<NbParam;l++)  
   Sigma[l][k] += Q[l][k] - ( L[l] * Vtemp[k] 
); 
 
      /* Step four: Update H(t) */ 
      MakeFeatureVector(Observations, H); 
 
      /* Update number of observation treated */ 
      NbObs += -1; 
    } 
 ... 

After the previous loop, we are ready to return the result of our estimation (i.e. the array 
'Estimate[.]'). In the context of this particular piece of code, the following are calls to some 
plotting function and self evaluation scheme: 

 
 ... 
  PlotKalmanResult(data, nbObs); 
  Evaluation(data, nbObs); 
} 

Tests and Evaluation 

Hennon Map 

As a first test, the author wanted to analyze a simple system that is known to be deterministic, 
low dimension and non-linear. The Hennon map was a perfect candidate as its chaotic 
behavior was already an obstacle to any linear system approach. In addition, its dimension 
being only 2, this would allow a meaningful 3D plot of the resulting prediction surface. 

Specifically, we chose the following system: 
 

x(t +1) = y(t ) +1 − 1.4 x(t)y(t)
y(t + 1) = 0.3 x(t )

 

 
  
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Fig. 5.5 - Plot of a Hennon map attractor from 2000 successive values of z(t) in a lag space. 

From arbitrary initial values for x(0) and y(0), we iterate these difference equations in order to 
build our training data. Our ultimate time series z(t) (which we decide to save as an AIFF 
sound file) is a normalized version of the series x(t) between -1 and 1. Figure 5.5 is a plot of 
this data in a 3D lag space. Finally, a quick look at the previous system of difference equations 
should suffice to convince the reader of the fact that a polynomial fit should do a fairly good 
job at modeling this system. Indeed, the description of the system itself is a couple of simple 
polynomial expressions. 

Although this system is known to exhibit a chaotic behavior, its (fractal) set of solutions in its 
state space has a very clear structure. In the light of the embedding theorem, we shouldn't be 
surprised when we observe the same characteristic structure (strange attractor) in a lag space 
reconstructed from successive observations of z(t) (see previous figure). 

Choosing the maximum order of our polynomial surface to be equal to 1 is equivalent to fitting 
a linear model to our data. Given the non-linearity of this data, it is not surprising that such a 
fit is a dramatic mismatch. The following figure is the result of the fitting of a linear model of 
dimension 12.  
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Fig. 5.6 - Attempt to fit a linear model to a Henon map. 

Of course, we can't plot a 12-dimensional hyperplane and for these situations, the author chose 
to plot prediction errors as arrows in three dimensions. Each arrow is scaled appropriately with 
respect to the error value it represents. 

If the previous plot doesn't convince us that we are facing a dramatic model mismatch 
problem, maybe a look at the estimation of the error's probability density will. This density 
only plots occurrences of the absolute value of the out-of-sample error between 0.0 and 0.1 but 
the error density is fairly uniform over the entire possible range. In this particular case, the 
program tells us that the mean of this absolute value is 0.433628 and the linear estimation 
doesn't capture much of the system's structure. 

Now if instead of fitting hyperplanes we allow the system to use higher order terms (even as 
small as order 2) for a polynomial surface of two dimensions only, then we get much more 
encouraging results. 

  

Fig. 5.7 - Fit of a Henon map by a 2-dimensional second order polynomial prediction surface. 
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Our Kalman filter fits very quickly (only once through the data set) and very accurately a 
second order polynomial surface to the observed data. The average for the absolute value of 
the resulting prediction error is only 0.000059 and it is barely perceptible in the previous plot 
of the error's density.  

Even more importantly, using the two first samples from our observation z(t) and iterating the 
estimated polynomial model leads to an astonishing reconstruction. The previous plot overlays 
a time-series representation of the forecast on top of a plot in a 3D lag space. As one can 
notice, the shape of this set is barely distinguishable from the original data set. 

 

Fig. 5.8 - Data reconstruction by iterating the estimated polynomial model. 

Audio Data 

In sight of this very encouraging result, the author decided to test this scheme on an audio 
recording of a musical instrument. We chose the same normalized small quasi-stationary 
chunk of sampled sound (produced by the bowing of a violin string) that we chose earlier in 
Chapter 4. A previous entropy measurement suggested that this time series could be modeled 
via a non-linear system with only 4 or 5 degrees of freedom. 
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z(t)

z(t-2T)

z(t-T)

  
Frequency

 

Fig. 5.9 - Lag space plot and spectrogram of a quasi-stationary chunk of a violin recording 
(same example as Chapter 4). 

As we pointed out earlier, the algorithm requires the user to suggest a maximum order for the 
polynomial function to be fitted. The Kalman filter may require a few passes through the data 
set in order to converge and the observation of the out-of-sample error after each pass is an 
indicator of its state of convergence. The following figure plots this error after a single pass 
through the data (the dimension of the model was set to 4 and the order of the polynomial to 
4). We recall that in this 3D lag space, the arrows go from the real data to their corresponding 
estimate through the model. 

 

Fig. 5.10 - Out-of-sample error in a 3D lag space 

The error mean is probably the most obvious quantity to observe when evaluating the 
performance of an estimator. The following figure shows this quantity as a function of the 
number of passes through our data set for different architectures for our model (in order to 
interpret the values for the error, we recall that the original data was normalized between -1 
and 1). 
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(a)
(b)

(c)
(d)

 

Fig. 5.11 - Evolution of the error mean as a function of the number of passes through the data: 
(a) Model of dimension 4 and order 4. (b) Model of dimension 5 and order 3. (c) Model of 

dimension 4 and order 5. (d) Model of dimension 5 and order 4. 

A high error mean will definitely indicate a model mismatch but even if this mean is small, we 
are not guaranteed that the model doesn't miss some important structure in our data. As a 
sanity check, we might want to make sure the out-of-sample error distribution doesn't reveal 
any particular structure.  
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Fig. 5.12 - Out of sample error distribution for a polynomial model of dimension 4 and order 
4. (a) after a single pass through the data; (b) after 15 passes through the data. 

The previous and the following plots are histograms of the absolute value of the out-of-sample 
error for different model architectures (i.e. different orders) and at different stages of 
convergence. 
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Fig. 5.13 - Out of sample error distribution for a polynomial model of dimension 4 and order 
5. (a) after a single pass through the data; (b) after 15 passes through the data. 

The shape of the resulting error distributions and the error mean definitely indicate that our 
polynomial fit captures some of the system's non-linearities. However, the resulting fit is not 
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nearly accurate enough to lead to any meaningful reconstruction of the entire training data 
from 4 initial conditions. Similar results were observed with chunks of sound recorded from 
other instruments. We are most likely facing another model mismatch problem and although 
this polynomial fit may sound satisfying in terms of out-of-sample error, it is not good enough 
to cope with non-locality, prohibiting any long-term prediction. 

Expertise and Applications 

Expertise 

As illustrated by its application to a Hennon map, this polynomial approach has a lot of 
potential for the study of small and simple, yet non-linear systems. No linear system would be 
able to capture the structure of a non-linear (and eventually chaotic) system like this 
polynomial fit. Furthermore, this analysis is computationally cheap and its recursive 
mechanism makes it flexible and easy to use. In the case of larger (or more complex) non-
linear systems, the size of the problem to solve quickly explodes with increasing values of the 
modeling space's dimension d and the maximum order q for the polynomial fit. Without even 
talking in terms of prohibitive sizes for the associated computation, the recursive algorithm 
derived from a Kalman filter will require a lot more time to converge. 

However, even if the resulting model doesn't allow long term prediction, it will still capture 
the major non-linearities of the system in the global form of a polynomial function. A full-
blown accurate model for the system would be ideal but a "fairly accurate" description of its 
mechanism is still a great analysis tool. 

Possible Applications 

The following applications have not been implemented as they don't necessarily fit in the 
context of the present document. They are a small set of the author's ideas concerning the 
potential of the modeling approach that was suggested in this chapter. 

System Monitoring: The recursive modeling scheme we've introduced would be a perfect tool 
for the monitoring of a known non-linear system. It could detect and identify small variations 
in the system's behavior which may not appear through any linear system theory approach. 
Identifying the nature of these variations may require a detailed knowledge about the physical 
mechanism of the system under observation. However, even if we don't have any other 
information except for the fact that system is "fixed" or "time-invariant", this approach could 
still provide valuable cues concerning possible malfunctions or perturbations. 

Physical Understanding: A multi-variable polynomial difference function may not appear as a 
very intuitive representation of a physical system. However, suppose this single and heavy 
difference equation was to be reduced to several lower-order difference equations. Even if the 
associated model isn't a perfect fit to the observed data, such a system of small difference 
equations could provide hints concerning the internal mechanism of the physical system that 
was observed, leading to plausible theories as to what this system really is in the physical 
world. 
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Data Compression: Polynomial models for a prediction surface are a clear extension of the 
notorious auto-regressive (AR) models from linear system theory. Although the accuracy of an 
AR model can only be worse than of a polynomial model, such models have been used 
extensively for compression purposes. Linear predictive coding (LPC) in the case of speech 
signals is based on the fact that it take less bits to encode a full set of parameters of an AR 
model along with a small energy prediction error, than it takes to encode the raw waveform. If 
the nature of the signal that we wish to encode is intrinsically non-linear, the approach 
suggested in this chapter could lead to a more appropriate encoding scheme. Our recursive 
estimation of a polynomial prediction function can be used for "Polynomial predictive 
coding". 

Chapter Summary 
In light of the modeling scheme which we've introduced in Chapter 4, we've suggested the use 
of multi-variable polynomial functions for the estimation of a global form for a prediction 
surface in a lag space of observations. This suggestion was obviously motivated by the 
generality of polynomial forms as well as a wish for a global description of a system's 
behavior. Rather than approaching this estimation problem in terms of the identification of an 
orthonormal basis of polynomials on which to project the observed data, we've chosen to 
consider all appropriate cross-products as observed features, essentially reducing our task to a 
familiar ill-conditioned linear problem Ax=z. 

We've then suggested a Kalman filter as a recursive approach to solving this linear problem 
and took this opportunity to derive it rigorously with the specifics of our problem in mind. The 
resulting algorithm was implemented and applied to various test cases. 

Although the results of these few tests don't seem to indicate that this approach may be 
suitable for sound synthesis, this method turns out to be very useful in other contexts. We've 
suggested only a few alternative uses for this approach (system monitoring, physical 
understanding, and data compression) but it is the author's belief that these don't nearly span 
the full potential of this approach. 

As for sound synthesis, our results seem to indicate that we should look for alternative local 
approaches to the non-linear modeling of a time-series if we wish to reach a degree of 
accuracy that might cope with non-locality for long-term predictions. 
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Chapter 6 

Cluster-Based PMF Models 

Non-locality and stability issues require an accuracy that is very difficult to achieve 
while estimating a global model. If the major concern is the model's ability to 
resynthesize the original system's behavior, we are forced to turn to alternative 
approaches that will provide better accuracy in terms of data matching. In what follows, 
we will introduce a general approach towards the estimation of local models of the 
data's probability mass function, for which each sub-area of expertise results from a 
non-supervised clustering process applied to the observed data. The resulting process 
(Cluster-Weighted Modeling) unifies clustering and modeling in a single process without 
making drastic assumptions concerning the system's architecture. 

Cluster-based Probability Distribution Estimation 
As we already suggested in Chapter 4, the estimation of a probability distribution, and 
especially conditional probability distributions, of the observed data can provide very valuable 
information about the systems behavior for its characterization. It can also be taken literally as 
a model from which one can reproduce, interpolate and extrapolate the original system's 
behavior.  

Justification of a Local Approach 

There are many reasons why estimating a global form for a prediction function (or the model) 
of a system may sound attractive. After all, the system itself is an entity. Partitioning a state 
space doesn't have much of a chance to be physically meaningful. The general behavior of a 
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system (or its observation in lag spaces) is the information that we want to capture, and its 
local behavior in a sub-region of this already arbitrary lag space might not seem as relevant. 

However, the complexity of a global approach to this modeling problem in terms of degrees of 
freedom is discouraging. An approach such as the previous recursive global polynomial may 
be a great way to acquire some information about the general architecture of the system, but 
the complexity of a global model's estimation will make any accuracy of modeling very 
difficult to achieve. If the major purpose of our model is its ability to resynthesize the original 
system's behavior, we are forced to turn to alternative approaches that will provide better 
accuracy in terms of data matching. 

If a given problem is too complex, it is generally reasonable to attempt to break it down into 
several smaller problems of limited complexity. Viewed as a surface estimation task, it is 
natural to think of breaking down our modeling problem into several local surface estimations. 
Each one will have a constrained region of expertise within the system's lag space. Whether 
we are thinking of a radial basis functions (RBF) approach or something more general such as 
a probability distribution, the first step to consider will always be the identification of a set of 
relevant regions. At this point, non-supervised clustering becomes a natural process to think 
about. 

Suggested General Form for the Model 

A cluster-based estimated probability distribution is one whose form will reflect a 
collaboration between multiple local models whose areas of expertise resulted from some 
clustering of the observed data. 

The Model 

Let's consider the system that we wish to model in the general form of the following black 
box. 

    U (t)   z(t )    z(t ) = f U(t)( )
 

Here, z(t) stands for the output of the system while the vector U(t) is the set of the system's 
input. In the case of an autonomous deterministic system of finite dimension and in light of the 
Embedding Theorem, U(t) would be nothing but a set of lag values of the output z(t) (i.e. 

