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1. Introduction

The purpose of this paper is to prove the existence and
approximate controllability of mild solution for the class
of fractional Sobolev type stochastic differential equations
driven by mixed fractional Brownian motion with Hurst

1 . . .
H > 3 and wiener process. The following form is the
system under our consideration,

D¢ Sx ()~ (t,x(1)) | = Lx(t)+Bu(t)+ F(t,x(1))

6h)
dW, (t dwi (t
+Gl(t,x(t)) dl( )+01(t) (1:1t( )
DI x()],o= Gy (6x(5) 2D 4 g, (1) LD

dt
t €[0,T], where, x(t) € C([0,T]; L2(€, X)) equipped with
1
the sup norm ||x|lc = (sup Ellx(t)|| ?)z, such that X is a
te[0,T]

dt

real separable Hilbert space. “D&the Caputo fractional
derivative of order% <a < 1land "D!™* the Riemann-

Liouville fractional derivative of order 1 —a . The
operators S and L are defined on domains contained in X,
D(S) c D(L) and ranges contained in a real separable
Hilbert space Z, such that S is a bijective linear operator,
$~1is a compact and L is a closed linear operator. The
control function u(.) € L?; ([0,T]; U ), U is a Hilbert space
and the operator B from U into Z is a bounded linear
operator. The functions F:[0,T]x X -»Z, G;:[0,T] x X -
L,(K,Z), G,:[0,T] x X = L, (K, X), 6,:[0,T] = L3 (Y, Z),
0,:[0, T] = LY(Y,X) and h: [0, T] x X »Z are continuous

functions such that K and Y are real separable Hilbert
spaces.

Wy = { W, t €[0,T]} and Wy = { Wy, t € [0, T]}
are the standard cylindrical Brownian motion (cylindrical
wiener process) defined on complete probability space
(2,8 {8:}1>0,P) equipped with normal filtration {&}>o, &:
is the sigma algebra generated by { W;(s) ,
W, (s), W (s), W (s) : 0< s < t}.

Let Q be a positive, self —adjoint and trace class
operator on K and let L, (K,X) be the space of all Q -
Hilbert-Schmidt operators acting between K and X
equipped with the Hilbert-Schmidt norm |[. ||,

= {Wlﬂ(t), t € [0,T]} and W,'= {WZH(O, te[0,T] }
are the Q-fractional Brownian motion with Hurst index
He (%,1) defined in a complete probability space

(Q,8,{8}:.,P) with values in a real separable Hilbert
space Y, such that Q is a positive, self —adjoint and trace
class operator on Y and let LY (Y;X) be the space of all Q
-Hilbert-Schmidt operators acting between Y and X
equipped with the Hilbert-Schmidt norm ||. ||Lg . X »

w;, W,, WHand W} are independents which defined on a
complete probability space (Q,§,{&}>0,P).

Approximate controllability of stochastic differential
equations driven by fractional Brownian motion has been
interested by many authors; Sakthivel [19] referred to
future study for the approximate controllability of
impulsive stochastic systems with fractional Brownian
motion. Guendouzi and Idrissi, [7] established and
discussed the approximate controllability result of a class
of dynamic control systems described by nonlinear
fractional stochastic functional differential equations in
Hilbert space driven by fractional Brownian motion with
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Hurst parameter H >%. Ahmed [2] investigate the

approximate controllability problem for the class of
impulsive neutral stochastic functional differential
equations with finite delay and fractional Brownian

motion with Hurst parameter H > % in a Hilbert space.

Abid, Hasan and Quaez [1] studied the Approximate
controllability of fractional stochastic integro-differential
equations which is derived by mixed type of fractional
Brownian motion with Hurst parameter H >12 and wiener
process in real separable Hilbert space. On the other hand,
Sobolev type differential equations have been investigated
by many authors, for example, Balachandran, Kiruthika
and Trujillo [3] established the existence of solutions of
nonlinear  impulsive  fractional  integrodifferential
equations of Sobolev type with nonlocal condition. Zhou,
Wang and Feckan [20] investigated a class of Sobolev
type semilinear fractional evolution systems in separable
Banach space. Kerboua, Debbouche and Baleanu [8]
sudied the approximate controllability of Sobolev type
fractional stochastic nonlocal nonlinear differential
equations in Hilbert spaces.

In this paper we will study the approximate
controllability of nonlinear stochastic system. More
precisely, we shall formulate and prove sufficient
conditions for the Approximate controllability of
fractional Sobolev type stochastic differential equations
driven by mixed fractional Brownian motion with Hurst
H >% and wiener process in Hilbert space.

The rest of this paper is organized as follows, in section
2, we will introduced some concepts, definitions and some
lemmas of fractional stochastic calculus which are useful
for us here. In section 3, we will prove our main result.

2. Preliminaries

In this section, we introduce some notations and
preliminary results, which we needed to establish our
results.

