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ABSTRACT

This paper presents a probabilistic approach to solve
optimal control problems with application to space-
craft proximity operations. The 6 degree-of-freedom
rendezvous and docking problem, using impulsive
control, and avoidance of known obstacles and plume
impingement is solved. Our solution is then ex-
tended to real-time obstacle avoidance. The space is
searched by expanding from the start location by ap-
plying only feasible controls and coasts, reducing by
nearly 50% the variables perturbed in the search. A
guided randomized expansion technique explores the
search space. A gradient descent approach smooths
the path and avoids new obstacles in real-time by
“stretching” the best precomputed path in a locally
optimal manner.

INTRODUCTION

The ability to service satellites autonomously is ush-
ering in a new revolution in space operations. Future
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space systems will employ autonomy and high ma-
neuverablity to refuel, reconfigure, and repair satel-
lites. Advanced technology programs such as the

NASA Demonstration of Autonomous Rendezvous
Technology (DART) program® and the DARPA Or-
bital Express program 2 are now underway to demon-
strate the various technologies required to achieve
autonomous in-orbit servicing capability.

Figure 1: Dynamic obstical avoidance by docking
spacecraft

Proximity operations, real-time obstacle
avoidance, and plume impingement are some of the
issues that need to be addressed in order to achieve
the goal of autonomous servicing. The rendezvous
control problem has been extensively researched?.
The plume impingement problem-avoiding contact
with harmful jet exhaust—as part of an overall
trajectory planner has been dealt with by using
collision detection algorithms on truncated cone
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models of the plume* and by using a continuous
cost function®.

In this paper a probabilistic search based ap-
proach is applied to solve the rendezvous and dock-
ing problem with avoidance of known obstacles and
of plume impingement. The paper also describes
an approach for real-time obstacle avoidance. The
optimal control solution is found through a hybrid
offline-and-online technique. In the offline phase a
probabilistic search in the spirit of dynamic pro-
gramming is used to generate the series of controls
avoiding known obstacles and plume impingement.
In the online phase, a technique based on gradient
descent is used to achieve real-time obstacle avoid-
ance. Although errors are not explicitly accounted
for, the online phase can serve as an effective feed-
back control loop to handle error.

The proposed approach is similar to earlier
work®, which also finds a low cost path for an or-
biting chase vehicle to dock on an orbiting target
vehicle. This earlier approach discretizes the space
into a tree network and explores the low cost parts
of the network guided by an A* heuristic®. How-
ever, by limiting the search to a fixed number of
possible controls used at every step, this search will
miss lower cost paths which occur between or outside
these possible controls.

The paper is organized as follows: The second
section presents the concept of kinodynamic motion
and describes the assumptions under which the or-
bital rendezvous and docking problem is solved. The
third section introduces and motivates the paradigm
of probabilistic searching. The fourth section de-
scribes the algorithm for Guided Randomized Tree
Expansion. The fifth section describes the algorithm
for Path Gradient Descent and Dynamic Obstacle
Avoidance. In the final two sections the applica-
tions and results are explained and the advantages
of the proposed system are discussed.

KINODYNAMIC MOTION

Kinodynamic motion planning refers to trajectories
planning”. A kinodynamic system is described by
the static representation (position, orientation, ...)
of an object, the derivatives of that representation
with respect to time, and the time that the repre-
sentation of the object occurs. This static represen-
tation can be referred to as the state of the object.
The con figuration of the object refers to the state,
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the state’s derivatives, and a time. Only the state is
required to check for collisions, but in kinodynamic
systems, dynamic constraints such as maximum ve-
locity restrict the entire configuration.

Orbital dynamics in rendezvous and docking
problems can be effectively modeled with only state
and the first derivative of the state in the configura-
tion. The use of the first derivative in the configu-
ration is motivated by the Clohessy-Wiltshire equa-
tions®, which are commonly used to describe orbital
dynamics. In this paper, the position and orienta-
tion of the chase vehicle determines the state, and
the first derivative of the state is referred to as the
active part of the configuration.