     ). U (t) = U(t ,τ) = z(t − τ), .. , z(t − dτ)( )T

Expressing the joint probability distribution of the output z and the input U based on some 
clustering procedure in the space (z,U) will eventually lead to a general form of the following 
type: 

   
    
p z, U( ) = p z ,U| Clm( ) p Clm( )

m =1

M

∑
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(where M is the number of clusters) 

In the previous expression, Cl  (for m=1 to M) stands for the hypothesis associated with the 

expertise of the mth cluster; the conditional p z
 m

  m  is the expression of that particular 

expertise; and    is the prior of that hypothesis (or cluster, or class). m

, U| Cl( )
p Cl( )

In order to turn this information into a form that exhibits the ability to synthesize further data z 
given some input U, this joint probability distribution needs to lead to an expression of the 
conditional probability distribution of the output given the input of our system. Of course, this 
is achieved by Bayes' rule: 

 

    

p z| U( )=
p z,U( )
p U( ) =

p z ,U| Clm( ) p Clm( )
m =1

M

∑

p U| Cl m( ) p Cl m( )
m =1

M

∑
 

Only then can we refer to our representation in terms of a model with the help of some 
decision rule such as maximum likelihood or Bayes least square. 

Maximum Likelihood 

From the joint probability density of two random variables (or vectors) p(x,y), the likelihood 
function of an observed instance x = X is defined as the function y . Of course, 
substituting instances of the random variable (or vector) x with an observation X in the 
expression of the joint probability density p(x,y) leads to the expression of the conditional 
probability distribution p(y|x=X) as they only differ by a constant multiplicative factor 
(p(x=X)). Maximum likelihood is a very general and useful decision rule which consists in 
maximizing the likelihood of the instances that were observed. In other words, it will identify 
the value y  of y which maximizes p(X,y)=p(y|x=X)p(x=X). Rather than maximizing the 
likelihood function of the observation, it often turns out to be more convenient to maximize 
the logarithm of this function (referred to as the log likelihood). This is mainly due to the 
overwhelming omnipresence of Gaussian distributions. From the monotonicity of the 
logarithm, this slight variation doesn't influence the ultimate result of this decision rule. The 
validity of the maximum likelihood as a decision rule will not be discussed here but we'll 
simply say that it becomes questionable when the number of observations is small.  

 → p(X,y)

 ̂  

Back to our context, the choice of maximum likelihood would lead to the following decision 
rule (or process): 

 
    
ˆ z ML U (t)( ) = arg max

z
 p z| U = U(t )( )= arg max

z
 ln p z| U = U (t)( )( ) 

"Given the input U(t), the output z   ̂ ML U (t)( ) will be chosen such that it maximizes the 
conditional probability     (t)( )" p z| U = U
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Bayes Least Squares 

If maximum likelihood is the most popular decision rule, Bayes least squares has to be its main 
challenger. Instead of picking an instance for the random variable which maximizes locally a 
conditional probability, Bayes least squares suggests a decision based on a more global 
observation of this conditional. As suggested by the name of this decision rule, it is based on 
the minimization of the squared prediction error: 

 
    
ε = E ˆ z − z( )2

| U[ ]= ˆ z 2 − 2 ˆ z  E z| U[ ]+ E z2| U[ ] 

and naturally,  
  
∂ε
∂ˆ z 

= 0 ⇒ ˆ z = E z| U[ ] 

"Given the input U(t), the output z   ̂ BLS U (t)( )  will be chosen to be the conditional expectation 
of the output given that particular instance for the input". 

Clustering 
Clustering expresses a wish for data summarization. While the complexity of the eventual 
model is intuitively related to the number of relevant classes that were identified by the 
clustering process, this complexity should reflect the original system's mechanism and not be 
the artificial product of the training data size. Summarizing the original data set implies two 
obvious properties: It should lead to a smaller description than the original data and yet 
capture the totality (in the ideal case) of the data's relevant information.  

Issues 

For that purpose, the basic philosophy behind clustering is to identify a limited number of 
"tendencies" for the data over each one of which some striking cohesion can be observed and 
eventually summarized accurately via some averaging or other short statistical information. 

Identifying clusters or classes requires some measurement of similarity between the objects 
that constitute our training data. Clustering can be approached from a variety of abstract and 
global points of view with criteria such as the minimum description length (from information 
theory) or a minimization of free energy (from statistical mechanics), but it often involves an 
initial choice of a metric (or distance). In the simplest case, that metric could be a Euclidian 
distance in the original space where the training data lives, implying that similar objects are 
close one to another. In that case, a successful clustering procedure would lead to a set of 
spread classes that would spatially span the region in which the training data lives. It could 
also be that the chosen metric was derived from some more complex functional relationships, 
to the point where the spatial distribution of the original data is not all that relevant to the 
desired classification. In the latter case, the reference to the word "metric" can even become 
questionable and one might prefer a more implicit reference such as a particular choice for the 
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form of a probability distribution or a functional relationship. The particular choice of a metric 
(or probability distribution) will achieve a specific type of clustering and rather than being 
arbitrary, it should always be influenced by the ultimate use of the resulting clusters (or 
classes). 

Even when the desired criterion can be expressed in closed form, its optimization 
(minimization or maximization) usually calls for a recursive process. On top of issues such as 
the choice of a metric and the properties of the clusters, this adds the question of the 
algorithm's convergence. 

Proposed General Clustering-based Modeling Scheme 

When clustering is desired in a context where the definition of a metric is meaningful and 
where clusters will indeed group data based on some notion of proximity, common approaches 
such as K-means, ISODATA or "softer" versions of the preceding are intuitively satisfying. 
However, as Professor Gershenfeld would suggest increasingly involved functional 
relationships and forms of probability distributions, we quickly reached a state of confusion 
where intuition had substituted understanding. Therefore, we decided to stick to our 
probability-based point of view and approach the estimation of cluster centroids with our 
notations in a straightforward but rigorous fashion. The following derivation resulted from a 
collaboration with Professor Gershenfeld and Bernd Schoner. 

Suggested "General" Form 

As the desired architecture of a model for the data's probability distribution becomes more 
sophisticated, it also becomes more and more involved in the clustering as well. One can no 
longer consider "clustering" and "modeling" as two separate stages towards the inference of 
the model. In order to ensure meaningful clusters, we need to know ahead of time what the 
main architecture of our model will be. We suggest the following form for the data's 
probability distribution. 

We recall from earlier:  

  
    
p z, U( ) = p z ,U| Clm( ) p Clm( )

m =1

M

∑

We suggest to write the conditional of (z,U) given the hypothesis Clm to be a generalized 
version of a separable Gaussian random vector as follows: 

  (6.1) 
    
p z, U| Cl m( )= Km , ze

− z −f(U ,β m )( )2/ 2σ m ,z
2

K m ,ke
− u k −µ m ,k( )2

/ 2σ m ,k
2

k = 1

d

∏

where of courseK
  

m ,z =
1

2πσm ,z
2

 and K
 

m ,k =
1

2πσm ,k
2

 for normalization purposes; 
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and where     f U ,βm( ) : ℜd → ℜ  can be seen as a local (possibly non-linear) model of the 

data restricted to the support of the cluster Clm. Over the expertise of the mth cluster, this 
local model is parametrized via some set  βm . 

This form is sufficiently general to include a large part of the approaches that one can 
encounter; but it obviously doesn't pretend to be universal. 

Cluster Centroids Update 

By letting    refer to the centroid of the mth cluster in the d-dimensional space U, by 
definition we have: 

µm

 
    
µm = E U| Clm[ ]= U p U| Clm( ) dU

U
∫ = U  p z ,U| Clm( ) d U dz

z,U
∫∫  

Using Bayes' rule, the conditional distribution of (z,U) given a class (or cluster) can be restated 
as follows. 

 
    
p z, U| Cl m( )=

p Cl m| z,U( ) p z, U( )
p Clm( )

 

and by substitution, µ
    

m =
1

p Cl m( )
U p Clm| z,U( ) p z ,U( ) dU  dz

z ,U
∫∫  , 

which is equivalent to the following expression using expectations: 

 
    
µm =

1
p Cl m( )

E U p Clm| z, U( )[ ]p z ,U( )
 

This little exercise would seem vain if it weren't for the fact that all we have is a set of 
observed data. Because of this, the preceding expectation is nothing more than a sum over the 
observed data (each observation has probability 1/N where N is the total number of 
observations). In other words, a training data set carries implicitly the form of the data's 
probability distribution (an assumption which any Monte-Carlo process relies upon). 
Substituting our expectation with this sum will lead to the following. 

 
    
µm =

1
p Cl m( )

1
N

U( i )p Cl m| z (i ) ,U ( i)( )
i =1

N

∑  

This relationship can be seen as the equation that needs to be solved in order to estimate the 
clusters' centroids. Of course, it is very unlikely that we could solve this equation analytically 
and we'll end up implementing the following recursion until we reach stability: 
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µm  →  µm

new =
U ( i)p Cl m| z(i ), U( i )( )

i =1

N

∑
N p Clm( )

 (6.2) 

In practice, when we choose a specific functional relationship upon which to base our 
clustering, the conditional p z  m  is much easier to define then      but 
Bayes' rule will rescue us once again: 

m, U| Cl( ) p Cl | z, U( )

     

p Clm| z, U( )=
p z ,U| Clm( )p Clm( )

p(z, U)

=
p z ,U| Cl m( )p Cl m( )

p z,U| Cl j( )p Clj( )
j=1

M

∑
 (6.3) 

As for the prior p(Clm) of each cluster, they can be updated based on the following 
relationship (Note that we're using the same "Monte-Carlo" assumption in order to turn an 
expectation into an average over the observed data): 

 

    

p Clm( )= p z, U ,Cl m( ) dz  dU
z ,U
∫∫

= p Cl m| z ,U( ) p z,U( ) dz  dU
z ,U
∫∫

= 1
N

p Clm| z(i ) ,U ( i)( )
i = 1

N

∑

 (6.4) 

We believe that this general scheme provides a "confusion free" (some would say "no 
nonsense") approach to clustering in a wide variety of problems where classes of behavior 
need to be identified. Any arbitrary decision or tweaking resides in the chosen form of a 
conditional or a joint probability where a confusing statement of "metric" or "distance" is not 
necessary.  

Note: Also, the little exercise that enabled us to turn a conditional expectation into an average 
over the instances of our data will be encountered more than once. This led Pr. Neil 
Gershenfeld to define the resulting averaging as a "Cluster-weighted expectation" for which 
he uses the following notations: 

 
    
µm

new =
U ( i) .p Cl m| z (i ) ,U ( i)( )

i =1

N

∑
N.p Clm( )

≡ U m  

We will encounter more of this object while deriving the input and output's conditional 
variances in what follows. 
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Conditional Variances Update 

From the chosen form (6.1) for the data's conditional probability distributions, it is 
straightforward to derive: 

   p u k| Cl m( )= Km , ke
− u k − µ m ,k( )2 / 2σ m ,k

2

 

from which our familiarity with Gaussian distributions leads to the following expressions for 
the various conditional variances for the input: 

 

  

σm ,k
2 = uk − µm ,k( )2

p(u k| Cl m ) du k∫
= E u k − µm ,k( )2

| Cl m[ ]  

Using Bayes' rule like we did for the centroids will turn this expectation into an average and 
using our brand new notion of cluster-weighted expectation, this will lead to the following: 

 
    
σm ,k

2, new = E u k − µm ,k( )2
| Cl m[ ]=

uk
(i ) − µm , k( )2

p Clm| z(i ) ,U (i )( )
i= 1

N

∑
N p Cl m( )

= u k − µm , k( 2)
m

 (6.5) 

As for the input's variance  σm ,z
2 , we have to proceed with some caution. For instance, the first 

term of the product in the expression (6.1) should not be mistaken for the probability 
distribution of the output z given the hypothesis of the cluster Clm. This term is a function of 
U as well. What is certain however, is that: 

      

p U| Cl m( )= p z, U| Cl m( )dz
z
∫

= K m ,ze
− z− f(U ,βm )( )2 / 2σ m , z

2

dz
z
∫   Km , ke

− u k −µ m ,k( )2
/ 2σ m ,k

2

k =1

d

∏
 
 
  

 

and as 
    

K m ,ze
− z − f(U ,βm )( )2 / 2σ m , z

2

dz
z
∫ = 1, 

 we get  
    
p U| Cl m( )=   Km , ke

− u k −µ m ,k( )2
/ 2σ m ,k

2

k =1

d

∏
 
 
  

 
, 

which leads us to:K
    

m ,ze
− z −f(U ,βm )( )2 / 2σ m , z

2

=
p z ,U| Clm( )
p U| Cl m( )

. (6.6) 
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On the other hand, we also know (Gaussian distribution) that the desired value for    will 
verify: 

σm ,z
2

 
    
σm ,z

2 = z − f(U ,βm )( )2
Km , ze

− z − f(U ,β m )( )2 / 2σ m ,z
2

dz
z
∫  

Its non-dependence upon U further leads to:  

     
σm ,z

2 = Km ,ze
− z− f(U ,β m )( )2 / 2σ m, z

2

p U| Cl m( ) dz  dU
z ,U
∫∫

. 

Using the identity (6.6) in this last expression, we finally get: 

 

    

σm ,z
2 = z − f(U ,βm )( )2 p z, U| Cl m( )

p U| Cl m( )
p U| Cl m( ) dz  dU

z ,U
∫∫

= z − f(U ,βm )( )2 p z, U| Cl m( ) dz  d U
z ,U
∫∫

 

Again, we recognize another case where our cluster-weighted expectation becomes handy and 
leads finally to the following expression for the appropriate variance  σm ,z

2 . 

