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1. Introduction and statement of results

The purpose of this note is to present an expansion of a semi-classical propagating state
in terms of resonances. We consider energy levels at which there exists a potential barrier
separating the interaction region from a non-trapping region near infinity. This assumption
allows a significant strengthening of the results of Burq and the third author [3, Theorem 1]. It
is motivated by the recent work of the first author on the spectral shift function in the presence
of barriers [14].

Our results are applicable to the semi-classical Schrödinger equation for long range “black
box” perturbations [18] – see Sect.2 for a review of definitions, and for the barrier assumption
in the general setting. We denote by Res(P (h)) the set of resonances of P (h), that is the set
of poles of the meromorphic continuation of R(z, h) = (z − P (h))−1 from Im z > 0 to the lower
half-plane.

A typical operator to keep in mind is P (h) = −h2∆+V (x), where |V (x)| ≤ C|x|−ε, ε > 0, and
V is analytic in a complex conic neighborhood of infinity. In that case the barrier assumption
[14] takes the following simple form: let p(x, ξ) = ξ2 + V (x) be the symbol of P (h). We then say
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Figure 1. A classical example from molecular dynamics: a cross-section of
the energy surface of formaldehyde, H2CO. Considered as a resonant state its
lifetime is very long at the energy E due to the strong barrier. That is not
surprising considering the well known properties of formaldehyde. Unimolecular
dissociation is possible only for states excited to the top level of the barrier and
that is not covered by our theory.
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that a barrier exists at an energy E, if there exist closed sets, Σe(E), Σi(E), such that

p−1(E) = Σe(E) ∪ Σi(E) , Σe(E) ∩Σi(E) = ∅ , Σi(E) ! T ∗Rn ,

(y, η) ∈ Σe(E) =⇒ | exp(tHp)(y, η)| −→ ∞ as t −→ ±∞.
(1.1)

Here Hp =
∑n

j=1 ∂ξj p∂xj − ∂xj p∂ξj is the Hamilton vector field of p whose integral lines describe
the classical motion on the energy surface p−1(E), and π : T ∗Rn → Rn is the natural projection
– see Fig.1 for an example.

To motivate our result let us recall the basic consequence of the spectral theorem: if ψ ∈ C∞
c (R)

is supported near E and the spectrum of P #(h) is discrete near E (for instance, P #(h) = −h2∆+
V #(x), lim inf|x|→∞ V #(x) > E), then

(1.2) e−itP !(h)/hψ(P #(h)) =
∑

z∈Spec (P !(h))

e−itz/hRes(• − P #(h))−1, z)ψ(z) ,

Res(• − (P #(h))−1, z) denotes the residue of the resolvent of P #(h) at z, that is, the spectral
projection at z. In the presence of barriers, just as in the example shown in Fig.1, we do not
have a discrete spectrum near E even though the local classical picture is the same as in the case
of an infinite well. Hence, in the semi-classical limit, we expect a result similar to (1.2) to hold,
once we localize to the region isolated by the barrier. The resolvent has to be replaced by its
meromorphic continuation through the continuous spectrum, R(z, h). Its poles, the resonances,
are the analogues of eigenvalues in (1.2) and they represent the states just as eigenvalues did.

Motivated by this discussion we can state our main

Theorem. Let P (h) be an operator satisfying the general assumptions of Sect.2 (for instance, a
Schrödinger operator). Assume in addition that (1.1) holds and let χ ∈ C∞

c (Rn). We decompose
χ as χ = χ1 + χ2, where

(1.3) π(Σe(E)) ∩ supp χ1 = ∅ , π(Σi(E)) ∩ supp χ2 = ∅ , π : T ∗Rn → Rn .

Let ψ ∈ C∞
c ((0, ∞)) be supported in a small neighborhood of E. Then for any fixed δ > 0 and

0 < h < h0 there exists δ < c(h) < 2δ such that for any C1 > 0 there exists C2 > 0 such that

χe−itP (h)/hχψ(P (h)) =
∑

z∈Ω(h)∩Res (P (h))

χ1Res(e−it•/hR(•, h), z)χ1ψ(P (h))

+ χ2OH→H(〈(t − C2)+/h〉−∞)χ2 + OH→H(h∞) ,

Ω(h) = (a − c(h), b + c(h)) − i[0, C1h] , convex hull(suppψ) = [a, b] .

(1.4)

Here Res(f(•), z) denotes the residue of a meromorphic family of operators, f , at z, and 〈•〉 =
(1 + | • |2) 1

2 ).

Finding χ1 and χ2 with the desired properties is clear for Schrödinger operators and is possible
in general in view of Lemma 4.1 below.

In general, the function c(h) depends on the distribution of resonances: roughly speaking we
cannot “cut” through a dense cloud of resonances. In a different context of resonance expansions
for the modular surface [4, Theorem 1] there is also, currently at least, a need for some non-
explicit grouping of terms – see also the remark at the end of Sect.5.

The proof of the theorem follows from standard facts about semi-classical propagation, and
from more recent results of Martinez [12], Nakamura [15], Burq-Zworski [3], and Stefanov [23].
As a byproduct we obtain a result on the approximation of clusters of resonant states by clusters
of eigenfunctions – see Proposition 3.3 and also [23] for closely related results. We also show
that for times which are exponentially large in 1/h the eigenvalues and eigenfunctions are a good
approximations for resonances when the barriers are present – see Proposition 5.1.
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As was pointed out to us by Christian Gérard a result implying (1.4) in a special case involv-
ing a separation condition (not unlike the separation condition in [27]) was proved by Gérard-
Martinez in [6] with an argument based on the Helffer-Sjöstrand theory of resonances. It is quite
possible that their method combined with the more recent resonance counting techniques (see
[18]) gives an alternative proof of our result.

Our result agrees with the basic intuition that the real part of a resonance corresponds to
the rest energy or frequency, and the imaginary part to the rate of decay – see [31]. In many
aspects of wave mechanics we want to achieve a state specificity given by expansions of signals
into normal modes (which are real, such as eigenvalues of self-adjoint operators), or quasi-normal
modes (which have imaginary parts, corresponding to decay, as in the case of resonances). The
specific modes can then be identified with isolated states of the system. Examples and references
related to chemistry can be found in [16] and to gravitational waves in [10]. In both physical
situations the trapping is typically weaker than in the presence of barriers.

It is an interesting open problem to give a general dynamical definition of resonances. We recall
that in odd dimensions the Lax-Phillips theory [11] provides an elegant dynamical definition – see
[20] for a concise and self-contained presentation of a generalized Lax-Phillips theory. However
that abstract definition does not provide concrete information of the type given in Theorem
above.

Finally we remark that time dependent theories of resonances were investigated recently by
Merkli-Sigal [13] and Soffer-Weinstein [21] (see also [9] and [29] for earlier results). The difference
here lies in considering many resonances at high energies and not a time dependent theory of a
single resonance obtained by perturbing an embedded eigenvalue. Our motivation comes from
semi-classical molecular dynamics (see [4],[23], and [27] for other recent mathematical results)
rather than from perturbations of non-linear Schrödinger equations – see [28] for a recent study
and references.