Definition (2.1), [5]:

Let H be a constant belonging to (0, 1). A one
dimensional ~ fractional Brownian motion BY =
{Bfi,t =0} of Hurst index H is a continuous and

centered Gaussian process with covariance function
1
E(B{,B()) = 5 (21 4 2 — [t —s|?"). for t,s > 0.

o IfH= % then the increments of B" are non-correlated,

and consequently independent. So B is a Wiener
Process which we denote further by B.

o If H € (%,1) then the increments are positively

correlated.
o If H e (0,%) then the increments are negative
correlated.
B " has the integral representation
B{)= [, Ky(t,s) dBy, )
where, B is a wiener process and the kernel

Ky (t, s) defined as

1 3 1
Ku(ts) =cHe " [(u-9)"2u"Z2du (3

1
K H= 3
Es)=ci(}) *-9"3 )
_| HEH-D) z . .
cH= [Mg] , t> s and §3 is a beta function.

In the case H= 2, we shall use Ito Isometry theorem
Lemma (2.1), “Ito isometry theorem”, [11]:

Let V [0,T] be the class of functions such that f: [0, T] x
Q->R , f is measurable, &- adapted and

E [fOT(f(t, oo))zdt] < oo. Then for every f €V [0,T], we
have
2 2
E [ T u))dB(t)] - [ INGED) dt] )
where B is a wiener process.

Now, we denote by g the set of step functions on [0,
T].If ® e g then, we can write it the form as:

O(t)=Xp_; ax Lty by, 01 (8), Where t € [0,T].

The integral of a step function ® e g with respect to one
dimensional fractional Brownian motion is defined

T n
J, ®®)dB{' = ¥ a, (Bl — B,
where a, € R,
0=t1 <t2<...... <tn+1 =T.

Let IC be the Hilbert space defined as the closure of g
with respect to the scalar product <1p,1p05> = Ru(t, S) =
E(BHB!). The mapping 1,04 — {B"(t), t€ [0,T]} can be
extended to an isometry between % and spant’@®
{Bli,t € [0, T]} .i.e. the mapping I - L* (Q&P), ®
- fOT ®(t)dB! is isometry.

Remark (2.1):

o If H =% and 3¢ = L?([0, T]) then by use Ito isometry,

we have

E( fOT(D(t)dB)2 = [(@®)%dt 6)
o If H>%,we have

Ryr(s,t) =5 (1t127 + [s]H — |t — 8" ), t,52 0 (7)

T = H(JPH — e - s ®)

dRY = H(2H - 1)t — s[2H-2dsdt

Lemma (2.2), [6]:
For any functions ®, ¢ € L?[0,T] n L'[0, T], we have

. T T
i) E (fo ®(®dBY, [ @(s)ng)) = H(2H — 1) x
fOT. fOT D(t) @(s)|t — s|*"2dsdt
2
ii) E(dB! dB!Y)) = T = H(2H - 1)]t — s|?#~2dsdt

From this Lemma above, we obtain

2 D(s)D(t
E(IJ@(t)dBE)) =H(2H—1)IOTJ'OT |t—(s|)2H(‘2) sdt (9)

Remark (2.2), [6]:
The space I contains the set of functions ®, such that,

) J, @s)P® | t—s]2"2dsdt < oo, which includes
1
Li (o, TD).
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Now,
Let # be the Banach space of measurable functions on
[0, T], such that

lol2=H(2H - 1) [ [T O(s)®() |t—s |12 dsdt < 00(10)
Lemma (2.3), [10]:

L([0,T]) < L7 ([0,T]) < 7K.

Suppose that there exists a complete orthonormal
system {e,}o=, in Y. Let Q L (Y,Y) be the operator
defined by Qe, =2, e,, where A, >0 (n=1,2,....) are non-
negative real numbers with finite trace Tr Q =X, A, <
o.The infinite dimensional fractional Brownian motion
on Y can be defined by using covariance operator Q as

n=1vAn € Brl;l(t)’

where BE(O are one dimensional fractional Brownian
motions mutually independent on (Q, &, P).

In order to defined stochastic integral with respect to
the Q-fractional Brownian motion. We introduce the space
L3 (Y,X) of all Q-Hilbert- Schmidt operators that is with
the inner product (®,¢) 9 = X5 i(Pe,, pe,) is a
separable Hilbert space.