    

σm ,z
2, new = E z − f(U ,βm )( )2| Clm[ ]

=
z(i ) − f(U ( i ),βm )( )2

p Clm| z(i ), U( i )( )
i =1

N

∑
N p Clm( )

= z − f(U ,βm )( )2

m

 (6.7) 

Local Models Update 

As we stated earlier, the parametric functions f  U ,βm( ) : ℜd → ℜ  can be comprehended 
as local models over the expertise of their associated cluster. Given the initial choice of an 
architecture for these (simple) local models, the parameter set  βm  will have to be tuned for 
each cluster accordingly to some criteria. These parameters can be derived by maximizing the 
likelihood (or log-likelihood) of the observed data over the restricted expertise of Clm as 
shown here: 
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0 =
∂

∂βm

E log  p zobs , Uobs| Cl m( ) |  Clm[ ]=
∂

∂βm

log  p z ,U| Cl m( )
m

=
∂

∂βm

E zobs - f(U obs ,βm )( )2
 |  Cl m[ ]=

∂
∂βm

z - f(U ,βm )( )2

m

= z - f(U ,βm )( )∂f(U ,βm )
∂βm m

 

We can note that "gaussianly-biased" initial choice for the distribution at (6.1) results in an 
equivalence between maximum log-likelihood and error-mean. The previous expression will 
lead to an equation (or system of equations depending on the size of the set   ) from which 
we will derive the optimal values for this set at any given stage of the clustering: 

βm

  is chosen such that   βm
new

  
z - f(U ,βm )( )∂f(U ,βm )

∂βm m

 
 βm = βm

new

= 0  (6.8) 

"Cluster-Weighted Modeling" 

As a summary of what we've just derived from our "general purpose" cluster-based modeling 
scheme: Given some initial choice concerning the form of the local models 

 and the number M of clusters that will be used, the clustering and 
modeling stages of the process have been merged. The expressions which we derived earlier 
can be reorganized in the form of an algorithm and the resulting method is referred to as 
"Cluster weighted modeling" by Professor Neil Gershenfeld. 

    mf U ,β( ) : ℜd → ℜ

 

 Initialization of  M;  p(Cl m ); µm ; βm ;  σm ,k
2 ; σm ,z

2( ) 

(i) Estimate data's conditionals p z  
( i ), U( i ) |  Clm( ) from (6.1). 

(ii) Estimate clusters' posterior probability p C  lm  |  z(i ) ,U ( i)( ) from 
(6.3). 

(iii) Update clusters' priors p C lm( ) from (6.4). 

(iv) Update clusters' centroids  µm  from (6.2), input variances  σm ,k
2  

from (6.5) and the local models' parameters    from (6.8). βm

2(v) Update the output's conditional variances  σm ,z  from (6.7). 

(vi) Go to (i) if needed (see below). 

The preceding is the description of an algorithm that was derived from the previous 
investigation. Again, its being recursive comes from the fact that we cannot infer the optimal 
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set of our model's parameters analytically, and that therefore, we are reduced to implementing 
a step-by-step updating/optimizing process. Knowing when to stop looping can be based on a 
couple of observations. A first obvious clue will be to evaluate how much the resulting model 
has changed during the last iteration. If the change that we detect is insignificant, then we are 
entitled to consider that we did the best we could. The other clue comes directly from the value 
of the output's conditional variances  σm ,z

2 .  

Indeed , in the most likely case where we choose to base a prediction on Bayes' least square as 
a decision rule, we will have: 

 

    

ˆ z (U ) = zBLS(U) = E z| U[ ]= z p z| U( ) dz
z
∫

= p Cl m| U( ) z p z| U ,Cl m( ) dz
z
∫

m =1

M

∑
 

which, given the expression (6.1), will eventually lead to the following: 

 

    

ˆ z (U ) = p Cl m| U( ) z K m ,0e
- z -f(U , βm )( )2 / 2σ m ,0

2

 dz
z
∫

m =1

M

∑

= p Cl m| U( ) f U ,βm( )
m =1

M

∑ =
p U| Cl m( ) p Cl m( ) f U ,βm( )

m =1

M

∑

p U| Clm( ) p Clm( )
m = 1

M

∑

 

A natural way to estimate the accuracy of our estimate would be to compute the resulting 

mean square error ε =
    

E z z ( ) . Deriving this quantity analytically is not possible 

due to the "soft reconstruction" (or overlapping) or the Gaussian-shaped clusters. In spite of an 
initial intuition, it does not reduce to a combination of the output's conditional variances 

. However, these variances do measure similar quantities over the restricted areas of 
each local model (i.e. each cluster) and it sounds very reasonable to use these estimates (either 
the minimum, the maximum, or the average) in order to get an idea concerning how close a fit 
was achieved by the model. The author would like to stress the fact that these conditional 
variances should only be taken as indicators as there is no simple analytical relationship 
between these local fits and the overall performance of the resulting predictor. A further in-
depth investigation of this relationship involves the study of the system's (or the model's) 
smoothness. At an intuitive level, we'll simply say the conditional variances    will 
quantify the predictor's accuracy in a satisfying manner if the resulting model doesn't exhibit 
any striking discontinuity or sharp transition. 

  m ,zσ2

σ2
m ,z

− ˆ U( )2[ ]
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Examples 

Straightforward Separable Gaussians 

Largely inspired by the works of Pr. Rosalind Picard and Kris Popat [PP93] on the 
characterization and modeling of visual textures, the author's first attempt to build a cluster-
based probability mass function estimation of this sort was based around the following choice 
of separable Gaussians: 

 

    

p z(t), U(t )( )= p z(t), z(t − τ),. .. , z(t − d τ)( )

= w m Km , k e
−(z (t − kτ )−µ m , k )2 / 2σ m ,k

2

k= 0

d

∏
m = 1

M

∑
 

In fact, to be chronologically accurate, it was this model that inspired the general form (6.1) 
which we've introduced earlier. Hence, it is not surprising that this model appears as a special 
case of our general model: 

    

p z, U| Cl m( )= p z(t),..z(t − kτ)| Cl m( )= Km , ke
− z (t −kτ )−µ m ,k( )2 / 2σ m , k

2

k =0

d

∏

= Km , ze
− z −f(U ,β m )( )2/ 2σ m ,z

2

K m ,ke
− u k −µ m ,k( )2

/ 2σ m ,k
2

k = 1

d

∏
 

 where   

    

z = z(t)

U = U(t ) = z(t − τ), .. , z(t − d τ)( )T

f(U ,βm ) = µm , 0 ∈ℜ (i.e.  the local model is a constant )

 
 

  

Under these circumstances, the relationships (6.7) and (6.8) reduce respectively to: 

 
  
σm ,z

2, new = σm ,0
2 = z − µm , 0( )2

m
 and  µm ,0

new = z m . 

In fact, for those who are familiar with conventional clustering techniques, the resulting 
clustering technique could be seen as an implementation of "soft K-means".  

Test Data 

The data we chose to test this approach is the same digital recording of the quasi-periodic part 
of a bowed violin string we've discussed before. Again, the sampling frequency of the 
recording is 44.1 KHz and its resolution is 16 bits. A version of the PMF estimator presented 
earlier was implemented in C. We can explicitly tell the system the maximum number of 
clusters that it should use as well as the dimension of the lag space it should compute the PMF 
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for. Once this analysis is completed, we can use this parametric PMF in order to resynthesize 
the original data. At this point, we can choose between a deterministic and a stochastic 
approach by using either conditional expectation or conditional probabilities. 

  

Fig. 6.1 - A chunk of the original data and its FFT-based spectrum estimation. 

In the context of our data and by experimenting with various numbers of clusters to be used 
for the PMF estimation, it appeared that 200 clusters did a good job for dimensions up to 5.  

 

Fig. 6.2 - Observation of a chunk of violin sound in lag space and visualization (in 3D) of the 
estimated 200 clusters in a 5D lag space.. 

The following figure presents some conditional probability distributions derived from the 
estimated PMF in dimension 5. As our knowledge of the past increases (i.e. conditioning), we 
observe a dramatic reduction of the observation's apparent randomness. In other words, we 
observe a clear tendency for the model to become deterministic as we increase the dimension 
of the modeling lag space. 
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Fig. 6.3 - Estimated PMF with 200 clusters. From left to right: p(z), p(z|u1), p(z|u1,u2) where 
u1 and u2 where chosen arbitrarily. 

Test Data Reconstruction 

Having an estimate of our data's probability mass function in dimension 5, we can now build a 
deterministic model of dimension 4 as: z   1 2 3 4  = E z| U[ ]ˆ = f(u ,u , u ,u )

After feeding the first four samples of the original data as initial conditions, we can iterate this 
deterministic function f() and try to reconstruct the bowed string sound of the violin. The 
following figure is the result of this reconstruction. 

  

Fig. 6.4 - A chunk of the deterministic reconstruction and its FFT-based spectrum estimation. 

The accuracy of this reconstruction is remarkable. Even after over 20000 iterations, the model 
is perfectly stable and accurate. The result of this reconstruction was saved in a sound file and 
it is very difficult to tell it apart from the original. 

The same dimension 5 probability mass function can be seen as a stochastic model for our 
data. We can then synthesize an instance of this stochastic process by generating random 
numbers accordingly to the conditional probabilities: 

     p(z| u 1, u2 , u 3 ,u 4 ) = p (z| U )  

Once again, the first four samples of the original data are fed as initial conditions and the rest 
of the reconstruction results from an iteration of the model. The following figure (Fig. 6.5) is 
the result of this process. 
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Fig. 6.5 - A chunk of the stochastic reconstruction and its FFT-based spectrum estimation. 

In addition to being computationally very expensive, this approach doesn't lead to the accuracy 
we had with the deterministic approach. Ironically, this model could have been thought of as 
being more "complete" than the deterministic model which uses only the means of these 
conditionals. In the light of what we've referred to as the "pessimism" of a stochastic approach 
in Chapter 4, we shouldn't be shocked. 

Relationship with a Radial Basis Functions approach 

As we are about to see, there is a clear correspondence between the deterministic approach that 
we've just derived and a radial basis functions (RBF) approach. In order to illustrate this point, 
we will show that the previous deterministic approach is rigorously equivalent to a particular 
case of RBFs. 

Let's imagine we wish to characterize the prediction surface of the same system as a linear 
combination of some radial basis functions. Let's also assume that we choose the anchor points 
of our RBFs through the same clustering method we've used for the PMF. Let's finally imagine 
that the d-dimensional RBFs we chose have the same form as the (d+1) dimensional Parzen 
windows we used. 

This means that our model  for f() is: 

  
  
z = f(u1 ,u 2 , .. , u d ) = α m .µm , 0. bm , k (u k − µm, k )2( )

k = 1

d

∏
m =1

M

∑

where  and the αm are such that:    bm ,k (x) = K m ,k e− x/ 2σ m ,k
2

  
  

αm b m ,k (u k − µm ,k )2( )
k = 1

d

∏
m = 1

M

∑ = 1

We recall that the estimation of the data's probability distribution led to the following: 

 
  
p z, u1 , .. ,u d( )= w m

m = 1

M

∑ bm ,0 z − µm ,0( )2( ) bm , k u k − µm , k( )2( )
k =1

d

∏ , 
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Which, by using Bayes' rule, will lead to the following expression for the conditional 
probability distribution of z given the input U (which we recall are the past d lag values of the 
same observation in our case).  

 

    

p(z| U ) =
w m .bm , 0 (z − µm ,0 )2( ) bm ,k (u k − µm , k )2( )

k =1

d

∏
m =1

M

∑

w m b m, k (u k − µm ,k )2( )
k = 1

d

∏
m =1

M

∑
 

The deterministic approach to the re-synthesis of our data was based on Bayes' least square, 
which is equivalent to the conditional expectation. This conditional expectation can be derived 
from the previous expression for the conditional probability distribution, leading to the 
following expression: 

 

    

E z| U[ ]= z p (z| U ) dz
z
∫ =

w mµm ,0 bm ,k (uk − µm ,k )2( )
k= 1

d

∏
m =1

M

∑

w m bm , k (u k − µm , k )2( )
k =1

d

∏
m = 1

M

∑
 

The last step is to realize that if we were to define the coefficients  αm  as: 

 

  

αm =
w m

w m bm , k (Xn −k − µm ,k )2( )
k =1

d

∏
m =1

M

∑
 , 

then these coefficients would verify , 
 

αm b m ,k (u k − µm ,k )2( )
k = 1

d

∏
m = 1

M

∑ = 1

and they would further lead to the same expression for the conditional expectation as the one 
for the radial basis functions approach: 

 

    

E z| U[ ]= αm µm ,0 bm , k (u k − µm , k )2( )
k =1

d

∏
m = 1

M

∑
                              = f u 1 ,. . ,u d( )

 

This proves that in the case of these separable Gaussians, the cluster-based probability mass 
function approach turns out to be rigorously equivalent to a RBF approach for which the basis 
functions match the kernels we've used for the PMF's estimation. 
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Evaluation 

The model's ability to reproduce the original training data is an encouraging result; however, if 
we step back a little, the amount of computation that was involved and the final size of the 
resulting model are a very high price to pay for the resynthesis of a quasi-stationary wave 
form. Besides a conviction that the model's internal mechanism is more likely to reflect the 
original system's behavior, the ultimate goal of this type of modeling is to be able to generalize 
this behavior to a wider range of states than the ones observed in the training data. 