Acknowledgments: The authors would like to thank the anonymous referee for the careful
review of the paper and for correcting a number of errors. SN is grateful for the partial support
by the grant JSPS 13640155, and PS would like to thank the National Science Foundation for
partial support under the grant DMS-0196440. MZ would like to thank University of Tokyo
and Professor K. Yajima for their warm hospitality. His partial support by the National Science
Foundation under the grant DMS-9970614 is also gratefully acknowledged.

2. Assumptions on the operator

To avoid the analysis of specific aspects of obstacle, potential, or metric scattering we work in
the “black box” formalism introduced in [19] and generalized further in [18]. Sjöstrand’s paper
[18] contains a review of the theory on which our work is based.

The operator we study acts on H, a complex Hilbert space with an orthogonal decomposition

H = HR0 ⊕ L2(Rn \ B(0, R0)) ,

where R0 > 0 is fixed and B(x, R) = {y ∈ Rn : |x − y| < R}.
The corresponding orthogonal projections are denoted by u|B(0,R0) and u|Rn\B(0,R0) or by

1lB(0,R0)u and 1lRn\B(0,R0)u respectively, where u ∈ H.
We work in the semi-classical setting and for each h ∈ (0, h0], we have

P (h) : H −→ H

with the domain D, independent of h, and satisfying

1lRn\B(0,R0)D = H2(Rn \ B(0, R0))
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uniformly with respect to h (see [18] for a precise meaning of this statement).
We also assume that

(2.1) 1lB(0,R0)(P (h) + i)−1 : H −→ HR0 is compact ,

that there exists C > 0 such that

(2.2) P (h) ≥ −C ,

and that

(2.3) 1lRn\B(0,R0)P (h)u = Q(h)(u|Rn\B(0,R0)) , for u ∈ D ,

where Q(h) is a formally self-adjoint operator on L2(Rn) given by

(2.4) Q(h)v =
∑

|α|≤2

aα(x; h)(hDx)αv for v ∈ C∞
0 (Rn)

such that aα(x; h) = aα(x) is independent of h for |α| = 2, aα(x; h) ∈ C∞
b (Rn) are uniformly

bounded with respect to h, here C∞
b (Rn) denotes the space of C∞ functions on Rn with bounded

derivatives of all orders, ∑

|α|=2

aα(x; h)ξα ≥ (1/c)|ξ|2, ∀ξ ∈ Rn ,

for some constant c > 0,
∑

|α|≤2 aα(x; h)ξα −→ ξ2 uniformly with respect to h as |x| → ∞.
The meromorphic continuation of the resolvent,

(P (h) − z)−1 : Hcomp −→ Dloc ,

is guaranteed by the following analyticity assumption: there exist θ ∈ [0, π), ε > 0 and R ≥ R0

such that the coefficients aα(x; h) of Q(h) extend holomorphically in x to

{rω : ω ∈ Cn, dist(ω,Sn) < ε, r ∈ C, |r| > R, arg r ∈ [−ε, θ0 + ε)}

with
∑

|α|≤2 aα(x; h)ξα −→ ξ2 uniformly with respect to h as |x| → ∞ remains valid in this
larger set of x’s.

We use P (h) to construct a self-adjoint operator P #(h) on

H# = HR0 ⊕ L2(M \ B(0, R0))

as in [19] where M = (R/RZ)n for some R / R0. Let N (P #(h), I) denote the number of
eigenvalues of P #(h) in the interval I, we assume

(2.5) N (P #(h), [−λ, λ]) = O((λ/h2)n/2), for λ ≥ 1 .

Following [19] we could also make a more general assumption, replacing n by some n# ≥ n.
Under the above assumptions on P (h), the resonances close to the real axis can be defined

by the method of complex scaling (see [18] and references given there). They coincide with the
poles of the meromorphic continuation of the resolvent (P (h) − z)−1 from Im z > 0 to a conic
neighborhood of the positive half axis in the lower half plane. The set of resonances of P (h) will
be denoted by ResP (h) and we include them with their multiplicity.

The spectral assumption (2.5) implies (in a non-trivial way – see [18] and references given
there) a bound on the number of resonances: let Ω ! {z : Im z ≤ 0 , Re z > 0}, then

(2.6) # Ω ∩ Res(P (h)) ≤ Ch−n ,

where # denotes the number of elements counted according to their multiplicities.
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As mentioned above, the basic tool for the study of resonances is the method of complex
scaling – see [18] and [19] for the theory in our context and references. The operator P (h) is
deformed into a non-self-adjoint operator

Pθ(h) : Dθ −→ Hθ .

For z with arg z > −2θ, Pθ(h) − z is a Fredholm operator, and the corresponding spectrum is
discrete and coincides with Res(P (h)). We remark that θ can be taken h dependent. We also
recall that the complex scaling method guarantees that

(2.7) χ(P − z)−1χ = χ(Pθ − z)−1χ ,

for any χ supported in a compact set unaffected by the complex deformation.

Notational Convention. In the context of “black box” perturbations, f ∈ C∞(Rn) tacitly
means that f ≡ const in B(0, R0) with an obvious multiplicative action on HR0 .

The barrier assumption in the general setting is given in terms of the (semi-classical) principal
symbol q(x, ξ) of Q(h) and it takes the following form:

q−1(E) = Σe(E) ∪ Σi(E) , Σe(E) ∩ Σi(E) = ∅ ,

Σ•(E) are closed in T ∗Rn , Σi(E) ! T ∗
B(0,R0)R

n ,

(y, η) ∈ Σe(E) =⇒ | exp(tHq)(y, η)| −→ ∞ as t −→ ∞.

(2.8)

Here, as before, Hq =
∑n

j=1 ∂ξj q∂xj − ∂xj q∂ξj is the Hamilton vector field of q.

3. Preliminaries

In this section we will review results which are needed in the proof of the main theorem. The
first result is a quantitative version of the absence-of-resonances result of Martinez [12]:

Proposition 3.1. Suppose that Q(h) satisfies the general assumptions following (2.4). Denoting
by q the principal symbol of Q(h), assume in addition that for (y, η) ∈ q−1(E) we have the non-
trapping condition:

| exp(tHq)(y, η))| −→ ∞ as t −→ ∞. .
Then there exists δ > 0 such that for all M > 0

Res Q(h) ∩ ([E − δ, E + δ] − i[0, Mh log(1/h)]) = ∅ , h < h0 = h0(M ) ,

where Res Q(h) denotes the set of resonances of Q(h). In addition, if Qθ(h) is the scaled operator
above, with

(3.1) θ = M̃h log(1/h) , M 1 M̃ ,

then then for every M there exists h0 = h0(M ) such that

‖(Qθ(h) − z)−1‖L2(Γθ)→L2(Γθ) ≤ C exp(C| Im z|/h)/h ,

z ∈ [E − δ, E + δ] − i[0, Mh log(1/h)] , h < h0 .
(3.2)

Remark: We will only use the h dependent θ in conjuction with (2.7). Hence, unless explicitely
stated θ will be small and fixed.