Lemma (2.4), [10]:

Let {®(t)}e[o,r) be @ deterministic function with values
in L (Y,X) The stochastic integral of ® with respect to
WH is defined by

I;q)(s)dw(?) = Z::J(t)\/m@(s)endBﬁ(s)
B Z“:1011-[;) \/E(KT" (®ey)(s)dBns)

Lemma (2.5), [10]:
If ¢: [0, b] — L3(Y,X) satisfies f lo(s)II? gds < oo

then the above sum in (11) is well defined as an X-valued
random variable and we have

—\wH
W(t) - WQ ®

(11)

2
E [ o@dwi | < 2H e flo@)lZ ds (12

Definition (2.2), [18]:

The Riemann - Liouvill derivative of order a > 0 with
lower limit zero for a function f can be written as:
dn ot f(s)

r(n a) den Jo (t—s)atl-n
where, t>0, n—1<a<n.
Definition (2.3), [18]:

The Caputo derivative of order o > 0 with lower zero
for a function f can be written as:

LDY f(t) = (13)

(n)
8 gs (14)

0 (t—s)® +1-n

Cpha
D f(t) = F(n 5
where, t>0n—-1< a <n.
Remark (2.3), [9]:
The relationship between the two definitions Riemann —
Liouvill derivative and Caputo derivative gives as:

°Def(® = D¢ (FO) — THof® @) (15)

where, t>0,n—1< a <n.
Definition (2.4), [18]:

The Laplace transform of the Riemann-Liouville
fractional derivation of order o > 0 gives as:

L{LD{ f(t)} = A“LE)N)— ZRZo A[ Df " f(1)]i=0(M)(16)
where, n-1<a <n.
Definition (2.5), [18]:

The Laplace transform of the caputo derivation of order
o
> 0isgiven as:

L{ €Df(t) } = A2 L(f()) (D) — Tpdaxk-1£0I(0) (17)

where, n-1< o <n.
Remarks (2.4)

i) The operator M: D(S) € X—Z is a bijective linear
operator, then $~1: Z —» D(S) < X is a a bijective linear

ii) S~ is a compact linear operator, we obtain that $~!
is bounded.

iii) S~ is a bounded and L is a closed linear operator
by (closed graph theorem), we obtain the boundedness of
linear operator LS~1:Z— Z.

vi) The operator LS~ is bounded. Then, LS is an
infinitesimal generator of semigroup {T(t)= et > 0}.
Suppose that sup,so [ T(t) [l ;= m <co. (see[4])

Definition (2.6):

An X-valued process x(t) € C([0,T]; L?(Q,X))is a
mild solution of the stochastic differential equation driven
by mixed fractional Brownian motion in (1) if, for each
control function u(t) € L? ; ([0,T]; U ), the integral
equation

1 t (t—s)_OL
ot I(1-0) jO[G2 (t,x(s))}dwz (¢)
j (t=5) "oy (s)AW}' (s)

x(t) =T, (1S

r(1

18
+L;Ta(t— ol (18)

is satisfied.
where, the operators T, (t) and T, (t) are given by

To(® = J;” $7IM (O)T(ter) dr (19)
T,() = [,” o8~

M, (r) is a Mainardi's function.
Lemma (2.6):

If {T(t),t > 0} is a strongly continuous semigroup by
linear operator LS™:Z — Z, then the operators {T, (t),
t> 0} and {T,(t), t= 0 } have the following properties:

i. For any fixed t > 0, the operatorsT, (t) and T,(t) are
linear and bounded, i.e. for any z € Z, there exists m > 1
such that

1M, (1) T(t%r) dr (20)

C -
ITe (92 1l < 22 lzll, [T (02 | < Cam izl
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where, [|$7]|, = C;.

ii. The operators{ T, (t),t > 0} and { T, (t),t = 0} are
strongly continuous, which mean that for every ze Z and 0
<t <t,<T, we have

[ITe(t2)z — T (t1)7], — O
[IT, (ty)z — T, (t)zlly = 0,if t,—> 1,
iii. T, (t) is a compact operator in X for each t > 0.

3. Main Result of the Approximately
Controllable

In this section, we formulate and prove the result on
approximate controllability of nonlinear fractional
Sobolev type stochastic differential equations driven by
mixed fractional Brownian motion in (1). To establish our
results, we introduce the following assumptions:

a) The semigroup T(t), t = 0 which generated by linear
operator LS~tis a strongly continuous and it is compact
forany t > 0.

b) The Sobolev type linear fractional order Caputo type
system of corresponding to the system (1) of the following
form:

D[ Sx(t) | = Lx(t)+Bu(t),te[0,T]

