N,

ELSEVIER

Computer Networks 36 (2001) 137-151

COMPUTER
NETWORKS

www.elsevier.com/locate/comnet

Customizable virtual private network service with QoS

L. Keng Lim, Jun Gao, T.S. Eugene Ng, Prashant R. Chandra,
Peter Steenkiste *, Hui Zhang

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

In this paper, we propose and implement Virtual Network Service (VNS), a value-added network service for de-
ploying virtual private networks (VPNs) in a managed wide-area IP network. The key feature of VNS is its capability of
providing a customer with a VPN that is customizable with management capabilities and performance properties
comparable to a dedicated physical network. In addition, VNS ensures confidentiality of data and principals through
the use of IPSEC. The main technique underlying VNS is the virtualization of routers in both control and data planes.
Virtualization of the control plane enables customizable routing and signaling per VPN. On the data plane, packet
forwarding and link bandwidth are virtualized. Virtualization of the forwarding mechanism on the data plane enables
forwarding of traffic according to each VPN'’s topology and policies. Virtualization of the link bandwidth enables each
VPN to have guaranteed quality of service (QoS) and customized resource management policies. We have developed a
VNS prototype for deployment on the CAIRN network. The VNS prototype implements several resource management
mechanisms including packet scheduling, signaling and runtime monitoring. A graphical user interface enables service

providers to manage, configure and deploy VPNs remotely. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Virtual private networks; Network quality of service; Programmable networks

1. Introduction

The Internet is gradually evolving into an in-
frastructure for network-based services. Virtual
private network (VPN) service will be one of the
important Internet services. A VPN service allows
a customer to build a virtual wide-area network on
top of a shared wide-area network infrastructure,
such as the Internet, without setting up any dedi-
cated physical connections. There is strong eco-
nomic incentive for the VPN service because of the
opportunity to share a common expensive physical

" Corresponding author. Tel.: +1-412-268-3261; fax: +1-412-
268-5576.
E-mail address: prs@cs.cmu.edu (P. Steenkiste).

network infrastructure amongst multiple VPNs.
The ubiquity of the Internet makes it an ideal in-
frastructure for providing the VPN service. Fig. 1
illustrates the situation where two different VPN
topologies are created on top of the same under-
lying shared network infrastructure.

Various forms of private networking services
have been available to enterprises for years. Ini-
tially, private networks were built using dedicated
leased lines, but the cost of building a large private
network using dedicated hardware is prohibitive to
all but the largest corporations. Then, with the
introduction of low-cost, packet-switched virtual
circuit-based services such as Frame Relay and
X.25, virtual private networking became possible.
Unfortunately, the availability and functionality
of these services is very limited. For an Internet-

1389-1286/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PI:S1389-1286(01)00173-6

138 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

<= -
| -

Host running
VANESA

Fig. 1. Two VPNs built on top of one shared physical network
in VNS. VANESA is a graphical VPN management tool. The
VPN controller is responsible for carrying out commands from
VANESA.

based VPN service to be a viable alternative, it
must have properties comparable to that of a
dedicated physical network. The service must
provide mechanisms to enforce quality of service
(QoS) and confidentiality of data must be guar-
anteed as the data travels over the common in-
frastructure. In addition, the service must offer
each VPN with the autonomy to customize re-
source management.

Most Internet-based commercial VPN solutions
today construct virtual links using either site-to-
site IP tunnels or site-to-site MPLS paths. The
configuration of the VPN topology is therefore
highly restricted. The services supported are often
limited to best-effort site-to-site connectivity and
secure communication between sites. If QoS is
offered, it is usually provided by over-provisioning
network resources so that QoS service-level
agreements are unlikely to be violated. Recently,
some efforts such as in [5,12] use QoS strategies
that require VPN traffic to be regulated at ingress
nodes. The downside is that the opportunity for
statistical sharing of unused resources is reduced.
Another important limitation of these approaches
is the lack of customizability. For example, a
customer cannot control the routing of VPN traffic
for load balancing or QoS routing, nor can a
customer specify resource management policies in
the VPN.

In this paper, we propose and implement
Virtual Network Service (VNS), a value-added
network service for deploying VPNs in a man-
aged wide-area IP network. VNS is built on top
of the IP layer to ensure interoperability across
various layer 2 technologies (e.g., ATM, MPLS).
A VPN is constructed from virtual links. A vir-
tual link is a link abstraction connecting any two
physical nodes that are in the VPN’s topology.
Communication over the VPN is secure, and
each virtual link is allocated a guaranteed
bandwidth. Moreover, unused bandwidth is
shared statistically between VPNs for additional
performance gains.

