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Fast Full-Search Block-Matching Algorithm
for Motion-Compensated Video Compression

Yih-Chuan Lin and Shen-Chuan Tai

Abstract—This paper proposes a fast block-matching algorithm
that uses three fast matching error measures, besides the conven-
tional mean-absolute error (MAE) or mean-square error (MSE).
An incoming reference block in the current frame is compared
to candidate blocks within the search window using multiple
matching criteria. These three fast matching error measures are
established on the integral projections, having the advantages
of being good block features and having simple complexity in
measuring matching errors. Most of the candidate blocks can
be rejected only by calculating one or more of the three fast
matching error measures. The time-consuming computations of
MSE or MAE are performed on only a few candidate blocks that
first pass all three fast matching criteria. Simulation results show
that a reduction of over 86% in computations is achieved after
integrating the three fast matching criteria into the full-search
algorithm, while ensuring optimal accuracy.

I. INTRODUCTION

M OTION estimation using a block-matching algorithm
(BMA) is widely used in many motion-compensated

video coding systems, such as those recommended by the
H.261 and MPEG standards [1], [2], to remove interframe
redundancy and thus achieve high data compression. In a
typical BMA, the current frame of a video sequence is divided
into nonoverlapping square blocks of pixels, say, of size

For each reference block in the current frame, BMA
searches for the best matched block within a search window
of size in the previous frame, where

stands for the maximum allowed displacement. Then the
relative position between the reference and its best matched
block is represented as the motion vector of the reference
block. A nonnegative matching error function is
defined over all the positions to be searched, i.e.,

or and (1)

where is the reference block of its upper left pixel at
the coordinate in the current frame, and
is a candidate block of its upper left pixel at the coordinate

in the previous frame. The computations incurred
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in one complete measurement of are absolute
values (or squarings when and additions.
The best matched block corresponds to the candidate block
of its upper left corner located at which has
the minimum matching error A straightforward
method of BMA is the full-search BMA (FBMA) which
requires to compute the ’s for all positions
of candidate blocks in the search window; that is, the FBMA
needs absolute values (or squarings),

additions, and comparisons for
each reference block; however, it is an intensive computation
process, limiting its practical applications. Many well-known
fast algorithms [3]–[13] have been developed to reduce such
highly computational complexity of the full-search BMA by
considering only a limited number of the motion vectors in
the search window at the expense of estimate accuracy. That
is, only suboptimal estimate accuracy is guaranteed by these
algorithms. Concerning the VLSI implementation, most of
these fast algorithms, e.g., the three-step search (TSS) [3],
have the drawbacks of irregular data flow and high control
overhead, while the full-search BMA has the advantages of
regular data flow and low control overhead [14], [15].

Recently, a number of algorithms with regard to the pattern-
matching problems [16]–[19] make use of integral projec-
tions to simplify the computational complexity of the pattern-
matching operation. However, all of the previous research
work on motion estimation using integral projections has never
provided any optimality-preserving ability like the FBMA.
Integral projections are good features describing the block
mean intensity and the edge location and orientation in a
block of pixels, and are most likely to be different for different
blocks. In this letter, a fast full-search BMA (FFBMA), which
is also based on the uses of integral projections, is presented
to provide much faster motion estimation than that using
the traditional FBMA, while preserving the optimality of
estimate accuracy. In fact, there still exist similar ideas being
realized by other techniques for fast vector quantization (VQ),
such as the partial distortion search (PDS) [20], the triangle-
eliminating rule (TIE) [21], or VQ using mean pyramids of
vectors [22]. These fast VQ algorithms converge to a common
goal to reject most entries in the codebook that are not
best matched to the target block using only the partial and
simple information in the blocks. It is not straightforward or
even difficult to extend directly these fast algorithms to the
motion estimation task. For example, in [22], Lee and Chen
defined a sequence of fast matching criteria, each associated
with a different level of the mean pyramids of blocks, and
employed these criteria in the “coarse-to-fine” manner to
promote speed in searching for the nearest neighbor in a VQ
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system; however, in trying to extend this fast hierarchical
matching technique with optimality-perserving ability to the
block-matching algorithm, it has to spend a large number
of overhead computations to construct the mean pyramids
of all the candidate blocks in the search window, and a
significant amount of storage for these mean pyramids prior
to the start of the block-matching process. On the other hand,
using integral projections instead of the mean pyramids, the
above two technical difficulties almost could be excluded
completely by an efficient approach which can generate the
integral projections in an on-line manner and only requiring
six additions/substractions at each position of candidate block.
In sum, this paper gives the optimality-preserving ability of
motion estimation using integral projections, along with an
efficient method for preparing the integral projections of all
the candidate blocks in the search window, and shows the
performance gain over that solely using all separate pixels in
the blocks.

