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ABSTRACT Since their introduction in a classic paper by Rudin, Osher
and Fatemi [26], total variation minimizing models have become one of
the most popular and successful methodology for image restoration. More
recently, there has been a resurgence of interest and exciting new develop-
ments, some extending the applicabilities to inpainting, blind deconvolu-
tion and vector-valued images, while others offer improvements in better
preservation of contrast, geometry and textures, in ameliorating the stair-
casing effect, and in exploiting the multiscale nature of the models. In
addition, new computational methods have been proposed with improved
computational speed and robustness. We shall review some of these recent
developments.

1 Introduction

Variational models have been extremely successful in a wide variety of
restoration problems, and remain one of the most active areas of research
in mathematical image processing and computer vision. By now, their scope
encompasses not only the fundamental problem of image denoising, but also
other restoration tasks such as deblurring, blind deconvolution, and inpaint-
ing. Variational models exhibit the solution of these problems as minimizers
of appropriately chosen functionals. The minimization technique of choice
for such models routinely involves the solution of nonlinear partial differ-
ential equations (PDEs) derived as necessary optimality conditions.

Perhaps the most basic (fundamental) image restoration problem is de-
noising. It forms a significant preliminary step in many machine vision
tasks, such as object detection and recognition. It is also one of the mathe-
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matically most intriguing problems in vision. A major concern in designing
image denoising models is to preserve important image features, such as
those most easily detected by the human visual system, while removing
noise. One such important image feature are the edges; these are places in
an image where there is a sharp change in image properties, which happens
for instance at object boundaries. A great deal of research has gone into
designing models for removing noise while preserving edges; recently there
has also been a lot of effort in preserving other fine scale image features,
such as texture. All successful denoising models take advantage of the fact
that there is an inherent regularity found in natural images; this is how
they attempt to tell apart noise and actual image information. Variational
and PDE based models make it particularly easy to impose geometric reg-
ularity on the solutions obtained as denoised images, such as smoothness
of boundaries. This is one of the main reasons behind their success.

Total variation based image restoration models were first introduced by
Rudin, Osher, and Fatemi (ROF) in their pioneering work [26] on edge pre-
serving image denoising. It is one of the earliest and best known examples
of PDE based edge preserving denoising. It was designed with the explicit
goal of preserving sharp discontinuities (edges) in images while removing
noise and other unwanted fine scale detail. Being convex, the ROF model
is one of the simplest variational models having this most desirable prop-
erty. The revolutionary aspect of this model is its regularization term that
allows for discontinuities but at the same time disfavors oscillations. It was
originally formulated in [26] for grayscale imagery in the following form:

infR
Ω(u−f)2 dx=σ2

∫

Ω

|∇u|. (1)

Here, Ω denotes the image domain (for instance, the computer screen),
and is usually a rectangle. The function f(x) : Ω → R represents the given
observed image, which is assumed to be corrupted by Gaussian noise of
variance σ2. The constraint of the optimization forces the minimization to
take place over images that are consistent with this known noise level. The
objective functional itself is called the total variation (TV) of the function
u(x); for smooth images it is equivalent to the L1 norm of the derivative,
and hence is some measure of the amount of oscillation found in the function
u(x). Optimization problem (1) is equivalent to the following unconstrained
optimization, which was also first introduced in [26]:

inf
u∈L2(Ω)

∫

Ω

|∇u|+ λ

∫

Ω

(u− f)2 dx. (2)

Here, λ ≥ 0 is a Lagrange multiplier. The equivalence of problems (1) and
(2) has been established in [9]. In the original ROF paper [26] there is an
iterative numerical procedure given for choosing λ so that the solution u(x)
obtained solves (1).
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We point out that total variation based energies appear, and have been
previously studied in, many different areas of pure and applied mathemat-
ics. For instance, the notion of total variation of a function and functions
of bounded variation appear in the theory of minimal surfaces. In applied
mathematics, total variation based models and analysis appear in more
classical applications such as elasticity and fluid dynamics. Due to ROF,
this notion has now become central also in image processing.

Over the years, the ROF model has been extended to many other image
restoration tasks, and has been modified in a variety of ways to improve
its performance. In this article, we will concentrate on some recent de-
velopments in total variation based image restoration research. Some of
these developments have led to new algorithms, and others to new models
and theory. While we try to be comprehensive, we are of course limited to
those topics and works that are of interest to us, and that we are familiar
with. In particular, we aim to provide highlights of a number of new ideas
that include the use of different norms in measuring fidelity, applications
to new image processing tasks such as inpainting, and so on. We also hope
that this article can serve as a guide to recent literature on some of these
developments.

