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ABSTRACT

External merge sort belongs to the most efficient and widely used algorithms to sort big data: As much data as fits
inside is sorted in main memory and afterwards swapped to external storage as so called initial run. After sorting
all the data in this way block-wise, the initial runs are merged in a merging phase in order to retrieve the final sorted
run containing the completely sorted original data. Patricia tries are one of the most space-efficient ways to store
strings especially those with common prefixes. Hence, we propose to use patricia tries for initial run generation in
an external merge sort variant, such that initial runs can become large compared to traditional external merge sort
using the same main memory size. Furthermore, we store the initial runs as patricia tries instead of lists of sorted
strings. As we will show in this paper, patricia tries can be efficiently merged having a superior performance in
comparison to merging runs of sorted strings. We complete our discussion with a complexity analysis as well as a
comprehensive performance evaluation, where our new approach outperforms traditional external merge sort by a
factor of 4 for sorting over 4 billion strings of real world data.

TYPE OF PAPER AND KEYWORDS

Regular research paper: External sorting, string sorting, patricia tries, merge sort, big datasets

1 INTRODUCTION

Sorting is one of the fundamental problems of computer
science [14]. Sorting data not fitting into main mem-
ory is called external sorting. Although the sizes of the
main memories of computers increase continuously, the
data sets also become larger and larger (categorized as
big data trend).

In the area of the Semantic Web, there are masses of
data with over 30 billions triples in nearly 300 datasets
with over 500 million links between these datasets freely
available to the public - thanks to the efforts of the linked
data initiative [15]. Most of these datasets are too large to
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fit into main memory. Efficient processing of these data
sets requires indexing approaches (e.g., [19, 27]), and
sorting the data is one of the basic steps, which are typi-
cally done for index construction [12]. The most widely
used index type in databases is the BT -tree. BT-trees
can be built very efficiently from sorted data by avoid-
ing costly node splitting (see [16] and extend its results
to BT -trees). Thus, the performance of index construc-
tion from scratch relies heavily on the techniques of data
sorting.

The external merge sort [14] first generates initial runs
of sorted data. An initial run is typically computed by
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reading as much data as possible from input into main
memory, and sorting these data using main memory sort-
ing algorithms. The alternative approach replacement
selection [9] uses a heap to generate longer initial runs.
Runs are written into external storage and merged after-
wards to larger sorted runs until all the data is sorted.

Fatricia tries (e.g., [1]) are space-efficient data struc-
tures for storing strings. Common prefixes of strings are
stored only once in this data structure. We can retrieve
the contained strings in sorted order by just one left-order
traversal through its internal data structure in form of a
tree. Especially the terms of Semantic Web data consist
of many long common prefixes, such that using patri-
cia tries for Semantic Web data offers obviously a good
compression and low memory consumption.

Hence we propose a new external sorting algorithm
PatTrieSort based on patricia tries: We generate the ini-
tial runs by inserting the input strings into patricia tries
and we are swapping these patricia tries as initial runs to
disk if they are not fitting into main memory any more.
For the merging phase, we developed a merging algo-
rithm, the input of which are the swapped patricia tries.
There are advantages of PatTrieSort in the phase of ini-
tial run generation as well as in the merging phase: Initial
runs can be quite large because of the good compression
of patricia tries, such that more strings can be held in
main memory. In the merging phase, merging patricia
tries instead of strings avoids the comparison of common
prefixes, which is significantly more efficient.

The main contributions of this paper include:

e anew sorting approach PatTrieSort as variant of ex-
ternal merge sort for sorting strings, where the ini-
tial runs are generated by using patricia tries. The
initial runs are swapped in form of patricia tries to

disk and are merged in a later processing step.

a new algorithm for merging patricia tries used
within the merge phase of the new sorting approach.

a complexity analysis for the new merging algo-
rithm in terms of runtime, I/O costs and memory
consumption.

a comprehensive performance evaluation and ana-
lysis of PatTrieSort compared to the other external
merge sort variants using large-scale datasets with
over 1 billion strings.

2 BASIC DATA STRUCTURES AND SORTING
ALGORITHMS

In this section we shed light on the foundations of the
most important family of external sorting algorithms, the
external merge sort algorithms, as well as introduce its
variants. Furthermore, we shortly introduce patricia tries
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which are extensively used by our new sorting approach
for strings.

2.1 Heap

A (min-) heap is an efficient data structure to retrieve
the smallest item from the items stored in the heap (see
[17]). Adding an item into the heap and removing the
smallest item from the heap is done in O(log n), where
n is the size of the heap, i.e., the maximum number of
items of the heap. Internally, the heap is organized as
tree, most often as complete binary tree. The root of
each subtree contains the smallest item of the subtree.
Complete binary trees can be memory-efficiently stored
in arrays, where the index of the children and the parent
can be computed by simple formulas. Adding an item
is done by inserting the item as leaf to the heap tree and
swapping the item with its parent as long as it is smaller
than its parent (bubble-up). Therefore, the smallest item
in the heap is always stored in the root of the whole tree.
When the smallest item is taken away, the item in the
most-right leaf of the bottom level is moved to the root.
Afterwards, the root item is recursively swapped with its
minimum child if the minimum child is smaller than it
(bubble-down). Therefore, the smallest item in the heap
is always stored in the root of the tree.