The key advantage of VNS is that it deploys
VPN that have a level of performance and degrees
of freedom in management that are comparable to
physical private networks. For instance, instead of
being restricted to only site-to-site virtual links, a
customer has full control of the VPN topology,
and how the VPN topology maps onto the un-
derlying network. This has two advantages. First,
the topology can be engineered such that appli-
cations that are sensitive to the network topology
(such as multicast applications) can achieve the
best performance. Second, by carefully choosing
the topology, statistical sharing of bandwidth
within the VPN can be optimized. In addition to
customizing the topology, each VPN can also se-
lect its own control protocols. For example, it can
use a customized routing protocol that supports
load balancing, policy-based routing or QoS
routing. VNS also provides guaranteed QoS on
each virtual link in a VPN. Moreover, because link
bandwidth is virtualized using hierarchical packet
scheduling, each VPN can even have its own sig-
naling protocol (e.g., RSVP) to customize resource
sharing policies in the VPN or to provide per-flow
QoS to real-time applications.

The main technique underlying VNS is the vir-
tualization of the control and data planes in rou-
ters. Virtualization of the control plane enables
each VPN to have the autonomy to execute cus-
tom routing and signaling protocols while sharing
a common physical infrastructure. Our approach
to provisioning customizable control planes le-
verages a programmable router architecture that
provides an open programmable interface [29].

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 139

In the data plane, packet forwarding and link
bandwidth are virtualized per VPN. Virtualization
of the forwarding mechanism enables isolation
and routing of traffic according to virtual topolo-
gies. Virtualization of the link bandwidth provides
each VPN with virtual links of guaranteed capac-
ity, and the autonomy to specify its own band-
width sharing policy. Earlier work in VPN services
such as in [7,15,24,31] did not consider statistical
sharing of under-utilized resources. In this work,
the additional performance benefit of statistical
multiplexing is achieved without compromising
any bandwidth guarantees by using the fair service
curve (H-FSC) [27] hierarchical packet scheduler.

Architecturally, VNS is based on the Darwin [8]
router design, which is programmable and capable
of virtualizing the link bandwidth. The Beagle [9]
signaling protocol is used for resource allocation
and control plane customization. In order to virtu-
alize routing and forwarding, we extend the Darwin
router design to allow each VPN to have its own
routing protocol and forwarding table. Secure
communication is achieved through IPSEC [18].
The virtual network system administrator (VA-
NESA), a Java-based VPN management tool, pro-
vides a user interface that hides the complexity of
the signaling from the user. VNS is targeted towards
deployment on the CAIRN research network [1].

The rest of this paper is organized as follows. In
Section 2, we examine the overall system design of
VNS. In Section 3, we explain the key concept of
virtualization by describing the mechanisms used
to enforce virtualization of bandwidth, control
plane protocols, and the forwarding mechanism.
We then survey related work in Section 4 and
summarize our work in Section 5.

2. VNS system overview

In this section, we describe the major compo-
nents of VNS and how they interoperate. A more
detailed desciption of the techniques used in vir-
tualizing routers is presented in Section 3.

2.1. Components

The main VNS components are:

1.

VANESA: VANESA is a Java-based centralized
graphical user interface for configuring and
managing VPNs. Fig. 2 is a screen capture of
VANESA. The idea here is similar to the con-
cept of a software toolkit for deploying virtual
networks as described in [13] by Ferrari and
Delgrossi. VANESA provides a simple interface
for the network administrator to configure VPN
properties such as the virtual topology, band-
width requirements of virtual links, parameters
for security configuration and VPN membership
information. Members of a VPN are described
by the member end hosts’ IP addresses and/or
the member subnets’ network prefixes. In addi-
tion, VANESA can also be used to specify cus-
tom routing and signaling protocols that are to
be deployed within a VPN.

. VPN controller: The VPN controller is a pro-

cess that runs on a host or router that has direct
access to the network where VNS is deployed.
The job of the VPN controller is to act as a
proxy for control messages between VANESA
and routers in the WAN where VNS is de-
ployed. This enables VANESA to be executed
remotely from anywhere in the Internet. Fur-
thermore, the complexity of the signaling re-
quired to set up the VPN is handled by the
VPN controller and decoupled from the user in-
terface. This setup is depicted in Fig. 1.

