Impala: A Modern, Open-Source SQL Engine for Hadoop

Marcel Kornacker
Casey Ching Alan Choi
Matthew Jacobs Ishaan Joshi
Nong Li
John Russell

Alexander Behm Victor Bittorf
Justin Erickson
Lenni Kuff
Ippokratis Pandis Henry Robinson

Dimitris Tsirogiannis Skye Wanderman-Milne Michael Yoder

Taras Bobrovytsky

Martin Grund Daniel Hecht
Dileep Kumar Alex Leblang
David Rorke Silvius Rus

Cloudera
http://impala.io/

ABSTRACT

Cloudera Impala is a modern, open-source MPP SQL en-
gine architected from the ground up for the Hadoop data
processing environment. Impala provides low latency and
high concurrency for Bl/analytic read-mostly queries on
Hadoop, not delivered by batch frameworks such as Apache
Hive. This paper presents Impala from a user’s perspective,
gives an overview of its architecture and main components
and briefly demonstrates its superior performance compared
against other popular SQL-on-Hadoop systems.

1. INTRODUCTION

Impala is an open-source *, fully-integrated, state-of-the-
art MPP SQL query engine designed specifically to leverage
the flexibility and scalability of Hadoop. Impala’s goal is
to combine the familiar SQL support and multi-user perfor-
mance of a traditional analytic database with the scalability
and flexibility of Apache Hadoop and the production-grade
security and management extensions of Cloudera Enterprise.
Impala’s beta release was in October 2012 and it GA’ed in
May 2013. The most recent version, Impala 2.0, was released
in October 2014. Impala’s ecosystem momentum continues
to accelerate, with nearly one million downloads since its
GA.

Unlike other systems (often forks of Postgres), Impala is a
brand-new engine, written from the ground up in C4++ and
Java. It maintains Hadoop’s flexibility by utilizing standard
components (HDFS, HBase, Metastore, YARN, Sentry) and
is able to read the majority of the widely-used file formats
(e.g. Parquet, Avro, RCFile). To reduce latency, such as
that incurred from utilizing MapReduce or by reading data
remotely, Impala implements a distributed architecture based
on daemon processes that are responsible for all aspects of
query execution and that run on the same machines as the
rest of the Hadoop infrastructure. The result is performance

! https://github.com/cloudera/impala

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distri-
bution and reproduction in any medium as well as allowing derivative
works, provided that you attribute the original work to the author(s) and
CIDR 2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR’15)
January 4-7, 2015, Asilomar, California, USA.

that is on par or exceeds that of commercial MPP analytic
DBMSs, depending on the particular workload.

This paper discusses the services Impala provides to the
user and then presents an overview of its architecture and
main components. The highest performance that is achiev-
able today requires using HDFS as the underlying storage
manager, and therefore that is the focus on this paper; when
there are notable differences in terms of how certain technical
aspects are handled in conjunction with HBase, we note that
in the text without going into detail.

Impala is the highest performing SQL-on-Hadoop system,
especially under multi-user workloads. As Section 7 shows,
for single-user queries, Impala is up to 13x faster than alter-
natives, and 6.7z faster on average. For multi-user queries,
the gap widens: Impala is up to 27.4x faster than alternatives,
and 18z faster on average — or nearly three times faster on
average for multi-user queries than for single-user ones.

The remainder of this paper is structured as follows: the
next section gives an overview of Impala from the user’s
perspective and points out how it differs from a traditional
RDBMS. Section 3 presents the overall architecture of the
system. Section 4 presents the frontend component, which
includes a cost-based distributed query optimizer, Section 5
presents the backend component, which is responsible for the
query execution and employs runtime code generation, and
Section 6 presents the resource/workload management com-
ponent. Section 7 briefly evaluates the performance of Im-
pala. Section 8 discusses the roadmap ahead and Section 9
concludes.

2. USER VIEW OF IMPALA

Impala is a query engine which is integrated into the
Hadoop environment and utilizes a number of standard
Hadoop components (Metastore, HDFS, HBase, YARN, Sen-
try) in order to deliver an RDBMS-like experience. However,
there are some important differences that will be brought up
in the remainder of this section.

Impala was specifically targeted for integration with stan-
dard business intelligence environments, and to that end
supports most relevant industry standards: clients can con-
nect via ODBC or JDBC; authentication is accomplished
with Kerberos or LDAP; authorization follows the standard
SQL roles and privileges 2. In order to query HDFS-resident

2 This is provided by another standard Hadoop component
called Sentry [4], which also makes role-based authoriza-
tion available to Hive, and other components.

data, the user creates tables via the familiar CREATE TABLE
statement, which, in addition to providing the logical schema
of the data, also indicates the physical layout, such as file
format(s) and placement within the HDFS directory struc-
ture. Those tables can then be queried with standard SQL
syntax.

2.1 Physical schema design

When creating a table, the user can also specify a list of
partition columns:

CREATE TABLE T (...) PARTITIONED BY (day int, month
int) LOCATION ’<hdfs-path>’ STORED AS PARQUET;

For an unpartitioned table, data files are stored by de-
fault directly in the root directory 3. For a partitioned
table, data files are placed in subdirectories whose paths
reflect the partition columns’ values. For example, for day
17, month 2 of table T, all data files would be located in
directory <root>/day=17/month=2/. Note that this form of
partitioning does not imply a collocation of the data of an
individual partition: the blocks of the data files of a partition
are distributed randomly across HDFS data nodes.

Impala also gives the user a great deal of flexibility when
choosing file formats. It currently supports compressed and
uncompressed text files, sequence file (a splittable form of
text files), RCFile (a legacy columnar format), Avro (a binary
row format), and Parquet, the highest-performance storage
option (Section 5.3 discusses file formats in more detail).
As in the example above, the user indicates the storage
format in the CREATE TABLE or ALTER TABLE statements. It
is also possible to select a separate format for each partition
individually. For example one can specifically set the file
format of a particular partition to Parquet with:

ALTER TABLE PARTITION(day=17, month=2) SET FILEFORMAT
PARQUET.