After the smallest element in the heap is taken away, a
succeeding insertion of a new element can be optimized
by first placing the new element in the root and then per-
forming a bubble-down operation. This approach to op-
timize a pair of removing and insertion operations avoids
the bubble-up operation. We use this improvement dur-
ing initial run generation of the sorting approach replace-
ment selection (see Section 2.3).

2.2 (External) Merge Sort

(External) merge sort (see [14]) is known to be one of the
best sorting algorithms for external sorting, i.e., where
the data is too large to fit into the main memory. The
merge sort algorithm first generates several initial runs,
which contain already sorted data. The initial runs are
afterwards merged to generate a new round of runs. A
new run contains the sorted data of its merged runs, so
that the number of new runs becomes less while the size
of each new run increases. This process is repeated until
all the data is sorted.

Instead of merging only two runs, it is more efficient
to merge several runs. In order to merge a new run from
several runs, we always need to find the smallest items
from these runs. Thus, a heap is the ideal data structure
to perform this task.

The runs can be generated by reading as much data
into main memory as possible, sorting this data and write
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this run to external storage. For sorting the data in main
memory, any main memory sort algorithm can be chosen
[10], e.g. quicksort, (main memory) merge sort (and its
parallel version) or heapsort, which are well-known to be
very fast.

2.3 Replacement Selection

Another variant of external merge sort, called replace-
ment selection [9], uses a heap to increase the length of
the initial runs on average by a factor of 2. Whenever the
heap is full, its root item is retrieved and written to the
current run. In the heap, items, which still can be written
into the current run (i.e., which are greater than or equal
to the last item written into the current run), are ordered
before those items, which must be written into the next
run (i.e., which are smaller than the last item written into
the current run). The values of the items are the second
order criterion in the heap. If the value of the root item is
smaller than the last item of the current run, the current
run is closed, and a new run is created and becomes the
current run.

2.4 Patricia Tries

Tries (e.g., [1]) serve as efficient data structure for stor-
ing strings of characters with common prefixes (e.g., see
Figure 1 a)). Common prefixes of all strings, which are
contained in the trie, are stored only once in the trie. For
this purpose, the trie is a tree structure, in which each
edge is labeled with one character, and the concatenation
of the characters along the path from the root to a leaf
is one of the stored strings in the trie. The edges of a
parent node must contain different characters as labels,
and are ordered according to the lexicographical order of
their labels.

Fatricia tries are compressed tries (see Figure 1),
where the edges can contain not only one character as
label, but a string of several characters. In comparison
to tries all nodes (except of the root node) with only one
child are therefore melt together with their single child
(and the edge between them is removed). The label of
the incoming edge of the parent node is set to the con-
catenation of its previous label and the label of the old
edge to the child. The order of the edges corresponds to
the lexicographical order of their labels, such that search-
ing within the patricia trie and therefore also update op-
erations are more efficient. Note that the label can be an
empty string (denoted by @) occurring if the patricia trie
contains a string, which is a substring of another one in
the patricia trie.

Semantic Web data typically consist of many strings
with common prefix, as often IRIs [6] are used. Thus,
patricia tries are the ideal data structure to store Seman-

38

b) Patricia Trie Legend:

node with
label k,

edge for
Cl...cyl”cl...cy”

string

Figure 1: a) Trie and an equivalent b) patricia trie
containing the strings ’aaa’, ”aab” and ’bb”’

tic Web data in main memory. We show in the experi-
ments that patricia tries are also ideal for sorting “nor-
mal” strings, not only Semantic Web data.

2.5 Further Related Work

While [22, 5] introduce basic sorting algorithms in more
detail, [26, 3] are appropriate as surveys on external
string sorting.

Some contributions utilize tries already for sorting
(e.g., burstsort and its variants [25, 24]). In burstsort, a
trie is dynamically constructed as strings are sorted, and
is used to allocate a string to a bucket. For full buckets
new nodes of the trie are constructed the leafs of which
are again buckets. However, these algorithms work only
in main memory for the purpose of lowering the rate of
cache miss and are not developed for external sorting.

The main idea (and conclusion) of [28] is that it is
faster to compress the data, sort it, and then decompress
it than to sort the uncompressed data. This approach re-
duces disk and transfer costs, and, in the case of external
sorts, cuts merge costs by reducing the number of runs.
The authors of [28] propose a trie-based structure for
constructing a coding table for the strings to be sorted.
In comparison, we do not use codes, but we also store
compressed runs by storing the patricia trie containing
all the entries of the run, which reduces the space on disk
and in memory, too.