1 (21)
x(O):xo,E<a<1

is approximately controllable on [0, T].
¢) The function o;: [0,T] — Ly(Y;Z) satisfies : for
every t € [0, T], fOtII cl(s)llfgds < oo, and there exists
D; > 0 such that sup || Gl(t)Hio <D;.
te[0,T] z
d) The function o,: [0,T] — L3(Y;X) satisfies : for
every t € [0, T], fOtII cz(s)llfgds < oo, and there exists
D, > 0 such that sup || O'Z(t)”io <D,.
te[0,T] z
e) The functions F:[0,T]x X =Z, h:[0,T]x X = Z,
G:[0,T] xX = L,(K,Z) and G,:[0,T] x X = L,(K,X)
satisfy linear growth and Lipschitz conditions. This mean
that, for any x, y € X, there exists positive constants
K., K, > 0,K;,K, > 0,Ks,Kg > 0 and K;,Kg >0 such
that
IF(t, %) — Ft y)IIZ < Kqllx — ylI,
IF(t ) 117 < K (1 + [Ix1I%)
G, (%) = G, (L YIIE, < Ksllx = ylIZ
G, (6 117, < Ky(1 + [IxII)
G, (%) = G, (6 y) IIf, < Ksllx—yll%,
G, (%) I, < Ko (1 + IIxII)

Ih(tx) —h(ty) lI7 < K;llx =yl ,
Ih(t,x) 17 < Kg(1 + IxlI%)

Definition (3.1):

The system (1) is said to be approximately controllable
on [0,T] if the reachable set R(T) is dense in the space
L2(Q,X). This mean that (T)= L?(Q,X). where, &(T) =
{x(T,u) :u € L% ([0,T]; U)}

Remark (3.1), [12]:

The linear fractional order system (21) of the
corresponding system (1) is a natural generalization of
approximate controllability of linear first order control
system.

Now,

The controllability operator I associated with equation

(21) is defined by
M= [[(T- )" T,(T- ) BB*T;(T - dt  (22)

Also, for any € > 0 and 0 <s < T, the operator

R(g, I'T) is defined by

R(e, 1) = (el + I'H? (23)
where, B*and T; are the adjoint operators for B and T,
respectively.
Lemma (3.1), [12]:

The Sobolev type linear fractional order deterministic
system in (21) is an approximately controllable on [0, T]
if and only if the operator £R(g,I{) > 0 as £ - 0%.
Moreover ||eR(e,T)|| < 1.

Lemma (3.2), [13]:

For any xr € L*(Q, & X) there exists He

L*(Q; L2([0, T]; L3(Y,2))) and
b e 12 (0 12([0,T]; L, (K; 2)) ),
such that

T T A
xp = Exq + [ &(s)dW,) + [ H(S)AWE)  (24)
where, sup.epor1 E lO®IIZ, < €,
L2 -
SUPiefo,r] E ”H(t)”L% < G

Now, For any € > 0 and any x; € L?(Q, Fr, X), we
define the control function of the system (1) in the
following form:

UE (t,)=B"T, (T-t)R(e,T})

1 t| (t—s)™
o Xo +—F(1—G)J‘O{GZ(S,X(S))}dWZ(S)
Fay lot9) o2 (s ()
T (T)N(0.%(0)) =S (T x(T))

+

—B*T;(T—t)_[t

T AL

o

*__ % t
B Ta(T—t)_[O

Lemma (3.3):
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There exists positive real constants K, , K, such that for
all x, ye C([0, T]; L*(©,X)), we have

i Ellut(t,x) —usty) I < K lIx — yll2 (26)
i1 Ellut(t)|? < K, (1 + ||X||(2;) @7
Proof

i. Let x, y € C([0,T]; 12(©,X))and T > 0 be a fixed.
From the equation (25), we have:

E ug(t,x)—ug(t,y)”2
1 2
BT, (T-t)R(e,T$)T, (T)S o
<4E S, X(S
X[, (t=5)" “[ Gi (' f/()s)))]dWZ (s)
. BiT;(T—t)R(s,l"g)
<§7(h(T.x(T))~h(T.y(T))

R(e,1d )(T-s)"
HE|BT, (T-) [ 11T, (T-s) ds

frexe ]

R (.18 )(T-5)""

+4E||B Ta(T—t)j:) <T, (T-s)

X[GI(S’X(S)) ]
Gy (s.¥(s))

Applying Holder’s inequality and from Ito isomerty
theorem, we obtain

Ellus(t,x) —u*(t,y) II?

413 i S
~ (e(1 = )1 — a))? t:[%r% E[|G, (tx(D)

G (tyO)II;
+ B G g (7, x(1)) = h(T,y(D)|
2 4 A4m2a 2
% tz[%r%]E”F(t'X(t)) - F(s,y(t))”Z
2 ~4 - ' 2
% tes[%?l‘] E||G;(s,x(s)) — G4 (S,y(s))”LZ

From the assumption (e), we get
Elluf(t,x) —us(ty) 1> <K lIx —yllZ

AW (s)

4mr2a-1
T
+

where,
K :[3L§ cim*|S[T2"2Ks | 4Lf Cim?K,
1 (e(1—a)T ()T (1—a))2 )
3L% cfm?T2%Ky  3L3 Cim*T2e-1K,
e2|2a—1| e2|2a—1|

The proof of ii. similar to the proof of the Lemma (3.1)
(see [1]).

