
State-Filters for Enhanced Filtering in Sensor-based
Publish/Subscribe Systems

Salman Taherian and Jean Bacon
Computer Laboratory

University of Cambridge
CB3 0FD, UK

Email: {Salman.Taherian, Jean.Bacon}@cl.cam.ac.uk

Abstract—Publish/Subscribe systems have been extensively
studied in the context of distributed information-based systems,
and have proven scalable in information-dissemination for many
distributed applications that have motivated the research. With
the emergence of sensor-based applications and sensor networks,
researchers have proposed novel publish/subscribe protocols that
address the problem of distributed event dissemination for sensor
network characteristics and constraints. In this paper, we focus
on primitive events and the emerging class of publishers, and
argue for “State-Filters” as more useful and suitable means of
filtering events (than content-based filtering) in sensor-based pub-
lish/subscribe systems. Using State-Filters, we claim to achieve
higher efficiency by means of filtering redundant and correlated
event notifications, suppress event duplicates, and capture lasting
conditions that had been previously not possible using content-
based filters. We evaluate our proposed filtering mechanism using
real-world sensor data, and highlight some assumptions and
pitfalls that motivate our future work in this area.

I. I NTRODUCTION

Publish/subscribe systems have been extensively studied
in the context of information-based systems. They provide
efficient and scalable means of information dissemination
in large-scale networks, where many information producers
(publishers) and consumers (subscribers) are involved. Their
decoupling of event clients is suitable for sensor network
environments, where data is prioritized over the identity of
its producer, and interests are expressed in terms of topic or
content of data as opposed to their publishers’ identifiers or
addresses. Where transparency of event clients is supported,
publishers’ join or leave operations are handled autonomously,
such that the existing subscribers need not resubscribe or re-
fresh their subscriptions in order to receive event notifications
from the newly joined publisher clients.

Researchers have extended the publish/subscribe commu-
nication paradigm over wireless sensor networks[1][2][3][4].
Sensor devices are viewed as event publishers, and user clients
(or sink nodes) as event subscribers. Novel routing and event
dissemination protocols have been proposed to address the
constraints and characteristics of sensor networks[3][2]. In
these works, content-based filtering has been investigatedas
a simple means of filtering events and reducing the commu-
nication costs within the network. Nevertheless, a large class
of the emerging publishers (scalar sensors) publish eventsthat
areperiodic, high-rate, andcorrelated in time.

Users are often interested in capturing real-world condi-
tions from these events (as in [5] and [4]). While unwanted,
unrelated events can be discarded using content-based filters,
correlated and redundant event notifications can not. In this
paper, we present a state-based filtering mechanism that offers
the following features.

• It filters correlated and redundant event notifications,
that are of little interest to the subscribers. This also
allows sensors to publish events more frequently, so as
to enhance the accuracy of condition capturing without
affecting efficiency or overheads.

• State-Filters can capture conditions that arelong-lasting.
Content-based filters can only capture momentary condi-
tions.

• State-Filters canscope the realization of a condition.
For example, they cansuppress duplicates, in a setting
where redundant sensors are deployed to allow for sensor
device vulnerabilities.

Also related to our work are Composite Event Detection
(CED) frameworks [6][4][7] that can support similar features
through complex event patterns and operators. Source-side
filtering (as we shall see in section IV) is key to the re-
duction of communication costs in sensor networks. These
frameworks, nevertheless, are designed around heavy-weight
components where processing and memory resources are not a
concern, e.g. active databases, EAI brokers. The most related
sensor network CED frameworks are [5] and [4], both of
which associate events with fixed validity intervals to support
lasting conditions. This approach is evaluated (as an Enhanced
Content-based Filtering scheme) in section V.

Content-based filters, however, have been widely used
within sensor networks and placed on sensor devices (e.g.
[3]). State-Filters match content-based filters in simplicity
and operation. They impose additional memory overheads
for the storage of an additional filtering expression and a
single memory bit. Nevertheless, for this additional storage
cost they offer features that had been previously impossible to
achieve using content-based filters, and that save significant
communication within the system.

II. EVENT FILTERING

Event filtering is a simple, yet effective, means of reducing
the number of event notifications that are disseminated within

the system. Subscriber-given expressions are used to empower
the publish/subscribe system to filter event notifications1.

Content-based filtering is the most common type of event
filtering in publish/subscribe systems, resulting in a “content-
based publish/subscribe system”. It views each event notifica-
tion message as a set of attribute/value pairs, whose valuesmay
be examined according to subscriber-given conditions. Condi-
tions are boolean expressions, that should evaluate to truefor
the event notification to be forwarded to the corresponding
subscriber(s).