Control for orbital dynamics can be modeled
with instantaneous changes in the active part of
the configuration. This impulsive control represents
short jet firings by the chase vehicle. A path for
the chase vehicle can be described as an array of
directional and rotational impulsive controls at spe-
cific times, which can be integrated to retrieve the
chase vehicle’s full configuration at any time. For
the orbital rendezvous and docking problem, the so-
lution paths must avoid collisions with the target
vehicle and any other obstacles such as debris, must
avoid plume impingement, and must minimize fuel
use. Avoiding collisions and plume impingement can
be accomplished by restrictions on the static state
and the controls, so no kinodynamic constraints are
directly enforced on the solution path. However, be-
cause the fuel use must be minimized, the high ve-
locities are discouraged, and because of orbital drift,
minimal velocity bounds exist as well.

PROBABILISTIC SEARCH

In this section a brief overview of probabilistic search
is presented as applied to dynamic programming
and the spacecraft rendezvous and docking problem.
The general approach to solving optimization prob-
lems using dynamic programming is to first build a
network of waypoints and then search the network
for the best path. The conventional approach to
waypoint generation is to grid the system state space
by discretizing the states and controls. However, this
approach may result in many excess waypoints some
of which are physically unrealizable. Alternatively,
a tree approach can be used where one first seeds
the search space with a start and goal configura-
tion, then new waypoints are created by branching
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off of old ones. Bad edges and bad waypoints are
pruned, and the optimal path is harvested from the
tree. For tree-based networks, the key to finding op-
timal paths quickly is in choosing how and when to
branch. Probabilistic search uses a weighting func-
tion to probabilistically choose which waypoint to
expand and then grows the tree from that waypoint
by branching outwards based on a random distribu-
tion.

In this paper, a probabilistic approach is
used to explore the entire, non-discretized config-
uration space through a randomized process, in
the paradigm of Probabilistic Roadmaps®. Tree-
based exploration is more effective in kinodynamic
problems”, so our approach is more similar to
randomized tree expansion planners!®%7. These
techniques have been used before to compute au-
tonomous aerial maneuvers'?. However, conven-
tional tree-based planners have three significant
drawbacks for our purposes. (1) In higher dimen-
sional spaces, the dependence on range searching—
algorithmic methods for quickly finding points which
are close in Euclidean space—makes some problems
intractable because of range searching’s slow run
time for high dimensions. This issue was originally
addressed in'3. (2) Conventional range searching al-
gorithms do not accurately determine “close” points
in kinodynamic spaces. A configuration in kino-
dynamic space is described by a vector of param-
eters which are dependent on one another. Range
searching determines “closeness” using a Euclidean
metric which works on the 1-norm of the config-
uration vector. This metric assumes the param-
eters of the configuration vector are independent,
which is not the case in kinodynamic systems such
as ours. (3) Because these traditional methods bias
their search expansions in such a way as to maximize
the region reachable, they also may bias away from
low cost paths. Results from these techniques have
empirically been shown” to generate “straight” or
“smooth” paths in position space, but these traits
do not necessarily equate to low cost. The method
introduced in this paper, Guided Randomized Tree
Expansion, addresses these shortcomings.

It should be noted that our modification of
standard randomized tree-based planners was in-
spired by work in'3® which solved planning prob-
lems for an extremely high-dimensional system with
a nonconventional method also using a randomized
tree-based planner.

This paper also explores the capability to fur-
ther refine the initial path. Elastic Band techniques
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14,15 refine preexisting paths by following cost gradi-

ents of waypoints on the path. Recently, this tech-
nique has been extended to low-dimension kinody-
namic problems'®. Elastic Band techniques rely on
a closed-form cost gradient for waypoints on the
path. This paper describes a variation on Elastic
Band techniques to a higher dimensional kinody-
namic problems. In particular, the proposed ap-
proach not only avoids obstacles as in previous work,
but it also minimizes path cost by a metric other
than distance and smoothness. The variation of the
Elastic Band technique avoids obstacles in real time
while preserving low cost.

GUIDED RANDOMIZED
TREE EXPANSION

The goal of guided randomized tree expansion is to
explore the nondiscretized configuration space with
a focus on the low energy regions. This will find a
path more quickly by focusing the search and return
a path that not only avoids obstacles, but also has a
low cost. The algorithm is modeled on randomized
tree-based exploration techniques and A* network
searches.