Now, for any € > 0, we define the operator ¥, on the
space C([0, T]; L2(©,X)) by

1 t| (t—s)™
Xp + T(l-a) ‘[0[62 (s X(S))}Wz ()
T a)f (t=5)""og (s)W3' (5)
~T,(Oh(0,x(0))+ S h(t,x(1))

= Ta (t)é

+] T (t-3)(t=5)" " BU (s, x)ds (25)
[ T (t-5)(t-5)" " F(s.x(5))s
[ T (t=3)(t=5)" "Gy (5.%(5) )y
[ T (t-5)(t-9)" oy (v (s)
Lemma (3.4):

For any x € C([0, T]; L*(Q, X)), the operator (W,x)(t)
is a continuous on [0, T] in the space L?(Q, X).
Proof:

Let t;,t, €[0, T] such that t; < t, Then for any x €
c([o,T]; L2(Q,X)), from (28), we have

E(7,%) (t2) (¥ ()]

< 21E|(T, (t2) - T (1) SXO”

+21E
xjél (t, —=5) "Gy (s.x(s)

T (t,)-T,(t))S
+21E( a(Z) a(l)) rl-a)

ot =)o (WS ()]

+21E _
xJ‘tl (tZ_S) ¢
0

X

+21E -
qé{(tz )

+21E

+21E
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+21E[(T, (t2) - To (t)) (0. x Q)
+21E s“l[h(tz,x(tz))—h(‘l*x(tl)””i

J'tlliTa (t2 _S)

—To (tl _S)

+21E

X
2

N o] _g (tZ_S)ail ut (s. x s
21E jo T, (t2 )[—(tl—s)‘“]B (s,x)d

+21E ttlzTa(tz s)(ta—s)"" Bug(s,x)ds2
2
+21E _[t{j(;_it(il__z)}(tl—s)a_l F(s.x(s))ds )
+21E élT(x (t2 —S)[(tz _S)(Hl] F(s.x(s))ds
~(ty=s)"" X
+21E ltzTa(tz—s)(tz s)“lF(s,x(s))dsi
[ Taltz-5) 2
+21E {—Ta(tl—s)}(tl $)" Gy (5,%(5) )W (s) )

2

tr (tz_s)a_l
+21E (t,-s) L |Gt s, (s))dWy (s)
X lm-s)a—% :

+21E|[ 27, (t, -5)(t, -5)"
1

X

Gl(s x(

+21E J‘tlr—a (ta __S))}(tl —S)a_l o1 (t)dWlH (s)

t, —s
+21Ejl (t, - s[(z

(ti-9)"

t2 5 tZ—S)a_:LG

+21E j 21

1 (W (s)

Applying Holder’s inequality on the last inequality and
by using Ito isometry, Lemma (2.5), Lemma (3.3), Lemma
(2.6) and Lemma (3.1), we obtain

(20 ()~ (Pt
=21 || (Tut) — T[N Ellxo 1%
2 81"

X

21 | (Tut) = Tt [ EE=25 4+ 12
—20+2H+1
+21 || (Ta(ty) — T(tl))”ZHSHj]:(l—aWDZ

1 5 Kﬁ 1 o
+21 SEBLET (e, — g7 (1 —)72ds) (1 + )

21 % oIt — 9 (4 — ) Tds)
(f:(tz - S),mds) X (fttf”Gz (S,X(S))”izds)

s
2HCEm? |8 221D t _
(18] 2 X(J-tz(tzfs) Zcxds)
1

(T(e)T(1-e))?
+21 (T(e)T(1—e))?

+21 | Tult) — T () || 2E[|n(0,3(0)) |2
+21 CZE|| (e x(ty)) — h(tl,x(tl))”i
+2113 [1(t;, — 5)2%2ds
X ftlllT (ty — 8) — T (t; — $)IZE|u(s, x)[|%ds
+2115C2m?2TK,
X ([t = 9% = (& — )% P2ds ) (1 + IxM1D)
+2112C2mPTK, (ft‘f(tz _ )22 ds) 1+ [Ix112)
+ 21K, T2 [Tty —5) — To(ty — $)IIZ (1 + [Ix(s)[12)ds
+21K, CPm?T ([0t — )% = (&, — £)°7412ds) (1 + [1xl|2)
+ 21K2Clm2T(ftt12(t2 _ g)2a2 ds) X (1+ [Ix]|2)
+21 T2 1K, ([ To(t, — 5) — Talty — )12 (1 + [1x(s)|12)ds
Hence, by using the strong continuity of T, (t) and
T, (t)in Lemma (2.6) and Lebesgue’s dominated convergence
theorem, we conclude that the right-hand side of the above
inequalities tends to zero as t,—t;. Thus, we conclude
(P.x)(t) is a continuous from the right in [0, T). A similar
argument shows that it is also continuous from the left in
(0, T]. Thus (¥.x)(t) is continuous on [0,T] in the L2(Q, X).
Lemma (3.5):

For each €>0 , the operator ¥, maps from
c([0,T]; L2(,X)) into itself. i.e. W, (c([o, T]; 12 (n,x)))
c c([o, T]; L2(Q,X)).