Let us consider a temperature sensor for example, used
as part of a smart environment. The sensor is configured to
measure and report temperature values at 5 second intervals.
The measurements are wrapped into event notifications with
other related information (such as the time and the locationof
the reading) and dispatched into the publish/subscribe system
for distribution to the related clients.

Using a content-based publish/subscribe system, a user can
subscribe to events with temperature values greater than a
threshold value (e.g. 25°C, to be told when the environment
has become warm). The user, nevertheless, is not only notified
when this threshold is passed but is also subjected to a series of
subsequent event notifications that continue for as long as the
temperature value remains above 25°C. The problem relates to
a lasting real-world condition, which we (in this case) refer
to as “warmness”. The problem disappears when the user-
specified condition is evaluated to false. Nonetheless, a signif-
icant number of events may be relayed in this period, which
are inherently correlated and potentially of little significance
to the subscriber. With the proposition of some work (e.g. [5])
one can assign predefined validity intervals to the published
events, such as to filter the subsequent event notifications that
are published in this duration. This approach, however, is a
simplification that leads to inaccuracies and is inappropriate
in the context of generic sensor-based applications.

In addition, where redundant sensors are deployed to ad-
dress vulnerabilities and support fault-tolerance, the filtering
of duplicate events, across multiple event publishers, is not
supported. This means that in addition to the highlighted
redundant event notifications that relate to each individual
scalar sensor node, there is a regional event notification redun-
dancy issue that corresponds to the redundant deployment of
sensors in an area. We assume that these redundant publishers
introduce events with similar parameter values within their
localized regions.

III. STATE-FILTERS

State-Filters provide a much more expressive and effective
means of event filtering in sensor-based publish/subscribe
systems. They evaluate events according to the subscriber-
specified conditions, hence match content-based filters in sim-
plicity and implementation. Nevertheless, State-Filtersare de-
signed around the notion of state, primarily to capturelasting

1note that we consider the publish/subscribe system as a middleware layer
that is not application-aware. Thus, duplicate suppression, such as that pursued
in Directed Diffusion[8], can not be performed independently.

0 1

entrance predicate

exit predicate

Fig. 1. Finite State Automata representation

conditions. Their effectiveness is realized through thesmaller
number of event notificationsthat are passed through the filter
and the rise in the event notification’sinformative valuewithin
the system. State-Filters can be viewed astransformation
filters, through which the scalar sensor’s event notifications
become discrete, uncorrelated, and highly informative about a
condition.

State-Filters are expressed as follows.

State-Filter: [<entrance predicate> ; <exit predicate>]
Predicates are boolean expressions that examine user-defined
conditions over the published events. Event parameters
are used as operands, and logical (&&, ||, !), mathematical
(+,−, ∗, /, abs), and comparative (>,<,>=, <=,==, ! =)
operators are supported to examine relationships of interest
over the event notification values.

A subscriber receives event notifications that successively
match the entrance and exit predicates. Each State-Filter holds
a status-bit that indicates its status (i.e. active or inactive).
This also indicates the predicate that is used for evaluating
each incoming event. When a predicate is satisfied, the event
is passed through the filter and the status-bit is toggled (see
figure 1).

Using State-Filters, users can subscribe to lasting conditions
that are denoted by two explicit user-defined predicates. Inthe
case of our earlier example, a user can subscribe to astate of
warmness, as expressed below.

warmness : [temperature > 25; temperature < 22]
Unrelated entrance and exit conditions allow fine-grained
specification and capture user interests in the system.

The user holds firm knowledge of the described state
holding true for a continuous period that is bounded by two
consecutive event notifications. Therefore, correlated events
that relate to the same condition are filtered, and the user is
no longer subjected to a series of redundant event notifications
that follow the first satisfied event.

Using State-Filters, scalar sensors’ events may be trans-
formed into discrete events that are no longer periodic or corre-
lated in time, but related to specific contexts or conditions. As
such, users need not process all the received events to capture
their conditions of interest. For example, one may subscribe
to the warmnesscondition to feed the incoming events into
a primitive actuator device (such as an air conditioning unit).
In a reliable setting, the primitive actuator can simply toggle
its operation based on the received events, without processing
the contents.