2 Properties and Extensions

2.1 BV Space and Basic Properties

The space of functions with bounded variation (BV) is an ideal choice for
minimizers to the ROF model since BV provides regularity of solutions
but also allows sharp discontinuities (edges). Many other spaces like the
Sobolev space W 1,1 do not allow edges. Before defining the space BV, we
formally state the definition of TV as:

∫

Ω

|∇f | = sup
{∫

Ω

f∇ · gdx | g ∈ C1
c (Ω,Rn), |g(x)| ≤ 1∀ x ∈ Ω

}
(3)

where f ∈ L1(Ω) and Ω ⊆ Rn is a bounded open set. We can now define
the space BV as

{
f ∈ L1(Ω) | ∫

Ω
|∇f | < ∞}

. Thus, BV functions amount
to L1 functions with bounded TV semi-norm. Moreover, through the TV
semi-norm there is a natural link between BV and the ROF model.

Given the choice of BV (Ω) as the appropriate space for minimizers of the
ROF model (2), there are the basic properties of existence and uniqueness
to settle. The ROF model in unconstrained form (2) is a strictly convex
functional, hence, admits a unique minimum. Moreover, it is shown in [9]
that the equality constraint

∫
Ω
(u − f)2dx = σ2 in the non-convex ROF

model (1) is equivalent to the convex inequality constraint
∫
Ω
(u− f)2dx ≤

σ2. Hence, the non-convex minimization in (1) is equivalent to a convex
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minimization problem which under some additional assumptions is further
equivalent to the above unconstrained minimization (2).

For BV functions there is a useful coarea formulation linking the total
variation to the level sets giving some insight into the behavior of the TV
norm. Given a function f ∈ BV (Ω) and γ ∈ R, denote by {f = γ} the set:{
x ∈ R2 | f(x) = γ

}
. Then, if f is regular, the TV of f can be given by:

∫

Ω

|∇f | =
∫ ∞

−∞

∫

{f=γ}
ds dγ. (4)

Here, the term
∫
{f=γ} ds represents the length of the set {f = γ}. The

formula states that the TV norm of f can be obtained by integrating along
all contours of {f = γ} for all values of γ. Thus, one can view TV as
controlling both the size of the jumps in an image and the geometry of the
level sets.

2.2 Multi-channel TV

Total variation based models can be extended to vector valued images in
various ways.

An interesting generalization of TV denoising to vector valued images
was proposed by Sapiro and Ringach [27]. The idea is to think of the image
u : R2 → Rm as a parametrized two dimensional surface in Rm, and to
use the difference between eigenvalues of the first fundamental form as a
measure of edge strength. A variational model results from integrating the
square root of the magnitude of this difference as the regularization term.

Blomgren and Chan [5] generalized total variation regularization to vec-
torial data as the Euclidean norm of the vector of (scalar) total variations
of the components. This generalization has the benefit that vector valued
images defined on the line whose components are monotone functions with
identical boundary conditions all have the same energy, regardless of their
smoothness. This implies good edge preserving properties.

Another interesting approach generalizing edge preserving variational de-
noising models to vector valued images is due to Kimmel, Malladi, and
Sochen [19]. They regard the given image u(x) : R2 → Rm as a surface
in Rm+2, and propose an area minimizing flow (which they call Beltrami
flow) as a means of denoising it.

2.3 Scale

The constant λ that appears in the ROF model plays the role of a “scale
parameter”. By tweaking λ, a user can select the level of detail desired
in the reconstructed image. In this sense, λ in (2) is analogous to the
time variable in scale space theories for nonlinear diffusion based denoising
models. The geometric interpretation of the regularization term in (2) given
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by the co-area formula suggests that λ determines which image features are
kept based on, roughly speaking, their “perimeter to area” ratio.

The intuitive link between λ and scale of image features can be exactly
verified in the case of an image that consists of a white disk on a black
background. Strong and Chan [28] determined the solution of the ROF
functional for such a given image f(x). It turns out to be (1− 1

λr )f(x) for
λ > 1

r . In particular, there is always a loss of contrast in the reconstruction,
no matter how large the fidelity constant λ is. And when λ ≤ 1

r , the solution
is identically 0, meaning that the model prefers to remove disks of radius
less than 1

λ . This simple but instructive example indicates how to relate the
parameter λ to the scale of objects we desire to preserve in reconstructions.
Strong and Chan’s observation has been generalized to other exact solutions
of the ROF model in [3].