Algorithm

The inputs to the algorithm are: (1) a start and a
goal configuration of the chase vehicle relative to the
target vehicle; (2) a method for checking whether a
particular configuration of the chase vehicle is in col-
lision with the target vehicle or violates some other
constraint; (3) a method to integrate forward the
effects of an impulsive control; (4) a metric to de-
termine cost for an impulsive control; and (5) an
estimate of the cost from a particular configuration
to the goal configuration. The user can specify ei-
ther how many iterations the algorithm can run, NV,
or a threshold for total cost of the path that a suc-
cessful algorithm must be under. The pseudocode is
given in Algorithm 1.

Algorithm 1 Randomized Tree Expansion
1: fori=0to N do
2:  p = CHOOSE_WAYPOINT()
3: n = EXPAND WAYPOINT(p)
4:  ADD_TO_TREE(p,n)
5: end for

The tree is seeded with the start con-
figuration and is then built by incrementally
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choosing a waypoint in the tree using the
CHOOSE _WAYPOINT method, expanding the
waypoint to a reasonable new waypoint using
the EXPAND _WAYPOINT method, and then
adding the new waypoint to the tree, if possible,
using the ADD_TO_TREE method which also at-
tempts to connect the new waypoint to the goal con-
figuration. The program terminates when it has it-
erated N times at which point it returns the lowest
cost complete path found or null if no complete path
to the goal has been found, or it can terminate early
if a complete path has less than a specified cost.
Experiments have shown that halting the algorithm
when a specified cost threshold is reached returns a
path more quickly, but running for N iterations finds
lower cost paths when more search time is available.

The ADD_TO_TREE method serves four
purposes. (1) It checks to see whether the path be-
tween waypoints p and n is feasible. This step uses
the input to the algorithm which checks for collisions
or any other constraints. (2) If the path is feasible,
the method calculates the cost to reach the new way-
point, n, by summing the total cost to get to the pre-
vious waypoint, p, and the cost determined by the
metric for cost based on the path from p to n. This is
stored with the new waypoint. (3) The method then
adds the new waypoint, n, to the tree by adding it as
an outbranch from the previous waypoint p. (4) Fi-
nally, an estimated cost to the goal configuration is
calculated. This cost is also stored in the waypoint.
If this estimate is less than some threshold and the
new waypoint is within some threshold for Euclidean
distance to the goal, then the method checks if it can
connect the new waypoint to the goal configuration
using the same given function it used to verify the
connection from the previous waypoint to the new
waypoint. If the new waypoint, n, connects to the
goal, then the cost for the total path is calculated,
and if this is the lowest cost path calculated so far,
it is stored to be returned later.

The CHOOSE_WAYPOINT method de-
termines which waypoint will be expanded. In con-
ventional probabilistic tree-expansion techniques!!,
waypoints are chosen from a random distribution
based on proximity to other waypoints with the in-
tent of exploring the space. In potential field meth-
ods!?, waypoints are generally chosen by looking at
the most recently generated waypoint, which, if ex-
panded to correctly, should also be the waypoint
with the lowest total cost. Potential fields do not
explore the space very well because they tend to fol-
low a single branch, but they seek low cost solu-
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tions. Our method for choosing waypoints combines
both of these aspects. We compute a weight for each
waypoint and then select a waypoint randomly with
a probability proportional to its weight. This can
effectively and quickly be done using a heap data
structure. The weight is inversely proportional to
a function of the A*_cost, inversely proportional to
a function of the out_degree, and proportional to a
function of the order in which it was generated.

) order(p)
weight(p) = A*_cost(p) - out_degree(p) 1)
,The A* _cost is the sum of the total cost calcu-
lated to reach the waypoint and the estimated cost
to reach the goal. The A* cost, which predicts the
overall cost, is widely used in graph searching to im-
prove search times and serves to focus the search to-
wards waypoints which will more likely lead to a low
energy path. The out_degree represents the number
of times the waypoint has been expanded and effec-
tively limits the number of times the same waypoint
is chosen. By weighting waypoints proportionally
to the order in which they are picked, more recent
nodes tend to be chosen more frequently. This en-
courages the tree to explore the space faster.