A. Discrete Sensors

State-Filters can also capturelasting conditions, in the case
of discrete sensors. These are often unattainable using content-
based filters. Let’s consider a building structure, equipped with
distributed tag-reading sensors that identify nearby people and
publish events including name (of the person identified) and
location (of the identification/sensor). Now, if someone wishes
to monitor the state of a person’s (such asJohn’s) presence
in a room (likeFE05), then they may do so through the use
of the following State-Filter expression.

[(Name == “John′′) && (Location == “FE05′′);
(Name == “John′′) && (Location ! = “FE05′′)]

This captures the condition of interest, using simple iden-
tification sensors and without the complication of defining
entrance and exit event topics that other related work depends
upon. Primarily, this state detectsJohn’s presence in the room
when a sensor placed in the room makes such an observation,
and concludes this presence when an outside sensor observes
him. Note that the accuracy of this detection is dependent
upon the distribution and density of the sensors placed in the
building.

B. Momentary Conditions

Not all conditions of interest are long-lasting, some are mo-
mentary. The existing content-based publish/subscribe systems
conceptually capture only momentary conditions that are tied
to single event notifications. Such conditions can be expressed
with State-Filters holding static “true” exit predicates.The
“true” exit predicate results in an implicit exit transition
which immediately follows after every state activation. This
results in momentarily short state activations that correspond
to momentary conditions. For example, a subscription to “all
identifications of John in the building” can be expressed
as [Name == “John′′; true], for which each event
notification, that is not filtered, constitutes a momentary active
state of “John’s identification in the building”. In turn, a static
“false” exit predicate corresponds to a condition that upon
detection is permanently valid (e.g. a failure detection state).
Existing content-based filters can be transparently migrated
into the State-Filter architecture using the static “true”exit
predicate for each State-Filter expression.

IV. D ISTRIBUTED STATE-FILTERS

State-Filters provide the means of filtering and capturing
user-interest conditions. However, the real benefits of com-
munication and resource savings lie within the distribution
and placement of these filters in the network. State-Filters
are expressed by subscribers, as part of their subscription
operation. A subscription operation often results in a path-
establishment procedure that (indirectly) connects the sub-
scriber to the relevant event publishers. The operation can
be adopted from any existing content-based publish/subscribe
system (see [9]), and has been omitted from the following
discussions due to space limits.

P S

Forwarding Paths
Event Notification

State−FiltersEvent Clients & Brokers

P S

P P
(a) (b)

Fig. 2. (a) Source-side and (b) Scoped Filtering

A. Placement

Filters can theoretically be positioned anywhere along the
event dissemination path, from the publisher’s node (Source-
Side Filtering, SSF) to the intermediate nodes (Intermediate-
Node Filtering, INF) to the subscriber’s node (Consumer-Side
Filtering, CSF). Efficiency of the publish/subscribe protocol
requires that the undesired events be filtered using as few
resources as possible. This argues for source-side filtering,
as undesired events are then filtered without any use of the
communication resource (see figure 2(a)). Source-side filtering
also enforces state detections overtotally ordered events
(because there is only one source, and no network propagation
involved). Nevertheless, it onlycaptures conditions at the
locality of the individual publishers. Figure 2(a) shows how
two publishers can forward events (that have passed through
their source-side filters) to a subscriber.

B. Scoping

INF and CSF canscope the realization of user-interest
conditions. The “John’s presence in the room FE05” example,
in section III, would use such a mechanism to capture the
condition over an area that covers the roomFE05 and its sur-
roundings. In the case of scalar sensors, this mechanism filters
duplicate events that emerge from the redundant publishersin
a scope (see figure 2(b)). Table I shows a summary of the
placement options, the associated features and the supported
coverage specifications.

Sensor Types SSF INF & CSF
Scalar

√

Redundancy Scoping
automated pre-defined + subscriber-specified

Discrete
√

State Detection Scoping
subscriber-specified subscriber-specified

TABLE I
STATE-FILTER PLACEMENTS

In scoping a detection, the State-Filter must be placed so
as to capture all event notifications published in the refer-
enced scope. This placement depends on the operation of
the publish/subscribe protocol. In tree-based publish/subscribe
systems, this implies that the subscriber-rooted tree musthave
a single event-forwarding branch covering the scope (see figure
2(b)). In cluster-based approaches, where brokers (cluster-
heads) maintain local groups of publishers, a single cluster
must cover the referenced scope for INF, or otherwise CSF

1
S

1
S

S
2

S
2

1
S

S
2

Event Brokers
Event Clients &

’s sub. coverage

’s sub. coverage Publishers’ line

Forwarding Paths
Event Notification

State−Filter for

State−Filter for

Fig. 3. Shared Event Dissemination Paths

must be used. In this study, we have implemented State-Filters
over a tree-based publish/subscribe system.