As an example for when this is useful, consider a table
with chronologically recorded data, such as click logs. The
data for the current day might come in as CSV files and get
converted in bulk to Parquet at the end of each day.

2.2 SQL Support

Impala supports most of the SQL-92 SELECT statement
syntax, plus additional SQL-2003 analytic functions, and
most of the standard scalar data types: integer and floating
point types, STRING, CHAR, VARCHAR, TIMESTAMP,
and DECIMAL with up to 38 digits of precision. Custom
application logic can be incorporated through user-defined
functions (UDFs) in Java and C++, and user-defined aggre-
gate functions (UDAS), currently only in C++.

Due to the limitations of HDF'S as a storage manager, Im-
pala does not support UPDATE or DELETE, and essentially only
supports bulk insertions (INSERT INTO ... SELECT ...) .
Unlike in a traditional RDBMS, the user can add data to a
table simply by copying/moving data files into the directory

3 However, all data files that are located in any directory
below the root are part of the table’s data set. That is a
common approach for dealing with unpartitioned tables,
employed also by Apache Hive.

4 We should also note that Impala supports the VALUES
clause. However, for HDFS-backed tables this will generate
one file per INSERT statement, which leads to very poor
performance for most applications. For HBase-backed
tables, the VALUES variant performs single-row inserts by
means of the HBase API.

location of that table, using HDFS’s API. Alternatively, the
same can be accomplished with the LOAD DATA statement.

Similarly to bulk insert, Impala supports bulk data dele-
tion by dropping a table partition (ALTER TABLE DROP PAR-
TITION). Because it is not possible to update HDFS files
in-place, Impala does not support an UPDATE statement. In-
stead, the user typically recomputes parts of the data set to
incorporate updates, and then replaces the corresponding
data files, often by dropping and re-adding the partition

After the initial data load, or whenever a significant frac-
tion of the table’s data changes, the user should run the
COMPUTE STATS <table> statement, which instructs Impala
to gather statistics on the table. Those statistics will subse-
quently be used during query optimization.

3. ARCHITECTURE

Impala is a massively-parallel query execution engine,
which runs on hundreds of machines in existing Hadoop
clusters. It is decoupled from the underlying storage engine,
unlike traditional relational database management systems
where the query processing and the underlying storage engine
are components of a single tightly-coupled system. Impala’s
high-level architecture is shown in Figure 1.

An Impala deployment is comprised of three services. The
Impala daemon (impalad) service is dually responsible for
accepting queries from client processes and orchestrating their
execution across the cluster, and for executing individual
query fragments on behalf of other Impala daemons. When
an Impala daemon operates in the first role by managing
query execution, it is said to be the coordinator for that query.
However, all Impala daemons are symmetric; they may all
operate in all roles. This property helps with fault-tolerance,
and with load-balancing.

One Impala daemon is deployed on every machine in the
cluster that is also running a datanode process - the block
server for the underlying HDFS deployment - and therefore
there is typically one Impala daemon on every machine. This
allows Impala to take advantage of data locality, and to read
blocks from the filesystem without having to use the network.

The Statestore daemon (statestored) is Impala’s meta-
data publish-subscribe service, which disseminates cluster-
wide metadata to all Impala processes. There is a single
statestored instance, which is described in more detail in
Section 3.1 below.

Finally, the Catalog daemon (catalogd), described in Section 3.2,

serves as Impala’s catalog repository and metadata access
gateway. Through the catalogd, Impala daemons may exe-
cute DDL commands that are reflected in external catalog
stores such as the Hive Metastore. Changes to the system
catalog are broadcast via the statestore.

All these Impala services, as well as several configuration
options, such as the sizes of the resource pools, the available
memory, etc.. (see Section 6 for more details about resource
and workload management) are also exposed to Cloudera
Manager, a sophisticated cluster management application®.
Cloudera Manager can administer not only Impala but also
pretty much every service for a holistic view of a Hadoop
deployment.

® http://www.cloudera.com/content/cloudera/en/products-
and-services/cloudera-enterprise/cloudera-manager.html

(1) Send SQL
(6) Query results

Impalad Impalad

Hive

Metastore

HDFS

Impalad

Query Planner
Query Coordinator
4
Query Executor *T’

Query Planner

Query Coordinator

Query Executor

Query Planner
(3) Query Coordinator

Query Executor

Figure 1: Impala is a distributed query processing system for the Hadoop ecosystem. This figure also shows

the flow during query processing.

3.1 State distribution

A major challenge in the design of an MPP database that
is intended to run on hundreds of nodes is the coordina-
tion and synchronization of cluster-wide metadata. Impala’s
symmetric-node architecture requires that all nodes must be
able to accept and execute queries. Therefore all nodes must
have, for example, up-to-date versions of the system catalog
and a recent view of the Impala cluster’s membership so that
queries may be scheduled correctly.

We might approach this problem by deploying a separate
cluster-management service, with ground-truth versions of
all cluster-wide metadata. Impala daemons could then query
this store lazily (i.e. only when needed), which would ensure
that all queries were given up-to-date responses. However,
a fundamental tenet in Impala’s design has been to avoid
synchronous RPCs wherever possible on the critical path of
any query. Without paying close attention to these costs, we
have found that query latency is often compromised by the
time taken to establish a TCP connection, or load on some
remote service. Instead, we have designed Impala to push
updates to all interested parties, and have designed a simple
publish-subscribe service called the statestore to disseminate
metadata changes to a set of subscribers.

The statestore maintains a set of topics, which are arrays
of (key, value, version) triplets called entries where ’key’
and ’value’ are byte arrays, and ’version’ is a 64-bit integer.
A topic is defined by an application, and so the statestore
has no understanding of the contents of any topic entry.
Topics are persistent through the lifetime of the statestore,
but are not persisted across service restarts. Processes that
wish to receive updates to any topic are called subscribers,
and express their interest by registering with the statestore
at start-up and providing a list of topics. The statestore
responds to registration by sending the subscriber an initial
topic update for each registered topic, which consists of all
the entries currently in that topic.