In order to evaluate the generalization skill of these straight-forward separable Gaussians, let's 
substitute our training data with a familiar sine wave. We already know a sine wave is a two-
dimensional linear system and that, therefore, one could plot its associated prediction surface 
as a plane in a three-dimensional modeling lag space. Figure 6.6 illustrates the outcome of the 
modeling of a sine wave through the previous weighted sum of separable Gaussian 
distributions. The ellipsoids represent the resulting clusters while the surface is a plot of the 
prediction surface that is implied by the estimated model.  

This surface shown in Fig. 6.6 was derived from a grid of inputs  u 1
(j) ,u 2

(j)( ). For each point 
(j) of this grid, we use the estimated probability distribution to derive a predicted value for z 
as: 

   

z( j) = E z |  u1
(j ), u 2

( j)[ ]= z p z |  u1
( j), u 2

( j)( ) dz
z
∫

=
w m  µm , 0 bm ,1 (u 1

(j) − µm ,k )2( ) bm ,2 (u 2
(j) − µm ,k )2( )

m =1

M

∑

w m  bm ,1 (u 1
(j) − µm ,k )2( ) bm ,2 (u 2

(j) − µm , k )2( )
m =1

M

∑
 

where   bm ,k (.)  refers to the same object as previously: b .  m ,k (x) = K m ,k e− x/ 2σ m ,k
2
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Fig. 6.6 - Visualization of the generalization implied by straightforward separable Gaussians 
in the simple case of a sine wave. The ellipsoids stand for the clusters that were identified. 
Each cluster is summarized by a separable Gaussian vector. The surface is the prediction 

function that is implied when using Bayes' least squares decision rule in conjunction with the 
cluster-based estimated probability mass function of the data. 

Over the expertise of any given cluster, the local description of the prediction surface is 
reduced to a constant value (we recall that f(  ). Therefore, we shouldn't 
be surprised by the sharp "step" exhibited by our model. We could have anticipated such a 
behavior by realizing that our separable Gaussian-based model can be considered a "soft" 
version of a nearest-neighbor lookup. Being limited to a simple mean (or average), the local 
characterization that we chose doesn't capture any structural information and the resulting 
model has missed completely the strong linear structure of a simple sine wave. 

U ,βm ) = µm ,0 ∈ℜ

As a result, initializing our estimated model with any arbitrary state will eventually result in 
the exact same sine-wave the training was based upon (same amplitude). In other words, we've 
built a model which will force the system's behavior onto the support of the observation 
regardless of initial conditions, lacking any type of structural understanding of the original 
system that was observed. 

Cluster-weighted Local Linear Models 

In order to overcome the lack of structural understanding that was exhibited by the models that 
we can derive from the previous choice of separable Gaussian vectors, the first improvement 
that come to mind is to upgrade our local characterizations from being simple constants 

 to local linear models:     f(U ,βm ) = µm ,0 ∈ℜ
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z = z(t )

U = U(t) = z(t − τ), .. , z(t − dτ)( )T

f U ,βm( )= p m +q m U − U m( ) (where p m ∈ℜ and q m ∈ℜd )

 

 
 

  
 

From (6.8), the tuning of the parameter set  βm  will lead to the possibly familiar-looking linear 
regression relationships: 

 (6.8) ⇒  

    

pm → p m
new = z m

q m → q m
new = ΛU , m

−1 z U m − p m U m( )
where ,  ΛU , m = U − U m( ) U − U m( )T

m

 

 
 

 
 

 

As a note, we can observe that the update of the parameter set involves the estimation of the 
input's conditional covariance matrix   ΛU ,m , a matrix inversion, and the computation of the 
conditional input/output cross correlations:  

     z U m = z u1 m ,.. , z u d m( )T
, 

As for the conditional means   U m = µm ,1, . . ,µm , d( )T
, these were already computed for 

(6.2). 

At the time when this document is being written, the implementation of this method and the 
evaluation of its performance are current research topics for which Bernd Schoner and 
Professor Gershenfeld are the main investigators. 

Chapter Summary 
Overcoming non-locality for the estimation of a prediction surface pointed us towards local 
models. Such models have a better chance to fit the training data with more accuracy. In this 
chapter, we've considered models for the data's probability distribution, which can be 
expressed as a weighted sum of a set of local models. Because we felt that the complexity of 
the resulting model should be a function of the system's complexity rather than a function of 
the training data size, we have identified the area of expertise of each one of these local 
models with a notion of "classes of behaviors." This led us to consider non-supervised 
clustering as a means by which we could determine these sub-areas of the modeling space. 

Non-supervised clustering has been addressed in a variety of ways throughout a wide range of 
fields of study. In a concern for rigor and clarity, we've approached the identification of these 
classes of behavior without any pre-conception or bias towards a particular method. This led 
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us to a fairly general scheme which merged the clustering and the modeling tasks in a unifying 
process which we refer to as Cluster-weighted Modeling. This process was derived around a 
specific form for the model's architecture, which can be seen as a generalization over separable 
Gaussians. However, we feel that this choice of architecture is general enough to address a 
very wide range of problems; Gaussian distributions are rarely inappropriate and the 
"separable" component limits the model's degrees of freedom to a number that is more likely 
to be manageable by some iterative optimization procedure. 

As expected, the "local" component of these models answered our call for accuracy of data-
matching. However, by walking through the example of straightforward separable Gaussians, 
we've illustrated the fact that the same "local" property can miss completely a global structure 
(even as simple as a striking linearity in the case of a sine wave); leading eventually to a 
catastrophic generalization of the system's behavior. Of course, the general form for the 
cluster-weighted models reflects the anticipation of this annoying side-effect by offering a 
scheme for the estimation of local structures over each one of the clusters' expertise. As we 
continue to investigate cluster-weighted modeling and investigate the performance of cluster-
weighted linear models, we expect to see that the proposed scheme addresses both the issues 
of data matching and local structure capturing. 

There is however a remaining issue that neither the global approach of Chapter 5, nor this 
general purpose cluster-based local approach have addressed. This issue concerns time scales. 
While deriving these approaches, we've secretly implied that the observed system was 
autonomous, or at least that the input vector U was made up of measurements that have a 
similar nature (in the examples we've shown, this input vector was nothing but a lag vector of 
the same observation). Fitting a prediction surface to the observed data describes short term 
behaviors for the system but we are entitled to wonder what exactly the meaning of "short 
term" is when the input measurements which constitute U have different natures, and more 
importantly different time scales of evolution. Another part of the same issue of time scales 
has to do with the fact that the long-term predictive expertise of our model relies on the faith 
we have in the accuracy of its short-term expertise. In other words, we can only hope that our 
model is accurate enough and that the system is regular enough in order to lead to a 
meaningful long-term behavior. 

Even if the resulting model is not to be used for long-term prediction, it already provides a 
good characterization for the data that was observed. The prior assumptions that this method 
makes concerning the model's architecture are minor when we compare them to the ones that 
would be imposed by, let's say, a linear estimation technique. There is no doubt in the author's 
mind that a wide variety of problems can benefit greatly from the insights that such a 
characterization provides. Back to the specific context of this work however, musical 
instruments are only a very limited subset of all possible dynamical systems. Moreover, the 
long-term behavior of a time-series that was produced by a musical instrument is usually 
peculiar as it tends to be periodic. Although we've tried very hard to keep our discussion of 
embedding modeling as general as possible, the author's concern for applicability to musical 
sound synthesis will lead to a specialization which we will introduce in the following chapter. 
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Chapter 7 

Modeling Strategies / Psymbesis 

Musical instruments are only a very restricted subset of all the possible dynamical 
systems and the scheme that we implied so far by building models in a single lag space is 
general enough to take extreme behaviors such as chaos in account. As an applicability 
concern, one way to reduce the current size of this modeling problem is to choose a 
modeling space which reflects some of the expectations one has about the sound 
produced by a musical instrument. This state of mind will lead to a particular synthesis 
technique: Psymbesis (Pitch Synchronous Embedding Synthesis). 

Representation / Modeling Space 
As a result of the embedding theorem, we saw that considering lag values of observations as 
the state variables of a model is justified. Assuming that the lag space we build has an 
appropriate dimension and that the system we're studying is essentially deterministic, we are 
entitled to characterize the dynamical behavior of our model through the description of a 
prediction surface. Estimating and describing this prediction surface as a general purpose 
multi-variable function is exactly what we attempted with either global polynomials or the 
RBF/PMF approaches that we discussed earlier. Neither of these approaches take the nature of 
the modeling space in account, namely the fact that it was constructed from successive lag 
values of the same observations. Indeed, it doesn't seem to matter theoretically whether the 
system is aware of the modeling space's nature or not, and a concern for generality would even 
tend to prohibit any constraint in the description of the predictor. If we have faith in the 
accuracy of the surface's estimation and description, then the desired behavior should emerge 
naturally from the inferred model whether the original system was linear or not, chaotic or not. 
In order to overcome non-locality and stability issues, the estimated prediction surface will 
have to be remarkably accurate. As a result, it seems unlikely that one could get away with any 
short description of the predictor, and the approach will undoubtedly aim towards very 
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computationally expensive models. Even then, regardless of the flexibility we allow our 
predictor to have, it is not clear how we can guarantee the long term behavior of our model.  

Some Specifics of Musical Sounds 

Confronted with such applicability concerns, this chapter considers some "less general" 
alternatives for the description of a predictor in our particular context of musical instruments. 

Music the way we know it would have never existed without our ability to perceive refined 
harmonic properties from slight air pressure variations. Although they are not sufficient to 
explain all the subtleties of musical expression, harmonic relationships and periodicities of 
wave forms are undoubtedly responsible for most of today's music. Hence, we shouldn't be 
surprised when we observe that over 90% of an arbitrary musical stream reveals a local quasi-
periodic nature. In a lag space of successive sound samples, this is illustrated by peculiar 
cycles that evolve slowly. For a particular short time period, a snapshot of this cycle (and a 
scheme for generalization) describes the system's local dynamical behavior the same way a 
prediction surface would, while it carries some extra information about the long term behavior 
of the system (it is a cycle). 

So far, no clustering or modeling we discussed took these specifics into account. In a concern 
for generality, we avoided religiously any notion of time or periodicity. This is about to 
change. 

Suggestions and Assumptions 

In view of the previous observations, the purpose of this chapter is to introduce Pitch 
Synchronous Embedding Synthesis (or "Psymbesis") as a simplification over the more general 
approaches that we discussed earlier. The term of "simplification" here doesn't imply that 
Psymbesis is a trivial process, but rather that it is based on a few assumptions concerning 
musical sounds which will restrict the expertise of the suggested model to sound synthesis. We 
will now list these assumptions and suggestions. At this point, the author would like to 
emphasize the fact that the following are not convictions as much as a way to state what is 
implied by Psymbesis as a model for a musical instrument. If these suggestions sound as if 
they trivialize the nature of a musical instrument, considering alternatives such as FM, wave 
tables, additive synthesis or sampling should help reduce frustration. 
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Suggested architecture 

Instead of defining the modeling space as a composite of lag values of both control parameters 
(inputs) and sound samples (output), we hereby suggest to break down the modeling space 
into two spaces. The first space will be called the Control Space and it will stand for the 
input's (or control's) state space. The second space will be called the Dynamics Space and it 
will be a lag space of sound sample values, just as for an autonomous dynamical system. 

H1: Control space = space of perceptually musical gestures 

In Chapter 3, we introduced a variety of perceptually meaningful musical gestures and means 
by which these can be estimated from an audio stream. We are now at the stage where we have 
to make a decision concerning the nature of the information that will eventually control our 
virtual instruments. Now that the nature of the instrument's physical interface is dissociated 
from its internal dynamics, it is the perfect opportunity to forget all about finger boards and 
mouth pieces. Instead, we will choose our general purpose perceptually meaningful musical 
gestures to stand for the virtual instrument's control parameters. Of course, nothing guarantees 
that this set will always be a complete set for any arbitrary instrument that we wish to model. 
This set is only as complete as the author's imagination could make it; any further extension of 
this set could very well be a source of future improvements.  

The first assumption we'll make for now concerns the completeness of this set as we define the 
Control Space to be the space (v,p,i,b) where: 

 
 v: volume (or loudness);  
 p: pitch (or most likely pseudo-period);  
 i: intercorrelation max (related to a notion of noisiness);  
 b: brightness (defined as a measurement of energy distribution 

among the signal's harmonics). 

H2: A static state for the instrument corresponds to a cycle in Dynamics Space 

The observation of musical sounds in lag spaces reveals interesting looking cycles in slow 
mutations. Once again, these cycles reveal the quasi-periodic nature of musical sounds. In a 
lag space of sound samples, the state of a dynamical system can be defined as a vector of 
successive samples but it doesn't seem to make much sense to define the state of the entire 
instrument in terms of these fast changing vectors. In agreement with our perception of audio 
(pitch and harmonic properties), it makes much more sense to define the instantaneous state of 
an instrument as a snapshot of this slowly evolving cycle in lag space. Therefore, instead of 
associating a static state for the instrument with a fixed point in a sample lag space, we suggest 
here to associate it with a description of a cycle in lag space (or Dynamics Space). 

In most cases, this notion of a cycle shouldn't be taken too literally as the system can very well 
present some noise or other ambiguities that will contribute to the cycle's fuzziness. This cycle 
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should be understood as the representation of a stationary (in the stochastic sense) system with 
a strong tendency to periodicity. 