II. THE FAST FULL-SEARCH

BLOCK-MATCHING ALGORITHM (FFBMA)

The basic idea behind the proposed fast full-search BMA
relies on constructing three fast matching criteria and, during
the period of block matching, employing these three fast
matching criteria to discard the candidate blocks in the search
window which are not matched to the reference block in the
current frame, before using the time-consuming matching error
defined in (1). These fast matching criteria are derived from
the integral projections since the integral projections are simple
and relevant features to a block of pixels.

Roughly speaking, the integral projections can be regarded
as the intensity sums of spatial pixels along any fixed direction
in a block of pixels. For any given block in frame
three kinds of integral projections are defined as follows:

1) vertical projections:

(2)

2) horizontal projections:

(3)
3) massive projection:

(4)

In the proposed FFBMA, the three fast matching error
measures are defined as follows:

(5)

(6)

(7)

With these measures defined in (1) and (5)–(7), four different
kinds of matching errors are available for each position within
the search window. Obviously, (5) takes only one squaring (or
absolute value) and one subtraction (or addition); as for (6) or
(7), only additions and squarings (or absolute values)
are sufficient. Each of these three computational complexities
is relatively low in comparison with that of (1). In the
following, Theorems 1 and 2 provide the relationships among
the multiple matching errors on each position within the
search window .

Theorem 1: a) b)
c)

Theorem 2: a) b)
c)

Notice that corresponds to the mean-absolute error
(MAE), and is the mean-square error (MSE). The
validity of these two theorems can be shown according to two
mathematical inequalities. They are

(8)

(9)

where are arbitrary real numbers. In-
equality (8) follows the well-known triangle inequality. As for
inequality (9), a brief explanation is given as follows. When
considering any pair of two real numbers we have

or, equivalently,

(10)

Taking summation over all the pairs on both sides of (10)
yields inequality (9). Theorems 1 and 2 can be derived easily
by processing (1) according to (8) and (9), respectively, where
the integral projections of the error terms in (1) are formulated
accordingly to form the or For
example,
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This proves c) of Theorem 2. A similar process can be
employed for the remaining parts of the two theorems.

Returning to the block-matching problem, let us assume
that the known current most matched motion vector
is initially set to (0,0), and the associated MSE is
(if the MSE criterion is used). For any other candidate block,

within the search window if one or more of
the following conditions holds:

1)
2)
3)
4)

Then, applying Theorem 2, the candidate block
can be rejected without calculating the time-consuming

MSE measurement. In the FFBMA, for each candidate block,
test conditions 1)–4) are checked sequentially; if any of the
first three test conditions fails, then the candidate block should
be checked further by its successive test condition; otherwise,
it is rejected, and the next other candidate block is then
compared. Once test condition 4) is tested and unsatisfied, both
the best matched motion vector and the associated matching
error should be updated. In this algorithm, all of the candidate
blocks in the search window need be examined by test
condition 1); this requires additions,
squarings, and comparisons. Each of the candidate
blocks that fails on the check of test condition 1) should go
through the test of condition 2) for further rejection, and this
test using condition 2) for one block matching needs
additions, squarings, and one comparison. Similarly, test
condition 3) also takes additions, squarings, and one
comparison for one candidate block that violates the preceding
test. Finally, when all of the first three test conditions are
unsatisfied with a certain candidate block, the FFBMA requires

additions, squarings, and one comparison to
decide whether the best matched motion vector should be
updated to the current candidate position.