After registration, the statestore periodically sends two
kinds of messages to each subscriber. The first kind of mes-
sage is a topic update, and consists of all changes to a topic
(new entries, modified entries and deletions) since the last up-

date was successfully sent to the subscriber. Each subscriber
maintains a per-topic most-recent-version identifier which
allows the statestore to only send the delta between updates.
In response to a topic update, each subscriber sends a list
of changes it wishes to make to its subscribed topics. Those
changes are guaranteed to have been applied by the time the
next update is received.

The second kind of statestore message is a keepalive. The
statestore uses keepalive messages to maintain the connec-
tion to each subscriber, which would otherwise time-out its
subscription and attempt to re-register. Previous versions of
the statestore used topic update messages for both purposes,
but as the size of topic updates grew it became difficult to
ensure timely delivery of updates to each subscriber, leading
to false-positives in the subscriber’s failure-detection process.

If the statestore detects a failed subscriber (for example,
by repeated failed keepalive deliveries), it will cease sending
updates. Some topic entries may be marked as ’'transient’,
meaning that if their ’owning’ subscriber should fail, they
will be removed. This is a natural primitive with which to
maintain liveness information for the cluster in a dedicated
topic, as well as per-node load statistics.

The statestore provides very weak semantics: subscribers
may be updated at different rates (although the statestore
tries to distribute topic updates fairly), and may therefore
have very different views of the content of a topic. How-
ever, Impala only uses topic metadata to make decisions
locally, without any coordination across the cluster. For
example, query planning is performed on a single node based
on the catalog metadata topic, and once a full plan has been
computed, all information required to execute that plan is
distributed directly to the executing nodes. There is no
requirement that an executing node should know about the
same version of the catalog metadata topic.

Although there is only a single statestore process in exist-
ing Impala deployments, we have found that it scales well
to medium sized clusters and, with some configuration, can
serve our largest deployments. The statestore does not per-
sist any metadata to disk: all current metadata is pushed
to the statestore by live subscribers (e.g. load information).

Therefore, should a statestore restart, its state can be recov-
ered during the initial subscriber registration phase. Or if
the machine that the statestore is running on fails, a new
statestore process can be started elsewhere, and subscribers
may fail over to it. There is no built-in failover mechanism
in Impala, instead deployments commonly use a retargetable
DNS entry to force subscribers to automatically move to the
new process instance.

3.2 Catalog service

Impala’s catalog service serves catalog metadata to Impala
daemons via the statestore broadcast mechanism, and exe-
cutes DDL operations on behalf of Impala daemons. The
catalog service pulls information from third-party metadata
stores (for example, the Hive Metastore or the HDFS Na-
menode), and aggregates that information into an Impala-
compatible catalog structure. This architecture allows Im-
pala to be relatively agnostic of the metadata stores for the
storage engines it relies upon, which allows us to add new
metadata stores to Impala relatively quickly (e.g. HBase sup-
port). Any changes to the system catalog (e.g. when a new
table has been loaded) are disseminated via the statestore.

The catalog service also allows us to augment the system
catalog with Impala-specific information. For example, we
register user-defined-functions only with the catalog service
(without replicating this to the Hive Metastore, for example),
since they are specific to Impala.

Since catalogs are often very large, and access to tables
is rarely uniform, the catalog service only loads a skeleton
entry for each table it discovers on startup. More detailed
table metadata can be loaded lazily in the background from
its third-party stores. If a table is required before it has been
fully loaded, an Impala daemon will detect this and issue
a prioritization request to the catalog service. This request
blocks until the table is fully loaded.

4. FRONTEND

The Impala frontend is responsible for compiling SQL
text into query plans executable by the Impala backends.
It is written in Java and consists of a fully-featured SQL
parser and cost-based query optimizer, all implemented from
scratch. In addition to the basic SQL features (select, project,
join, group by, order by, limit), Impala supports inline views,
uncorrelated and correlated subqueries (that are rewritten as
joins), all variants of outer joins as well as explicit left/right
semi- and anti-joins, and analytic window functions.

The query compilation process follows a traditional divi-
sion of labor: Query parsing, semantic analysis, and query
planning/optimization. We will focus on the latter, most chal-
lenging, part of query compilation. The Impala query planner
is given as input a parse tree together with query-global in-
formation assembled during semantic analysis (table/column
identifiers, equivalence classes, etc.). An executable query
plan is constructed in two phases: (1) Single node planning
and (2) plan parallelization and fragmentation.

In the first phase, the parse tree is translated into a non-
executable single-node plan tree, consisting of the following
plan nodes: HDFS/HBase scan, hash join, cross join, union,
hash aggregation, sort, top-n, and analytic evaluation. This
step is responsible for assigning predicates at the lowest pos-
sible plan node, inferring predicates based on equivalence
classes, pruning table partitions, setting limits/offsets, apply-
ing column projections, as well as performing some cost-based

plan optimizations such as ordering and coalescing analytic
window functions and join reordering to minimize the total
evaluation cost. Cost estimation is based on table/partition
cardinalities plus distinct value counts for each column ¢;
histograms are currently not part of the statistics. Impala
uses simple heuristics to avoid exhaustively enumerating and
costing the entire join-order space in common cases.

The second planning phase takes the single-node plan
as input and produces a distributed execution plan. The
general goal is to minimize data movement and maximize scan
locality: in HDF'S, remote reads are considerably slower than
local ones. The plan is made distributed by adding exchange
nodes between plan nodes as necessary, and by adding extra
non-exchange plan nodes to minimize data movement across
the network (e.g., local aggregation nodes). During this
second phase, we decide the join strategy for every join
node (the join order is fixed at this point). The supported
join strategies are broadcast and partitioned. The former
replicates the entire build side of a join to all cluster machines
executing the probe, and the latter hash-redistributes both
the build and probe side on the join expressions. Impala
chooses whichever strategy is estimated to minimize the
amount of data exchanged over the network, also exploiting
existing data partitioning of the join inputs.