H3: A static point in the control space maps to a static state for the instrument 

Given the previous definition for an instrument's static state, the third assumption that we're 
making is that a static point in the control space maps to a static state for the instrument. This 
is to say that if the control set is frozen in (v,p,i,b) then the dynamics of the instrument in 
Dynamics Space should eventually settle down around a cycle. 

Suggested representation for cycles in Dynamics Space 

Let's represent the dynamical behavior of the system in a "pitch synchronous" and "normalized 
amplitude" way. This should allow a more uniform representation of the dynamics across all 
the possible states the instrument could be in. This also implies that the notions of pitch and 
amplitude will have to be "hard-coded" in the synthesis engine as well. In other words, the 
synthesis engine will have to be explicitly given the current pitch and volume of the control 
along with the estimated instantaneous state of the instrument in order to produce any sound.  

A Complete Representation 

Stochastic Period Table

Control Space 
(Musical Gestures)

Static point in 
control space 

(v,p,i,b)

Static state of the 
system's dynamics

(Lag space view)

  Spt (k ,ω)

0
L-1

 

Fig. 7.1 - Suggested representation of a virtual instrument's behavior. (Recall H3: "A static 
point in the control space maps to a static state for the instrument") 

We will refer to stochastic period tables as the means by which we will represent a cycle in 
the dynamics space. A cycle has a notion of time built in and that is the purpose of these 
tables. However, the actual arrangement of the tables (beginning and end) don't pretend to 
carry any information. These tables are of fixed size and fixed amplitude which is in 
compliance with the "pitch synchronism" and "amplitude normalization" suggested earlier. 

In other words, a cycle   ξ(s ,ω)  is a stochastic process with periodic means and variances: 
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∃ Tξ ∈ℜ  s. t.   ∀ s ∈ℜ  

σξ
2(s + Tξ ) = σξ

2 (s)
and   ξ (s + Tξ ) = ξ (s)

 
 
 

, 

and it will be represented by a stochastic period table  Spt (k ,ω)  of fixed length L (i.e. 
) and normalized amplitude:   k ∈ 0,L − 1[ ]

  ξ(s ,ω) → Spt(k,ω)   

such that: 

 

  

E Spt (k ,ω)[ ]= G ξ offset +
kT ξ

L
 
 
  

 

σSpt
2 (k) = G2σξ

2 offset +
kTξ

L
 
 
  

 

 

 
 

 
 

, 

where    and Gk ∈ 0,L − 1[ ]
 

= max
s

ξ (s )( )−1

 and 'offset' stands for the "beginning" of the 

table and, as we said before, it doesn't pretend to carry any information relevant to the system's 
dynamics (it is the result of a fairly arbitrary decision concerning the arrangement of the table).  

In order for the synthesis engine to produce any sound, it will have to be fed with the 
description of a cycle. This will be achieved by providing the corresponding stochastic period 
table as well as the corresponding pitch and loudness (which were lost in the representation of 
the table). 

  Spt (k ,ω)

0
L-1

Current point in 
control space 

(v,p,i,b)

(v,p)

Synthesis 
Engine

Sound

 

Fig. 7.2 - Control space, stochastic period tables and synthesis engine. 

The previous figure illustrates the relationship between the various objects that we've defined 
in this part: the control space of perceptually meaningful musical gestures, the representation 
of the system's dynamics via a stochastic period table and finally the synthesis engine, which 
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we will study a little later in this chapter. The next step from here concerns the inference of 
this representation from training data. 

Construction / Model Inferring 
The inference of the suggested model falls naturally into three steps. First comes the pre-
processing of the data which will lead to the identification of the control training data (musical 
gestures). Once the whole training set is identified and prepared, the second stage deals with 
the representation of the control space, which we will characterize via some clustering 
techniques. Finally, the last task concerns the construction of stochastic period tables that will 
be assigned to representative points in the control space. 

Training Data 

We start with an audio recording s(t) of the original instrument. This recording should explore 
the range of sonic possibilities of the instrument while staying monophonic. This recording is 
then passed through the various analysis tools described in Chapter 3 (Machine Listening), 
leading to the estimation of the following musical gestures: volume v(t), pitch p(t), noisiness 
i(t) and brightness b(t). 

Machine 
Listening

Instrument 
Modeling

Physically and 
Perceptually meaningful 

nonlinear model

Perceptually meaningful 
musical gestures

Audio recording 
from instrument A

(virtual instrument V  )A

 

Fig. 7.3 - A synchronous recording of audio and estimated musical gestures constitute the 
training data from which the model will be inferred. 

Our training data consists then of the five synchronous streams: s(t), v(t), p(t), i(t), b(t). The 
last four streams (v,p,i,b) will describe the virtual instrument's control (or input) while s(t) 
obviously is the instrument's output. The model we are trying to infer will map control values 
to the description of a dynamical behavior, which will eventually lead to sound. As we saw 
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earlier, this dynamical behavior will be represented by stochastic period tables. These 
stochastic period tables will be estimated from the stream s(t). 

 

Fig. 7.4 - An example of training data (the original recording is a simple chromatic scale 
played on a cello) 

Control Space (v, p, i, b) 

The derived streams (v,p,i,b), along with the audio recording characterize what will soon 
become the control space of our virtual instrument. An elegant representation of the control 
space should only be a function of the instrument's behavior and not a function of the size of 
the training data. This points us already towards the idea of clustering as a way to "summarize" 
the control part of our training data. 

The wish for data summary is not the only reason for clustering the control space. It is also 
motivated by the fact that the only way for us to measure statistics (for the associated cycles) is 
by averaging observations. Therefore, we clearly need to identify representative classes of 
control to which multiple observations from our training set can be assigned. Only then will 
we be able to estimate our cycles (or stochastic period tables). 

Clustering in a normalized space 

The coordinates of the control space (v,p,i,b) have dramatically different natures and therefore 
they will not share the same range of values. The pitch p will typically span a range of values 
between 30 and 80 or so, while the maximum intercorrelation i will be restricted between 0.5 
and 1.0 and the brightness b will wander in a 3.0 to 15.0 range. Clustering usually implies 
some metrics over the space and if we decided to use a Euclidean distance, these 
heterogeneous ranges of values would bias the resulting clusters to favor their discrimination 
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based on a particular coordinate over the others. In order to overcome this undesired 
phenomenon, we should consider normalizing the control space accordingly to the range of 
each one of the coordinates. This process will lead to the alternative control space of elements 
x defined as follows: 

 

    

x =

x1

x2

x3

x4

 

 

 
 
 

 

 

 
 
 

=

(v − vmin ) (vmax − vmin )
(p − p min ) (p max − pmin )

(i − imin ) (imax − imin )
(b − bmin ) (bmax − bmin )

 

 

 
 
 

 

 

 
 
 

   ∈ 0,1[ ]4
 

In this normalized space, we can then think of applying some standard clustering techniques 
such as K-means (hard clustering) or Melting. 

 

Fig. 7.5 - Two views of the outcome of a K-means hard clustering procedure applied to the 
normalized control space (views in (v,p,i) space). 

The centroids of the estimated clusters will provide us with representative points in the control 
space, implying a summary for our control training data. 

Summary of the control space 

Either through hard or soft assignment of the training data to the estimated clusters (or 
classes), we can compute the means and variances for each one of these classes. The 
probability mass function of the normalized control data can then be summarized as:  

  
  
p x1 ,x2 , x3 , x4( )= w m Km ,k  e −(xk − µm , k )2 / (2σ m ,k

2 )

k =1

4

∏
m =1

M

∑

where M is the number of representative points (i.e. clusters or classes' centroids), wm>0, and 

.  
  

w m
m = 1
∑ = 1
M
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Of course, this expression is not unique. Among other things, it implies that each cluster is 
modeled as a separable Gaussian distribution, which is also to say that we consider the various 
coordinates of the space to be uncorrelated. Given the nature of the space (v,p,i,b), this last 
assumption shouldn't be too far fetched. 

Stochastic Period Tables 

The final stage of the inference of the model consists in associating a single stochastic period 
table with each one of the representative points of the control space. These will be responsible 
for the description of the dynamical behavior of the virtual instrument when it is under the 
different classes of control represented by the centroids of our clusters. 

Let's consider a single class (or cluster) in the control space and let the following be the set of 
data that belong to that class: 

     e
(n ) = v(n ), p(n ), i(n) , b(n ) ,τ (n )( )T

 , 

where    and n ∈ 0, N − 1[ ]  τ
(n )  stands for the time pointer in the original sound stream s(t) 

that corresponds to this element. Note that we're implying hard cluster assignment here. 
Although hard clustering in not required for the estimation of the stochastic period tables, it 
will simplify our notations and illustrate the process in clearer terms. Once a clear 
understanding of this approach is acquired, an eventual generalization to a "softer" clustering 
scheme will be trivial. 

Pseudo-periods extraction from the original sound 

Let's recall that the ultimate goal is to build a pitch synchronous (fixed length L), normalized, 
stochastic representation of the cycle associated with that particular control class. The 
corresponding stochastic period table may result from some averaging over the observed 
pseudo-periods that the sound s(t) exhibited at the times  τ

(n ) . 

For each element      the corresponding pseudo-period table Ppt  (  ) is 
a re-sampled and normalized chunk of signal that we extract from the original s(t): 

e(n )
 

(n )(k) k ∈ 0,L − 1[ ]

 
  
Ppt (n )(k) = G.s τ(n ) +

kT(n )

L
 
 
  

 
,  

where    is the quasi-period T(n )

 
T(n) ∝ 2

− p(n)

12
  

  
  and G

 
= max

0< t <T(n)
s(τ (n) + t )( )−1

.  

Before we go ahead and average these normalized and pitch synchronous tables, there is one 
last trap we need to avoid. This is now the third time that we insist on the fact that the actual 
alignment of such tables (beginning and end) are arbitrary. The information they carry 
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concerns cyclic behaviors which have no beginning or end. Therefore any averaging or 
comparison we will apply to these tables shouldn't be influenced by the actual "alignment" of 
the tables. As an illustration, the following figure plots three pseudo-period tables which 
describe the exact same cyclic behavior while being out of alignment. 

  Ppt (1)(k)

0 L-1 0 L-1

0 L-1

  Ppt (2)(k)

  Ppt (3)(k)

 

Fig. 7.6 - Example of three peuso-period tables Ppt , Ppt  and    that 
map to the same trajectory in a lag space. 

 
(1)(k)  

(2)(k) Ppt (3)(k)

Re-aligning the estimated pseudo-period tables with respect to each other is therefore an 
essential step.  

Aligning and averaging 

In order to align these tables with respect to each other, we will pick a reference table 
 among all the Ppt  we extracted and align all the others with respect to 

that reference. The alignment procedure itself results from the following minimization: 
  Ppt (REF) (k) (n )(k) 

 
    
shift (n ) = arg min

k
u (REF )(l) − u (n) (k + l)

2

l =0

L− 1

∑ , 

where     u
(n) (l) = Ppt (n ) lmod L( ), . .. ,Ppt (n ) (l + d − 1)mod L( )( )T

 
(n )(k)

 are lag vectors of 

dimension d that were built by reading Ppt  circularly. This is to say that we wish to 
minimize the average point-to-point distance in the lag space of dynamics. Of course, it doesn't 
take much calculus to realize the following: 

     
∀k,   u(n )(k + l)

2

l = 0

L−1

∑ = u (n )(l)
2

l =0

L−1

∑
 

 and 
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 ∑
    

u (REF )(l)( )T
u (n )(k + l)

l = 0

L−1

= d  Ppt (REF )(lmod L ) Ppt (n) (k + l)mod L( )
l = 0

L−1

∑  

Therefore, the shift that we need to apply to the pseudo-period table Ppt  will be given 
by: 

 
(n )(k)

 
  
shift (n ) = arg max

k
Ppt (REF)(lmod L ) Ppt (n ) (k + l)mod L( )

l =0

L−1

∑ , 

which invites us once again to find the maximum of a cross-correlation. 

Once our extracted pseudo-period tables are aligned with respect to each other, we are finally 
ready to estimate the statistics of the stochastic period table associated with the current class 
'Cl'. For instance, one way to do so would be through the following averaging: 

For   , k ∈ 0,L − 1[ ]

  

E Spt Cl (k, ω)[ ]=
1
N

Ppt (n )(k)
n = 0

N −1

∑

and   σSpt Cl

2 (k) =
1
N

Ppt (n)(k) − E Spt Cl (k,ω)[ ]( )2

n= 0

N −1

∑

 
 

 
 
  

Synthesis Engine 
Assuming that we possess a thorough description or characterization of a virtual instrument, 
the question remains as to how to produce an actual sound stream from it. This will be the task 
of the synthesis engine which we are about to describe. From the previous choices we made 
concerning the virtual instrument's characterization, we'll derive the model that is implied for 
this instrument. This model will be an expression of the probability distribution of sound 
samples. Choosing and applying a particular decision rule to this model will describe our full-
blown synthesis engine. 

General Form 

Writing an explicit form for the samples' probability distribution is most likely more than we 
actually need in order to infer the mechanism of our synthesis engine. Depending on which 
decision rule we will decide to use, some of the choices that we are about to make may end up 
not influencing the outcome whatsoever. However, thinking about a model in terms of an 
expression for the data's probability distribution is something that we have done repeatedly in 
the context of this document and we found that it provides a clear and universal ground for 
thinking about modeling. Furthermore, in addition to providing some consistency with this 
document's previous chapters, the following derivation is the perfect opportunity to collect the 
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notions of cycles and state, as well as to introduce some other notions (such as phase), in a 
rigorous and hopefully clear package. 