Proof:

From Lemma (3.4), for any x € C([0, T]; L2(©,X)), the
operator (W.x)(t) is a continuous on [0, T] in the
space L2(Q,X). To prove that for xe C([0, T]; L*(Q,X))
implies E[|W x(t) |2 < oo.

¥, Xl
2
1 t| (t—s)™*
Xq + dW, (s)
<6 E[T,(1)S " Te-w Ole(SX(S))} 2
F(l j(t s) %o, (S)AWS' (s) )

6T, 01 (0.x(0))+ (e x(v)

46| [1T, (t-s)(t-s) ' Bu®

2
(s,x)ds N

2

x(s))ds

46E |0 T, (t-5)(t-5)" (s,

X

) AW (s)

2

+6EjT (t-s)(t=5)" "Gy (s, x(s

46E| [T, (t-3)(t-3)* "oy (W (s)

Applying Holder’s inequality and by using Ito isometry
theoem, Lemma (2.5), Lemma (3.3), Lemma (2.6) and
Lemma (3.1), we obtain

X

C S
EI¥x® < 8 ﬂ)l' [Ellx I3

TZ—ZG‘.KG 5 ZHTZH—ZG‘.+1D2
+ (1 +1IxI1E) + >
(r1-o1-w) (r1-w(1-w)
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+12 C(‘E“’ 2 (1 + Ix(0)113)

cIm?LiT? %%
Ko(1+ l1xl12) + 622275 (g 4 |Ix2)

+Cl [2o1]

C2mPT2* K
+ 6% (1 + Ixl1g)
C3mPT3* LK
+ 6% (1+ ||X||c)
ij T2|1+2H gDi

+12H Za1]

Hence, the last inequality imply that E[|® x()[|% < o.
Moreover, for x € C([O,T]; LZ(Q,X)) then ¥.x €

C ([O,T]; L%(Q, X)). Thus for each € > 0, the operator

¥, maps from C ([O, T]; L2(Q, X)) into itself.
Theorem (3.1):

Let the assumptions (a)-(e) be satisfied. Then for each
€ >0, the system (1) has a mild solution on [0, T].

Proof:

To prove the existence of a fixed point of the operator
Y. which is defined in (28) by using the contraction
mapping principle.

Let x, y€ C([0,T]; L*(Q,X)). for any t € [0,T], we
have

Efe.x) (1)~ (¥.y) O

(08 s

t .| Ga(s:x(s))
x jo (t—s) [—Gz - y(s))}dw2 (s)

. (9[n(0:x(0))-h(0.y(0))][}

o8[S 1 n(ex(0)-h(ey(0)]]

<6E

X

u®(s,x(s)) |
~U®(s,y(s)) | X

(o) |,
_—F<s.y<s>>]d

[Gy(s,x(s
1(s:x(s)) i ()
|-Gy (s,¥(s))

Applying Holder’s inequality on the last inequality, by
using Ito isometry and Lemma (2.5), we obtain

E[(¥0 0 — (T 0llx

2m2||§ Zrz-za 2
< o Subeton B[Ga (5.5()) — G5,y )]
+ 22 B |n(0,x0) ~ Oy @)
+6 CZE||h(tx(D) — h(t,y(t))"Z

% sup E|lu*(s,x(s)) — u®(s,y(s)II?

46E|[ 1T, (t-s)(t-3) ‘13[

[LEN
N

46| [T, (t-s)(t-s)*

X
2

[LEN

46| [ T, (t-s)(t-s)*

X

se[0.i]
T sup EIF(s:x(9) ~Fsy )]
GHT sup E6(s:x(5)) - Ga(sy®)|;
se[0,t] o

From the assumptions (a)-(e) and Lemma (3.3), we
obtain

E[l(¥.x)(0) — (Fy) DI

6G2 _z"g"sz—zaK
= (amer@ra—): WPsod EIXE) —y Ol

((1—a)r{edl(1—a))?
+6 CIK/Ellx(®) —y®ll; +
2
6CIm* T2K, sup E [|x(s) —y(s)lI2
l2e—1] se[0.4]

CZ 2T2t1—1K
52 sup E Ix(s) —y()lI3
I2a—1] se[04]

SUPseroq EllX(s) —y(s)llg
Mf{ llx— Y"2

|2

Taking supremum over t € [0,T] for both sides, we get
Wex — WeyllE < (D) lIx — ylig
where,

=2 — —

o(T) = 6Cim? ]3| "T? MKE,2 6CIm?T? 2*‘1111511172

((1—)T ()T (1—c))) ((1—a)r(e)r(1-a))
6CIm? LET2OK
+6 C2K, + 1B

|20c—1]
6CIm?T? K, , 6CIm?T?" 'K,

|2o—1] |20—1]

Then, there exists T; € (0, T] such that 0 < y(T;) <1
and ¥, is a contraction mapping on
([0, T,]; L2(Q,X)) and therefore has a unique fixed point,
which is a mild solution of equation (1) on [0, T;]. This
procedure can be repeated in order to extend the solution
to the entire interval [0,T] in finitely many steps. This
completes the proof.