All aggregation is currently executed as a local pre-aggregation

followed by a merge aggregation operation. For grouping
aggregations, the pre-aggregation output is partitioned on
the grouping expressions and the merge aggregation is done
in parallel on all participating nodes. For non-grouping aggre-
gations, the merge aggregation is done on a single node. Sort
and top-n are parallelized in a similar fashion: a distributed
local sort/top-n is followed by a single-node merge operation.
Analytic expression evaluation is parallelized based on the
partition-by expressions. It relies on its input being sorted
on the partition-by/order-by expressions. Finally, the dis-
tributed plan tree is split up at exchange boundaries. Each
such portion of the plan is placed inside a plan fragment,
Impala’s unit of backend execution. A plan fragment encap-
sulates a portion of the plan tree that operates on the same
data partition on a single machine.

Figure 2 illustrates in an example the two phases of query
planning. The left side of the figure shows the single-node
plan of a query joining two HDFS tables (t1, t2) and one
HBase table (t3) followed by an aggregation and order by
with limit (top-n). The right-hand side shows the distributed,
fragmented plan. Rounded rectangles indicate fragment
boundaries and arrows data exchanges. Tables t1 and t2
are joined via the partitioned strategy. The scans are in a
fragment of their own since their results are immediately
exchanged to a consumer (the join node) which operates
on a hash-based partition of the data, whereas the table
data is randomly partitioned. The following join with t3
is a broadcast join placed in the same fragment as the join
between t1 and t2 because a broadcast join preserves the
existing data partition (the results of joining t1, t2, and
t3 are still hash partitioned based on the join keys of t1
and t2). After the joins we perform a two-phase distributed
aggregation, where a pre-aggregation is computed in the
same fragment as the last join. The pre-aggregation results
are hash-exchanged based on the grouping keys, and then

6 We use the HyperLogLog algorithm [5] for distinct value
estimation.

Merge
— Single-Node Distributed Plan T°‘|’N ——L] TopN |
P Plan y
T at HDFS MergeAgg
Agg at HBase 1
[Hash(t1.custid)
v at Coordinator
HashJoin j«—| Scan:t3 ‘ Pre-Agg
l A\
HashJoin || Scan:t2 HashJoin |«Broadcast | o .43
Scan: t1 Scan: t1 Hash(t1.id1) | HashJoin |«-128N(t2:id) | scan: t2

Figure 2: Example of the two phase query optimization.

aggregated once more to compute the final aggregation result.
The same two-phased approach is applied to the top-n, and
the final top-n step is performed at the coordinator, which
returns the results to the user.

S. BACKEND

Impala’s backend receives query fragments from the fron-
tend and is responsible for their fast execution. It is designed
to take advantage of modern hardware. The backend is writ-
ten in C++ and uses code generation at runtime to produce
efficient codepaths (with respect to instruction count) and
small memory overhead, especially compared to other engines
implemented in Java.

Impala leverages decades of research in parallel databases.
The execution model is the traditional Volcano-style with
Exchange operators [7]. Processing is performed batch-at-
a-time: each GetNext () call operates over batches of rows,
similar to [10]. With the exception of “stop-and-go” opera-
tors (e.g. sorting), the execution is fully pipeline-able, which
minimizes the memory consumption for storing intermedi-
ate results. When processed in memory, the tuples have a
canonical in-memory row-oriented format.

Operators that may need to consume lots of memory are
designed to be able to spill parts of their working set to
disk if needed. The operators that are spillable are the hash
join, (hash-based) aggregation, sorting, and analytic function
evaluation.

Impala employs a partitioning approach for the hash join
and aggregation operators. That is, some bits of the hash
value of each tuple determine the target partition and the
remaining bits for the hash table probe. During normal oper-
ation, when all hash tables fit in memory, the overhead of the
partitioning step is minimal, within 10% of the performance
of a non-spillable non-partitioning-based implementation.
When there is memory-pressure, a “victim” partition may be
spilled to disk, thereby freeing memory for other partitions
to complete their processing. When building the hash tables
for the hash joins and there is reduction in cardinality of the
build-side relation, we construct a Bloom filter which is then
passed on to the probe side scanner, implementing a simple
version of a semi-join.

IntVal my_func(const IntVal& v1, const IntVal& v2) {
return Intval(vl.val * 7 / v2.val);

} function
pointer
function f;gicr:tigr
pointer .
function functio
ointer ointer
pointer, L (col1 +10) * 7/ col2
interpreted codegen’d

Figure 3: Interpreted vs codegen’ed code in Impala.

5.1 Runtime Code Generation

Runtime code generation using LLVM [8] is one of the
techniques employed extensively by Impala’s backend to
improve execution times. Performance gains of 5x or more
are typical for representative workloads.

LLVM is a compiler library and collection of related tools.
Unlike traditional compilers that are implemented as stand-
alone applications, LLVM is designed to be modular and
reusable. It allows applications like Impala to perform just-
in-time (JIT) compilation within a running process, with the
full benefits of a modern optimizer and the ability to generate
machine code for a number of architectures, by exposing
separate APIs for all steps of the compilation process.

Impala uses runtime code generation to produce query-
specific versions of functions that are critical to performance.
In particular, code generation is applied to “inner loop” func-
tions, i.e., those that are executed many times (for every
tuple) in a given query, and thus constitute a large portion
of the total time the query takes to execute. For example, a
function used to parse a record in a data file into Impala’s
in-memory tuple format must be called for every record in
every data file scanned. For queries scanning large tables,
this could be billions of records or more. This function must

[l Codegen Off

o [0 Codegen On
3 30 B L L —
@2
£
= 20 e S
-
(qu) 1O o 73
1.19x 7X |—|
o A , ,
select count(*) select TPC-H Q1
from lineitem count(l_orderkey)
from lineitem

Figure 4: Impact in performance of run-time code
generation in Impala.

therefore be extremely efficient for good query performance,
and even removing a few instructions from the function’s
execution can result in large query speedups.