Representation 

In the tradition of sound synthesis, a voice usually stands for a monophonic layer of sound. In 
our case, a voice will be a dynamical system with its own internal state. z(t) is its output 
(sound samples) and its internal state is represented as a lag space of dimension d (embedding 
dimension) by the following vector: 

      U (t, τ) = Z(t − τ),Z(t − 2τ),. . ,Z(t − dτ)( )T
 

As we implied in what precedes, a cycle will stand for the representation of the voice's current 
stationary state. A cycle    is a stochastic process with periodic means and variances. 
Furthermore, having only access to second order statistics, we will simply adopt a Gaussian 
form for these cycles: 

ξ(s ,ω)

 

  

p ξ(s)(X) =
1

2πσξ
2(s )

exp −
X − ξ (s)( )2

2σξ
2(s )

 

 
 

 

 
  

and  
  
∃ Tξ ∈ℜ  s. t.   ∀ s ∈ℜ  

σξ
2(s + Tξ ) = σξ

2 (s)
and   ξ (s + Tξ ) = ξ (s)

 
 
 

 

In order to synthesize (or predict) a new sound sample z(t), the synthesis engine will have to 
be given both the current dynamical state of the voice U  and the stationary state of the 
instrument   . 

  (t, τ)
ξ(s ,ω)

Suggested Architecture 

Given      and   , we need to predict z(t). It is now time to explicitly write a fairly 
general form for our suggested model as a conditional probability distribution. 

U (t, τ) ξ(s ,ω)

In order to do so, we need to introduce an additional object: the notion of phase in a cycle. We 
recall that we are not building a wave table-type synthesis engine or a sampler and although 
the phase ϕ corresponds to some pointer in the cycle  , it is not governed by any 
external oscillator or rule (such as Ýϕ  constant in the case of sampling). The phase ϕ is another 
random variable that we need to introduce in order to write explicitly our probabilistic model. 

ξ(s ,ω)
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p z(t) |  U (t ,τ),ξ(s ,ω)( )= p z(t ),ϕ |  U(t, τ), ξ(s,ω)( ) d ϕ
ϕ=0

ϕ= Tξ

∫

                                      = p z(t) |  ϕ,U (t ,τ),ξ(s ,ω)( ) p ϕ |  U (t ,τ),ξ(s ,ω)( ) dϕ
ϕ= 0

ϕ=T ξ

∫

 

Given the current dynamical state U  (t, τ)  of the voice and the description   ξ(s ,ω)  

(  s ∈ 0,T[ ξ]) of the current cycle, the probability distribution of the current phase ϕ is related 
to the distance between the two d-dimensional vectors: 

      U (t, τ) = Z(t − τ),Z(t − 2τ),. . ,Z(t − dτ)( )T

  

and      V (ϕ,τ) = ξ (ϕ − τ),ξ (ϕ − 2τ), .. , ξ (ϕ − dτ)( )T
. 

  ξ (ϕ)

    U (t, τ)

Cycle

ϕ

    V (ϕ,τ)

 

As a reasonable expression for the conditional probability distribution of this phase, we 
suggest the following: 

    
p ϕ |  U(t ,τ),ξ(s,ω)( )= b U ,ξ U (t, τ) − V(ϕ, τ) 2( )= bU ,ξ Z(t − nτ) − ξ (ϕ − nτ)( )2

n =1

d

∑
 
 
  

 
, 

where      is some decreasing function such that: bU ,ξ (.) ∈ 0,1[ ]ℜ+

       
p ϕ |  U (t, τ),ξ(s, ω)( ) dϕ

ϕ=0

ϕ= T ξ

∫ = 1

Given the state     , the cycle U (t, τ)  ξ(s ,ω)  and the phase ϕ ∈ 0, Tξ[ ], we finally suggest the 
following form for the conditional probability distribution of the new sound sample z(t): 
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p z(t) |  ϕ, U(t ,τ),ξ(s ,ω)( )=

1
2πσξ

2 (ϕ)
exp −

z(t ) − g ϕ,U(t, τ),ξ(s, ω)( )( )2

2σξ
2(ϕ)

 

 
 

 

 
 , 

which is to say that this conditional is a Gaussian random variable with mean 
 and variance     g ϕ,U (t ,τ),ξ(s ,ω)( )  σξ .  2 (ϕ)

ξ(s ,ω)
The function g(.) is the means by which we will allow our model to generalize outside the 
support of the cycle   . 

Choices and Issues 

From what precedes, the model we're suggesting has the following general form: 

    
p z(t) | U (t, τ),ξ(s ,ω)( )=

1
2πσξ

2(ϕ)
exp −

z(t) − g ϕ,U (t ,τ),ξ(s ,ω)( )( )2

2σξ
2 (ϕ)

 

 
 

 

 
  bU ,ξ Z(t − nτ) − ξ (ϕ − nτ)( )2

n = 1

d

∑ 
 
  

 
 dϕ

ϕ= 0

ϕ=Tξ

∫  

In order to make a decision concerning a particular instance of z(t), we can use this conditional 
probability distribution and compute the most likely value for z(t). This would be a 
"deterministic" approach. We can also think of producing an instance of z(t) from a random 
number generator that shares the same probability distribution. This would be a "stochastic" 
approach. 

But before we start implementing either one of these approaches, we will need to make some 
decision concerning the form of the functions   U ,ξ  ,which describes the 
distribution of the phase , and g(.), which describes the means by which we generalize the 
cycle    to the entire dynamics space. 

b (.) ∈ 0,1[ ]ℜ+

ξ(s ,ω)

b (.) ∈ 0,1

Phase 

In the context of this work, the previous full-blown expression for the conditional probability 
distribution of z(t) given the present state of the voice and the description of the cycle awakes 
some applicability concerns. Any choice concerning   U ,ξ  might be fairly 
arbitrary and as we will see later on, particular choices concerning the probability distribution 
of this phase may simplify this expression greatly. 

[ ]ℜ+

,ω)

Generalization in the Dynamics Space 

We recall that    describes the dynamical behavior of the instrument in dynamics space 
only for a very restricted subset of the whole state space. In order to extend its prediction 
ability to the entire dynamics space, one needs a generalization scheme. Only then can we 
consider the cycle    to be the description of a prediction surface. In the previous 

ξ(s ,ω)

ξ(s
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expression of the conditional probability distribution, we introduced the function g(.) which 
task is to achieve this generalization. 

  ξ (ϕ)

    U (t, τ)

Cycle

ϕ

Implied generalization

    V (ϕ,τ)

    g ϕ,U (t ,τ),ξ(s ,ω)( )

 

Fig. 7.7 - Illustration of a typical desirable generalization scheme. The cycle implies a 
description of a prediction surface via a radial generalization scheme. The figure illustrates a 

one sample prediction given an arbitrary state U   with respect to the closest state 
 that lives on the cycle. Other generalization schemes can be used and this figure is 
only an illustration of the basic ideas underpinning such a generalization. 

    

t ,τ( )
V ϕ,τ( )

Before suggesting any specific form for this generalizing function, let's list a few postulates it 
should verify.  
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(i) If the current state U  (t, τ)  of the voice belongs to the support of 
the cycle  ξ(s ,ω)  then we should find a phase ϕ such that 

  g ϕ,U (t ,τ),ξ(s ,ω)( )= ξ (ϕ) . In this case, one can find ϕ such 

that   U ),Z((t, τ) = Z(t − τ t − 2τ),. . ,Z(t − dτ)( )T
 and 

  V (ϕ,τ) = ξ (ϕ − τ),ξ (ϕ − 2τ), .. , ξ (ϕ − dτ)( )T
 are identical. 

This is to say that this function shouldn't have any influence when 
there is no need for generalization. 

(ii) If there is a phase such that U  t ,τ( )= λ.V ϕ, τ( ) where  λ > 1 
(i.e. the current state of the voice is wandering "outside" the 
cycle), then we should have g  ϕ,U (t ,τ),ξ(s ,ω)( )< λ.ξ (ϕ) . 
This is to say that the generalization scheme should attempt to pull 
the system's state towards the cycle. Let's recall that a linear 

generalization would imply g  ϕ,U (t ,τ),ξ(s ,ω)( )= λ.ξ (ϕ) . 

(iii) Similarly, if there is a phase such that   U t ,τ( )= λ.V ϕ, τ( ) 
where  0 < λ < 1 (i.e. the current state of the voice is wandering 
"inside" the cycle), then we should have 

  g ϕ, ,ω)U (t ,τ),ξ(s( )> λ.ξ (ϕ) . 

Given these three postulates, a boundless variety of forms can be suggested for the function 
g(.) but we will hereby suggest one of the simplest forms, namely the following: 

    

g ϕ,U (t ,τ),ξ(s ,ω)( )= α + (1 − α)
U T t, τ( )V ϕ, τ( )

V ϕ, τ( ) 2

 

 
 

 

 
  ξ (ϕ) ,  where 

0 < α < 1

U (t, τ) = Z(t − τ),Z(t − 2τ),. . ,Z(t − dτ)( )T

V (ϕ,τ) = ξ (ϕ − τ),ξ (ϕ − 2τ), .. , ξ (ϕ − dτ)( )T

 

 
 

 
 

 

The parameter α will determine how fast the system will be pulled towards the cycle. The 
following illustration plots g(.) as a function of the normalized scalar product between the two 
lag vectors U and V for two different choices concerning α. 
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U T (t ,τ).V(ϕ,τ)
V(ϕ, τ) 2

    g ϕ,U (t ,τ),ξ(s ,ω)( )

10
0

  ξ (ϕ)

  α1.ξ (ϕ)

  α2 .ξ (ϕ)

  α1

  α2

 

Fig. 7.8 - Suggested form for g(.) as a function of a normalized scalar product for two different 
values for α (0 )  < α 2 < α1 < 1

Taken as a function of this normalized scalar product, it is trivial to verify that such a form for 
g(.) verifies our three postulates given that α stays in the range between 0 and 1. The extreme 
case where α=0 corresponds to some sort of "radial linear" generalization which doesn't favor 
the cycle at all. The other extreme case where α=1 turns the cycle into a very strong attractor, 
forcing the dynamical state of the voice to follow that cycle almost immediately. 

Virtual Instruments 
By now, we have gathered most of the pieces that will constitute a virtual instrument. On the 
one hand, we have means by which we can describe classes of control and associated 
description of the dynamics; on the other hand we have an architecture for a synthesis engine 
which will use a description of some dynamics in order to produce an actual sound stream 
given some specific control. In what follows, we will list explicitly the set of objects which 
constitute a virtual instrument. We will then put these new notions to the test of the simplest 
possible interpretation. 

Portrait of a Virtual Instrument 

Much like its physical cousin, a virtual instrument's mission is to turn musical gestures into a 
sound stream. Working from this "black box" point of view and in the light of the assumptions 
and architectures that we've described so far, it is time to collect all the necessary objects that 
will constitute a full-blown virtual instrument. 
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v
p
i
b

 

 

 
 
 

 

 

 
 
 

    

x =

x1

x2

x3

x4

 

 

 
 
 

 

 

 
 
 

ξ

    p ξ| x( )
Virtual instrument's characterization

    
p x( ) = p Cl m( ) p x| Clm( )

m =1

M

∑

    
p x| Cl m( ) =

1
2πσm ,k

2
e− xk −µ m ,k( )

2
/ 2σ m ,k

2

k =1

4

∏

  Spt Cl m
(.)

    p z |  U,ξ( )

  U

  z

Synthesis engine

Input control

Virtual Musical Instrument

(sound sample)

(cycle)

 

Fig. 7.9 - Portrait of a virtual instrument. 

The major part of the virtual instrument's characterization resides in the set of clusters Clm that 
span the control space along with their associated stochastic period tables. As we implied 
earlier, each one of these clusters is taken as a "class of control" under which the dynamics of 
the system is described by a cycle for which the stochastic period table is an internal 
representation. After Chapter 6, we know that there is only a fine line between clustering and 
modeling and the inference of these clusters and cycles could be re-interpreted to characterize 
the probability distribution of the dynamics (i.e. the cycle) given the input control (i.e. 
normalized musical gestures x): p  . ξ| x( )

Given the description (or at least a characterization) of this conditional distribution, a decision 
rule can be applied in order to estimate an appropriate cycle which will describe the 
instrument's dynamics. This cycle is then fed to the synthesis engine in order to produce some 
sound samples. 

In Figure 7.9, as well as throughout the whole chapter, we've implied that the "instrument's 
characterization" and the "synthesis engine" were two separate entities. The author chose to do 
so for two obvious reasons. The first is the fact that it provides a more progressive and clearer 
view concerning the ideas underpinning Psymbesis as a modeling and synthesis method. The 
second reason is more pragmatic: it has to do with the modular and incremental coding of the 
method under these circumstances. Breaking the system into two fairly independent modules 
reduces the complexity of the model inference and the amount of computation required for the 
synthesis. 
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Example of an Interpretation and Implementation 

Although we've been fairly specific in our description of notions such as "control classes", 
"phase", "cycle" and "generalization", the scheme that we've presented so far is still open to 
various interpretations (and choices) which could lead to various implementations and 
techniques. As a way to evaluate it, we're about to describe a set of choices which could stand 
for the simplest possible interpretation of Psymbesis. 

Classes of Control 

Each class of control in the input space (v,p,i,b) is associated with a description of the system's 
dynamics via a stochastic period table. As we implied earlier, these classes will most likely 
result from some non-supervised clustering technique. We would be entitled to question the 
role played by the actual "pseudo-period tables" in this process of identifying these classes. 
Indeed, in the light of what we've discussed in Chapter 6, clustering should be seen as a 
modeling process and this process should probably take these periods into account if we are to 
assign stochastic period table to each of these classes. 