The parameter λ can thus be used for performing multiscale decompo-
sition of images: Image features at different scales are separated by mini-
mizing the ROF energy using different values of λ. Recent research along
these lines is described in Section 5.3.

3 Caveats

While using TV-norm as regularization can reduce oscillations and regular-
ize the geometry of level sets without penalizing discontinuities, it possesses
some properties which may be undesirable under some circumstances.

Loss of contrast. The total variation of a function, defined on a bounded
domain, is decreased if we re-scale it around its mean value in such a way
that the difference between the maximum and minimum value (contrast)
is reduced. In [28, 22], the authors showed that for any non-trivial regular-
ization parameter, the solution to the ROF model has a contrast loss. The
example of a white disk with radius R over a black background discussed
in Section 2.2 is a simple illustration. In this case, the contrast loss is in-
versely proportional to f(x)/r before the disk merges with the background.
In general, reduction of the contrast of a feature by h > 0 would induce a
decrease in the regularization term of the ROF model by O(h) and an in-
crease in the fidelity term by O(h2) only. Such scalings of the regularization
and fidelity terms favors the reduction of the contrast.

Loss of geometry. The co-area formula (4) reveals that, in addition to loss
of contrast, the TV of a function may be decreased by reducing the length
of each level set. In some cases, such a property of the TV-norm may lead
to distortion of the geometry of level sets when applying the ROF model.
In [28], Strong and Chan show that, for circular image features, their shape
is preserved at least for a small change in the regularization parameter and
their location is also preserved even they are corrupted by noise of moderate
level. In [3], Bellettini et al. extend Strong and Chan’s results and show
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that the set of all bounded connected shapes C that are shape-invariant in
the solution of the ROF model is precisely given by

{
C ⊂ RN : C convex, ∂C ∈ C1,1 and ess sup

p∈∂C
κ∂C(p) ≤ |∂C|/|C|

}
.

Here, |∂C| is the perimeter of C, |C| is the area of C and κ∂C(p) is the
curvature of ∂C at p. The downside of the above characterization is that
the ROF model distorts the geometry of shapes that do not belong to the
shape-invariant set. For instance, it has been shown in [22], if the input
image is a rectangle R over a background with a different intensity, then
cutting a corner (an isosceles triangle) with height h of the rectangle would
induce a reduction in the TV-norm by O(h) and an increment of the fitting
term by O(h2), thus favoring cutting the corners.

Staircasing. This refers to the phenomenon that the denoised image may
look blocky (piecewise constant). In the 1-D discrete case, there is a sim-
ple explanation to this — the preservation of monotonicity of neighboring
values. Such a property requires that, for each i, if the input f = {fi}
satisfies fi ≤ fi+1 (resp. ≥), then the output must satisfy ui ≤ ui+1 (resp.
≥) for any λ. In the case where f satisfies fi0−1 < fi0 > fi0+1 < fi0+2

for some i0, which often happens when the true signal is monotonically in-
creasing around i0 and is corrupted by noise but u satisfies ui0−1 < ui0 =
ui0+1 < ui0+2, then, visually, u looks like a staircase at i0 but a monotoni-
cally increasing signal is more desirable. In the 2-D case, the monotonicity
preserving property is no longer true in general, for instance, near corners
of image features. However, away from the corners where the curvature of
the level sets is high, staircase is often observed.

Loss of Texture. Although highly effective for denoising, the TV norm
cannot preserve delicate small scale features like texture. This can be ac-
counted for from a combination of the above mentioned geometry and con-
trast loss caveats of the ROF model which have the tendency to affect small
scale features most severely.

4 Variants

Total variation based image reconstruction models have been extended in
a variety of ways. Many of these are modifications of the original ROF
functional (2), addressing the above mentioned caveats.

4.1 Iterated Refinement

A very interesting and innovative new perspective on the standard ROF
model has been recently proposed by Osher et al. [24]. The new framework
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involved can be generalized to many convex reconstruction models (inverse
problems) beyond TV based denoising. When applied to the ROF model
in particular, this new approach fixes a number of its caveats, such as loss
of contrast, and promises even further improvements in other significant
aspects of reconstruction, such as preservation of textures.