Without code generation, inefficiencies in function execu-
tion are almost always necessary in order to handle runtime
information not known at program compile time. For ex-
ample, a record-parsing function that only handles integer
types will be faster at parsing an integer-only file than a
function that handles other data types such as strings and
floating-point numbers as well. However, the schemas of the
files to be scanned are unknown at compile time, and so a
general-purpose function must be used, even if at runtime it
is known that more limited functionality is sufficient.

A source of large runtime overheads are virtual functions.
Virtual function calls incur a large performance penalty, par-
ticularly when the called function is very simple, as the calls
cannot be inlined. If the type of the object instance is known
at runtime, we can use code generation to replace the vir-
tual function call with a call directly to the correct function,
which can then be inlined. This is especially valuable when
evaluating expression trees. In Impala (as in many systems),
expressions are composed of a tree of individual operators
and functions, as illustrated in the left-hand side of Figure
Figure 3. Each type of expression that can appear in a tree
is implemented by overriding a virtual function in the expres-
sion base class, which recursively calls its child expressions.
Many of these expression functions are quite simple, e.g.,
adding two numbers. Thus, the cost of calling the virtual
function often far exceeds the cost of actually evaluating
the function. As illustrated in Figure 3, by resolving the
virtual function calls with code generation and then inlining
the resulting function calls, the expression tree can be eval-
uated directly with no function call overhead. In addition,
inlining functions increases instruction-level parallelism, and
allows the compiler to make further optimizations such as
subexpression elimination across expressions.

Overall, JIT compilation has an effect similar to custom-
coding a query. For example, it eliminates branches, unrolls
loops, propagates constants, offsets and pointers, inlines
functions. Code generation has a dramatic impact on per-
formance, as shown in Figure 4. For example, in a 10-node
cluster with each node having 8 cores, 48GB RAM and 12
disks, we measure the impact of codegen. We are using
an Avro TPC-H database of scaling factor 100 and we run

simple aggregation queries. Code generation speeds up the
execution by up to 5.7x, with the speedup increasing with
the query complexity.

5.2 1/0 Management

Efficiently retrieving data from HDF'S is a challenge for
all SQL-on-Hadoop systems. In order to perform data scans
from both disk and memory at or near hardware speed, Im-
pala uses an HDF'S feature called short-circuit local reads [3]
to bypass the DataNode protocol when reading from local
disk. Impala can read at almost disk bandwidth (approx.
100MB/s per disk) and is typically able to saturate all avail-
able disks. We have measured that with 12 disks, Impala is
capable of sustaining I/O at 1.2GB/sec. Furthermore, HDFS
caching [2] allows Impala to access memory-resident data at
memory bus speed and also saves CPU cycles as there is no
need to copy data blocks and/or checksum them.

Reading/writing data from/to storage devices is the respon-
sibility of the I/O manager component. The I/O manager
assigns a fixed number of worker threads per physical disk
(one thread per rotational disk and eight per SSD), providing
an asynchronous interface to clients (e.g. scanner threads).
The effectiveness of Impala’s I/O manager was recently cor-
roborated by [6], which shows that Impala’s read throughput
is from 4x up to 8x higher than the other tested systems.

5.3 Storage Formats

Impala supports most popular file formats: Avro, RC,
Sequence, plain text, and Parquet. These formats can be
combined with different compression algorithms, such as
snappy, gzip, bz2.

In most use cases we recommend using Apache Parquet,
a state-of-the-art, open-source columnar file format offering
both high compression and high scan efficiency. It was co-
developed by Twitter and Cloudera with contributions from
Criteo, Stripe, Berkeley AMPlab, and LinkedIn. In addi-
tion to Impala, most Hadoop-based processing frameworks
including Hive, Pig, MapReduce and Cascading are able to
process Parquet.

Simply described, Parquet is a customizable PAX-like
[1] format optimized for large data blocks (tens, hundreds,
thousands of megabytes) with built-in support for nested data.
Inspired by Dremel’s ColumnlIO format [9], Parquet stores
nested fields column-wise and augments them with minimal
information to enable re-assembly of the nesting structure
from column data at scan time. Parquet has an extensible
set of column encodings. Version 1.2 supports run-length and
dictionary encodings and version 2.0 added support for delta
and optimized string encodings. The most recent version
(Parquet 2.0) also implements embedded statistics: inlined
column statistics for further optimization of scan efficiency,
e.g. min/max indexes.

As mentioned earlier, Parquet offers both high compres-
sion and scan efficiency. Figure 5 (left) compares the size
on disk of the Lineitem table of a TPC-H database of scal-
ing factor 1,000 when stored in some popular combinations
of file formats and compression algorithms. Parquet with
snappy compression achieves the best compression among
them. Similarly, Figure 5 (right) shows the Impala execu-
tion times for various queries from the TPC-DS benchmark
when the database is stored in plain text, Sequence, RC, and
Parquet formats. Parquet consistently outperforms by up to
5x all the other formats.

900 450

750 “» 400
o 750 I
15} o 350
£ 600 £ 300
o [0}
N 250
‘@ 450 410 g3gg €
® 367 2 200
2 317 %
o 300 245 = 150
8 &
© o 100
0 150 =]
g 50
0 0

Text Textw/ Seqw/ Avrow/ RCFile Parquet
LZO Snappy Snappy w/ w/
Snappy Snappy

F &

I Text

LI Seq w/ Snappy

[0 RC w/Snappy

[Parquet w/Snappy

Qo
C &

SRR R S A R
P NS

Figure 5: (Left) Comparison of the compression ratio of popular combinations of file formats and compression.
(Right) Comparison of the query efficiency of plain text, SEQUENCE, RC, and Parquet in Impala.