The contributions in [4] lay the foundations for a com-
plexity analysis for I/O costs for the string sorting prob-
lem in external memory. Its contribution covers the dis-
cussion of optimal bounds for this problem under differ-
ent variants of the I/O comparison model, which allow
or not allow strings to be divided in single characters in
main memory and/or on disk.

3 PATTRIESORT

We propose a new sorting algorithm PatTrieSort as vari-
ant of external merge sort, where patricia tries are exten-
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Figure 2: Overview of the main phases of PatTrieSort

sively used.

As external merge sort, PatTrieSort has two phases
(see Fig. 2): In the first phase initial runs (in form of
patricia tries) are generated and swapped to disk. In the
second phase the initial runs are merged until only one
run (in form of a patricia trie) remains, which contains
the sorted result. An optional step may be used to re-
trieve the sorted list of strings from the final run.

Within the first phase, the initial runs are generated by
inserting the strings to be sorted into a patricia trie. If
the main memory is full, the patricia trie is swapped to
disk. It is important that the patricia tries are swapped to
disk in a format, where the structure of the patricia tries
remains, and the nodes of the patricia trie are stored by a
left-order traversal through the patricia trie.

Within the second phase, the initial runs are merged
and stored in a merged patricia trie. We present the
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Figure 3: Example of merging 2 patricia tries

merge algorithm in the next subsection. The merge al-
gorithm can have an arbitrary number of patricia tries as
input, reads and processes all these input patricia tries by
a left-order traversal, and stores the resultant merged pa-
tricia trie again in a left-order traversal. Hence the merge
algorithm can merge as many patricia tries at once, as
many nodes of patricia tries can be intermediately held in
main memory. Typically there is only one merging step
necessary even for huge data sets to be sorted, which fur-
ther improves the speed of the overall sorting algorithm.

3.1 Merging Patricia Tries

While the algorithm for inserting in a patricia trie is well-
known [8], merging patricia tries, which we extensively
use in PatTrieSort for merging the initial runs in form of
patricia tries, has not been investigated to the best of our
knowledge.

3.1.1 Examples of Merging Patricia Tries

We will start with two examples in Fig. 3 and Fig. 4 for
merging patricia tries. Based on the examples, we will
afterwards formulate the algorithm for merging patricia
tries.

In Fig. 3, two patricia tries are merged. The different
nodes and edges to be considered in the input patricia
tries as well as the nodes and edges created (or copied
from an input patricia trie respectively) in the different
steps are marked by different colors. In the first step the
common prefix ’a’ of the labels of the first edges (be-
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tween ag and a; as well as between by and bq) in both
input patricia tries are considered and lead to the nodes
co and c; and the edge labeled with ’a’ between them.
Because of the distinct postfixes ’a’ and ’b’ of the la-
bels of the edges between ag and a1, and between by and
by respectively, the subgraph with nodes a1, as and ag is
copied from the first input patricia trie in the second step,
and the subgraph with nodes b1, b2 and b3 is copied from
the second input patricia trie in the third step. The string
’bb’ is contained in both input patricia tries. Hence, the
nodes and edges for 'bb’ are created only once in the
merged patricia trie. If we want to support duplicates in
our sorting algorithm, we need to hold a counter at each
leaf node for representing the number of occurrences. In
the latter case, we would need to compute the sum of
the occurrences of ’bb’ in both input patricia tries, and
just store the sum in the counter of the merged patricia
trie. Our merge algorithm will have only few additional
steps when duplicates should be considered. In the last
step, the remaining edge and node b5 for the string °¢’ is
copied into the merged patricia trie.

If the patricia tries are held in main memory with a
pointer structure and the input as well as the merged pa-
tricia tries are not modified any more after merging, we
can speed up performance: we can avoid the costly op-
eration of copying whole subtries and just use references
to the subtrie in the corresponding input patricia trie. If
we would allow to modify an input or the merged patri-
cia trie, then the modification would lead to side-effects
in the other patricia trie.

In Fig. 4, three patricia tries are merged. There are
analogous steps as for merging two patricia tries, we just
have to consider the nodes and edges of an additional pa-
tricia trie. Merging even more patricia tries is also possi-

ble.

3.1.2 Merge Algorithm

One can imagine that the merge algorithm can be eas-
ily generalized to merge an arbitrary number of patricia
tries. We only present the generalized merge algorithm
in the following.

Algorithm 1: MainMergePatTries
Input

: patricia tries 73 . .. T,,, where
Vie{l,..,n}:T; = (r;, Vi, E;) with r;
root node of the patricia trie ¢, V; its set of
nodes and Fj; its set of edges

Output: Merged patricia trie

1 Create node r

2 return MergePatTries(Ty ... Ty, (r,{r},0),r)

A patricia trie is represented in the merge algorithms
by a triple (r,V, E), where r is its root node, V its set
of nodes and F its set of edges. An edge e € F is rep-
resented by a triple (vs, ve,!), where vs,v. € V. This
edge is a directed edge from node v to node v, and is
labeled with a string | = ¢; ... c,,, where ¢; are char-
acters. We use the notation [[k] for the k-th character
in I. We define [[k] to return the empty character for
k € N if [ is the empty string. We define the empty
character to be the smallest character and use a function
man to retrieve the smallest character from a given set
of characters. The notation | [ | represents the number
of characters in . Hence, [k + 1]...I[| I |] represents
the substring of [ after the first k£ characters (and is the
empty string in the case that [ contains only % charac-
ters). A node v is a leaf node if ., : (v,ve,1) € E.
For a leaf node v, count(v) represents the number of oc-
currences of the string represented by the leaf node v.
We extend the standard definition of patricia tries at this
point in order to deal also with duplicates during sorting.