The key idea is to compensate for the loss of signal in reconstructed
images by minimizing the ROF model repeatedly, each time adding back
the signal removed in the previous iteration. Thus, starting with a given
f0(x) := f(x), repeat for j = 1, 2, 3, . . .:

1. Set uj(x) = argminu of (2) using fj(x) as the given image.

2. Set fj+1(x) = fj(x) +
(
f − uj(x)

)
.

When applied to the characteristic function of a disk, this algorithm recov-
ers it perfectly after a finite number of iterations without loss of contrast.

The algorithm can be generalized to inverse problems of the form infu J(u)+
H(u, f). Here, J is a convex regularization term, and H(u, f) a fidelity term
that is required to be convex in u for every f . In this setting, the iterative
procedure above becomes: Start with u0 = 0, repeat for j = 1, 2, 3, . . .

uj+1 = argmin
w

H(w, f) + J(w)− J(uj)− 〈DuJ(uj), w − uj〉. (5)

Here, DuJ(uj) denotes the derivative of the functional J at the j-th iterate
uj , and 〈·, ·〉 represents the duality pairing. If J is non-differentiable (as in
the ROF model), then DuJ(uj) needs to be understood as an element of
the subgradient ∂J(uj) of J at uj . It is clear from formula (5) that the algo-
rithm involves removing from the regularization term J(u) its linearization
at the current iterate uj .

Formula (5) suggests the following definition: For p ∈ ∂J(v), let

Dp(u, v) := J(u)− J(v)− 〈p, u− v〉
be the generalized Bregman distance associated with the functional J . It
defines a notion of distance between two functions u and v because it sat-
isfies the conditions Dp(u, v) ≥ 0 for all u, v, and Dp(u, u) = 0. However, it
is not a metric as it needs not be symmetric or satisfy a triangle inequality.

A number of important general theorems have been established in [24],
including:

• As long as the distance of the reconstructed image uj to the given
noisy f(x) remains greater than σ (the noise variance), the iteration
decreases the Bregman distance of the iterates uj to the true (i.e.
noise-free) image.

• H(uj , f) decreases monotonically and tends to 0 as j →∞.

In [24], further results can be found about the convergence rate of the
iterates uj to the given image f under certain regularity assumptions on f .
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4.2 L1 Fitting

A simple way to modify the ROF model in order to compensate for the loss
of contrast is to replace the squared L2 norm in the fidelity term in (2) by
the L1 norm instead. The resulting energy is

∫

Ω

|∇u|+ λ

∫

Ω

|u− f | dx. (6)

Discrete versions of this model were studied for one dimensional signals
by Alliney [1], and in higher dimensions by Nikolova [23]. In particular, it
has been shown to be more effective that the standard ROF model in the
presence of certain types of noise, such as salt and pepper. Recently, it has
been studied in the continuous setting by Chan and Esedoglu [10].

Although the modification involved in (6) seems minor, it has certain
desirable consequences. First and foremost, the scaling between the two
terms of (6) is different from the one in the original ROF model (2), and
leads to contrast invariance: If u(x) is the solution of (6) with f(x) as the
given image, then cu(x) is the solution of (6) with cf(x) as the given image.
This property does not hold for (2). A related consequence is: If the given
image f(x) is the characteristic function of a set Ω with smooth boundary,
then the image is perfectly recovered by model (6) for large enough choices
of the parameter λ. This is in contrast to the behavior of the ROF model,
which always prefers to remove some of the original signal from the recon-
structed one, and preserves a very small class of shapes. This statement
can be generalized beyond original images given by characteristic functions
of sets to show that a wide class of regular images are left unmodified by
model (6) for large enough choices of the parameter λ.