6. RESOURCE/WORKLOAD MANAGEMENT associated with a resource pool, which defines the fair share

One of the main challenges for any cluster framework
is careful control of resource consumption. Impala often
runs in the context of a busy cluster, where MapReduce
tasks, ingest jobs and bespoke frameworks compete for finite
CPU, memory and network resources. The difficulty is to
coordinate resource scheduling between queries, and perhaps
between frameworks, without compromising query latency
or throughput.

Apache YARN [12] is the current standard for resource
mediation on Hadoop clusters, which allows frameworks to
share resources such as CPU and memory without partition-
ing the cluster. YARN has a centralized architecture, where
frameworks make requests for CPU and memory resources
which are arbitrated by the central Resource Manager service.
This architecture has the advantage of allowing decisions to
be made with full knowledge of the cluster state, but it also
imposes a significant latency on resource acquisition. As
Impala targets workloads of many thousands of queries per
second, we found the resource request and response cycle to
be prohibitively long.

Our approach to this problem was two-fold: first, we imple-
mented a complementary but independent admission control
mechanism that allowed users to control their workloads
without costly centralized decision-making. Second, we de-
signed an intermediary service to sit between Impala and
YARN with the intention of correcting some of the impedance
mismatch. This service, called Llama for Low-Latency Appli-
cation MAster, implements resource caching, gang scheduling
and incremental allocation changes while still deferring the
actual scheduling decisions to YARN for resource requests
that don’t hit Llama’s cache.

The rest of this section describes both approaches to re-
source management with Impala. Our long-term goal is to
support mixed-workload resource management through a
single mechanism that supports both the low latency deci-
sion making of admission control, and the cross-framework
support of YARN.

6.1 Llama and YARN

Llama is a standalone daemon to which all Impala daemons
send per-query resource requests. Each resource request is

of the the cluster’s available resources that a query may use.

If resources for the resource pool are available in Llama’s
resource cache, Llama returns them to the query immedi-
ately. This fast path allows Llama to circumvent YARN’s
resource allocation algorithm when contention for resources
is low. Otherwise, Llama forwards the request to YARN’s
resource manager, and waits for all resources to be returned.
This is different from YARN’s ’drip-feed’ allocation model
where resources are returned as they are allocated. Impala’s
pipelined execution model requires all resources to be avail-
able simultaneously so that all query fragments may proceed
in parallel.

Since resource estimations for query plans, particularly
over very large data sets, are often inaccurate, we allow
Impala queries to adjust their resource consumption estimates
during execution. This mode is not supported by YARN,
instead we have Llama issue new resource requests to YARN
(e.g. asking for 1GB more of memory per node) and then
aggregate them into a single resource allocation from Impala’s
perspective. This adapter architecture has allowed Impala
to fully integrate with YARN without itself absorbing the
complexities of dealing with an unsuitable programming
interface.

6.2 Admission Control

In addition to integrating with YARN for cluster-wide
resource management, Impala has a built-in admission con-
trol mechanism to throttle incoming requests. Requests are
assigned to a resource pool and admitted, queued, or re-
jected based on a policy that defines per-pool limits on the
maximum number of concurrent requests and the maximum
memory usage of requests. The admission controller was de-
signed to be fast and decentralized, so that incoming requests
to any Impala daemon can be admitted without making syn-
chronous requests to a central server. State required to make
admission decisions is disseminated among Impala daemons
via the statestore, so every Impala daemon is able to make
admission decisions based on its aggregate view of the global
state without any additional synchronous communication
on the request execution path. However, because shared
state is received asynchronously, Impala daemons may make
decisions locally that result in exceeding limits specified by

the policy. In practice this has not been problematic because
state is typically updated faster than non-trivial queries. Fur-
ther, the admission control mechanism is designed primarily
to be a simple throttling mechanism rather than a resource
management solution such as YARN.

Resource pools are defined hierarchically. Incoming re-
quests are assigned to a resource pool based on a placement
policy and access to pools can be controlled using ACLs.
The configuration is specified with a YARN fair scheduler
allocation file and Llama configuration, and Cloudera Man-
ager provides a simple user interface to configure resource
pools, which can be modified without restarting any running
services.

7. EVALUATION

The purpose of this section is not to exhaustively evaluate
the performance of Impala, but mostly to give some indi-
cations. There are independent academic studies that have
derived similar conclusions, e.g. [6].

7.1 Experimental setup

All the experiments were run on the same 21-node cluster.
Each node in the cluster is a 2-socket machine with 6-core
Intel Xeon CPU E5-2630L at 2.00GHz. Each node has 64GB
RAM and 12 932GB disk drives (one for the OS, the rest for
HDFS).

We run a decision-support style benchmark consisting of a
subset of the queries of TPC-DS on a 15TB scale factor data
set. In the results below we categorize the queries based on
the amount of data they access, into interactive, reporting,
and deep analytic queries. In particular, the interactive
bucket contains queries: ql19, q42, q52, 455, q63, 68, 73,
and q98; the reporting bucket contains queries: q27, q3, q43,
g53, q7, and q89; and the deep analytic bucket contains
queries: q34, q46, q59, q79, and ss_max. The kit we use for
these measurements is publicly available 7.

For our comparisons we used the most popular SQL-on-
Hadoop systems for which we were able to show results ®:
Impala, Presto, Shark, SparkSQL, and Hive 0.13. Due to the
lack of a cost-based optimizer in all tested engines except
Impala we tested all engines with queries that had been
converted to SQL-92 style joins. For consistency, we ran
those same queries against Impala, although Impala produces
identical results without these modifications.

Each engine was assessed on the file format that it performs
best on, while consistently using Snappy compression to
ensure fair comparisons: Impala on Apache Parquet, Hive
0.13 on ORC, Presto on RCFile, and SparkSQL on Parquet.