Algorithm 1 contains the main algorithm, which just
creates a dummy patricia trie with one node for holding
the resultant merged patricia trie later and calls Algo-
rithm 2 with it (additionally with its root node and the
input patricia tries).

Algorithm 2 first considers the left-most (unmarked)
edges of all input patricia tries in line 3. Already consid-
ered edges will be marked later (in line 6).

The minimum first character (or the empty charac-
ter respectively) among the labels of the left-most (un-
marked) edges in E is computed in line 4. In line 5
all those edges are filtered from FE, the labels of which
start with the minimum character (or which labels are
the empty string respectively), and stored in M. In line
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Algorithm 2: MergePatTries

Input : e patricia tries T ... T;,, where Vi € {1,...,n}
1, V; its set of nodes and F; its set of edges
e patricia trie R = (g, Vg, Er) for the result
e root node r of the current subtrie in R

Output: Merged patricia trie

: T; = (r;, V3, E;) with r; root node of the patricia trie

1 jobs < 0 // for collecting remaining pat. tries to store the merged patricia trie according to a left-order traversal

2 while any T; contains unmarked edge(s)

do
3 E+{e|FveV,l:e=(ry,v,l) € E; Aeis left-most unmarked edge in T; }
4 c1 < min(l[l] | Jv e V;,1: (r,v,1) € E)
5 M+—{e|FveV,l:(rvl)=ec EANIl]=c}
6 Mark all edges of M
7 P cy...cp, where V(ry,v,0) € M ¢y ...cp =1[1]...1[k] A k is maximal
8 Create new node w
9 Ve + Vg U {w}
10 ER(—ERU{(T,U},P)}
11 Y « () // for holding the remaining pat. subtries to be recursively merged
12 foreach e = (r;,v,1) € M do
13 if v is a leaf node N3t*, v* : (%, {t*,v*}, {(t*,v*, [k + 1].. . 1| L ]])}) € Y then
14 | count(v*) < count(v*) + count(v)

else

15 Create new node ¢
16 Vx « {t}
17 Ex < {(t,vlk+1]...00 L)}
18 Copy subtrie with root node v to Vx and Ex
19 Y(—YU{(t,Vx,Ex)}
20 jobs « jobs U{(Y, R,w)}
21 foreach (Y, R, w) € jobs do

L R < mergePatTries(Y, R, w)

return R

7 the longest possible common prefix c; . .. ci of the la-
bels in M are determined. Lines 8 to 10 add a new node
w and an edge to this new node with the longest possible
common prefix c; ... ¢i as label.

Line 11 initializes a data structure for holding the re-
maining patricia subtries to be recursively merged (later
in line 22) and added as subtrie to w in the final merged
patricia trie.

For each edge e in M, in line 13 our algorithm checks
whether or not its target node is a leaf node and there
exists already a patricia trie in Y, which contains only
one edge with the same postfix as label: original label
minus the common prefix c; ... cg. If it is the case, then
the number of occurrences are added together to be the
new number of occurrences for the string represented by
this leaf node (see line 14). If duplicates should not be
considered, this line 14 just may do nothing. Otherwise
in lines 15 to 19, a patricia trie is added to Y contain-
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ing an edge from a new node to the target node v of the
considered edge e with the postfix (original label minus
the common prefix) as label, as well as the whole patri-
cia subtrie of v. Actually in a more efficient implemen-
tation, copying subtries in line 18 is not necessary and
the same can be achieved by storing references to these
subtries and accessing the original subtries when needed.
Line 20 stores a job for merging the sub-patricia tries of
Y. Afterwards, the algorithm continues to handle the re-
maining unmarked edges at line 3.

If all edges have been considered (and all edges are
marked, line 2), the sub-patricia tries stored in jobs are
merged (lines 21 and 22). Note that instead of holding
the sub-patricia tries to be merged in jobs, they could
already be merged in line 20. However, first collecting
the sub-patricia tries in jobs has the advantage, that the
nodes of the merged patricia trie can be stored in the or-
der of a left-order traversal (by just storing the nodes and
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edges of the merged patricia trie in lines 9 and 10, and
storing a mark for the start of a next node after leaving
the loop of line 2 to 20). This has considerable benefits
for stream processing, which requires the patricia trie in
a stream to be read in the order of a left-order traversal
(see next subsection).

Finally, the merged patricia trie R is returned in line
23.