By choosing waypoints randomly but based on
the above distribution, the algorithm is not limit-
ing the search simply to following the locally most
optimal direction. Exploring in locally non-optimal
directions as well prevents the search from stalling
or getting stuck in local minima. Consider a search
technique that exclusively uses some energy func-
tion, where the global minimum is the goal, in order
to guide the search to the goal-for example naive
potential field planners. Now consider a configura-
tion which is an energy local minimum, for instance
a high energy region is between it and the goal. A
planner strictly following the locally low energy gra-
dient may drift into this local minimum then requir-
ing an exploration method, such as a random walk,
to escape the local minimum. Controlled random
deviation from the local gradient avoids this. For ex-
ample, weighting the choice of which waypoint to ex-
pand with the A*_cost reasonably focuses the search
towards the low energy and feasible direction, but
by not strictly following the best A* _cost, the search
can find the globally optimal path.

The EXPAND WAYPOINT method pro-
duces a new waypoint, n, which can likely be con-
nected to the previous waypoint, p. To adhere to
constraints of motion and to ensure that connections
can be achieved with a simple discrete control, we
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generate the new waypoint, n, by applying a control
to the previous waypoint, p, and integrating over a
time. To explore the space, the control direction
and magnitude as well as the time to integrate are
chosen randomly from a range'®. By expanding the
waypoint when applying a control, the cost can be
easily calculated based on the amount of control,
and only feasible movements from a waypoint need
be considered and explored.

Including Range Searching

Alternatively, Guided Randomized Trees can be gen-
erated by including information about the number
of nearby points. This can be incorporated into
the weight function. Randomized tree expansion al-
gorithms %7 rely heavily on the number of nearby
points because this heuristic can ensure that the
randomized exploration of the space has high like-
lihood of expanding into the entire space and that
it does not spend too much time searching in the
same area. By penalizing configurations which are
somehow close to each other, the tree will tend to
branch off of the configurations on the perimeter of
explored space and thus expand into unexplored re-
gions of the configurations space. This is a very
desirable characteristic, especially if the path to the
goal is narrow, and thus hard to find.

However, the way in which closeness should be
measured in configuration spaces where the motion
between configurations is restricted by kinodynamic
constraints is not entirely clear. Traditionally, a 1-
norm of the vector of numbers representing the con-
figuration is used, but this distance function is not
reliable in systems where certain terms of the state
vector are dependent upon other terms. Two differ-
ent ways of measuring distance are proposed as well
as a way to quickly search them.

The first alternative distance function at-
tempts to measure the closeness of the second config-
urations to the region where the first configuration
can expand into. The function returns the control
cost, for the first configuration to exactly reach the
second configuration. The second alternative com-
pares the regions in which two configurations can
expand into. It first lets the second configuration
drift with no control for a set time. It then returns
the control cost for the first configuration to reach
the drifted second configuration.

Most conventional techniques to find all near
neighbors use properties of a 1-norm distance func-
tion. So, they will not work for these alternatives.
Metric trees!® instead use only properties of a met-

5

ric distance function. It builds a binary tree of the
data by splitting on a data point. All configurations
within a median distance are placed in the inside
sub-metric tree, and the rest are placed in an outside
sub-metric tree. The split is continued recursively.
When retrieving near-neighbors of a configuration,
the triangle inequality and symmetric properties of
the metric distance function are used to, if possible,
either rule out any near-neighbors from being on the
inside sub-tree or from being on the outside sub-tree.
This allows lookup to avoid comparing all the con-
figurations and instead examines on the order of a
logarithm of the number of configurations.

Unfortunately, since both alternative distance
functions are only near metrics—they slightly vio-
late the triangle inequality and are not symmetric—
using metric trees does not always retrieve 100% of
the nearby configurations. Experimental data shows
that metric trees return between 70% and 100% of
the nearby configurations for first alternative dis-
tance function, and between 85% and 100% of the
configurations for the second alternative distance
function. The effect of the missed near-neighbors
with metric trees was qualitatively analyzed with a
3D visualizer. The pattern of tree growth could not
be distinguished between the use of metric trees and
the use of a brute force technique which calculates
the distance function for ever pair of configurations.
However, the use of metric trees was asymptotically
faster.