7.2 Single User Performance

Figure 6 compares the performance of the four systems
on single-user runs, where a single user is repeatedly submit-
ting queries with zero think time. Impala outperforms all
alternatives on single-user workloads across all queries run.
Impala’s performance advantage ranges from 2.1x to 13.0x
and on average is 6.7x faster. Actually, this is a wider gap of

" https://github.com/cloudera/impala-tpcds-kit

8 There are several other SQL engines for Hadoop, for exam-
ple Pivotal HAWQ and IBM Biglnsights. Unfortunately,
as far as we know, these systems take advantage of the De-
Witt clause and we are legally prevented from presenting
comparisons against them.

Geometric Mean (in secs)

Interactive

Reporting Analytic

Figure 6: Comparison of query response times on
single-user runs.

performance advantage against Hive 0.13 (from an average
of 4.9x to 9x) and Presto (from an average of 5.3x to 7.5x)
from earlier versions of Impala °.

7.3 Multi-User Performance

Impala’s superior performance becomes more pronounced
in multi-user workloads, which are ubiquitous in real-world
applications. Figure 7 (left) shows the response time of the
four systems when there are 10 concurrent users submitting
queries from the interactive category. In this scenario, Impala
outperforms the other systems from 6.7x to 18.7x when going
from single user to concurrent user workloads. The speedup
varies from 10.6x to 27.4x depending on the comparison.
Note that Impala’s speed under 10-user load was nearly half
that under single-user load—whereas the average across the
alternatives was just one-fifth that under single-user load.

Similarly, Figure 7 (right) compares the throughput of the
four systems. Impala achieves from 8.7x up to 22x higher
throughput than the other systems when 10 users submit
queries from the interactive bucket.

7.4 Comparing against a commercial RDBMS

From the above comparisons it is clear that Impala is on
the forefront among the SQL-on-Hadoop systems in terms of
performance. But Impala is also suitable for deployment in
traditional data warehousing setups. In Figure 8 we compare
the performance of Impala against a popular commercial
columnar analytic DBMS, referred to here as “DBMS-Y” due
to a restrictive proprietary licensing agreement. We use a
TPC-DS data set of scale factor 30,000 (30TB of raw data)
and run queries from the workload presented in the previous
paragraphs. We can see that Impala outperforms DBMS-Y
by up to 4.5x, and by an average of 2x, with only three
queries performing more slowly.

8. ROADMAP

In this paper we gave an overview of Cloudera Impala.
Even though Impala has already had an impact on modern
data management and is the performance leader among SQL-
on-Hadoop systems, there is much left to be done. Our

° http://blog.cloudera.com/blog/2014/05 /new-sql-choices-
in-the-apache-hadoop-ecosystem-why-impala-continues-
to-lead/

3D oo B0+ eeeeeeneneeae
@ Single User

O 10 Users

37
25
0 . T ﬂ

Impala SparkSQL Presto Hive 0.13

Completion Time (in secs)
>
o

2500 2883
Impala
5 2000 O SparksSQL-—
2 B Presto
g 1900 O Hive 013
o
(7]
LTy e —
o
5
500 b g
266 106 175
0

Throughput in Interactive bucket

Figure 7: Comparison of query response times and throughput on multi-user runs.

Completion Time (in secs)

1

g3 g7 ql19 @27 Qq34 042 043 @46 b2 953 055 @59 @63 965 968 73 q79 Q89 (Q98ss_max

Figure 8: Comparison of the performance of Impala and a commercial analytic RDBMS.

roadmap items roughly fall into two categories: the addition
of yet more traditional parallel DBMS technology, which is
needed in order to address an ever increasing fraction of the
existing data warehouse workloads, and solutions to problems
that are somewhat unique to the Hadoop environment.

8.1 Additional SQL Support

Impala’s support of SQL is fairly complete as of the 2.0
version, but some standard language features are still miss-
ing: set MINUS and INTERSECT; ROLLUP and GROUPING SET;
dynamic partition pruning; DATE/TIME/DATETIME data
types. We plan on adding those over the next releases.

Impala is currently restricted to flat relational schemas, and
while this is often adequate for pre-existing data warehouse
workloads, we see increased use of newer file formats that
allow what are in essence nested relational schemas, with the
addition of complex column types (structs, arrays, maps).
Impala will be extended to handle those schemas in a manner
that imposes no restrictions on the nesting levels or number
of nested elements that can be addressed in a single query.

8.2 Additional Performance Enhancements

Planned performance enhancements include intra-node
parallelization of joins, aggregation and sort as well as more
pervasive use of runtime code generation for tasks such as
data preparation for network transmission, materialization
of query output, etc. We are also considering switching to a
columnar canonical in-memory format for data that needs
to be materialized during query processing, in order to take
advantage of SIMD instructions [11, 13].

Another area of planned improvements is Impala’s query
optimizer. The plan space it explores is currently intention-
ally restricted for robustness/predictability in part due to
the lack of sophisticated data statistics (e.g. histograms)
and additional schema information (e.g. primary/foreign key
constraints, nullability of columns) that would enable more
accurate costing of plan alternatives. We plan on adding
histograms to the table/partition metadata in the near-to-
medium term to rectify some of those issues. Utilizing such
additional metadata and incorporating complex plan rewrites
in a robust fashion is a challenging ongoing task.

8.3 Metadata and Statistics Collection

The gathering of metadata and table statistics in a Hadoop
environment is complicated by the fact that, unlike in an
RDBMS, new data can show up simply by moving data
files into a table’s root directory. Currently, the user must
issue a command to recompute statistics and update the
physical metadata to include new data files, but this has
turned out to be problematic: users often forget to issue that
command or are confused when exactly it needs to be issued.
The solution to that problem is to detect new data files
automatically by running a background process which also
updates the metadata and schedules queries which compute
the incremental table statistics.