3.1.3 Dealing with Streams

Investigating Algorithm 2, we notice that the nodes and
edges of the input patricia tries are accessed in the or-
der of a left-order traversal. Hence, if the input patricia
tries can be accessed in streams in left-order traversal,
the merge algorithm works correctly also with streams.
Furthermore, the merged patricia trie can be stored in a
stream in left-order traversal.
These properties have several benefits:

e The merge algorithm can efficiently handle large
patricia tries, which are serialized on disk in left-
order traversal. Furthermore, the merged patricia
trie can be easily serialized on disk in the order of
a left-order traversal (and be the input for further
merge steps).

e The merge algorithm can be deployed (as merge
service) in distributed scenarios, where the patricia
tries are sent and consumed in streams. The output
stream of one merge service can be the input of an-
other, leading to possibly complex merge trees in a
distributed fashion.

3.2 Complexity Analysis

We will discuss the complexity of the merging algorithm
in Algorithm 1 in terms of memory consumption, I/O
costs and runtime in the following subsections. Let n
be the number of input patricia tries, « the number of
strings contained in all input patricia tries, { the maxi-
mum length of contained strings and c the size of alpha-
bet used within the strings.

3.2.1 Memory Consumption

We have already observed that copying subtries in line
18 is not necessary and the same can be achieved by a
delayed access to these subtries in succeeding recursion
steps. With this observation, we can conclude the fol-
lowing memory consumption: Because of the recursion
step in line 22 of Algorithm 2 and for each input patricia
trie, only the nodes of a complete path from the root to a
leaf node must be held in main memory. The maximum
number of nodes in such a path from the root to a leaf
node is [ (but is typically much smaller for real-world

data). However, for a more precise analysis we consider
the number r of nodes of a complete path from the root
to a leaf node. The maximum size of a single node is
the maximum number of edges c of a single node multi-
plied with the maximum size p of the labels of the edges:
O(c X p). For the merged final patricia trie, only one
node must be temporarily held in main memory before it
is written out. Hence, altogether the upper bound of the
memory consumption is O(n X ¢ X p x r), but is much
less if we consider the properties of real-world data (see
Section 3.2.4).

3.2.2 1/0O Costs

Each node of the input patricia tries must be loaded only
once into main memory under the condition that the
nodes are held in main memory until the recursion (in
line 23 of Algorithm 2) is left again. This means that
not whole subtries must be held in main memory, but
only the ancestor nodes of the currently processed node,
which has low memory footprint even for large datasets.
Each node of the merged patricia trie is stored only once
(lines 8 to 10). Under the assumption that optimal I/O
costs are loading the input tries only once and storing
the resultant patricia trie only once, we have optimal I/O
costs for merging patricia tries.

3.2.3 Runtime

We will first consider each non-trivial step in Algo-
rithm 2 before we discuss the overall complexity.

As all edges in a patricia trie node are ordered accord-
ing to their labels, not all edge labels of the current nodes
in the input patricia tries must be compared with each
other, but only a part of them. Hence, the check of the
loop condition in line 2 as well as the determination of
the set £ in line 3 can be done in time linear to the num-
ber of input patricia tries: O(n). As at most one edge of
each input patricia trie is added to F, the size of F is at
most n. The determination of the minimum first charac-
ter c; of the edge labels in E in line 4 is therefore also
O(n). For the same reason, the number of edges in M as
well as the determination of M in line 5 are O(n) (but for
real-world data often much smaller). Marking all edges
of M in line 6 is obviously in O(n). The determination
of the longest common prefix in line 7 is restricted by
the size of M and the maximal size p of the labels of
the edges and thus is O(n x p). Note that by intelligent
coding, lines 3 to 7 could be done by iterating only once
through the current edges of the input patricia tries (but
this does not affect the complexity in O notation).

The loop from line 12 to 19 is iterated at most n times.
Checking if an edge with the currently considered postfix
to a leaf node in line 13 already exists in the patricia tries
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Y still to be merged, can be done in O(p) (by choosing
a good data structure for searching for the postfix, e.g.
a hash table with the postfix as key). As already men-
tioned, copying subtries in line 18 is not necessary and
the same can be achieved by a delayed access to these
subtries in succeeding recursion steps. Hence, line 18
can be done in constant time (by storing a reference).
Thus, the loop from line 12 to 19 is in O(n X p).

The loop from line 2 to 20 is iterated at most O(c),
as the single characters of the strings are from the alpha-
bet with ¢ different characters, and there are therefore at
most ¢ different common prefixes. Altogether the loop
from line 2 to 20 is in O(n X p X c¢).

We assume to have r recursion steps. The final merged
patricia trie has at most x leaf nodes.

Hence, the overall runtime complexity is O(n X x X
¢ x p x r) and much less for real-world data (see Section
3.2.4).

3.2.4 Complexities for Real-World Data

For typical real-world data, c is not too large and can be
seen as constant. Note that p and  depend on each other:
as larger p is, as smaller is r and the other way around.
Actually we can assume that [ is in O(p x r) for typical
real-world data.