By incorporating the number of near-neighbor
configurations in the weight function decreased the
importance of the terms in the weight function con-
cerning the order-generated and out-degree of the
configurations. However, this added term is expen-
sive to calculate. With an optimization that creates
separate metric trees for different time buckets, cal-
culating the near-neighbors term, increases by 3 to
4 the time to generate similarly large trees.

Comparison to Other Path Planners

Guided Randomized Tree Expansion solves the set
of problems where a large configurations space with
kinodynamic constraints needs to be searched and
a low cost path needs to be extracted. A similar
randomized path planning algorithm Probabilistic
Road Maps? also will in general rapidly search a
large configurations space, but this technique gener-
ally is not well-equipped for solving problems with
kinodynamic constraints. The points generated are
completely random within the configurations space
and thus are not garaunteed to connect together, es-
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pecially not with a low cost. After generating many
paths (which may or may not violate constraints),
genetic algorithms® could be run on the paths to at-
tempt to breed constraint-abiding and near-optimal
paths; this is known as Adriadne’s Clew Algorithm
19 However, paths created by breeding two paths
have small likelihood of not violating constraints and
of improving on cost. So, this technique could take
a hopelessly long time. Dynamic Programming us-
ing A* optimization of a discretized search space
5 will also return a constraint satisfying low cost
path. To search large configurations spaces quickly
requires that the discretization of the possible ex-
pansions from a node be rather coarse. This will
results in a poor picture of the cost function over
the configurations space. To increase this coarse dis-
cretization will increase by an exponential factor the
number of nodes required to be searched. While this
technique with unlimited space will eventually find
a solution, Guided Randomized Tree Expansion will
quickly find a solution, then it can continue to build
on the old solution to find better solutions. At any
point (after the first solution is quickly found), the
best path found so far can always be returned, and
the algorithm can continue to run, searching for new
and better paths.

This Guided Randomized Tree expansion al-
gorithm is meant to be run offline, and determin-
istic completeness cannot be guaranteed. A notion
of probabilistic completeness—where the probability
that algorithm will solve the query goes to 1 as the
time it has run increases—is discussed in terms of sim-
ilar algorithms'%20. But Guided Randomized Tree
Expansion does not fall under this analysis. The al-
gorithm can be run many times simultaneously in
parallel and the low cost path from all the runs can
be returned. On each run of the program, a specific
series of controls describing a solution path may oc-
cur with nonzero probability. A proper analysis of
this technique lies outside the scope of this paper. In
practice the technique finds paths often and quickly
for this problem. This will be discussed with more
detail in the results section.

PATH GRADIENT DESCENT

After the best path is extracted from the Guided
Randomized Tree Expansion algorithm, it can be
further refined by calculating the cost gradient of
the path, and perturbing the path in that direction
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incrementally. An entire path has many degrees of
freedom, but by analyzing each waypoint on the path
individually and following the cost gradient of that
waypoint, the approach becomes manageable. This
part of the process can be run offline.

Path Representation

A path is stored as an array of waypoints where each
waypoint describes a configuration. In our case a
configuration represents position, velocity, orienta-
tion, rate of change of orientation, and time. The
controls applied at each waypoint can be stored as
well. The end points of the path are fixed, but all
intermediate waypoints are variable. The algorithm
deforms the intermediate waypoints in an attempt
to reduce cost while avoiding collisions and other
forbidden behavior.

Figure 2: Path segment

Figure 2 shows a segment of a path where the
circles are waypoints, wp, the solid lines, u, repre-
sent impulsive controls instantaneously altering the
active part of the configuration at the waypoint, and
the dashed lines are the integration of the change in
configuration over time. With the ability to inte-
grate forward in time, a path can be described by
the controls applied and the time elapsed between
controls. Thus the configurations at the waypoints
can be derived as the result of integration.