Theorem (3-2):

Assume that the assumptions (a) — (e) are satisfied,
Further, if the functions F, G; and G, are uniformly
bounded, then the system (1) is approximately controllable
on [0, T].

Proof:

For every € > 0 ,let x, be a fixed point of the operator
W in ([0, T]; L2(©, X)), which is a mild solution under
the control function in (25) of the system (1). Then from
(28), we have:

xs (T)=x1 —£R(,T})
Exy—T,(T)$

1 T| (T-9)
Xp + T(l-0) Io {Gz (s.x (S))}Wz (s)

1“(1 a)-[ (T-s) GZ(S)dWZ ()
T (T)N(0.%,(0) =S (Tix: (T)) | (29)
[} R (eTT)S (s - [ eR (1T )$ ()W)

+J.; sR(s,FST)(T—s)“_l Ty (T=5)F(s,X (5))ds

+J.-|- {s R (8, FST)(T —s)afl

* [T (T-9)81(s.%, (5))
+[ 7R (6TT ) (T =) T, (T-5)oy (S)WA (s)

]dwl (s)
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It follows from the assumptions on F, G; and G, that
there exists D; > 0, D, > 0, D; > 0 such that,

Fex I <5 . leGxoI, <5 .
||G2(s,x£(s))||iz < Dy, for all s€[0,T]. Then, there is a

subsequences still denoted by {F(s, x,(s))}, {G; (s,x.(s))}
and  {G,(s,x.(s))} which  converges  weakly
to {F(s)}, {G(s)} and {G,(s)} in Z, L,(K, Z) and L, (K, X)
respectively.

Now, from the equation (29), we have

Ellx, (T)-xr [

<12E[e R(e, T} ) [ExT — T, (T)§(xo)]“i

+12E

+12E
xJJ(T—S)_aGZ(s)dWZ ©)],

1
I'l-a)

eR(e, 1T, (T)S
+12E

XI()T (T-5) %0, ()W}’ (s)) y

oR (5.8 (M (0.x, 0

=S (T, %, (T))]

+12E

X

2
+12E LJT eR (S,FST)¢(5)dW(S) N

+12E jOT eR (e, |1 (s)w i

e ;T{SR(SII)M“

0 xTo (T —s)[F(s, Xe (s)) - F(s)]}ds «

2

+12E [T R (eTT )(T-5)" T, (T-5)Fs)ds

X

T o—1 2
e[ {g R(e 17 )(T-5)""T, (Ts)}awl(s)
x[Gl (s.x, (s))—Gl(s)] y

2

TleR (8,FST )(T—S)OL*1

xTo (T—5)Gy(s

+12E j

])dWl (s)

X

+12€| [ oRer7)m _S)H}dwf' (s)

[<To (T=s)o1(s)

X

Using Ito isometry and Lemma (2.5) and Lemma (4-2),
we obtain

Ellx.(T) - x¢ I ,
< 12E||eR(g, IP) [Exy — TSI,

L _tecim?[3)’
(T(@ — )’
X J, (T = ) E[|G,(s,%. () ~G,(9)| ds

a2

+ 12¢im?||S| e
(M1 —a)

X [ (T — 8)"°El|G,(s)II2, ds
24HT2H-1C2m?|3|°

+ 2

(M(rd — o)
X J; (T = )"0 (5) i35 ds

T, (T)h(o,xgw))]HZ

leRee, D

R, TD||;

2
X

e Ree. D

+12E[eR (&, )Lglh (T.xe(T))

2
R (1D )| ERE,os

+12J'J

.
+24HT2H jo

oR (=03 )| Effe)f s

. {SR(S,FST)(T—S)“ T, (T—s)}ds i

+12E 0
><|:F(S, X, (s))- F(s)]

2
+12E| [ eR (e, 1T )(T-5)* T, (T-5)Feo)ds

X
2 202

T- To (T-
x( ° , (=) ds
><E||G]_ (S, Xe (5)) - Gl(s)"Lz

R (a,l";r)

—

+12
0

2 20-2
T-
(TS|
Ty (T=s)E[G1 )]},

R(s,FsT)

eR (S,F;r)

—

+12
0

€

(T_S)Za—Z
+24HT2HL jOT

2
X

S
Ta(T—s)”cl(s)"i%

On the other hand, by the assumption (b), and Lemma
(3.1), for all 0< s < T, we have the operator € R(g,T'T) -
0 strongly as € — 0% and moreover ||e R(g,TD)|| < 1. By
using the Lebesgue dominated convergence theorem, the
compactness of T, (t) implies that we obtain E[|x,(T) —
xp|> >0 as £— 0*. This gives the approximate
controllability.