Memory Consumption: For typical real-world data,
the upper bound of the memory consumption is hence
O(n x1).

Runtime: Assuming the properties of real-world data,
the upper bound of the runtime is O(n x x x{). Assuming
that the sum L of the sizes of all strings is in O(x x [) for
typical real-world data, we achieve a runtime complexity
of O(n x L).

4 EXPERIMENTAL ANALYSIS

We compare different variants of external merge sort:
Our proposed approach PatTrieSort, string merging,
external merge sort and replacement selection. The
implementations of these sorting approaches are open
source and publicly available as part of the LUPOS-
DATE project [10, 11].

4.1 Implementation Details

We varied the number of elements after which initial runs
are swapped in PatTrieSort. For example, PatTrieSort
with paramater 100 000 means that after 100 000 entries
have been inserted into the patricia trie in main memory,
this patricia trie is swapped to disk as initial run.

String merging is very similar to PatTrieSort. How-
ever, instead of writing the patricia trie as initial run,
string merging writes the sorted list of strings as run.
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String merging writes the sorted list in a compressed way
by leaving out common prefixes and writing instead an
integer number for the number of characters in the com-
mon prefix with the previous entry. In experiments, this
achieved a much better performance in comparison to
writing the whole strings. In the merging phase, strings
need to be merged instead of patricia tries. A heap is
used for merging the strings of typically a huge number
of initial runs. Again we have chosen as parameter the
limit of entries after which an initial run is swapped to
disk.

External merge sort just uses an in-memory sorting al-
gorithm to generate the initial runs and stores the initial
runs in the same way as string merging. This approach
has also benefits for parallel sorting of data streams [7],
not only for sorting large data sets on a local machine.
We have done experiments with several in-memory sort-
ing algorithms like quicksort, LSD radixsort (specialized
to string merging) and several variants of merge sort, and
present here only the results with the best one of our ex-
periments, a parallel merge sort algorithm with 8 threads
for merging. Also for external merge sort we have cho-
sen as parameter the number of entries, which are sorted
in main memory and afterwards swapped as initial run to
disk.

Replacement selection uses a heap for increasing the
size of the initial runs (in typical cases by a factor of 2 [9]
on average). Replacement selection with the parameter x
means here that the sorting algorithm reserves a heap of
height 2 (containing therefore 221 — 1 entries) for gen-
erating the initial runs. We use an optimized heap, which
avoids a bubble-up operation in the two succeeding oper-
ations retrieving the smallest item of the heap and adding
anew item to the heap: After the root item is taken away,
instead of the standard operations (i.e., moving the last
leaf node to the root, performing a bubble-down opera-
tion, adding the new item as the last leaf node and per-
forming a bubble-up operation), we directly insert the
new item at the root, and perform just one single bubble-
down operation. This optimization significantly speeds
up the replacement selection by avoiding a bubble-up op-
eration.

Although we have used input data with over 1 billion
entries, we only use 1 merging step for all approaches.

4.2 Configuration of the Test System

The test system for the performance analysis uses an In-
tel Xeon X5550 2 Quad CPU computer, each with 2.66
Gigahertz, 72 Gigabytes main memory, Windows 7 (64
bit) and Java 1.6. We have used a 500 GBytes SSD for
reading in the input data and writing out the runs. The
input data is read asynchronous using a bounded buffer.
For saving space on the SSD, we compressed the in-
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Table 1: String Length Statistics for Sort Benchmark

Number of Strings: 1,000,000,000
Average String Length: 98
Standard Deviation of the Sample: 0
Minimum String Length: 98
Maximum String Length: 98

put data by using BZIP2 [23]. Decompression is done
on-the-fly during reading in the input data. For all ap-
proaches, we write the final run to disk and iterate once
through the final run. We have run the experiments ten
times and present the average execution times.

4.3 Sort Benchmark

We have used the Sort Benchmark [21] for testing the
performance of PatTrieSort in comparison to the other
external merge sort algorithms. More concretely, we
have used the input of PennySort [20], which is part of
the Sort Benchmark, with 1 billion entries and measured
the time for sorting these entries. The statistics of the
string length (see Table 1) show that the dataset is homo-
geneous, as all strings have the same length of 98 char-
acters.

It is obvious that larger initial runs lead to a faster
merging phase. However, the generation of larger ini-
tial runs itself slows down performance: For PatTrieSort
and string merging, inserting an entry into a larger patri-
cia trie is slower. For external merge sort the in-memory
sorting of more entries takes more time as well as for re-
placement selection inserting an entry into a larger heap.

Hence, there is an optimum for the amount of main
memory reserved for initial run generation, after which
sorting becomes slower again. For PatTrieSort and for
string merging, this optimum is swapping after 8 million
entries (see Figure 5), for external merge sort sorting of
2 million entries in-memory and for replacement selec-
tion using a heap of height 16 (with space for 131 071
entries).