For the sake of clarity, the computations required in the
FFBMA for one reference block should include:

1) comparisons;
2) additions (or

subtraction);
3) squarings (or absolute values

if MAE is concerned);

where and and stand for the
occurrence frequencies of evaluating test conditions 2)–4),
respectively, required for finding the best matched motion
vector within the search window.

To evaluate the first three conditions 1)–3), the integral
projections of each candidate block have to be known prior
to matching. We do not have to calculate all of the integral
projections for each candidate block in the previous frame. If
the integral projections for the two candidate blocks

and are known, only a few terms are updated
for obtaining all of the integral projections of the block

i.e.,

Therefore, the computations required for the integral pro-
jections of block are six arithmetic operations of
addition/subtraction. Suppose the frame size is pixels.
The integral projections of all of the blocks for

and for
in the considered frame are first calculated. This

precomputation needs
additions/subtractions. To calculate the integral projections of
the remaining blocks in the frame, we need
additions/subtractions since each of the remaining blocks
requires six additions/subtractions and there are

blocks remaining. Since the integral projections can con-
vey the most information in a block of pixels and the arithmetic
operations required for calculating the three fast matching
errors are both much fewer and simpler than those for MSE,
a great deal of computations or number of MSE (or MAE)
measurements are thus saved. The next section shows several
experiments to demonstrate the effectiveness of using integral
projections to speed up the FBMA.

III. SIMULATION RESULTS

The efficiency of the proposed algorithm was tested by
using two benchmark video sequences,SalesmanandFlower
Garden. We first used 60 consecutive frames of size 360
288 pixels inSalesmanand 60 consecutive frames of size 360

240 pixels inFlower Garden. The block and search window
sizes were fixed at 16 16 and 33 33, respectively. Thus,
the traditional FBMA requires computing 1089 MSE or MAE
measurements for each reference block in the current frame.
In addition to the FBMA and FFBMA, we also implemented a
partial distortion search block-matching algorithm (PDSBMA)
that involves the partial distortion search (PDS) technique to
speed up the block-matching process. In the PDSBMA, the
matching process with a certain candidate block accomplishes
the distortion measurement by accumulating the individual
error terms of block elements one at a time, and can be
quit partially without completing the accumulation of the full
absolute difference, that is, to check if the accumulation thus
far had already exceeded the distortion to the best match; if so,
there is no need to continue the accumulation. Table I shows
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TABLE I
COMPARISON OF THECOMPUTATIONAL COMPLEXITY FOR

VARIOUS BLOCK-MATCHING ALGORITHMS WITH THE MSE
CRITERION ACCORDING TO THE NUMBERS OF THE ARITHMETIC

OPERATIONS REQUIRED FOR EACH 16� 16 REFERENCEBLOCK

TABLE II
COMPARISON OF THECOMPUTATIONAL COMPLEXITY FOR

VARIOUS BLOCK-MATCHING ALGORITHMS WITH THE MAE
CRITERION ACCORDING TO THE NUMBERS OF THE ARITHMETIC

OPERATIONS REQUIRED FOR EACH 16� 16 REFERENCEBLOCK

TABLE III
COMPARISON OF THECOMPUTATION COMPLEXITY FOR VARIOUS

ALGORITHMS WITH MSE WORKING ON 60 Flower GardenFRAMES

OF 720� 480 SIZE ACCORDING TO THE NUMBERS OF ARITHMETIC

OPERATIONS REQUIRED FOR EACH 16� 16 REFERENCEBLOCK

the averaged numbers of the various arithmetic operations,
including squarings, additions/subtractions, and comparisons,
required by the three considered algorithms, respectively, for
the two test sequences. As can be seen from this table, the
FFBMA can achieve over 96% reduction of computation
complexity compared to the FBMA and 86% compared to
the PDSBMA in terms of the total number of arithmetic oper-
ations. Table II shows similar results when the MAE measure
is considered. As shown in this table, over 96 and 88% of the
total arithmetic operations, respectively, in the FBMA and the
PDSBMA are also saved by the FFBMA. In these two tables,
it is clearly indicated that in comparing between theSalesman
andFlower Gardensequences, more computation complexity
is needed in both the FFBMA and the PDSBMA for theFlower
Gardensequence. This increase of computation complexity is
mainly due to the abrupt scene changes inFlower Garden,
which could make the current known minimum matching error

be larger during the period of block matching.
Obviously, this larger does reduce the rejection rate
of candidate blocks in the FFBMA and PDSBMA. Therefore,
the reduction in computations of the FFBMA is dependent on
the sequence envisaged. The more significant the motion of
objects in the sequence, the less reduction of complexity the
FFBMA exhibits.