In addition to having better contrast preservation properties, model (6)
also turns out to be useful for the denoising of shapes. A natural varia-
tional model for denoising a shape S, which we model as a subset of Rn,
is the following: minΣ⊂Rn Per(Σ) + λ|S M Σ|, where the first term in the
energy represents the perimeter of the set Σ, and the second represents
the volume of the symmetric difference of the sets S and Σ weighted by
the scale parameter λ ≥ 0. This model is exactly the one we would get if
the minimization in the standard ROF model (2) is restricted to functions
of the form u(x) = 1Σ(x) and f(x) = 1S(x). Unlike the standard ROF
problem, however, this minimization is non-convex. In particular, standard
approaches for solving it run the risk of getting stuck in local minima. The
total variation model with L1 fidelity term (6) turns out to be a convex
formulation of the shape denoising problem given above. Indeed, the fol-
lowing statement has been proved in [10]: Let u(x) be a minimizer of (6) for
f(x) = 1S(x). Then, for a.e. µ ∈ [0, 1], the set Σ(µ) = {x ∈ RN : u(x) ≥ µ}
is a minimizer of the shape denoising problem. Thus, in order to solve the
non-convex shape denoising problem, it suffices to solve instead the convex
problem (6) and then take (essentially) any level set of that solution.



9

4.3 Anisotropic TV

In [18], Esedoglu and Osher introduced and studied anisotropic versions of
the ROF model (2). The motivation is to privilege certain edge directions so
that they are preferred in reconstructions. This can be useful in applications
in which there may be prior geometric information available about the
shapes expected in the recovered image. In particular, it can be used to
restore characteristic functions of convex regions having desired shapes.

The idea proposed in [18] is to replace the total variation penalty term
in (2) with the following more general term:

∫

Ω

φ(∇u) := sup
g∈C1

c (Ω;Rn)
g(x)∈Wφ∀x∈Ω

∫

Ω

u(x)divg(x) dx

where the function φ : Rn → R is a convex, positively one-homogeneous
function that is 0 at the origin, and the set Wφ is defined as follows:

Wφ := {y ∈ Rn : x · y ≤ φ(x) ∀x ∈ Rn} .

For example, if φ(x) = |x|, then the set Wφ turns out to be simply the unit
ball {y ∈ RN : |y| ≤ 1}, and the definition of

∫
Ω

φ(∇u) given above reduces
to the standard definition of total variation. Another simple example in two
dimensions is φ(x, y) = |x|+ |y|, in which case the set Wφ is just the closed
unit square.

The set Wφ defined above is the Wulff shape associated with the function
φ. It determines the shapes that are compatible with the anisotropy φ. For
example, it is proved in [18] that if f(x) is the characteristic function of
(a scaled or translated version of) the Wulff shape Wφ, then the solution
u is a constant multiple of f(x). This result generalizes that of Strong and
Chan [28] and Meyer in [22] that concern the case of a disk for the standard
ROF model.

If Wφ is a convex polygon in two dimensions, then its sides act as pre-
ferred edge directions for the reconstructions obtained by the anisotropic
ROF model. Indeed, it is proved in [18] that if u(x) = 1Σ(x) is a solution to
the anisotropic model, and if Σ is known to be a set with piecewise smooth
boundary ∂Σ, then ∂Σ should include a line segment parallel to one of the
sides of Wφ wherever its tangent becomes parallel to one of those sides. On
the other hand, one can show that ∂Σ can include corners that are different
than the ones in ∂Wφ.

In addition to being of interest for applications, the results of [18] are also
of theoretical interest. Indeed, these anisotropic variants of total variation
constitute an infinitude of equivalent regularizations (in the sense that the
semi-norms they define are equivalent), yet the properties of their mini-
mizers have been shown to be extremely different. That suggests that in
general one should not expect an image restoration model to perform quite



10

as well as the original ROF model just because its regularization term is
equivalent to total variation.

4.4 H1,p Regularization and Inf Convolution

As discussed in Section 3, staircasing is one of the potential caveats to watch
for when using total variation based regularization. It occurs even more
severely in reconstructions by functionals that have a non-convex depen-
dence on image gradients; one famous example is the Perona-Malik scheme,
which can be thought of as gradient descent for such an energy functional
whose dependence on image gradients grows sublinearly at infinity. The
TV model is borderline convex: its dependence on image gradients is linear
at infinity. This feature, which is responsible for its ability to reconstruct
images with discontinuities, is also responsible for the staircasing effect.

A natural approach to overcoming the staircasing effect is to make the
reconstruction model more convex in regions of moderate gradient (away
from the edges). A functional designed to accomplish this was proposed by
Blomgren, Mulet, Chan, and Wong [6]. It has the form

∫

Ω

|∇u|P (|∇u|) dx + λ

∫

Ω

(u− f)2 dx. (7)

Here, the function P (ξ) : R+ → [0, 2] is to be chosen so that it monotoni-
cally decreases from 2 to 0. A simple example is P (ξ) = 2

1+2ξ .
The idea behind (7) is that the model automatically adapts the gradient

exponent to fit the data, so that near edges it behaves exactly like the
ROF model, and away from the edges it may behave more like the Dirichlet
energy. This leads to much smoother reconstructions in regions of moderate
gradient and thus prevents staircasing. On the other hand, unlike the ROF
model, (7) is non-convex and difficult to analyze.