Proof. To see this we recall that the weighted estimates of [12] provide a seemingly weaker bound
on the scaled resolvent with θ satisfying (3.1):

‖(Qθ(h) − z)−1‖L2(Γθ)→L2(Γθ) ≤ Ch−CM ,

z ∈ [E − δ, E + δ] − i[0, Mh log(1/h)] , h < h0(M ) ,
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which gives the bound (3.2) for Im z = Mh log(1/h). For Im z = 0 we get the bound from the
following lemma which is an adaptation of the non-trapping limiting absorption principle – see
[30] for the most general version and references:

Lemma 3.1. Suppose that Q(h) satisfies the assumptions of Proposition 3.1. Then for z ∈
[E − δ, E + δ] ⊂ R , and θ / h log(1/h), we have

(3.3) ‖(Qθ(h) − z)−1‖L2(Γθ)→L2(Γθ) ≤ C/h .

A local and semi-classical adaptation of the three line theorem in the spirit of [26] gives (3.2).
In fact, for any γ1 > γ2 > δ, we can construct a holomorphic function f(z, h) with the following
properties:

|f(z, h)| ≤ C for z ∈ [E − γ1, E + γ1] − i[0, Mh log(1/h)] ,
|f(z, h)| ≥ 1 for z ∈ [E − δ, E + δ] − i[0, Mh log(1/h)] ,

|f(z, h)| ≤ hCM for z ∈ ([E − γ1, E + γ1] \ [E − γ2, E + γ2]) − i[0, Mh log(1/h)] .

We can then apply the maximum principle in [E − γ1, E + γ1] − i[0, Mh log(1/h)] to the subhar-
monic function

log‖(Qθ(h) − z)−1‖L2(Γθ)→L2(Γθ) + log |f(z, h)| − C
Im z

h
,

proving the estimate (3.2). "

For the reader’s convenience we also recall the standard elliptic semi-classical estimate. If Ω
and Ω̃ are open sets and Ω ! Ω̃, then for differential operators, B(h) =

∑
|α|≤m bα(x)(hDx)α

which are classically elliptic,
∑

|α|=n bα(x)ξα 4= 0 for ξ 4= 0, we have

(3.4)
∑

|α|≤m

‖(hDx)αu‖L2(Ω) ≤ C
(

‖u‖L2(Ω̃) + ‖B(h)u‖L2(Ω̃)

)
.

The basic tunneling estimate for semi-classical elliptic operators is given in

Proposition 3.2. Let Ω ⊂ Rn be an open set such that Ω ! Rn, and π−1(Ω) ∩ q−1(E) = ∅. For
any open Ω̃ ⊃ Ω, and for z in a small complex neighborhood of E, there exist δ0 > 0, C > 0,
such that

(3.5) ‖u‖L2(Ω) ≤ Ce−δ0/h‖u‖L2(Ω̃) + C‖(Q(h) − z)u‖L2(Ω̃).

Proof. We use the idea of [15]. Let f, g ∈ C∞
0 (Ω̃) such that 0 ≤ f(x), g(x) ≤ 1, f(x) = 1 on Ω,

and g(x) = 1 on suppf . We also arrange, as we may, that

π−1(supp g) ∩ q−1(E) = ∅ .

Then by the sharp G̊arding inequality we have, in the sense of operators,

g
∣∣∣eδf/h(Q(h) − E)e−δf/h

∣∣∣
2
g ≥ c2g2

with some c > 0, provided δ > 0 is sufficiently small. The same inequality, with perhaps a smaller
c > 0, holds if E is replaced by a complex z close enough to E. This implies

‖geδf/hu‖ ≤ c−1‖eδf/h(Q(h) − z)gu‖

≤ c−1‖eδf/hg(Q(h) − z)u‖ + c−1‖eδf/h[Q(h), g]u‖
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for u ∈ C∞
c (Rn). Since f = 0 on supp[Q(h), g], (3.4) gives

‖eδf/h[Q(h), g]u‖ ≤ C
(
‖hDxu‖L2(Ω̃) + ‖u‖L2(Ω̃)

)

≤ C′‖u‖L2(Ω̃) + C′‖(Q(h) − z)u‖L2(Ω̃).

Combining these, we obtain

eδ/h‖u‖L2(Ω) ≤ C′c−1‖u‖L2(Ω̃) + c−1(eδ/h + C′)‖(Q(h) − z)u‖L2(Ω̃)

and the claim follows immediately. "

The next general result is quite technical but it is worthwhile to present it separately. It is
adapted from [23] and [25].

Proposition 3.3. Let θ be small, positive, and fixed. Suppose that there exists e−C/h ≤ S(h) =
O(h∞) such that

Res(P (h)) ∩
(
[E − ε, E + ε] − i[S(h), h−2n−2S(h)]

)
= ∅

‖(Pθ(h) − z)−1‖ ≤ C

S(h)
, z ∈ [E − ε, E + ε] + iS(h) .

(3.6)

Then there exist aj(h) < bj(h) < aj+1(h), j = 1, · · · , J(h) = O(h−n) such that

Res(P (h)) ∩ ([E − ε, E + ε] − i[0, S(h)]) ⊂
J(h)⋃

j=1

Ωj(h) , Ωj(h) = [aj(h), bj(h)] − i[0, S(h)] ,

width(Ωj(h)) ≤ Ch−nω(h) , dist {Ωj(h), Res P (h) \Ωj(h)} ≥ 4ω(h),

(3.7)

where ω(h) = h−(5n+1)/2S(h), and we have

‖(Pθ(h) − z)−1‖ ≤ C

S(h)
, z ∈ ∂Ω̃j(h) ,

Ω̃j(h) = [aj(h) − ω(h), bj(h) + ω(h)] + i[−h−nS(h), S(h)] .
(3.8)

Remark. By refining some estimates of Burq [2] it is shown in [25, Sect.3.2,(3.20)] that the
second assumption in (3.6) is always satisfied with S(h) > exp(−h− 1

3 ). In our special case we
can take exponentially small S(h) – see Lemma 4.7.

Proof. The existence of the decomposition into cluster follows easily from the upper bound on
the number of resonances (2.6). The estimate (3.8) is essentially proven in [25, Proposition 3.2]
for the restriction of Pθ onto the space ΠθjH, where Πθj is the projection on resonant states in the
cluster Ωj(h). The same proof applies for Pθ in the whole space H by noticing that if we define
the neighborhood Ω̂j(h) of Ω̃j(h) by

Ω̂j(h) def= [aj(h) − 2w(h), bj(h) + 2w(h)] + i[−S(h)h−2n−2, S(h)],

then there are no resonances in Ω̂j(h)\ Ω̃j(h). For the convenience of the reader, we will give the
proof. Let zjk(h), k = 1, . . . , Kj(h) = O(h−n), be the resonances in Ω̃j(h), each one repeated
according to its multiplicity. Set

z̃jk(h) def= z̄jk(h) + 2iS(h), k = 1 . . .Kj(h),



8 SHU NAKAMURA, PLAMEN STEFANOV, AND MACIEJ ZWORSKI

Ωj( )h
Ωj( )he bΩj( )h

Ωj+1( )h
S h( )

−h S h−n ( )−S h( )
−h S h− −2 2n ( )

0

Figure 2. Different regions needed in the statement and proof of Proposition 3.3.

where the bar denotes complex conjugate. Then zjk and z̃jk are symmetric about the line
Im z = S(h) and on that line we have ‖(z − Pθ(h))−1‖ ≤ C/S(h) by our assumption (3.6). Set

Gj(z, h) def=
(z − zj1) . . . (z − zjKj )
(z − z̃j1) . . . (z − z̃jKj )

.