C. Sharing

Subscribers, with the same (State-Filter) interests, can share
events and filters. Where interests are not similar, they may
share events and dissemination paths subject to the condition
that all related subscriber State-Filters are examined at each
subscriber’s State-Filter placement point. Figure 3 shows an
example (for tree-based publish/subscribe systems) in which
two distinct State-Filter subscriptions share event dissemina-
tion paths. As shown, filters are co-located at all filtering points
over the shared event dissemination paths.

D. Notification Forwarding

Event notifications are forwarded along event dissemination
paths from the publishers to the subscribers. For scoped
filtering, we support two event notification deliveries,timely
deliveryandordered delivery. Where timeliness is important,
events are processed according to a “first come first served”
policy. Otherwise, events are buffered for finite durations
and processed in the order of timestamps to support ordered
delivery. The semantics of ordered delivery must be spec-
ified carefully. Events from different sources often cannot
be ordered meaningfully using source timestamps because of
clock drift. This may not be important for applications where
causality is not an issue, but applications must be made aware
that timestamp-based ordering is not precise.

Where multiple State-Filters are involved at an intermediate
forwarding node, the event notification is evaluated against all
the related (i.e. matching subscription coverage) State-Filters.
An event notification is passed through a set of filters if it
satisfies at least one state predicate.

V. EVALUATION AND DISCUSSION

The performance and correctness of our proposed filtering
mechanism was evaluated within a simulation environment.
Use of real data in our evaluations dictated a specific applica-
tion scenario which is outlined below.

A. Simulation Environment

The proposed framework has been implemented on
Jist/Swans[10]. A two-dimensional outdoor environment was
simulated, comprising sixteen equisize regions. Each region
was allocated a temperature sensor that monitored the regional
temperature. Regions were also equipped with a random
number (between zero and two) of redundant sensors that
reported on the same information, mainly for fault-tolerance
purposes. The temperature sensors were programmed to report
regional temperature values (in the form of event notifications)
every three minutes. Additional wireless nodes were inserted
into the environment to ensure network connectivity.

All simulated nodes used radio communications as a means
of networking. Reliable MAC 802.11 was used for link-layer
communications. GPSR[11], a geographical routing proto-
col, coupled with a tree-based publish/subscribe mechanism
(similar to Directed Diffusion’s one-phase pull protocol[12]),
was used to interconnect the publishers and subscribers in a
decentralized manner. Ten distributed subscriber nodes were
simulated in the environment, with similar (but non-identical)
interests over temperature changes. Subscribers wished tobe
notified when a certain threshold value has been exceeded in
their chosen regions of interest. All threshold values werein
the vicinity of 10°C, but different for each subscriber.

State-Filters (SF) were compared against an Enhanced
Content-based Filtering (ECF) scheme. In ECF, satisfied
events were given a fixed validity period ofthirty minutes.
Correlated events published within this validity intervalwere
filtered by the ECF scheme. In the case of State-Filters,
each outdoor region was also pre-defined as a redundancy
scope, over which duplicate events were filtered by means of
automated redundancy scoping. Simulation results, excluding
failures and relating to thirty hours of real data gathered from
outdoor sensors, are shown in table II.

Statistics SF ECF
Publishers 35 35
Subscribers 10 10
Subscriptions 10 10
Coverage Publishers 11 11
Source-Side Filters 27 27
Scoping Filters 10 N/A
Published Events 21000 21000
Covered Events 6600 6600
Delivered Events 20 620
Source-Side Filter P.R. 3.33e-3 (22#) 3.27e-2 (216#)
Duplicates Suppressed 14 0
Shared Events 16 (6) 192 (192)
Capturing Resolution 3mins 30mins

TABLE II
SIMULATION RESULTS

B. Notification Filtering

From a total of 21000 published events in the system, only
6600 related to the subscribers’ areas of interest. A condition
capturing resolution ofthree minutes(in the case of State-

Filters) against thethirty minutesinterval period of the ECF2.
demonstrates the increased accuracy of condition capturing
when using State-Filters. With ECF, a trade-off is realised
between efficiency and the accuracy of condition capturing,
where a larger validity interval increases the efficiency but
compromises the accuracy by an even larger value.