Another approach to preventing staircasing is to introduce higher order
derivatives into the energy; the cost of moderately high but constant gra-
dient regions is zero for such terms. On the other hand, a functional that
depends on higher order derivatives would not maintain edges in its recon-
structions. It is therefore necessary to once again allow the model to decide
for itself where to use the total variation norm and where to use higher
order derivative norms. One of the earliest proposals of this kind was made
by Chambolle and Lions in [9], where they introduced the notion of inf
convolution between two convex functionals. In this approach, an image u
is decomposed into two parts: u = u1 + u2. The u1 component is measured
using the total variation norm, while the second component u2 is measured
using a higher order norm. The precise decomposition of u into these two
components is part of the minimization problem. More precisely, one solves
the following variational problem that now involves two unknowns:

inf
u1,u2

∫

Ω

|∇u1|+ α|D2u2|+ λ(u1 + u2 − f)2 dx.
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Minimizing this energy requires the discontinuous component of the image
to be allocated to the u1 component, while regions that are well approx-
imated by moderate but nearly constant slopes get allocated to the u2

component at very little cost. This prevents staircasing to a remarkable
degree in the one dimensional examples presented in [9]. Another method
that utilizes total variation and higher order derivatives to suppress stair-
casing is by Chan, Marquina, and Mulet in [13].

Despite the important contributions listed above, staircasing remains one
of the challenges of total variation based image reconstructions.

5 Further Applications to Image Reconstruction

5.1 Deconvolution

The TV norm can also be used to regularize image deblurring problems.
The forward degradation model for a blurred and noisy image can be real-
ized as: f = k ∗ u + η, where f is the observed (degraded) image, k a given
point spread function (PSF), u the clean image, η an additive noise (often
Gaussian), and ∗ denoting the convolution operator.

The task of restoring an image u under the above degradation is known
as deconvolution if the PSF k is known or blind deconvolution if there is
little or no known a priori information on the PSF. If we replace the u
in the unconstrained ROF model (2) with the convolution k ∗ u, then we
arrive at the TV deconvolution model:

min
u∈BV

||k ∗ u− f ||22 + λu||u||TV . (8)

Here, as in the ROF model (2), the regularization parameter λu is related
to the statistical signal to noise ratio (SNR).

Extending the work by You and Kaveh [32], Chan and Wong introduce
in [17] the TV blind deconvolution model:

min
u,k∈BV

‖k ∗ u− f‖22 + λu‖u‖TV + λk‖k‖TV. (9)

where the additional parameter λk controls the spread of k. Moreover,
solutions {u(λk)} of (9) form a one parameter family corresponding to
λk. The authors also propose an alternating minimization algorithm for
minimizing the above energy (9) which we denote by F (u, k). Here, given
un one solves for kn+1 := arg mink F (un, k), then given kn+1, one solves for
un+1 := arg minu F (u, kn+1) alternatingly. Such an alternating procedure
is shown to be convergent when the TV-norm is replaced by the H1-norm.

A key advantage of using TV regularization for blind deconvolution is
that the TV norm can recover sharp edges in the PSF (e.g. motion blur or
out-of-focus blur) while not penalizing smooth transitions.
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5.2 Inpainting

Image inpainting refers to the filling-in of missing or occluded regions in an
image based on information available on the observed regions. A common
principle for inpainting is to complete isophotes (level sets) in a natural
way — such a philosophy is also true for professional artists to restore
damaged ancient paintings. To this end, several successful inpainting mod-
els have been proposed such as Masnou and Morel [21] and Bertalmio et
al. [4]. We refer the reader to [15] and the references therein for other more
recent models. Among these models, Chan and Shen proposed in [15] a TV
inpainting model which uses variational methods in inpainting. The basic
ingredient is to solve the boundary value problem:

min
u

∫

Ω

|∇u| subject to u = u0 in Ω \D. (10)

Here, D is the missing region to be inpainted, u0 is the observed image
whose value in D is missing. Thus, the TV inpainting method simply fills-
in the missing region such that the TV in Ω is minimized. The use of
TV-norm is desirable because it has the effect of extending level sets into
D without smearing discontinuities along the tangential direction of the
boundary of D.