We observe first that

(3.9) |Gj(z, h)| ≤ 1 for Im z ≤ S(h).

The function Fj(z, h) def= Gj(z, h)(z − Pθ(h))−1 is holomorphic in Ω̂j(h). We now apply the
“semiclassical maximum principle” [26] in the form presented in [23, Lemma 1]:

Lemma 3.2. Let 0 < h < 1, and a(h) < b(h). Suppose that F (z, h) is a holomorphic function
of z defined in a neighborhood of

Ω(h) = [a(h) − 5w(h), b(h) + 5w(h)] + i[−S−(h), S+(h)h−n−ε],

where 0 < S−(h) ≤ S+(h) ≤ w(h)h3n/2+2ε, ε > 0, and w(h) → 0 as h → 0. If F (z, h) satisfies

|F (z, h)| ≤ AeAh−n log(1/h) in Ω(h),
|F (z, h)| ≤ M (h) on [a(h) − 5w(h), b(h) + 5w(h)] − iS−(h) , M (h) → ∞ , h → 0 ,

then there exists h1 = h1(S−, S+, A, ε) such that

|F (z, h)| ≤ 2e3M (h) ,

for z ∈ Ω̃ = [a(h) − w(h), b(h) + w(h)] + i[−S−(h), S+(h)] , 0 < h < h1 .

We apply this to to the function Fj in the extended domain Ω̂j(h) ⊃ Ω̃j(h). Note that the
closest resonance outside this region stays at distance at least g(h) = 2w(h) ≥ e−C/h by (3.7),
thus log(1/g(h)) ≤ C/h. By the a priori exponential estimate of the resolvent outside g(h)–
neighborhood of the resonances [26], we get ‖Fj(z, h)‖ = O(exp(Ch−n−1)) on the boundary of
the extended domain. By the maximum principle, this is true inside it as well. Now we are in
position to apply [23, Lemma 1]. Since ‖Fj(z, h)‖ ≤ 1/S(h) on the upper part of Ω̂j, we deduce
that for h small enough,

(3.10) ‖Gj(z)(z − Pθ(h))−1‖ ≤ C/S(h), ∀z ∈ Ω̃j(h).
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Next step is to show that

(3.11) 1/C ≤ |Gj(z, h)| on ∂Ω̃j(h).

It is enough to estimate (z − z̃jk)/(z − zjk) on ∂Ω̃j(h). Observe first that |zjk − z̃jk| ≤ 4S(h), ∀k.
The distance from each zjk from the three sides Im z = −S(h)h−n, Re z = aj − w, Re z = bj + w

of Ω̃j is bounded below by S(h)h−n/2 for h 1 1. Therefore,
∣∣∣∣
z − z̃jk

z − zjk
− 1

∣∣∣∣ =
∣∣∣∣
zjk − z̃jk

z − zjk

∣∣∣∣ ≤ 4S(h)
S(h)h−n/2

= 8hn, ∀z ∈ ∂Ω̃j(h) \ {Im z = S(h)}.

This yields

(3.12)
∣∣∣∣
z − z̃jk

z − zjk

∣∣∣∣ ≤ (1 + 8hn), ∀z ∈ ∂Ω̃(h) \ {Im z = S(h)}.

On the fourth side Im z = S(h) of ∂Ω̃j(h) we have |(z − z̃jk)/(z −zjk)| = 1, thus (3.12) is trivially
true there. Since (1 + x)1/x < e, 0 < x < ∞, we get

|1/Gj(z, h)| ≤ (1 + 8hn)Ch−n

≤ e8C.

This proves (3.11). Estimates (3.10) and (3.11) together imply the proof of the proposition. "

Finally we recall the propagation result valid for all perturbations but for very large times
only [3]:

Proposition 3.4. Suppose that P (h) satisfies the general assumptions above and let χ ∈ C∞
c (Rn)

be equal to one on a neighborhood of B(0, R0). Let ψ ∈ C∞
c ((0, ∞)) and let chsupp ψ = [a, b].

There exists 0 < δ < c(h) < 2δ such that for every M > M0 there exists L = L(M ), and we have

χe−itP (h)/hχψ(P (h)) =
∑

z∈Ω(h)∩Res(P(h))

χRes(e−it•/hR(•, h), z)χψ(P (h))

+ OH→H(h∞) , for t > h−L ,

Ω(h) = (a − c(h), b + c(h)) − i[0, hM) ,

and where Res(f(•), z) denotes the residue of a meromorphic family of operators, f , at z.

4. Some estimates

In this section we assume that the barrier assumption (2.8) holds and start by showing that
the x-projections of Σe(E) and Σi(E) do not intersect. This will allow us to use cut-off functions
depending on x only:

Lemma 4.1. The assumption (2.8) implies that

(4.1) π(Σe(E)) ∩ π(Σi(E)) = ∅ .

Proof. We write the principal symbol q(x, ξ) of Q(h) in the form

q(x, ξ) = A(x)ξ · ξ + b(x) · ξ + c(x) .

Then

(4.2) q(x, ξ) =
∣∣∣∣A

1/2(x)ξ +
1
2
A−1/2(x)b(x)

∣∣∣∣
2

+ Ṽ (x), Ṽ (x) def= c(x) − 1
4
A(x)−1b(x) · b(x).
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We easily see that Ṽ −1(−∞, E] = π(Σe(E))∪π(Σi(E)) and we claim that π(Σe(E))∩π(Σi(E)) =
∅. In fact, assume that x0 ∈ π(Σe(E)) ∩ π(Σi(E)). Then there exist ξe and ξi such that
(x0, ξe) ∈ Σe(E) and (x0, ξi) ∈ Σi(E). Therefore, by (4.2),

∣∣∣∣A
1/2(x0)ξe +

1
2
A−1/2(x0)b(x0)

∣∣∣∣ =
∣∣∣∣A

1/2(x0)ξi +
1
2
A−1/2(x0)b(x0)

∣∣∣∣ =
(
E − Ṽ (x0)

)1/2
.

Since the ellipsoid
∣∣A1/2(x0)ξ + 1

2A−1/2(x0)b(x0)
∣∣ = (E − Ṽ (x0))1/2 is connected, we can connect

ξe and ξi by a continuous curve ξ(t) on that ellipsoid and this shows that (x0, ξ(t)) is a continuous
curve connecting Σe(E) and Σi(E), contrary to our assumption (2.8). "

As in [14] we introduce two reference operators: P #(h) with a discrete spectrum near E, and
Q#(h) with a non-trapping classical flow:

P (h) = χ1P
#(h) + χ2Q

#(h) ,

χ1 + χ2 = 1 , π(Σi(E)) ⊂ supp χ1 , π(Σe(E)) ⊂ supp χ2 .
(4.3)

We can choose P #(h) to be of the form

P #(h) = P (h) + V #(x) , V # ≥ 0 , V #(x) =
{

0 for x near π
(
Σi(E)

)

E + 2δ for x near π (Σe(E)),

with supp V # ∩ supp χ1 = ∅.
The complex scaling on P (h), giving the operator, Pθ(h) are always performed outside of the

barrier, that is, in a slightly informal notation,

(4.4) Pθ(h)1lU = P (h)1lU , where U is a neighbourhood of #Σe(E).