8.4 Automated Data Conversion

One of the more challenging aspects of allowing multiple
data formats side-by-side is the conversion from one format
into another. Data is typically added to the system in a struc-

tured row-oriented format, such as Json, Avro or XML, or as
text. On the other hand, from the perspective of performance
a column-oriented format such as Parquet is ideal. Letting
the user manage the transition from one to the other is often
a non-trivial task in a production environment: it essentially
requires setting up a reliable data pipeline (recognition of
new data files, coalescing them during the conversion pro-
cess, etc.), which itself requires a considerable amount of
engineering. We are planning on adding automation of the
conversion process, such that the user can mark a table for
auto-conversion; the conversion process itself is piggy-backed
onto the background metadata and statistics gathering pro-
cess, which additionally schedules conversion queries that
run over the new data files.

8.5 Resource Management

Resource management in an open multi-tenancy environ-
ment, in which Impala shares cluster resource with other pro-
cessing frameworks such as MapReduce, Spark, etc., is as yet
an unsolved problem. The existing integration with YARN
does not currently cover all use cases, and YARN’s focus on
having a single reservation registry with synchronous resource
reservation makes it difficult to accommodate low-latency,
high-throughput workloads. We are actively investigating
new solutions to this problem.

8.6 Support for Remote Data Storage

Impala currently relies on collocation of storage and com-
putation in order to achieve high performance. However,
cloud data storage such as Amazon’s S3 is becoming more
popular. Also, legacy storage infrastructure based on SANs
necessitates a separation of computation and storage. We are
actively working on extending Impala to access Amazon S3
(slated for version 2.2) and SAN-based systems. Going be-
yond simply replacing local with remote storage, we are also
planning on investigating automated caching strategies that
allow for local processing without imposing an additional
operational burden.

9. CONCLUSION

In this paper we presented Cloudera Impala, an open-
source SQL engine that was designed to bring parallel DBMS
technology to the Hadoop environment. Our performance
results showed that despite Hadoop’s origin as a batch pro-
cessing environment, it is possible to build an analytic DBMS
on top of it that performs just as well or better that cur-
rent commercial solutions, but at the same time retains the
flexibility and cost-effectiveness of Hadoop.

In its present state, Impala can already replace a tradi-
tional, monolithic analytic RDBMSs for many workloads. We
predict that the gap to those systems with regards to SQL
functionality will disappear over time and that Impala will
be able to take on an every increasing fraction of pre-existing
data warehouse workloads. However, we believe that the
modular nature of the Hadoop environment, in which Impala
draws on a number of standard components that are shared
across the platform, confers some advantages that cannot be
replicated in a traditional, monolithic RDBMS. In particular,
the ability to mix file formats and processing frameworks
means that a much broader spectrum of computational tasks
can be handled by a single system without the need for data
movement, which itself is typically one of the biggest imped-

iments for an organization to do something useful with its
data.

Data management in the Hadoop ecosystem is still lacking
some of the functionality that has been developed for commer-
cial RDBMSs over the past decades; despite that, we expect
this gap to shrink rapidly, and that the advantages of an open
modular environment will allow it to become the dominant
data management architecture in the not-too-distant future.

References

[1]

2

3

[4

[5]

6

[7]

8]

[9

(10]

(11]

(12]

(13]

A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB,
2001.

Apache. Centralized cache management in HDFS. Avail-
able at https://hadoop.apache.org/docs/r2.3.0/hadoop-
project-dist /hadoop-hdfs/Centralized CacheManagement.html.

Apache. HDFS short-circuit local reads. Available at
http://hadoop.apache.org/docs/r2.5.1/hadoop-project-
dist/hadoop-hdfs/ShortCircuitLocalReads.html.

Apache. Sentry. Available at

http://sentry.incubator.apache.org/.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
HyperLogLog: The analysis of a near-optimal cardinality
estimation algorithm. In AOFA, 2007.

A. Floratou, U. F. Minhas, and F. Ozcan. SQL-on-
Hadoop: Full circle back to shared-nothing database
architectures. PVLDB, 2014.

G. Graefe. Encapsulation of parallelism in the Volcano
query processing system. In SIGMOD, 1990.

C. Lattner and V. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
CGO, 2004.

S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivaku-
mar, M. Tolton, and T. Vassilakis. Dremel: Interactive
analysis of web-scale datasets. PVLDB, 2010.

S. Padmanabhan, T. Malkemus, R. C. Agarwal, and
A. Jhingran. Block oriented processing of relational
database operations in modern computer architectures.
In ICDE, 2001.

V. Raman, G. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra, S. Light-
stone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller,
I. Pandis, B. Schiefer, D. Sharpe, R. Sidle, A. Storm,
and L. Zhang. DB2 with BLU Acceleration: So much
more than just a column store. PVLDB, 6, 2013.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache Hadoop YARN:
Yet another resource negotiator. In SOCC, 2013.

T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner,
A. Zeier, and J. Schaffner. SIMD-scan: ultra fast in-
memory table scan using on-chip vector processing units.
PVLDB, 2, 2009.

	1 Introduction
	2 User View of Impala
	2.1 Physical schema design
	2.2 SQL Support

	3 Architecture
	3.1 State distribution
	3.2 Catalog service

	4 Frontend
	5 Backend
	5.1 Runtime Code Generation
	5.2 I/O Management
	5.3 Storage Formats

	6 Resource/Workload Management
	6.1 Llama and YARN
	6.2 Admission Control

	7 Evaluation
	7.1 Experimental setup
	7.2 Single User Performance
	7.3 Multi-User Performance
	7.4 Comparing against a commercial RDBMS

	8 Roadmap
	8.1 Additional SQL Support
	8.2 Additional Performance Enhancements
	8.3 Metadata and Statistics Collection
	8.4 Automated Data Conversion
	8.5 Resource Management
	8.6 Support for Remote Data Storage

	9 Conclusion