Cost Function

For such a path representation the cost of the path
can be written in terms of controls and elapsed time,
even if it depends on the configurations, since the
configurations can be derived. The objectives are to
minimize cost in terms of the controls and to avoid
obstacles. The algorithm does not vary the elapsed
time between waypoints. The cost function for a
single waypoint, such as wp;;+1 in Figure 2, is:
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avoid(obstacles, wp;y1(u;))+

COSTwp¢+1 = control (Uz)

(2)

COST is the sum of a function, avoid, which
repels waypoints from obstacles and a function,
control, which reduces cost of controls.

Functions avoid and control are designed for
a system where the equations to integrate position
over time can be written in a linear form. This
is also motivated by the Clohessy-Wiltshire (CW)
equations®. The kinodynamic system is broken into
two parts: the static part, position and orientation,
represented by z; and the active part, velocity and
rate of change of orientation, represented by &. The
¢ matrix, which transforms an initial configuration
to a final configuration, is a function of time. An
abstraction of a linear kinodynamics system can be

11 P12

written:
J?f ¢21 ¢22 x'z' .

The control function needs to take into ac-
count the control applied at the particular waypoint
and at the adjacent waypoints. Consider the way-
point labeled wp;41 in Figure 2. If the configuration
at waypoint wp;+1 is perturbed, the controls u; and
u;+1 must be altered. But altering controls applied
at waypoints wp; and wp;41 will not necessarily in-
tegrate the function to wp;42, so additional control
must be applied at that third waypoint. First per-
turb u; and then solve for u;41 in terms of the static
part of the configuration at wp;;2. This will align
the static part of the integrated system with wp;4s.
Then u;y2 can be adjusted to compensate for the
difference in the active part. Once all controls are
written in terms of u;, the gradient can be found
with respect to wu;:

3)

Uit1 = ¢1a (Tite — P11Tit1) — Fip1
Tit1 = 011%; + d12(E; + us)
Eit1 = 212 + P22(E; + us)
Uit2 = Bip2 + Uira! — 21851 — P22 (Tig1 + Uig1)-

(4)

The avoid function is inversely proportional
to the distance between the obstacles, O, and the
state of the chase vehicle, squared. The state of the
chase vehicle can be calculated as described above
also in terms of u; and compared to the position of
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the obstacles, O, to easily determine distance. This

is equivalent to the repulsive external forces used in
Ref.15.

avoid(0,u;) = m

Tip1 = G112 + P12(ds + i)

Algorithm

To minimize the cost of the path, the gradient of
each waypoint in the path is independently calcu-
lated and followed for some short distance €. This
process is iterated N times.

Algorithm 2 Path Gradient Descent
1: fori=0to N do
2:  randomly permute order of waypoint consid-
ered
for j = 0 to # waypoints do
calculate gradient
follow gradient e
end for
end for

N>R

Algorithm 2 provides pseudocode for path gra-
dient descent. Randomly permuting the order in
which the gradient descent is run on the waypoints
ensures that there is no bias in how the path de-
forms based on the order in which the waypoints are
minimized. This process will quickly converge to the
local minimum cost of the path.

Optimizations will cause the system to con-
verge more rapidly. (1) Waypoints with higher gra-
dients can be followed more often or for a larger
value of €, while waypoints with smaller gradients
can be followed less often, or for a smaller value of
€. This adaptive refinement will not only allow the
process to work faster, but will also allow it to refine
more specifically. (2) In regions where two controls
are applied in close time proximity to each other,
they can potentially be combined into one control.
This may reduce cost and may be more practical to
execute. Conversely, in regions where there is a long
drift without a control, a control can potentially be
added. Although this could make the overall ma-
neuver more complicated, it could possibly reduce
the cost.

Dynamic Obstacle Avoidance

The path gradient descent technique can be ex-
tended to work in a changing environment. Because
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the gradient is recalculated at every iteration, up-
dating information about current position and move-
ment of obstacles will not affect the process. As a re-
sult, this technique can be used as a control feedback
system to account for error in integrating control and
for dynamic obstacle avoidance. To account for dy-
namic obstacles, a prediction can be made for where
they will be at future times. This prediction can be
compared to the planned path for the chase vehicle,
and the chase vehicle’s trajectory can be modified to
avoid possible collisions with the predicted position
of the obstacle. As the prediction is refined, the tra-
jectory of the chase vehicle to avoid collision can be
refined in a control feedback loop.