The next lemma is an easy consequence of Proposition 3.1. In greater generality it has been
established before in [7].

Lemma 4.2. Suppose that Q(h) satisfies the assumptions of Proposition 3.1. Then for any
χ ∈ C∞

c (Rn) and ψ ∈ C∞
c ((E − ε, E + ε)) we have

(4.5) χe−itQ(h)/hψ(Q(h))χ = O(〈(t − C)+/h〉−∞) : L2(Rn) −→ L2(Rn) ,

where 〈•〉 = (1 + | • |2) 1
2 , and •+ denotes the positive part of a function.

Proof. Let us write

R±(z, h) = (Q(h) − z)−1 , analytic for ± Im z > 0 ,

using the same notation for the meromorphic continuation. The spectral projection is then given
by Stone’s formula:

dEλ = (2πi)−1(R−(λ) − R+(λ)) ,

and the left hand side of (4.5) can be rewritten as

χe−itQ(h)/hψ(Q(h))χ =
1

2πi

∫ ∞

0
e−itλ/hχ(R−(λ, h) − R+(λ, h))χψ(λ)dλ .

If we fix M then for h < h0(M ) we have a resonance free region

Ω(h) = [E − ε, E + ε] − i[0, Mh log(1/h)] ,

and the bounds on the resolvents:

χR±(z, h)χ = O(1)eC| Im z|/h/h : H −→ H , z ∈ Ω(h) ,
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as given in Proposition 3.1 (using (2.7)). If ψ̃ ∈ C∞
c (C) is an almost analytic extension of ψ,

Green’s formula gives

χe−itQ(h)/hψ(Q(h))χ =
1

2πi

∫

Im z=−Mh log(1/h)
e−itz/hχ(R−(z, h) − R+(z, h))χψ̃(z)dz

+
1
π

∫ ∫

−Mh log(1/h)<Im z<0
e−itz/hχ(R−(z, h) − R+(z, h))χ∂̄zψ̃(z)dm(z) .

For t large the norm of the first term on the right hand side is bounded by h(t−C)M = O((h/t)M ).
Using ∂̄zψ̃(z) = O(| Im z|∞), we see that the norm of the second term is bounded by

∫ 1

0
e−st/heCs/hO(s∞)ds = O((h/t)∞) , t > 2C .

Since for all times the propagator is bounded this proves the lemma. "
The tunneling estimates of [15] provide the following

Lemma 4.3. Suppose that χ ∈ C∞(Rn) and that supp χ ∩ π(Σe(E) ∪ Σi(E)) = ∅. Then

χψ(P (h)) , χψ(P #(h)) = O(e−δ/h) , δ > 0 .

Proof. For the operator P #(h), Proposition 3.2 and the spectral theorem imply the estimate in
the lemma. For P (h) we proceed as follows. Let I = [e−, e+] ⊂ R, suppψ ⊂ I, and suppose that
χ ∈ C∞

c (Ω), and

Ω ∩
⋃

e−−ε<E<e++ε

π(Σe(E) ∪Σi(E)) = ∅, Ω ! Rn , ε > 0 .

Then by Proposition 3.2 (see also [15, Theorem 2.6]) we have, for Im z 4= 0,

‖χ(P (h) − z)−1u‖ ≤ e−δ/h‖(P (h) − z)−1u‖ + C‖u‖ ≤ (C + e−δ/h/| Im z|)‖u‖ .

Hence,
‖χ(P (h) − z)−1‖ ≤ C1

if Re z ≤ e+ + ε, |Im z| ≥ e−δ/h (here (P (h) − z)−1 denotes the resolvent holomorphic in C \R).
Let ψ̃ ∈ C∞

c (C) be an almost analytic continuation of ψ, and let

Ω = [e− − ε, e+ + ε] + i[−c5e
−δ/h, c5e

−δ/h].

We use the formula:

ψ(P (h)) =
1
π

∫

Ω
∂̄ψ̃(z)(P (h) − z)−1dm(z) − 1

2πi

∫

∂Ω
ψ̃(z)(P (h) − z)−1dz.

Then using the resolvent identity,

χ((P (h)−z)−1 −(P (h)− z̄)−1)χ = 2i Im zχ(P (h)−z)−1(P (h)− z̄)−1χ = 2i Im z|χ(P (h)−z)−1|2 ,

we have

χψ(P (h))χ = − 1
2πi

∫

∂Ω
ψ̃(z)χ(P (h) − z)−1χdz + O(e−δ/h)

= − 1
π

∫ e++ε+ic5e−δ/h

e−−ε+ic5e−δ/h

(Im z)
∣∣χ(P (h) − z)−1

∣∣2dz + O(e−δ/h)

= O(e−δ/h) .

This proves the lemma once we change χ and ψ in the proof:

χψ(P (h))(χψ(P (h)))∗ = χ|ψ|2(P (h))χ .
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"
The next lemma relates different propagators:

Lemma 4.4. With the notation of (4.3) and with ψ ∈ C∞
c (R+) supported near E, there exists

δ > 0 for which

χ1 exp(−itP (h)/h)ψ(P (h))χ1 = χ1 exp(−itP #(h)/h)χ1ψ(P #(h)) + O(1 + |t|)e−δ/h + O(h∞) ,

χ2 exp(−itP (h)/h)ψ(P (h))χ2 = χ2 exp(−itQ#(h)/h)χ2ψ(Q#(h)) + O(1 + |t|)e−δ/h + O(h∞) ,

χ1 exp(−itP (h)/h)ψ(P (h))χ2 = O(1 + |t|)e−δ/h + O(h∞) ,

(4.6)

Proof. We will first prove the last estimate in (4.6) under a more general assumption that

supp χ1 ∩ supp χ2 ∩ (π(Σe(E) ∪ Σi(E))) = ∅ , supp Dχ1 ∩ (π(Σe(E) ∪ Σi(E))) = ∅ .

Let χ′
1 have the same properties as χ1 above and χ1χ′

1 = χ1. By Lemma 4.3 we have

χ1ψ(P (h))χ2 = χ′
1ψ(P (h))χ1χ2 + χ′

1[χ1, ψ(P (h))]χ2 = O(h∞).

Also,

(ih∂t − P (h))χ1 exp(−itP (h)/h)ψ(P (h))χ2 = [P (h), χ1] exp(−itP (h)/h)ψ(P (h))χ2 = O(e−δ/h) ,

since by the assumption on the support of Dχ1 we have

[P (h), χ1]ψ(P (h)) = O(e−δ/h) .

Now, an application of the Duhamel formula gives the last claim in (4.6):

χ1 exp(−itP (h)/h)ψ(P (h))χ2 = O((1 + |t|)e−δ/h) + O(h∞) .