TABLE IV
COMPARISON OF THECOMPUTATION COMPLEXITY FOR VARIOUS

ALGORITHMS WITH MAE WORKING ON 60 Flower GardenFRAMES

OF 720� 480 SIZE ACCORDING TO THENUMBERS OF ARITHMETIC

OPERATIONS REQUIRED FOR EACH 16 � 16 REFERENCEBLOCK

As for the higher resolution sequences, we also have done
an experiment on theFlower Gardensequence with a size
of 720 480 pixels. ThisFlower Gardenof higher resolution
consists of 60 frames which are all the finer sampling versions
of those in the preceding experiments. For this higher resolu-
tion sequence, Tables III and IV compare the computation
complexities of the three algorithms with the MSE and MAE,
respectively. Notice that the block and search window sizes
were also set to 16 16 and 33 33, respectively. Referring
to Tables III and IV, we can observe that the computational
performance gain of the FFBMA for the higher resolution
of Flower Gardenis less than that for the lower resolution
one. This is because, for the same scene, the finer sampling
version could result in the fact that most candidate blocks’
matching errors within the search window are close to each
other, especially for those smooth parts.

From these tables, we can find that the FFBMA exhibits a
larger reduction of arithmetic operations for MAE as compared
to the MSE. This is because the MAE criterion inherently can
offer more rejection ratios of candidate blocks than the MSE
criterion. To explain this fact, we show a 2-D example as
follows. Assume that the 2-D vector (1,0) is the best matched
vector found thus far to the origin (0,0). The minimum MSE
and MAE values are both set to 1. Considering another
candidate vector (0.5,0.6) which is not closer to the origin
vector than the vector (1,0) according to either the MSE or
MAE criteria, the MAE criterion can certainly reject this
candidate vector by using the massive projection, that is,

however, in the MSE case, the vector
(0.5,0.6) cannot be rejected by means of the massive projection
because This example shows that in
the FFBMA, the MAE is superior to the MSE in the reduction
of arithmetic operations.

When comparing to the suboptimal algorithms, e.g., Liu and
Zaccarin’s subsampled motion-field estimation algorithm [10]
that reduces the complexity of the FBMA by a fixed factor of 8
at the expense of estimation accuracy, the FFBMA with MAE
can provide a greater computation reduction up to a factor of
29. Although the computation complexity of the FFBMA is
dependent on the input sequence, for the worst case in Table
IV, a comparable computation reduction factor of about 7.5
can be achieved by the FFBMA. In [17], Fok and Au proposed
a feature domain BMA that can offer a computation reduction
factor of about for the search block size of This
algorithm is also suboptimal due to the employment of the
integral projection features. For the search block size of 16
16, the FFBMA with MAE produces a computation reduction
over twofold better than Fok and Au’s algorithm for the kind
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of sequences likeSalesman. As for the sequence ofFlower
Garden, a smaller computation reduction is achieved by the
FFBMA as compared to Fok and Au’s method.

These results verify the efficiency of the proposed FFBMA
with either MSE and MAE. With the experiments, it is
concluded that the FFBMA, which uses the three fast matching
criteria, can perform much faster than the FBMA and the
PDSBMA at the same estimate accuracy.

IV. CONCLUSIONS

A new fast full-search block-matching algorithm is pre-
sented in this paper. It runs much faster than the traditional
full-search BMA, while the optimal accuracy of motion esti-
mation is guaranteed. This improvement of speed is based on
the fact that multiple matching errors which have different lev-
els of computation complexity are available on each position to
be searched. The relationships among the multiple matching
errors of a candidate position are utilized to construct three
test conditions which can be employed during block matching
to avoid the time-consuming computations of MSE or MAE
measurements. With the experiments, the proposed method
can give a great amount of savings of computations, and thus
can be well suited for a wide range of applications, such as
videotelephony, videoconferencing, and HDTV.
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