Since path gradient descent is an iterative pro-
cess that converges to a minimum, the longer it is
run, the lower the cost will become. This results
in a tradeoff between autonomy and control. Adap-
tively, this method can quickly avoid obstacles that
suddenly are on a collision course with the path and
then reconverge to a low cost path. After the first
iteration of the program, a collision free path can
be returned and immediately used, and this colli-
sion free path can be continued to be refined until
the locally optimal path of the new environment is
found.

EXPERIMENTS

In a series of experiments, Guided Randomized Tree
Expansion and Path Gradient Descent were applied
to the rendezvous and docking problem of two or-
biting vehicles. These techniques could easily and
effectively be extended to other kinodynamic sys-
tems.

Orbital Dynamics

The translational dynamics are governed by the
Clohessy-Wiltshire (CW) equations® describing
changes in position and velocity of the chase vehicle
relative to the target. The CW equations can be
easily manipulated to provide a good cost estimate
21 for use in A* cost calculations. The rotational dy-
namics are modelled assuming constant orbital rate.
Tests were run on docking problems from about 2000
feet away from the target vehicle for a system repre-
senting the space shuttle as the chase vehicle and the
space station as the target vehicle. The chase vehi-
cle is assumed to make impulsive changes in velocity
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and angular rate bounded by user specified thresh-
olds. The results are compared to a Bang-off-Bang
(BOB) estimate?! where the cost of the maneuver is
calculated using the CW equations. This estimate,
applies a single control from the start configuration,
drifts without additional control to the goal configu-
ration, and applies a final control to match the goal
configuration’s velocity and angular rate. The BOB
estimate ignores collision and plume impingement.

Plume Impingement

Plume can be thought of as the exhaust resulting
from jet firings of the chase vehicle and is harm-
ful to the target vehicle. The plume is modelled as
teardrop-shaped collision objects that appear when
control is applied in the opposite direction. The
chase vehicle is modelled as having jets capable of fir-
ing along its x, y, and z axis in its coordinate frame,
although, these could be modelled differently. To
calculate the direction of the plume, the control ap-
plied is translated into the chase vehicle’s coordinate
frame. The size of the plume clouds is determined
by the component of the control along each of the x,
y, and z axes. If a collision with the target vehicle is
detected, the configuration is rejected, just as if the
chase vehicle collided with the target vehicle. All
collision detection is done with RAPID?2. Figure 3
shows plume impingement on the target vehicle.

Figure 3: Plume Impingement

Randomized A* Tree Expansion Tests

Tests were run on AMD Athelon 1GHz proces-
sor computers. 10,000 trees were generated with
the Guided Randomized Tree Expansion algorithm.
Each tree was built with 40,000 branches in about 2
seconds. This takes a total of about 10 minutes on
a 32-node cluster. The low cost path was reported
from each tree, compared to the BOB estimate, and
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plotted in the chart in Figure 4. The results are
grouped in categories 10% of BOB wide. So the
bar labeled 100 on the x axis represents the num-
ber of trees which generated a path between 100%
and 110% of the BOB estimate. The lowest reported
cost was 71% of the BOB estimate, although most
minimum costs were about twice the BOB estimate.

Percent BOB Estimate
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Figure 4: Best costs for 10,000 Randomized A* Tree
Expansion trees

An example tree and the minimum path for
that tree with plume clouds are displayed in Fig-
ures 5 and 6. The example proximity operations de-
picted started with the velocity and angular rate of
the chase vehicle matching that of the target vehicle.
The goal state for the chase vehicle also matches the
target vehicle’s velocity and angular rate. The tree
and paths displayed represent the three-dimensional
position of the chase vehicle in the relative frame
of the target vehicle. The velocity, orientation, and
angular rate are difficult to display in a stationary
two-dimensional image. Through the use of a three-
dimensional simulation model visualizer we devel-
oped, orientation can be displayed by the orientation
of the spacecraft drawn at different waypoints on the
tree or path. By interpolating between waypoints of
the tree and the path, the velocity and angular rate
can be visualized.