The remaining estimates are proved similarly. We first observe that in view of what we have
just proved we can modify χ1 and χ2 and assume that χ1P (h) = χ1P #(h) and that χ2Q(h) =
χ2Q#(h). Then

(ih∂t − P (h))χ1

(
exp(−itP (h)/h)ψ(P (h))χ1 − ψ(P #(h)) exp(−itP #(h)/h)χ1

)

= − [P (h), χ1]
(
exp(−itP (h)/h)ψ(P (h))χ1 − exp(−itP #(h)/h)ψ(P #(h))χ1

)
,

since χ1(P (h) − P #(h)) = 0. As in the previous argument we see that the right hand side is
O(e−δ/h). Since the initial data is again O(h∞) we obtain the first estimate in (4.6). The second
one follows similarly. "
Lemma 4.5. Suppose that z ∈ Res (P (h)), Re z ∈ [E − δ, E + δ], and that (Pθ(h) − z)u = 0,
u ∈ Hθ, ‖u‖Hθ = 1. Then there exists δ0 > 0 such that

| Im z| ≤ e−δ0/2h or ‖χ1u‖H ≤ e−δ0/2h .

Proof. We follow the usual method of relating the resonance width to tunneling estimates and
write

−2i Im z‖χ1u‖2
H = 〈(P − z)χ1u, χ1u〉H − 〈χ1u, (P − z)χ1u〉H

= 〈[P, χ1]u, χ1u〉H − 〈χ1u, [P, χ1]u〉H
= 2i Im〈[P, χ1]u, χ1u〉H .

By Proposition 3.2 and the semi-classical elliptic estimate (3.4), we now have

| Im z|‖χ1u‖H ≤ e−δ0/h‖u‖Hθ ,

which completes the proof. "



RESONANCE EXPANSIONS OF PROPAGATORS IN THE PRESENCE OF POTENTIAL BARRIERS 13

Lemma 4.6. In the notation of Lemma 4.5 assume that

(4.7) ‖χ1u‖H = O(h∞) .

Then for any M there exists h0 = h0(M ), such that

| Im z| > Mh log(1/h) , if h < h(M ).

Proof. We observe that Q#(h) defined in the beginning of this section satisfies the assumptions
of Proposition 3.1 and that we can find χ̃1 ∈ C∞

c (Rn) such that χ1 ≡ 1 on supp χ̃1, and

Q#
θ(h)(1 − χ̃1) = Pθ(h)(1 − χ̃1) .

Suppose now that (Pθ(h)−z)u = 0 with z ∈ [E−δ, E +δ]− i[0, Mh log(1/h)], and that θ satisfies
(3.1). (We note that χ1u is independent of θ due to (4.4).) We then have

(1 − χ̃1)u = (Q#
θ(h) − z)−1(Pθ(h) − z)(1 − χ̃1)u = (Q#

θ(h) − z)−1[Pθ(h), χ̃1]u .

The semi-classical elliptic estimate (3.4) and the assumption (4.7) show that ‖[Pθ(h), χ̃1]u‖H =
O(h∞), and hence

1 = ‖u‖Hθ = ‖(1 − χ̃1)u‖Hθ + O(h∞) = ‖(Q#
θ(h) − z)−1‖L2(Γθ)→L2(Γθ)O(h∞) + O(h∞) .

Proposition 3.1 shows that the right hand side is O(h∞) which gives a contradiction. "

Lemma 4.7. Suppose that Pθ(h) = χP (h) + (1 − χ)Qθ(h), θ / h log(1/h), where Q(h) satisfies
the assumptions of Proposition 3.1 and (4.4) holds. Then there exists δ0 > 0 such that for any
S(h) satisfying

e−δ0/h < S(h) < Ch ,

we have

(4.8) ‖(Pθ(h) − z)−1‖ ≤ C

S(h)
, z ∈ [E − ε, E + ε] + iS(h) .

Proof. Let us choose φ1, φ2 ∈ C∞(Rn) such that

π(Σi(E)) ⊂ {φ1 = 1} , π(Σe(E)) ⊂ {φ2 = 1} , φ2
1 + φ2

2 = 1 .

In addition we arrange that φ1Pθ(h) = φ1P (h) and φ2Pθ = φ2Qθ(h), where Q(h) is non-trapping.
Then Proposition 3.2 shows that

(4.9) ‖[φj, Pθ(h)]u‖ = O(e−δ1/h)‖u‖ + O(h)‖(Pθ(h) − z)u‖ ,
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and we have

‖(Pθ(h) − z)u‖2 =
∑

j=1,2

‖φj(Pθ(h) − z)u‖2

≥
∑

j=1,2

‖(Pθ(h) − z)φju‖2 +
∑

j=1,2

‖[φj, Pθ(h)]u‖2

− 2
∑

j=1,2

‖(Pθ(h) − z)φju‖ ‖[φj, Pθ(h)]u‖

≥
∑

j=1,2

‖(Pθ(h) − z)φju‖2 −
∑

j=1,2

‖[φj, Pθ(h)]u‖2

− 2
∑

j=1,2

‖φj(Pθ(h) − z)u‖ ‖[φj, Pθ(h)]u‖

≥
∑

j=1,2

‖(Pθ(h) − z)φju‖2 −
∑

j=1,2

‖[φj, Pθ(h)]u‖2

− 2‖(Pθ(h) − z)u‖
( ∑

j=1,2

‖[φj, Pθ(h)]u‖2

) 1
2

.

Using (4.9), the resolvent estimate on (P (h) − z)−1, and the estimate of Lemma 3.1 on (Qθ(h) −
z)−1 (note that Im z > 0), we obtain

‖(Pθ(h) − z)u‖2 ≥ Im z‖φ1u‖2 + Ch‖φ2u‖2 − Ce−2δ1/h‖u‖2 − O(h2)‖(Pθ(h) − z)u‖2

− 2‖(Pθ(h) − z)u‖(Ce−δ1/h‖u‖ + O(h)‖(Pθ(h) − z)u‖)
≥ S(h)‖u‖2 − O(h)‖(Pθ(h) − z)u‖2 ,

proving the estimate. "

5. Semi-classical expansions

We will show that the resonances of P (h) are close to the eigenvalues of P #(h) and that this
correspondence will give an approximate agreement of propagators up to exponentially large
times, |t| ≤ e1/Ch.

In this section θ will be small, positive, and fixed.
From Lemmas 4.5, 4.6, and 4.7 we see that the assumptions (3.6) of Proposition 3.3 are

satisfied with S(h) = exp(−1/Ch) with any C ≥ C0, where C0 > 0 depends on P (h) and more
precisely, on the constant δ0 in the tunneling estimate of Proposition 3.2. Since the number of
eigenvalues of P #(h) is bounded by Ch−n we can modify our cluster decompositions (3.7) so that
it holds with Res(P (h)) replaced by Res(P (h)) ∪ Spec(P #(h)).

Let us denote by

Πθj (h) =
1

2πi

∮

∂Ω̃j(h)
(z − Pθ(h))−1dz : Hcomp → Hloc

the spectral projector of Pθ(h) related to the resonances in Ωj(h). Here we assume that ∂Ω̃j(h)
is a positively oriented contour. Similarly we define the spectral projections of P #(h):

Π#j(h) =
1

2πi

∮

∂Ω̃j(h)
(z − P #(h))−1dz .
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Assuming that the scaling is performed as in Lemma 4.7, the operator χ1Πθj (h)χ1 is acting on
H, since χ1(P (h) − z)−1χ1 = χ1(Pθ(h) − z)−1χ1. We also note that χ1Πθjχ1 is independent of θ.
Hence the following statement makes sense:

Proposition 5.1. Under the assumptions above, for C0 large enough,

(5.1) χ1Πθj (h)χ1 = χ1Π#j(h)χ1 + OH→H(e−δ1/h) , ∀j = 1, . . . , J(h),

where δ1 > 0 depends on P (h) and E only. In addition, for |t| ≤ e1/Ch we have

(5.2)
∑

z∈Ωj (h)

χ1Res(e−it•/hR(•, h), z)χ1 =
∑

z∈Ωj(h)

e−itz/hχ1Π#z(h)χ1 + OH→H(e−δ1/h) ,

where Π#z(h) is the spectral projection for z ∈ Spec(P #(h)).