A combined source-side filtering pass-ratio of 3.33e-3,
corresponding to just 22 events (from a total of 6600) for State-
Filters, compares to the 3.27e-2 of ECF. With nearly ten-fold
higher source-side filtering and delivery of 600 fewer events to
the subscribers than the content-based filtering scheme, State-
Filters result in higher efficiency.

C. Messaging Costs

Table II shows that out of the 22 events (which passed
through the source-filters), 14 events were further filteredat the
redundancy scoping filters. The remaining 8 events were those
which were disseminated to the ten distributed subscribers
within the system. Content-based filters, with a lower source-
side filtering and inability to filter duplicates, disseminated 216
events from the publishers to the subscribers.

D. Event Sharing

Similar subscription expressions were declared deliberately
in order to observe event sharing among the subscribers. Prior
to the duplicate suppressions, 16 events were shared for twoor
more subscribers in the SF scheme. This figure was lowered
to 6 events following the duplicate suppressions. 192 events
were shared in the ECF scheme.

VI. FUTURE WORK & CONCLUSIONS

In this paper, we presented State-Filters that extend content-
based filters with capabilities to filter correlated and redundant
event notifications across individual sensors as well as a
group of redundant sensor deployments. These features were
primarily motivated by the need to capture lasting conditions
that the content-based filters were incapable of detecting.The
proposed State-Filters accommodate the existing content-based
filters, and match their simplicity in use and operation. In
future work, we extend our evaluations over discrete sensors
and examine fault-tolerance aspects of this approach. We also
wish to address some imprecisions and uncertainties that may
arise in the event notifications published by unreliable sensors
in the system. Integration of primitive aggregation functions,
as part of our filtering service, may prove useful in this respect.

ACKNOWLEDGMENT

This research was funded by a grant fromMicrosoft Re-
search Cambridge.

2the largest observed inaccuracy with content-based filtersin this experi-
ment was 18 minutes.

REFERENCES

[1] E. Souto, G. Guimares, G. Vasconcelos, M. Vieira, N. Rosa,and
C. Ferraz, “A message-oriented middleware for sensor networks,” in
Proceedings of the 2nd workshop on Middleware for pervasiveand ad-
hoc computing. New York, NY, USA: ACM Press, 2004, pp. 127–134.

[2] P. Costa, G. P. Picco, and S. Rossetto, “Publish-Subscribe on Sensor
Networks: A Semi-probabilistic Approach,” inProceedings of the 2nd

IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS05), Washington DC, USA, Nov. 2005.

[3] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf, “A content-based
networking protocol for sensor networks,” Department of Computer
Science, University of Colorado, Tech. Rep. CU-CS-979-04,Aug.
2004. [Online]. Available: http://serl.cs.colorado.edu/ carzanig/papers/

[4] A. V. U. P. Kumar, A. M. R. V, and D. Janakiram, “Distributed
collaboration for event detection in wireless sensor networks,” in MPAC
’05: Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing. New York, NY, USA: ACM Press,
2005, pp. 1–8.

[5] S. Li, S. H. Son, and J. A. Stankovic, “Event detection services using
data service middleware in distributed sensor networks.” inIPSN, ser.
Lecture Notes in Computer Science, F. Zhao and L. J. Guibas, Eds., vol.
2634. Springer, 2003, pp. 502–517.

[6] S. Courtenage, “Specifying and detecting composite events in content-
based publish/subscribe systems,”icdcsw, vol. 00, p. 602, 2002.

[7] P. R. Pietzuch, B. Shand, and J. Bacon, “Composite event detection as a
generic middleware extension.”IEEE Network, vol. 18, no. 1, pp. 44–55,
2004.

[8] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,and F. Silva,
“Directed diffusion for wireless sensor networking,”IEEE/ACM Trans.
Netw., vol. 11, no. 1, pp. 2–16, 2003.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,”ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[10] R. Barr, Z. J. Haas, and R. van Renesse, “Scalable wireless ad hoc
network simulation,”Handbook on Theoretical and Algorithmic Aspect
of Sensor, Ad hoc Wireless, and Peer-to-Peer Networks, pp. 297–311,
2005.

[11] B. Karp and H. T. Kung, “GPSR: Greedy perimeter statelessrouting for
wireless networks,” in6th Annual International Conference on Mobile
Computing and Networking, Aug. 2000, pp. 243–254.

[12] J. Heidemann, F. Silva, and D. Estrin, “Matching data dissemination
algorithms to application requirements,” inSenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems.
New York, NY, USA: ACM Press, 2003, pp. 218–229.