With a slight modification of (10), simultaneous inpainting (in D) and
denoising (in Ω \D) may be done as follows:

min
u

∫

Ω

|∇u|+ λ

∫

Ω\D
(u− u0)2dx. (11)

Define a spatial varying parameter λe(x) which is 0 in D and is λ in Ω \D.
Then the Euler-Lagrange equation for (11) can be written as

−∇ ·
( ∇u

|∇u|
)

+ 2λe(u− u0) = 0

which has the same form as that for the ROF model, except the regular-
ization is switching between 0 and λ in different regions. Thus, it is easy to
modify an implementation of the ROF model to the TV inpainting model.
Finally, we remark that some variants of (11) such as curvature-driven dif-
fusion [16] and Euler’s Elastica [12] have been proposed which complete
isophotes in a smoother way.

5.3 Texture and Multiscale Decompositions

Another way of looking at denoising problems is by separating a given noisy
image f into two components to form the decomposition: f = u+ v, where
u is the denoised image and v = f −u the noise. In [22], Meyer adopts this
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view for the purpose of texture extraction where v captures not only noise
but also texture. To do this, he proposed a new decomposition model:

inf
u

{
E(u) =

∫

Ω

|∇u|+ λ‖v‖∗, f = u + v

}
(12)

where the ∗ norm is given by:

‖v‖∗ = inf
g=(g1,g2)

{
‖
√

g1
2 + g2

2‖L∞ | v = ∂xg1 + ∂yg2

}
(13)

and the v component lies in what is essentially the dual space of BV, the
G space:

G =
{
v | v = ∂xg1 + ∂yg2 , g1, g2 ∈ L∞(R2)

}
. (14)

Here, v is an oscillatory function representing texture and the ∗ norm is
designed to give small value for these functions. Thus, the main idea in (12)
is to try to pull out texture by controlling ‖v‖∗. Experiments in [30, 25]
(discussed below) visually show that the model (12) extracts texture better
than the standard ROF model.

In practice, the model (12) is difficult to implement due to the nature of
the ∗ norm. Vese and Osher [30] were the first to overcome this difficulty
where they devise an Lp approximation to the norm ‖ · ‖∗. In a later work
[25], Osher et al. propose another Lp approximation based on the H−1

norm and introduce a resulting fourth order PDE. Both works numerically
demonstrate the effectiveness of the model (12) for texture extraction and
also give some further applications to denoising and deblurring.

In a related work, Aujol et al. [2] propose a decomposition algorithm
based on Meyer’s work [22] where they further decompose an image as
f = u+v+w where u, v, and w are cartoon, texture, and noise respectively.

Given the scale properties of the ROF model seen in Section 2.3, it is
natural to consider a multiscale decomposition based on the ROF model.
Multiscale decompositions are of particular interest since one may want
to extract image features of many different scales (either coarse or fine).
One such multiscale decomposition is Tadmor et al. [29] and proceeds in
a hierarchical manner. After choosing an initial λ0 = λ to remove the
smallest oscillation in a given image f , the regularization parameters {λj},
λj = 2jλ induce a sequence of dyadic scales for j = 1, . . . , k. If we denote
by uλj the solution to the ROF model (2) for parameter λj , then f has the
decomposition:

f = uλ0 + uλ1 + uλ2 + · · ·+ uλk
+ vλk

.

with vλk
denoting the k-th stage residual vλk

= f− (uλ0 +uλ1 +uλ2 + · · ·+
uλk

). Furthermore, the authors show that ‖vλk
‖∗ → 0 as k → ∞. Hence

‖f −∑k
i=0 uλi‖∗ → 0 as k → ∞ and the decomposition converges to f in

the ∗ norm. A related work based on merging dynamics of a monotonicity
constrained TV model can be found in [14].
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6 Numerical Methods

There have been numerous numerical algorithms proposed for minimiz-
ing the ROF objective. Most of them fall into the three main approaches,
namely, direct optimization, solving the associated Euler-Lagrange equa-
tions and using the dual variable explicitly in the solution process to over-
come some computational difficulties encountered in the primal problem.
We will focus on the latter two approaches.