Overall, PatTrieSort is the fastest among the external
merge sort variants, followed by the traditional external
merge sort, then string merging and finally replacement
selection. Due to today’s larger main memories, replace-
ment selection does not save merging steps in compar-
ison to the other sorting approaches, as all initial runs
can be merged within one merging step. Merging a large
number of patricia tries avoids comparing common pre-
fixes, such that PatTrieSort is much faster than string
merging and even gets ahead of external merge sort. Pat-
TrieSort is at least 30 % faster than the other approaches
(see Table 2).

The number of initial runs is the same and relatively
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Table 2: Speed Comparison of PatTrieSort with the
other approaches for Sort Benchmark (only best cho-
sen parameters)

T __ Timeofz
Time of PatTrieSort
String Merging 1.38
External Merge Sort 1.3
Replacement Selection 1.52
25000
20000
15000
10000
5000
[ e e L B e e e e e e e e LA B m Bt e S e e B B ]
OO0 0000000000000 O0DO0DO0O0O0O=HNMSTLWL OMN O
§888E8E8E888888E8¢888888887 A=A =7
OO0 0O 0000000000000 000 OO O
3888888R3888888R83888888
~ N S 00 W - NS 00N - NS 00N
GRS E] e
L JL JL JL
T T T T
PatTrieSort  String External Replacement
Merging Merge Sort Selection

Figure 5: Results of Sort Benchmark in seconds

small for PatTrieSort, string merging and external merge
sort (see Figure 6). For their optimal parameters, we
have 500 initial runs for external merge sort and 125
initial runs for PatTrieSort and string merging. Figure
7 shows the number of initial runs for replacement se-
lection in relation to their parameters. Replacement se-
lection with the best chosen height 16 of the heap gen-
erates 3817 initial runs. Although the merge phase is
much slower for replacement selection for the optimal
parameters, using larger heap heights becomes slower,
as the slower insertion of entries in these larger heaps
outweighs faster merge phases.

Storing patricia tries as initial runs results in some
overhead in comparison to storing a sequence of sorted
strings. This is reflected in the I/O-costs: See Figure 8
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Figure 6: Sort Benchmark: Number of initial runs
(y axis in logarithmic scale) in relation to size used in
main memory (x axis) for PatTrieSort, string merg-
ing and external merge sort, which all have the same
number of initial runs

1000000
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10000
1000

100

11 (4 095)
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14(32767)
15 (65 535)
16 (131071)
17 (262 143)
18 (524 287)

Figure 7: Sort Benchmark: Number of initial runs
(y axis in logarithmic scale) in relation to size used
in main memory (x axis) for replacement selection.
(s) at the x axis means reserving a heap of height
containing s (= 2"T! — 1) entries.

for the number of read bytes during sorting the data of
the Sort benchmark, Figure 9 for the number of writ-
ten bytes and Figure 10 for the total I/O-costs as sum of
the read and written bytes. Hence, the I/O-costs are not
completely the dominant factor in our considered sorting
approaches. Not surpisingly is the number of read bytes
a little bit higher than the number of written bytes, and
the I/0O-costs are (only slightly) lower when consuming
more memory. Replacement Selection has competitive
I/O costs only with high memory consumption.

4.4 Billion Triples Challenge

The overall objective of the Semantic Web challenge is
to apply Semantic Web techniques in building online
end-user applications that integrate, combine and deduce
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Figure 9: Sort Benchmark: Number of written bytes

information needed to assist users in performing tasks
[13]. For this purpose, in last years large-scale datasets
were crawled from online sources which are used by re-
searchers to showcase their work and compete with each
other. The Billion Triples Challenge (BTC) dataset of
2012 [2] consists of 1 436 545 545 triples crawled from
different sources like Datahub, DBpedia, Freebase, Rest
and Timbl. BTC is perfectly suited as example for large-
scale datasets consisting of real world data with varying
quality and containing noisy data.
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Figure 10: Total I/O costs of Sort Benchmark: Sum
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Table 3: String Length Statistics for Billion Triples
Challenge of 2012

Number of Strings: 4,309,636,635
Average String Length: 55
Standard Deviation of the Sample: 73
Minimum String Length: 2
Maximum String Length: 335,085

We have sorted the string representations of the three
components (called subject, predicate and object) of the
triples of the BTC data resulting in 4 309 636 635 strings
to be sorted. The string length statistics (see Table 3) re-
flects the noisy nature of the input: While having an av-
erage length of 55 characters, the lengths vary between
2 and 335 085 characters. Sorting is one basic step when
constructing a dictionary for the BTC data, which maps
each component of a triple to a unique number. Using
unique numbers instead of the space-consuming string
representations greatly reduces space used for indices
on disk, improves performance and lowers the memory
footprint [18]. There are many duplicates among the
strings to be sorted: Only 14 669 339 unique strings are
among the strings of the BTC data.