Proof. Note first that χ1(z − P #(h))−1χ1 = χ1(z − P #
θ (h))−1χ1, where P #

θ(h) = Pθ + V # is the
complex scaled version of P #(h). Notice that the scaled potential V #

θ (x) coincides with V # because
V # = const. for large |x| where the scaling is performed. We therefore get by the resolvent identity

χ1

(
z − P #(h))−1 − (z − Pθ(h))−1

)
χ1 = χ1(z − P #

θ (h))−1V #(z − Pθ(h))−1χ1.

Next,

(5.3) χ1

(
Πθj (h) − Π#j(h)

)
χ1 = − 1

2πi

∮

∂Ω̃j(h)
χ1(z − P #

θ (h))−1V #(z − Pθ(h))−1χ1 dz.

We claim that with some S1(h) = O(e−1/C1h) we have

(5.4)
∥∥V #(z − Pθ(h))−1χ1

∥∥ = S1(h)
∥∥(z − Pθ(h))−1χ1

∥∥ , for z ∈ ∂Ω̃j(h).

The idea is to use Proposition 3.2 to gain exponential decay inside the classically forbidden region
away from supp χ1, and then to use the fact that on supp V #, the operator P (h) is non-trapping
so that we can extend this estimate from the classically forbidden region to infinity. Note first
that for z ∈ ∂Ω̃j(h), we have,

| Im z| ≤ e−δ0/h , Re z ∈ [E − ε − O(h∞), E + ε + O(h∞)] .

Therefore, the operator P (h) satisfies the assumptions of Proposition 3.2 for such z in any
compact in Rn \

(
π(Σe(E)) ∪ π(Σi(E))

)
for 0 < ε 1 1 and the resulting estimate will be uniform

for such z and in particular indepenednt of the choice of the exponential function S(h). Recall
that supp V # ∩ supp χ1 = ∅ and therefore, Pθ(h)V # = Q#

θ(h)V #. This implies

V #(z − Pθ(h))−1χ1 = (z − Q#
θ(h))−1(z − Q#

θ(h))V #(z − Pθ(h))−1χ1(5.5)

= −(z − Q#
θ(h))−1[Q#(h), V #](z − Pθ(h))−1χ1

= −(z − Q#
θ(h))−1[Q#(h), V #](z − P (h))−1χ1.

Proposition 3.1 (the part about the lack of resonances), Lemma 3.1, and Lemma 3.2 show that

(5.6) ‖(z − Q#
θ(h))−1‖ ≤ Ch−P ,

with some P > 0 for z we consider here. On the other hand, Proposition 3.2 and (3.4) imply
∥∥[Q#(h), V #](z − P (h))−1χ1

∥∥ ≤ e−1/Ch
∥∥(z − Pθ(h))−1χ1

∥∥ .

This, (5.5), and (5.6) prove (5.4).
From (5.3), (5.4) and Proposition 3.3 we now get the following estimate:

(5.7)
∥∥∥χ1

(
Πθj (h) − Π#j(h)

)
χ1

∥∥∥ ≤ C
S1(h)
S(h)

∮

∂Ω̃j(h)

∥∥∥χ1(z − P #
θ (h))−1χ̃2

∥∥∥ |dz|,
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where χ̃2 is such that χ̃2V # = V # and supp χ̃2 ∩ supp χ1 = ∅.
We estimate the integrand above similarly to (5.4). To this end, choose first an operator

Q̃#
θ(h) = Q#

θ(h) + W (x), where the potential W ≥ 0 is chosen so that χ̃2W = 0 and Q̃#
θ(h) − z

is elliptic as an h-ΨDO including at the infinite points of T ∗Rn for z as in the proposition. In
particular, the real part of the principal symbol of Q̃#

θ(h) − z is positive everywhere, bounded
from below by C(1 + |ξ|2). The ellipticity implies that (z − Q̃#

θ(h))−1 exists and is O(1). Using
the fact that χ̃2Q̃

#
θ(h) = χ̃2P

#
θ (h), we now write, similarly to (5.5),

χ1(z − P #
θ (h))−1χ̃2 = χ1(z − P #

θ (h))−1χ̃2(z − Q̃#
θ(h))(z − Q̃#

θ(h))−1

= −χ1(z − P #
θ (h))−1[χ̃2, Q

#(h)](z − Q̃#
θ(h))−1

= −χ1(z − P #(h))−1[χ̃2, Q
#(h)](z − Q̃#

θ(h))−1.

Arguing as in the proof of (5.4), we get
∥∥∥χ1(z − P #

θ (h))−1χ̃2

∥∥∥ ≤ C
∥∥χ1(z − P #(h))−1[χ̃2, Q

#(h)]
∥∥ ≤ S2(h)

h−nS(h)
,

where again S2(h) = O(e−1/C2h) in view of Proposition 3.2. This, (5.7), and the spectral theorem
imply

(5.8)
∥∥∥χ1

(
Πθj (h) − Π#j(h)

)
χ1

∥∥∥ ≤ S1(h)
S(h)

|∂Ω̃j(h)|S2(h)
S(h)

≤ Ch− 7n+1
2

S1(h)S2(h)
S(h)

.

Therefore, if we go back and choose S(h) ≥ S1(h), we get from (5.8),

(5.9)
∥∥∥χ1

(
Πθj (h) − Π#j(h)

)
χ1

∥∥∥ ≤ Ch−7n+1
2 S2(h) = O(e−1/C′

2h) , ∀C′
2 > C2.

To obtain (5.2) we proceed similarly. We now have a factor of e−itz/h in the integrands but it
remains bounded on ∂Ω̃j(h) for |t| ≤ e1/Ch for some constant C.

We would like to note that in the case of the Schrödinger operator, the constants C0 and δ1,
and also δ0 below, can be related to the Agmon distance between π(Σi(E)) and π(Σe(E)) and
similar interpretation can also be given in the general case. "

The first consequence is worth stating separately:

Corollary. For ε > 0 small enough, there exists a one-to-one correspondence

F : Res (P (h)) ∩ ([E − ε, E + ε] − i[0, Ch]) −→ Spec(P #(h)) ∩ [E − ε − α1(h), E + ε + α2(h)] ,

α1(h), α2(h) = O(e−1/Ch), (with multiple eigenvalues and resonances considered as separate
points) satisfying

|F (z) − z| ≤ Ce−δ0/h ,

for some δ0 > 0.

Remark. This result can also be deduced directly from the analysis of the scattering phase in
[14] (assuming that the perturbation decays sufficiently fast at infinity, |V (x)| ≤ C|x|−n−ε in the
case of a potential) and from the global Breit-Wigner approximation of [1] and [17]. Since this
could be of independent interest we review this connection in the appendix.