6.1 Artificial Time Marching and Fixed Point Iteration

In their original paper [26], Rudin et al. proposed the use of artificial time
marching to solve the Euler-Lagrange equations which is equivalent to the
steepest descent of the energy function. More precisely, consider the image
as a function of space and time and seek the steady state of the equation

∂u

∂t
= ∇ ·

( ∇u

|∇u|β

)
− 2λ(u− f). (15)

Here, |∇u|β :=
√
|∇u|+ β2 is a regularized version of |∇u| to reduce de-

generacies in flat regions where |∇u| ≈ 0. In numerical implementation,
an explicit time marching scheme with time step ∆t and space step size
∆x is used. Under this method, the objective value of the ROF model is
guaranteed to be decreasing and the solution will tend to the unique min-
imizer as time increases. However, the convergence is usually slow due to
the Courant-Friedrichs-Lewy (CFL) condition, ∆t ≤ c∆x2|∇u| for some
constant c > 0 (see [20]), imposed on the size of the time step, especially
in flat regions where |∇u| ≈ 0. To relax the CFL condition, Marquina and
Osher use, in [20], a “preconditioning” technique to cancel singularities due
to the degenerate diffusion coefficient 1/|∇u|:

∂u

∂t
= |∇u|

[
∇ ·

( ∇u

|∇u|β

)
− 2λ(u− f)

]
(16)

which can also be viewed as mean curvature motion with a forcing term
−2λ(u− f). Explicit schemes suggested in [20] for solving the above equa-
tion improve the CFL to ∆t ≤ c∆x2 which is independent of |∇u|.

To completely get rid of CFL conditions, Vogel and Oman proposed in
[31] a fixed point iteration scheme (FP) which solves the stationary Euler-
Lagrange directly. The Euler-Lagrange equation is linearized by lagging the
diffusion coefficient and thus the (i + 1)-th iterate is obtained by solving
the sparse linear equation:

∇ ·
(∇ui+1

|∇ui|β

)
− λ(ui+1 − f) = 0. (17)
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While this method converges only linearly, empirically, only a few iterations
are needed to achieve visual accuracy. In practice, one typically employs
specifically designed fast solvers to solve (17) in each iteration.

6.2 Duality-based Methods

The methods described in Section 5.1 are based on solving the primal
Euler-Lagrange equation which is degenerate in regions where ∇u = 0.
Although regularization by 1/|∇u|β avoids the coefficient of the parabolic
term becoming arbitrarily large, the use of a large enough β for effective
regularization will reduce the ability of the ROF model to preserve edges.

Chan et al. in [11], Carter in [7] and Chambolle in [8] exploit the dual
formulation of the ROF model By using the identity ‖x‖ ≡ sup‖g‖≤1 x · g
for vectors in Euclidean spaces and treating g as the dual variable, one
arrives at the dual formulation:

sup
g∈C1

c (Ω,B2)

∫

Ω

f∇ · gdx− 1
2λ

∫

Ω

(∇ · g)2dx (18)

where B2 is the unit disk in R2. Once g is obtained, the primal variable
can be recovered by u = f −λ−1∇·g. A promise of the dual formulation is
that the objective function is differentiable in g, unlike the primal problem
which is badly behaved when ∇u = 0. However, the optimization problem
becomes a constrained one which requires additional complexity to solve.

The approach used in [11] solves for u and g simultaneously. Its derivation
starts by treating the term ∇u/|∇u| in the primal Euler-Lagrange equation
as an independent variable g, leading to the system:

−∇ · g + λ(u− f) = 0, g|∇u|β −∇u = 0.

The above system of nonlinear equations is solved by Newton’s method and
quadratic convergence rate is almost always achieved. In the Newton up-
dates, one may combine the two equations to eliminate the need to update
g, thus the cost per iteration is as cheap as the fixed point iteration (17).
Empirically, this primal-dual method is much more robust than applying
Newton’s method directly to the primal problem in u only.

In [8], Chambolle devised an efficient algorithm solely based on the dual
formulation (18). By carefully looking at the Euler-Lagrange equation for
(18) and eliminating the associated Lagrange multipliers, one arrives at
solving H(g)−|H(g)| = 0 where H(g) = −∇(f −λ−1∇·g) is the negative
of the gradient of the primal variable u. The update formula for g used in
[8] is a simple relaxation gn+1 = gn+τH(gn)

1+τ |H(gn)| where τ > 0 is chosen to be
small enough so that the iteration converges.
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