Semantic Web data consists mainly of International-
ized Resource Identifiers (IRIs) [6]. The syntax of IRIs
corresponds to the one of Uniform Resource Locators
(URLs), i.e., they consist of many characters and many
of them have a long common prefix. Hence, patricia
tries are the ideal data structure to space-efficiently store

Total Time (in seconds)
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Figure 11: Results of sorting BTC data in seconds
Table 4: Speed Comparison of PatTrieSort with the

other approaches for sorting BTC data (only best
chosen parameters)

Time of
x Time of PatTrieSort
String Merging 3.76
External Merge Sort 4.05
Replacement Selection 6.13

IRIs in main memory. For this reason our proposed ap-
proach PatTrieSort performs extremely well (see Figure
11): The string merging approach is already 3.76 times
slower than PatTrieSort, external merge sort 4.05 times
and replacement selection 6.13 times slower (see Table
4).

Real-world data does not have a regular structure like
synthetic data as in the case of the Sort Benchmark has.
Hence the development of the execution times dependent
on the main memory consumption is not so regular as
well. However, the tendencies remain similar to those
with synthetic data.

Because of the huge number of duplicates and their
space-efficient storage in Patricia Tries, the number of
initial runs is much lower for the PatTrieSort and string
merging approaches compared to external merge sort
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Figure 12: BTC: Number of initial runs (y axis in log-

arithmic scale) in relation to size used in main mem-

ory (x axis) for PatTrieSort, string merging and ex-

ternal merge sort
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Figure 13: BTC: Number of initial runs (y axis in log-
arithmic scale) in relation to size used in main mem-
ory (x axis) for replacement selection. h (s) at the x
axis means reserving a heap of height /1 containing s
(= 2"t1 — 1) entries.

(see Figure 12) and replacement selection (see Figure
13). Not surprisingly the factor

= #Initial runs of PatTrieSort and String Merging
o #Initial Runs External Merge Sort

even increases from about 7.5 to 9.6 when more mem-
ory is reserved for generating the initial runs (see Table
5). This is another reason for PatTrieSort beating the
other approaches, although it is not the dominant factor
(as string merging has the same number of initial runs as
PatTrieSort). However, in the results of the Sort bench-
mark (see Section 4.3) external merge sort was faster
than string merging, for BTC data it is the other way
around.

Many duplicates lower the I/O-costs of the PatTrieSort
approach, as fewer bytes need to be transferred between

Table 5: BTC data: Comparing approaches by factor
_ #Initial runs of PatTrieSort and String Merging

f= #Initial Runs External Merge Sort

Entries inserted before swapping | Factor f

500 000 7.5

1 000 000 7.8

2 000 000 8.3

4 000 000 8.7

8 000 000 9.1

16 000 000 9.6

32 000 000 9.6
100.000.000.000
90.000.000.000
80.000.000.000
70.000.000.000

60.000.000.000 o
50.000.000.000
40.000.000.000
30.000.000.000
20.000.000.000
10.000.000.000
L1 e e e B E e e e e B e e e e A B e e e e e e e ]
I“MTwHHWHNTM%MNTMHH ' )
PatTrieSort String External Replacement
Merging Merge Sort Selection

Figure 14: BTC: Number of read bytes

main memory and external storage: See Figure 14 for
the number of read bytes during sorting the data of the
BTC benchmark, Figure 15 for the number of written
bytes and Figure 16 for the total I/O-costs as sum of the
read and written bytes. For real data with more irregu-
lar properties higher memory consumption leads to much
less I/O-costs. Replacement Selection has again compet-
itive I/O costs only with high memory consumption, but
achieves the second best I/O-costs (after the PatTrieSort
approach).

5 SUMMARY AND CONCLUSIONS

Patricia tries are one of the most space-efficient data
structures for strings. Considering the size of main
memory as limit we can store much more strings in
main memory than just adding strings to lists or arrays.
Adding a string to a patricia trie is efficient as well as
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we can iterate over the contained entries of a patricia trie
in sorted order by traversing the tree of the patricia trie.
Hence, the first idea is to utilize patricia tries for gener-
ating large initial runs of an external merge sort variant.

In a second phase, external merge sort merges al-
ready sorted initial runs until only one sorted run remains
(which is the result). If strings with many common pre-
fixes are merged, these common prefixes are compared
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unnecessarily often. Patricia tries store common prefixes
only once. Hence the second idea for sorting strings is
to store the (initial) runs as patricia tries and to integrate
a merging algorithm based on patricia tries into external
merge sort.

The complexity analysis shows best results for the new
merging algorithm for patricia tries in terms of memory
consumption, I/O costs and runtime. While we have op-
timal I/O costs, the used memory is linear to the number
of patricia tries to be merged multiplied with the max-
imum length of contained strings, and the runtime de-
pends on the factor of number of patricia tries and the
total size of all strings.

The performance analysis highlights the new sorting
algorithm for strings as the best one in its family of ex-

* ternal merge sort algorithms. Especially sorting Seman-

tic Web data like the large-scale BTC data consisting of
many string with common prefixes benefits extremely
from merging patricia tries in external merge sort with
speed-ups higher than 3.7 compared to other external
merge sort variants.
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