In the context of this simplest interpretation however, we might be tempted to cut some 
corners for the sake of simplicity and clarity. Therefore, we suggest the use of a fairly general 
clustering technique which will only take the control values (v,p,i,b) (or rather their 
normalized versions x) in account. More specifically, we'll use a soft clustering technique 
known as "melting". This clustering technique is discussed in details in [Won92]. 

Control and Cycles 

Keeping the control and the synthesis engine as two separate modules, we propose to infer the 
description of the current cycle based uniquely on the control parameters x (or (v,p,i,b)). The 
clusters inferred in the control space of the instrument stand for "classes of control" and are 
associated with specific cycles. One way to infer the current cycle would be to estimate the 
most likely class of control the parameters x lead to, and to assign the appropriate description 
of a cycle based on this class. This is exactly what we are about to do in the context of this 
implementation: 

Given an input set x, we will assign a cycle ξ  which is derived from the representation 
,     Spt Cl (x)(u,ω)

where 
    
Cl(x) = arg max

Cl
p Cl |  x( ) = arg max

Cl
p Cl( )p x |  Cl( ) 

Choice of the Phase's Probability Distribution 

We recall the general model implied by the synthesis engine we've described: 

    
p z(t) | U (t, τ),ξ(s ,ω)( )=

1
2πσξ

2(ϕ)
exp −

z(t) − g ϕ,U (t ,τ),ξ(s ,ω)( )( )2

2σξ
2 (ϕ)

 

 
 

 

 
   bU ,ξ Z(t − nτ) − ξ (ϕ − nτ)( )2

n = 1

d

∑ 
 
  

 
 dϕ

ϕ= 0

ϕ=Tξ

∫  
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At this point, our main concern might be to simplify the model's expression as much as 
possible. What we're about to suggest here for the probability distribution of the phase may 
sound a little extreme but by no means do we commit ourselves to the simplifications it 
involves. We'll just consider the conditional probability distribution of the phase to be a Dirac 
distribution: 

 
    
p ϕ |  U(t ,τ),ξ(s,ω)( ) = b U ,ξ U (t, τ) − V(ϕ, τ) 2( )= δ ϕ − ϕML (U , ξ)( ) 

In the previous expression,   ϕML (U , ξ)

 

 is obviously the most likely value of the phase given 
the voice's state U and the cycle ξ(s ,ω) . This Dirac distribution will obviously allow us to 
get rid of the integral in the expression of the conditional of z(t) and we end up with the 
following: 

    
p z(t) | U (t, τ),ξ(s ,ω)( )=

1
2πσξ

2 ϕML (U ,ξ)( )
exp −

z(t) − g ϕML (U ,ξ), U(t ,τ),ξ(s ,ω)( )( )2

2σξ
2 ϕML (U ,ξ)( )

 

 
 

 

 
 

 

 where   ϕ
    

ML (U , ξ) = arg min
ϕ

Z(t − nτ) − ξ (ϕ − nτ)( )2

n= 1

d

∑
 
 
  

 
 

Resulting prediction surfaces 

Given this choice concerning the probability distribution of the phase and the previous form of 
the generalizing function g(.), we can now implement the synthesis engine and view its 
implied predictions surfaces. In order to visualize any prediction surface, we have to pick a 
system that will appear to be deterministic in a lag space of dimension two. Let's revisit once 
again the very particular case of a sine wave. 

The cycle ξ  will be represented by a stochastic period table that exhibits a period of a 
sine-wave. In a three-dimensional lag space, this cycle is a simple ellipse. In order to observe 
the prediction surface that is implied by the synthesis engine, we will feed the engine with a 
set of internal states     

) which span a two-dimensional grid: 

 (s ,ω)

U ( i

  = − τ    U
( i ) Z(i) (t ) ,Z(i )(t − 2τ)( )T

   ∈ −1,1[ ]2  

For each one of these internal states, the synthesis engine will compute the most likely phase 
. Finally, in sight of the form of the conditional probability of z(t), the most likely value 

for z(t) (deterministic approach) will be given by: 
  MLϕ ( i)

    

E z (i)(t) U( i ) ,ξ[ ]= g ϕML
(i) , U( i )( t, τ), ξ(s,ω)( )= α + (1 −α )

U ( i )T t ,τ( )V ϕML
(i ) , τ( )

V ϕML
(i) , τ( )2

 

 
 

 

 
  ξ (ϕML

(i ) )  
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The following plots illustrate the various shapes of the resulting prediction surface associated 
with different choices concerning the value of α, which we introduced earlier. 

 

For large values for α (i.e. α<=1.0), the synthesis engine will provide the "closest guess" 
based on what it sees in the description of the cycle. It won't extrapolate much outside the 
support of this cycle, strongly forcing the dynamical state of the system onto that support. As 
α decreases, a more meaningful generalization emerges from the synthesis engine's behavior. 

 

One could very well imagine that the appropriate value for this generalization parameter α 
could be estimated from the original training data while the stochastic period tables are being 
estimated for each cluster in the control space. Once again, we'll go for the simplest 
interpretation of this modeling scheme and assume that α is constant throughout the entire 
model. 
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Application to a Virtual Cello 

As an instrument to model, the author chose an electric cello (built in Canada by RAAD) 
which had been used previously at the Media Laboratory. The training data was taken to be the 
audio recording of a chromatic scale played inexpressibly on purpose. This ten second audio 
file was then passed through the machine listening tools which we discussed in Chapter 3. 
Loudness, pitch, noisiness and brightness were estimated at 10 millisecond intervals on the 
whole length of the recording. The resulting sequence of time-stamped musical gestures was 
then clustered using a melting technique inspired by [Won92]. 

For the assignment of stochastic period tables to each one of the identified clusters, we 
decided to try either an averaging technique (which was implied earlier), or an assignment 
based on the identification of a reference within each cluster. The later technique would 
simply consist of finding the training data point that is the closest to the cluster's centroid, and 
assigning the pseudo-period associated with that point to the mean of the stochastic period 
table. 

Once the virtual cello is inferred (approximately 5 to 10 minutes), an extra set of control data 
(sequence of musical gestures) is needed in order to play the instrument and evaluate the 
result. A short melody was played on the same cello, but this time with much more 
expressiveness (with vibrato, envelope and other timbral modulations), by Ben Denckla, and 
recorded in another sound file. This sound file was then processed through the same musical 
gesture analysis in order to provide a sequence of input controls. The audio recording of this 
melody was discarded and this new set of musical gestures was finally fed to our virtual cello 
in order to produce a synthetic audio file of the melody. The resulting sound file exhibits a 
surprising degree of expressiveness considering that the training data was nothing but a ten 
second recording of a dull chromatic scale. As a further amusing exercise, we took advantage 
of the musical gestures representation of the melody by harmonizing the musical stream and 
adding layers. In order to edit freely a set of musical gestures prior to feeding it to our virtual 
instrument, a special editor had to be built. Armed with this graphic tool, one can literally 
sculpt the control sequence of the instrument and stress the inferred dynamics to their limits. 

Strengths 

At a macro level, the first striking result is the degree of expressiveness that this virtual 
instrument exhibits. Not only was the training data small, but the inference of the entire 
instrument was done in the absence of any human supervision. Our virtual cello exhibits subtle 
an smooth timbre variations which one can control arbitrarily with our perceptually 
meaningful musical gestures. This potential degree of expressiveness goes obviously to the 
credit of our control's nature and to the choice of a pitch-synchronous and normalized internal 
representation of the system's dynamics. Indeed, this choice of a representation enables the 
virtual instrument to generalize the instrument's timbre variations along a continuous range of 
pitches and loudness. Such a generalization in the control space becomes especially handy to 
the synthesis engine when it's required to function under a set of control that is distant from 
any class of control that was identified within the training data. 

On a micro level, the representation of a voice in terms of a dynamical system whose 
dynamical behavior undergoes constant mutations leads to interesting transitional stages when 
these mutations are extreme. At the same time, describing the dynamics in terms of a cycle 
along with a generalization scheme keeps us safe from any major instability. In order to 
observe the behavior of Psymbesis as a synthesis algorithm more closely, the author decided to 
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"slow down" the synthesis process an to build a graphical representation of the voice's 
dynamics in a 3D lag space using SGI's graphic library. In spite of the simplistic nature of the 
generalization scheme that we suggested for this particular implementation, the visualization 
of the voice's behavior in this state space fulfills our expectations. The state of this voice is 
clearly attracted by the support of the cycle. As we recall, this support stands for the desired 
long-term behavior of the system. At the same time, the voice's state doesn't confine itself to 
this support as it clearly visits a wider area of the state space in the case of a sudden mutation 
of the cycle. In the context of more traditional synthesis techniques such as additive synthesis, 
wave shaping, wave tables or FM synthesis, such transitions would need to be explicit within 
the control set of the synthesis engine. In the case of Psymbesis, one could say that we get 
these transitions "for free" from modeling our virtual instrument as a dynamical system instead 
of a wave form generator. 

Weaknesses 

In a concern of simplicity and clarity in the context of this implementation, the 
characterization and clustering of the control space was done on the exclusive basis of the 
measured values of the training data's musical gestures. Because the pseudo-periods exhibited 
by the data were never taken in account for this clustering, the resulting assignment to a 
stochastic period table to each cluster (or class of control) was not as successful as we may 
have hoped. Averaging pseudo-periods that were "too different" within each cluster resulted in 
a clear loss of the original sound's granularity. Part of this loss can be minimized if we choose 
to assign stochastic period tables from the identification of a reference pseudo-period within 
each cluster rather than from an averaging process. Any further improvement would require to 
reconsider the clustering in the control space (see "pointers to alternative interpretations"). 

Pitch-synchronicity implies the inference of a monophonic instrument. Indeed, even though 
the inferred virtual instrument can be used to synthesize polyphonic audio streams, each voice 
is perceived as an isolated dynamical system. Any polyphonic stream will essentially be an 
audio mix of several monophonic streams which don't interact with each other. One could very 
well imagine implementing cross-talk channels between voices in a final implementation. 
After all, each voice is a dynamical system and it would be very easy to force some of a 
voice's energy to bleed onto the other voices. However, the current scheme of Psymbesis 
doesn't suggest any means by which the character of these cross-talk channels may be inferred 
from observed data. In other words, such a feature would require some human supervision and 
common sense. 

Finally, setting the generalization parameter α by hand and as a constant was a very useful 
feature in order to observe closely the behavior of the associated synthesis engine. It validated 
our approach to generalization in the dynamics space. However, in the general context of the 
inference of a virtual instrument from a recorded audio stream, this parameter should be 
estimated from the observed data instead of resulting from an arbitrary decision. Such a task 
doesn't introduce any major problem but it is closely related to the assignment of the stochastic 
period tables. The author feels like this task should be merged within a more careful approach 
to the characterization of the virtual instrument's control space. 
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Pointers to Alternative Interpretations 

The previous description of a simplistic interpretation of Psymbesis resulted in the validation 
of this approach to sound synthesis. By now, we know it works and we can confidently point 
the reader to more elaborate interpretations which will suggest potential improvements. 

Merging Control and Dynamics 

As we said earlier, the characterization of the control space (nature of the musical gestures and 
clustering) and the characterization of the system's dynamics (cycles and synthesis engine) 
were presented separately for clarity purposes. Once we understand the basic idea of 
associating dynamical descriptions to sub-areas of the control space and the notion of pitch 
synchronous representation of dynamics (cycle), we might decide to interpret them as being 
part of a unique system. It was the exact same line of thought that brought us from separable 
Gaussian probability mass function estimation to the more general description of Cluster-
Weighted Modeling. We already raised the fact that an appropriate clustering for the control 
space should take cycle descriptions into account in addition to the values of the controlling 
musical gestures. Merging control and dynamics appears like a good ground to do so. 

Alternative Description for a Cycle 

We've defined a cycle as a stochastic process with periodic mean and variance. It could very 
well be that we don't care all that much about its stochasticity in the context of musical 
instruments. However, more important than this eventual randomness is the description of 
generalization in dynamics space. While implementing the previous proof of principal, we've 
chosen to set the generalization parameter α once and for all for a particular virtual instrument. 
A great deal of argument could be raised by this fairly arbitrary choice. It is likely that a more 
meaningful approach to this generalization could come from the integration of α (or some 
variant if we decide to use a different type of generalization function) in the description of a 
cycle. 

Structure in the Control Space - Control Advisor 

The degree of expressiveness that musical gestures such as volume contour, pitch contour, 
noisiness and brightness offer is so fine-grained that we've automatically assumed that they 
would be an ideal set of controls. This perspective is taken from the point of view of those of 
us who may be frustrated by a traditional synthesizer's lack of fine control. However, one can 
very well imagine cases where such a precise set of knobs may appear as a burden in the 
absence of any short-cuts. After all, these musical gestures, being perceptually meaningful, are 
easier to control than an instrument's physical interface but can still lead to a rather tedious 
representation of a musical stream when compared to, let's say MIDI. Chances are that in the 
case of a specific instrument which is played in a "normal" or "traditional" fashion, the musical 
gestures obey some extra rules which may relate them one to another, limit their jaggedness, or 
simply constrain their ranges. As it is, Psymbesis offers control without constraints and leaves 
it up to the user (or controller) to figure out how to make this instrument sound good the same 
way a real musician would have to.  
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Studying eventual relationships between observed musical gestures in the context of an 
instrument may reveal some structure in the control space. Such structures could then be used 
in order to build an appropriate control advisor. This way, if we felt like providing the system 
with more sketchy commands such as "play that note now", the control advisor may be able to 
suggest an appropriate way to get there based on its expertise. The development of such an 
advising layer is not directly involved in the development of the virtual instrument in the sense 
that it doesn't necessarily fit in the area of sound synthesis. The author felt like referring to 
such a possibility at this point in order to emphasize the fact that it wouldn't take much to scale 
Psymbesis back to a MIDI box. After all, backwards compatibility is a crucial issue and a new 
synthesis method shouldn't necessitate an entire industry to start from scratch. 