Proof of Theorem. We first observe that Proposition 3.4 shows that we only need to prove the
theorem for t < h−L.
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Next, we comment on the position of the energy cut-off, ψ(P (h)): in Proposition 3.4 and in
our main statement it appears on the left, and in Lemmas 4.2 and 4.4 inside the spatial cut-offs.
In general, however, if ψ1 = 1 on the support of ψ2 then

ψ1(P (h))χψ2(P (h)) = χψ2(P (h)) + [ψ1(P (h)), χ]ψ2(P (h)) = χψ2(P (h)) + O(h∞) ,

by the usual semi-classical calculus and a localization argument in the black box case – see [3,
Lemma 3.2]. Hence, introducing additional cut-offs needed in applications of Lemmas 4.2 and
4.4 will produce admissible errors.

Our theorem will now follow if we show that for t < h−M

χe−itP (h)/hχψ(P (h)) = χ1e
−itP !(h)/hχ1ψ(P #(h))

+ χ2OH→H(〈(t − C)+/h〉−∞)χ2 + OH→H(h∞) ,

and

χ1e
−itP !(h)/hχ1ψ(P #(h)) =

∑

z∈Ω(h)∩Res (P (h))

χ1Res(e−it•/hR(•, h), z)χ1ψ(P (h))

+ OH→H(h∞) ,

(5.10)

where Ω(h) is as in Proposition 3.4. The first statement is immediate from Lemmas 4.4 and 4.2.
To obtain the second one we first note that

χ1Π#z(h)χ1ψ(P (h)) = χ1Π#z(h)ψ(P #(h))χ1 + O(h∞) = O(h∞) ,

if z /∈ supp ψ + [−δ, δ], again as in [3, Lemma 3.2]. Hence

χ1e
−itP !(h)/hχ1ψ(P (h)) =

∑

Ωj (h)⊂Ω(h)

∑

z∈Ωj (h)

e−itz/hχ1Π#j(h)χ1ψ(P (h)) + O(h∞) .

The definition of c(h) (and hence of Ω(h)) in [3, Sect.2] shows that we either have Ωj(h) ⊂ Ω(h)
or Ωj(h) ∩ Ω(h) = ∅. Hence Proposition 5.1 implies (5.10) completing the proof.

Remark. For a large number of scattering systems (including Schrödinger operators) Burq [2]
showed that the resonances always satisfy | Im z| ≥ e−γ/h for some γ > 0. In that case the
method of proof of [23, Theorem 2] shows that c(h) can be chosen exponentially close to δ:

δ < c(h) < δ + e−γ1/h .

Appendix

In this appendix we give a proof of Corollary presented in Sect.5 based on the relation between
the scattering phase and resonances provided by a global Breit-Wigner approximation.

The two results below are quoted directly from [14] and [1] respectively. The first one relates
the behavior of the scattering phase to the distribution of eigenvalues of the reference operator
given in (4.3). We now need, in addition to the assumption of Sect.2, a stronger decay of the
coefficients which guarantees the existence of the scattering phase:

(A.1) |aα(x, h)| ≤ C〈x〉−n−ε , ε > 0 .

With this in place we have
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Proposition A.1. Let N (P #(h), I) be the number of eigenvalues of P #(h) in I ⊂ R. If (2.8)
holds then there exists β > 0, such that for λ ∈ [E − ε, E + ε] we have

N (P #(h), [λ − δ + e−β/h, λ + δ − e−β/h]) ≤ σ(λ + δ, h) − σ(λ − δ, h) + O(δ)h−n

≤ N (P #(h), [λ − δ − e−β/h, λ + δ + e−β/h]) , e−β/h < δ < 1/C .
(A.2)

Strictly speaking the results of [14] are stated only for Schrödinger operators but using Propo-
sition 3.2 there is no difficulty in extending the proof to the general case.

The relation between the resonances and σ comes in the form of the Breit-Wigner approxi-
mation. A global form of it was established by Petkov-Zworski [17] and generalized by Bruneau-
Petkov [1]. It is closely related to the local trace formula of Sjöstrand [18].

Proposition A.2. Under the general assumptions of Sect.2 and (A.1) (but no barrier assump-
tion) we have the following local expansion of the derivative of the scattering phase:

(A.3) σ′(λ, h) = − 1
π

∑

z∈Res(P (z)) , |λ−z|<ε

Im z

|z − λ|2 + O(h−n) .

We remark that the actual Breit-Wigner approximation formulated in [17] takes only reso-
nances with |λ − z| < Ch in the sum but that requires additional assumptions. Proposition
A.2 follows from factorization of the scattering determinant in [17] and from the meromorphic
continuation of the scattering phase in [1].

We now have

Corollary A. Suppose that (A.2) holds and that the resonances in [E − ε1, E + ε1] − i[0, Ch]
satisfy

| Im z| > e−γ1/h =⇒ | Im z| > e−γ2/h , γ1 > β > γ2 ,

where β is as in (A.2). Then for any ε < ε1 and any γ > 0 there exists a one-to-one correspon-
dence

F : Res (P (h)) ∩ ([E − ε, E + ε] − i[0, e−γh]) −→ Spec(P #(h)) ∩ [E − ε − α1(h), E + ε + α2(h)] ,

α1(h), α2(h) = O(e−1/Ch), (with multiple eigenvalues and resonances considered as separate
points) satisfying

|F (z) − z| ≤ Ce−γ0/h ,

for some γ0 > 0.

Proof. Let us fix γ satisfying γ2 < γ < β. The bound on the number of resonances and eigenvalues
of P #(h) shows that we can group them as in (3.7) with S(h) = e−γ2/h and ω(h) = e−γ/h. We
will now apply (A.3): suppose that

dist(λ,Ωk(h)) = min
j

dist(λ,Ωj(h)) ,

and write

σ(λ + δ, h) − σ(λ + δ, h) =
1
π

∫ λ+δ

λ−δ

∑

z∈Ωk(h)

| Im z|
|z − t|2

dt +
1
π

∫ λ+δ

λ−δ

∑

z /∈Ωk(h)

| Im z|
|z − t|2

dt + O(δ)(h−n) ,

where the sums are over resonances in |λ − z| < ε. If δ 1 e−γ/h then for z /∈ Ωk(h)

| Im z|
|z − t|2 ≤ max{eγ2/h, eγ/h} = eγ/h .
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Hence for δ 1 e−γ/h we have

σ(λ + δ, h) − σ(λ + δ, h) =
1
π

∫ λ+δ

λ−δ

∑

z∈Ωk(h)

| Im z|
|z − t|2

dt + O(δ)(eγ/h) .

If δ = e−γ2/h, γ < γ2 < γ1, then this gives (A.2) with N (P #, I) replaced by 1Res(P (h)) ∩ (I −
i[0, e−δ2/h]) and β by some β′ > 0.

To see that we can take any γ > 0 in the domain of F we observe that by a modification of
the argument above, any resonances with | Im z| < e−γ/h would contribute to a lower bound for
the variation of the scattering phase, and hence by (A.2) to the number of eigenvalues of P #(h).
But that number has already been achieved by the resonances with | Im z| < e−γ2/h. "
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