Figure 5: Guided Randomized Expansion Tree

9

Figure 6: A low cost path with plume clouds

Path Gradient Descent Tests

Tests for path gradient descent were run on a PIII
450Mhz computer. Precomputed paths can be
smoothed by distributing impulse throughout the
path. The gradient descent would converge to about
200% of the BOB estimate within 5 seconds, and
would tend to completely converge to between 50%
and 66% of the BOB estimate with more time. Fig-
ure 7 shows the smoothing results of gradient de-
scent. The initial path is dashed and the refined
path is continuous.

Figure 7: Path Gradient Descent

Dynamic Obstacle Avoidance Tests

Tests for dynamic obstacle avoidance were run on
a PIIT 450 MHz computer. Moving obstacles (rep-
resenting asteroids) were introduced to the system
such that they would exactly intersect the path at
the specific time to cause a collision with the chase
vehicle. The path deforms to avoid the obstacle after
the first iteration in about 1 millisecond. However,
this results in an extremely high cost path. After
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about 1 second, the path would converge to about
300% BOB estimate and eventually to about 100%
BOB estimate. These results of course depend on
how the introduced obstacles interfere with the op-
timal path. In our test cases, we intentionally intro-
duced obstacles to dramatically interfere with the
optimal path representing the worst possible cases.
Of course, if the introduced obstacles are far from
the optimal path, then they will have minimal effect
on how the path changes and the reconvergence will
not take much time. The image in Figure 8 displays,
with thin lines, the state of the path as it avoids
the obstacles and then relaxes. The original path
is dashed and the final path is continuous and bold.
Notice how the path initially jumps very far from the
obstacles and then reconverges to a smoother, lower
cost path. Also note that even though the path ini-
tially has sharp vertices indicating high cost controls
near the obstacle, the early part of the refined path
is very similar to the path which is eventually con-
verged to. So, the new path which avoids obstacles
can immediately be followed and then refined as the
chase vehicle is beginning to move in the right di-
rection away from the obstacle. And since this is
modeling a 2000 second operation, waiting a couple
seconds for a fully reconverged path is still a small
fraction of the total maneuver time.

Figure 8: Dynamic Obstacle Avoidance in motion

DISCUSSION

We believe our methodology can be easily extended
for use in other kinodynamic systems. The technique
has the advantage of finding a minimum cost path
while avoiding obstacles.

The Guided Randomized Tree Expansion
technique deviates from standard randomized tree
expansion techniques!V” in two ways. (1) It in-
corporates a cost function that is used as a guide.
(2) It does not necessarily use any range searching.
In general path finding applications, most time is
spent in collision checking. Our model has very
simple and quick collision checking so our speed
bottleneck was in range searching. As a result a
technique was devised that works without range
searching. However, including range searching in
the CHOOSE_WAYPOINT function helps expand
the tree more effectively and consistently. The use
of the added term may have advantages in configu-
ration landscapes with more obstacles.

The goal in developing the Guided Random-
ized Tree Expansion technique was to increase the
rate of convergence to the goal and to find lower cost
paths compared to standard randomized tree expan-
sion techniques. We accomplish this by focusing the
search to the part of the state space that would likely
contain a low cost path if there were no obstacles.
This slows the convergence of the exploration of the
complete space but increases the convergence of the
exploration of the space likely to harbor the best
path.

In our EXPAND _WAYPOINT method for the
Guided Randomized Tree Expansion, controls are
sampled with which to expand randomly from a uni-
form distribution. A different distribution, such as a
normal distribution, may have effective results. This
should be explored further.

By choosing branches based on controls!? that
can be integrated to determine movement instead of
a perturbation of all variables in the configuration,
only feasible solutions are generated and the vari-
ables altered when exploring the search space are
reduced by nearly 50%.

The methodology relies on linearly modeled
discrete impulsive controls. But many systems for
which this technique might be applied are better
modeled with continuous control and/or nonlinear
control. Future work should explore expanding the
Guided Randomized Tree Expansion and the Path
Gradient Descent to systems with continuous control
and nonlinear control.
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