Chapter Summary 
As we continue to learn more about non-linear systems and develop better tools to cope with 
non-locality, a straightforward application of embedding modeling will eventually provide a 
satisfying approach to the modeling of a musical instrument. In the meantime however, the 
pressure of applicability concerns pushed the author to compensate the difficulty of these 
issues with a restriction of an approach's expertise. Once focused on the particular case of 
musical instrument, we took advantage of some basic expectations about the data in order to 
introduce a modeling scheme which is more likely to fulfill our purpose in the shorter term. 

In order to cope with the variety of time-scales one may encounter, we drew a clear distinction 
between the control (low bandwidth/long time-scale) and the dynamics (high bandwidth/short 
time-scale). As for the long-term behavior of the dynamics, the omnipresence of periodicity 
among musical signals stimulated the notion of cycles and pitch-synchronous representations. 
This way, the representation of the system's dynamics, which is typically local information if 
we think in terms of prediction surfaces, implicitly carries the long term inclination of the 
system (which is to settle eventually as a periodic wave-form). 

We stated clearly the assumptions we derived from these general observations of musical 
sounds. For instance, we assumed that a static set of controls should result in the dynamics 
settling down on a cycle. Although these assumptions are justified only by the author's 
common sense, they are based on the nature of the data. They attempt to qualify the approach's 
area of expertise and are not the artificial product of a specific modeling tool. Given these not-
so-arbitrary choices, we then suggested a possible architecture for a virtual instrument's 
characterization and synthesis engine. While doing so, we derived a framework which was 
precise enough to be justified, but open enough to leave leeway to a wide range of 
interpretations at various levels. Some of these choices are at a very low level while others 
could dramatically influence an eventual implementation. 

In order to validate our framework, we walked through the simplest possible interpretation of 
the ideas we gathered. The outcome of this interpretation stands for our proof of principle as it 
is itself a working system which already does much more than any other automated modeling 
system. It can infer a virtual instrument without supervision from any monophonic audio 
recording and synthesize any arbitrary musical phrase based on the inferred model. These 
primary results are a preview of Psymbesis's promising potential. In addition, we've provided 
pointers to more elaborate interpretations which, in addition to improving the system's 
performance, could link it back to Cluster-Weighted Modeling. 
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Conclusions 
Recapitulation 

Considering a general musical process, we've drawn distinctions between various levels of 
abstraction and areas of expertise that may be involved in the qualification of such a process. 
While standing clear from musicology and cognitive sciences, we identified a mid-level of 
abstraction with the notion of musical gestures. These gestures don't pretend to carry any 
understanding of music on a cognitive level and they merely stand for an alphabet if we were 
to take language as an analogy for music. Because of their purposely limited level of 
abstraction, they are more likely to enjoy clear definitions and a very wide range of musical 
applications. In the third chapter of this document, we've suggested means by which such 
musical gestures can be estimated in real-time from a monophonic musical sound stream. In a 
way, the rest of this document can be seen as an investigation of means by which one could go 
the other way, turning streams of musical gestures into sound; a task traditionally know as 
sound synthesis. 

Given the context of musical instrument modeling, rather than blindly applying traditional 
modeling tools, we've traced the problem back to its source. While doing so, we've brought 
some shaded areas of linear system theory back to the surface, and illustrated the 
misconceptions that could result from a model mismatch. In fact, any modeling technique 
which starts by making some strong assumption concerning the architecture of an eventual 
model before even looking at the data is bound to have the same fate. This "destructive" 
process would have left us with very little ground to build up from if it hadn't been for the 
application of Floris Takens' embedding theorem to non-linear modeling. Introducing non-
linearities in an inferred model is not necessarily the answer to all the problems we might 
encounter, but not ruling it out is a good first step. By the end of the fourth chapter, we turned 
the modeling of a dynamical system into the estimation of a prediction surface from observed 
data, without introducing any assumption that wouldn't be derived from the observation itself. 
Rather than referring to our observations in terms of musical sounds, we've purposely kept our 
discussion in terms of time-series and dynamical systems, emphasizing the wide range of 
Embedding Modeling's applicability. 

Two general approaches to the characterization of prediction surfaces were then presented in 
the following two chapters. Far from spanning the entire range of possibilities that one might 
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think of, these two approaches illustrate two very distinct points of view. First, estimating a 
global polynomial form for the prediction surface was motivated by a wish for a unifying 
global description of the system's dynamics. For this purpose, we stated this polynomial fit in 
terms of a linear estimation for which we've suggested the usage of a Kalman filter. Second, a 
cluster-based local description of the data's probability distribution was motivated by accuracy 
concerns as well as system's characterization it provides. Again, our concern for clarity led us 
to realize that clustering and characterization are not necessarily two separate tasks. This led 
us to introduce Cluster-Weighted Modeling as a general scheme which merges the two in a 
unifying set of relationships. In addition to providing valid schemes for the inference of non-
linear models, these general purpose approaches were an opportunity to build a deeper 
understanding of the issues that one may encounter in the specific case of sound synthesis.  

In light of what these attempts taught us, we then focused back on the modeling of a musical 
instrument and suggested an approach which is more likely to give immediate results for 
musical sound synthesis. The resulting method, Psymbesis, can be seen as a set of constraints 
and hypotheses concerning the nature of a musical instrument, that benefits from the insights 
we gained during the investigations of the preceding general purpose approaches. It leads to 
the automatic inference of a virtual instrument for which the control parameters are the 
perceptually meaningful musical gestures we identified in the third chapter of this document. 
The nature of the original instrument's observation upon which this inference is based is 
nothing but a simple audio recording. 

Major Contributions 

Although the author can't possibly claim the originality of an intercorrelation-based pitch 
extraction method or a pitch synchronous timbre analysis, the Machine Listening part of this 
study led to an original collection of real-time sound analysis tools. Their performance and 
flexibility motivated their use in the context of various projects throughout the past three years 
and they don't seem to be ready for retirement yet. These tools were developed and 
implemented with a strong emphasis on their expertise. In a way, one could say that their 
major strength resides in their lack of pretension rather than in their actual mechanism. 

Sound synthesis is not a new task, but the "bottom-up" approach we've followed throughout 
this document makes it stand out from the more traditional works in that domain. Instead of 
inventing a new abstract synthesis technique from oscillators, filters or wave-tables, we've 
looked at synthesis as the inference of a physically meaningful system from the observation of 
an existing instrument. To the author's knowledge, such a task had never been performed 
before through an automated (and justified) process without manual tweaking. We've elevated 
sound synthesis from the state of magical recipes to a clearly stated modeling problem. 
Furthermore, the task of inferring a model itself was approached from a radically new 
perspective. Based on the application of a ten-year-old differential topology theorem, 
Embedding Modeling is barely starting to make its first steps in the context of non-linear 
dynamics, and its application to music was still a far fetched marginal idea only a couple of 
years ago. 

Fitting polynomial surfaces to a prediction function had been attempted before in terms of the 
identification of an orthogonal basis of polynomial functions. On the other hand, Kalman 
filters have been used for all kinds of linear and non-linear estimation (and control) tasks. 
However, the mixture of these two concepts along with the "linearization" of the polynomial 
estimation problem awards an originality to the technique we've introduced in the fifth chapter. 
The novelty of Cluster-Weighted Modeling is even less arguable. The first step was largely 
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inspired by Prof. Rosalind Picard and Kris Popat works on the characterization of visual 
textures, and it led to the first decent audio reconstruction a couple of years ago as one of the 
author's general examination projects. The generalization of separable Gaussians was then 
mainly due to Prof. Neil Gershenfeld's wish for finer structure modeling. The explicit form of 
Cluster-Weighted Modeling and the realization that clustering and modeling had to merge in a 
single process in this context came as the recent answer to an increasing degree of confusion 
that surrounded the suggestion of increasingly complex models. 

As for Psymbesis as a scheme for musical sound synthesis, its introduction was primarily 
motivated by applicability concerns. Although it may not appear to be a straightforward 
application of Embedding Modeling in the sense that it makes a series of assumptions 
concerning the nature of the system that is to be modeled, it attempts to address the major 
issues that we encountered throughout this study. In its first generation, it stills inherits some 
baggage from traditional sound synthesis techniques, but it uses it in a completely original 
fashion. Although notions such as tables and phase may remind us of wave-table synthesis or 
even sampling, the derivation of phase from the internal dynamical state of the system is 
absolutely unique. 

Future Directions 

While deriving the collection (volume, pitch, noisiness, brightness) of musical gestures, we 
never pretended to be exhaustive and an obvious direction of improvement would be to 
complete (or at least expand) this set of perceptually meaningful musical gestures. The actual 
implementations of these extraction modules could also be a source of future improvement in 
terms of software packaging and performance optimization. At this point, the software 
implementation of these tools are the result of a compromise between flexibility (which 
implies software modularity) and performance (which tends to result in bulky and compact 
code). 

The estimation of a global polynomial form for a system's prediction surface doesn't seem to 
be appropriate for the inference of a musical virtual instrument (at least in the brute force 
version that was presented in this document). However, this process has a wide range of 
potential applications ranging from system monitoring to data compression. These applications 
spread out of this study's main concern with sound but this doesn't make them any less 
worthwhile for further investigations. A generalization of the suggested approach to a set of 
low-order polynomial relationship sounds particularly interesting to the author as it could be 
seen as an attempt to implement a physical understanding on a machine. Indeed, a set a low-
order polynomial difference equations can be interpreted as a guess concerning the observed 
system's physical mechanism. 

Our investigation of cluster-based, probabilistic modeling for a system is so general that a list 
of all possible applications and further developments would be prohibitive.Cluster-Weighted 
Modeling as we introduced it is only the first generation of its kind. Some further perfection 
and modifications will keep on pouring from Prof. Neil Gershenfeld's research after this work 
is presented. After having addressed issues such as accuracy and local structure in its current 
form, some possible directions might be to address time scales and long-term behavior (non-
locality). 

Finally, Psymbesis is a single suggestion concerning the specifics of musical instruments. The 
assumptions it is based upon are open to mutations as we learn new ways to overcome non-
locality and multiple time-scales. Even in the form it was presented in this document, it offers 
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enough leeway to various interpretations and implementations. For instance, the nature of the 
control set could expand to additional musical gestures; the process of clustering the control 
space and assigning cycles could merge into a single process whose flavor would recall 
Cluster-Weighted Modeling; the definition, or representation, of the notion of Cycle could 
itself mutate to include a richer topology of primitives; the generalization scheme that is 
implied by the architecture of the synthesis engine could become part of the description of a 
cycle and be estimated from the data. As for its use as a synthesis engine, it may turn out that a 
further study of the control's behavior would lead to interesting short-cuts if we were to decide 
that we didn't systematically want such a fine grain of control over the resulting sound stream. 

The Last Word 

Rather than describing a particular setup or even a specific synthesis algorithm, we've 
presented a new set of ideas and hopefully a philosophy which promises to lead to a new 
generation of modeling schemes for a wide range of applications. Throughout our 
investigation of musical sounds characterization, we've spanned a variety of issues ranging 
from signal processing, dynamical systems, modeling, clustering, to even information theory. 
While doing so, we've expressed a wish for rigor and provided new ideas which enjoy both 
solid justifications and wide ranges of expertise. We've tried to illustrate the boundless range 
of interpretations that may result from this philosophy and the author would like to end with a 
few convictions concerning the future of sound synthesis and how embedding modeling fits in 
this context. 

It seems clear that synthesizers are bound to evolve towards high speed general computers. 
The author shares this conviction with the vast majority of researchers who are involved with 
sound synthesis in universities and industries. As an analogy, computer graphics has elevated 
animation from a succession of two-dimensional frames to the description of virtual worlds 
populated by objects that carry specific properties and appropriate behaviors. There is no 
reason why sound synthesis shouldn't have the same fate. The author believes that any virtual 
instrument should be described in terms of a sound object's properties and behaviors instead of 
a succession of abstract parameters that reflect the limited expertise of a synthesis algorithm. 
Embedding modeling appear to be a valid means by which one may extract these properties 
from the observation of an instrument. It makes no doubt that the interpretations of this 
philosophy are called to mutate and lead to multiple and diverse approaches, and this 
reinforces the need to an algorithmic representation of sound within synthesizers. Even if 
simulating an existing instrument is not every one's main concern within the music 
community, "surreal" virtual instruments are more likely to be interesting and fun to play with 
if they exhibit peculiar but coherent behaviors. Sound synthesis patents are running out and 
synthesizers have been based on the same old ideas for the past twenty years. The time is right 
for a drastic change in the computer music industry, both in terms of a more open architecture 
of the hardware, and in terms of sound representation. As premises of this change, the recent 
appearance of so-called "lead-synthesizers" (Yamaha's VL1 and Korg's Prophecy) offer to 
compromise something as precious as polyphony for the sake of interesting behaviors. It is 
unclear as to whether or not the architecture of this hardware is more open but it reveals a 
clear interest in the dynamical property of a sound object. 
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