4. Conclusions

An approximate controllability result for nonlinear
Fractional Sobolev type stochastic differential equations
driven by mixed fractional Brownian motion is obtained
by means of contraction principle fixed point theorems
under the compactness assumption. It is also proven that
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the approximate controllability of linear deterministic

system

implies the approximate controllability of

nonlinear Fractional Sobolev type stochastic differential
equations driven by mixed fractional Brownian motion in
Hilbert spaces.

References

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

Abid S. H, Hasan S. Q. and Quaez U. J. “Approximate
controllability of Fractional Stochastic Integro-Differential
Equations Driven by Mixed Fractional Brownian Motion ”,
American Journal of Mathematics and Statistics 2015, Vo. 2, PP:
72-81, 2015.

Ahmed M. Hamdy, “Approximate Controllability Of Impulsive
Neutral Stochastic Differential Equations With Fractional
Brownian Motion in A Hilbert Space”, Advances in Difference
Equations, Springer Open Journal, 2014:113, 2014.

Balachandran K., Kiruthika S. and Trujillo J. “On Fractional
Impulsive Equations Of Sobolev Type with Nonlocal Conditions
in Banach Spaces”, Computers and Mathematics with
Applications, No. 62, PP: 1157-1165, 2011.

Engel K. J, and Nagel R. “ One Parameter Semigroup For Linear
Evolution Equations”, Springer-Verlag, New York, Berlin, 2000.
Gani J., Heyde C.C., Jagers P. and Kurtz T.G., “Probability and Its
Applications”, Springer-Verlag London Limited, 2008.
Grippenberg, G. and Norros 1., “On The Prediction Of Fractional
Brownian Motion”, Journal of Applied Probability, VVol. 33, No. 2,
PP: 400-410, 1996.

Guendouzi T. and Idrissi S., “Approximate Controllability of
Fractional Stochastic Functional Evolution Equations Driven By A
Fractional Brownian Motion”, Romai J., V0.8, No.2, PP: 103-117,
2012.

Kerboua M., Debbouche A. and Baleanu D., “Approximate
Controllability Of Sobolev Type Fractional Stochastic Nonlocal
Nonlinear Differential Equations in Hilbert Spaces”, Electronic

(9]

[10]

(11]

(12]

[13]
(14]
[15]

[16]

[17]
(18]
(19]

[20]

Journal Of Qualitative Theory of Differential Equations, No. 58,
PP: 1-16, 2014.

Li C., Qian D. and Chen Y., “On Riemann- Liouville and Caputo
Derivatives”, Hindawi Publishing Corporation, Vol. 2011, Article
ID 562494, 15 pages. 2011.

Li K., “Stochastic Delay Fractional Evolution Equations Driven
By Fractional Brownian Motion”, Mathematical Method in The
Applied Sciences, 2014.

Madsen Henrik, “ito integrals”, PhD course of advanced and
nonlinear  system identification, Department of Control
Engineering, Aalborg University, 2009.

Mahmudov N. and Zorlu S., “Approximate Controllability Of
Fractional Integro-Differential Equations Involving Nonlocal
Initial Conditions”, Boundary Value Problems, Springer Open
Journal, 2013:118, 2013.

Mahmudov N., “Controllability of Linear Stochastic Systems in
Hilbert Spaces”, Journal of Mathematical Analysis and
Applications Vo. 259, PP: 64-82, 2001.

Mishura Y. S., “Stochastic Calculus for Fractional Brownian
Motion and Related Processes”, Lect,Notes in Math., 1929,
Springer, 2008.

Nourdin 1., “Select Aspects of fractional Brownian Motion”,
Springer-Verlag Italia, 2012.

Nualart D., “Fractional Brownian motion: stochastic calculus and
Applications”, Proceedings of the International Congress of
Mathematicians, Madrid, Spain, European Mathematical Society,
20086.

Pazy, A., “Semigroup of Linear Operator and Applications to
Partial Differential Equations”, Springer-Verlag, New York, 1983.
Podlubny 1., “Fractional Differential Equations”, Academic Press,
San Diego. California, USA, 1999.

Sakthivel R., “Approximate Controllability Of Impulsive
Stochastic Evolution Equations”, Funkcialaj Ekvacioj, Vol.
52(2009), PP: 381-393, 2009.

Zhou Y., Wang J. and Feckan M. “Controllability Of Sobolev
Type Fractional Evolution systems”, Dynamics of PDE, Vol. 11,
No. 1, PP: 71-87, 2014.