. Virtualizable VNS routers: VNS routers are

Darwin-based routers built on commodity PC
hardware running a variant of FreeBSD Unix.
Usually, a minimal PC router performs packet
forwarding based on a single forwarding table
and a routing daemon that does route compu-
tation. Darwin routers have enhancements such
as a signaling protocol module, a sophisticated
packet scheduler, packet classifier, and a pro-
grammable interface for deploying value-added
services. Leveraging these existing features of
Darwin, we extended the Darwin router design
for VNS. Control plane and data plane re-
sources on a VNS router are virtualized to sup-
port the unique needs of each VPN.

In the data plane, each VPN is allocated its own
resources such as link bandwidth and a
forwarding table. In the control plane, a VNS
router has mechanisms that enforce isolated

140 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

=3 VANESA

Flle Opilons Help

P : = . : :
Tulap View rv'PH Edilu: |/Scuuuly Tularuager rMJmI.U; |

sdson

Sanarpe

[(O] =]

Select Made Create VI'H -

Snlert Mt
clpe

SEMRECT VP

CAIRN 2 -

i

YPH Description VFMN ‘4
WPH ID G

Pipa Randwidth . 1.0

Il

["1 Routing "1 Pipes

[C] Sevunily Subirmil

@ zuknal
* s
* arrespe

drilpu

bhnpe

hellzun

Crupe

rrlpe sdlpe

darpapez

ot S S

Fig. 2. A screen-shot of VANESA.

execution of custom-VPN routing and signaling

protocols. Fig. 3 illustrates the virtualization of

a router.

Next, we describe service provisioning in VNS
by explaining the interactions between the com-
ponents of the system during the design, setup, and
operation of a VPN.

2.2. VPN design

We will describe the design of a VPN using the
example VPN shown in Fig. 4. Each VPN’s virtual
topology is constructed from virtual links, illus-
trated as dotted lines for VPN #1 and as the lightly
shaded lines for VPN #2 in Fig. 4. A router that is
part of a VPN’s topology is called a virtual router.
For instance, VPN #2’s virtual routers are A, B, D
and E.

A VPN provides connectivity for end hosts or
subnets identified as members of the VPN. In our

example, VPN #2’s members are subnet 10.1.1/24
attached at router A and subnet 10.2.1/24 attached
at router E. The router that is the access point to
the network for a VPN member is called an edge
router. All other interior routers in the network
that are part of a VPN but are not directly con-
nected to VPN members are called core routers.

In order to provide QoS to virtual links and
support per-VPN forwarding, virtual routers need
to maintain VPN-specific information for QoS
enforcement and per-VPN forwarding. In addi-
tion, edge routers must maintain VPN member-
ship information, IPSEC security parameters, and
the encapsulating IP headers to use for each
VPN.

2.3. VPN setup

During the setup phase, the network adminis-
trator specifies a VPN’s properties through VA-

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 141

VNS Router

routing
daemon

Forwarding
Table

SN

network interface card

I

One physical link

Virtualized VNS Router

<5}

vpn3
forwarding
table
vpn2

table

zi“@

o0

network interface care

|

One physical link,
Multiple virtual links

Fig. 3. A virtualized VNS router with three instances of virtual control planes and customized forwarding tables.

VPN #210.1.1/24

x
ot
0
o

VPN #110.2.1/24

edge router

140173682 E

VPN #110.1.1/24

edge router

Fig. 4. Basic concepts illustrated with two VPNs.

NESA’s graphical interface. These properties in-
clude the VPN’s virtual topology, bandwidth re-
quirements of the virtual links in the topology,
members, local routing policies for virtual routers,
security information and encapsulating IP headers
for tunneling VPN traffic. After specifying the
VPN description, the network administrator sub-
mits the request for setting up this VPN by clicking
on the “Submit” button on VANESA’s interface.
Subsequently, VANESA sends appropriate setup
messages to the VPN controller based on the re-
quest. There are several types of setup messages.
Each is related to a request to configure one of the
VPN properties. For instance, in a minimal VPN
setup that has no security configuration, VANESA
will be used to set up virtual links with bandwidth
guarantees, dispatch membership information and
configure local routing policies of routers in the
virtual topology. VANESA would therefore send

three setup messages to the VPN controller since
each of these configuration steps corresponds to a
specific type of setup request.

Upon receiving the VPN setup messages, the
VPN controller initiates requests to routers in the
virtual topology through the Beagle signaling
protocol [9]. While it would also be possible to set
up resource reservations with flow-based signaling
protocols such as RSVP [4], we chose Beagle be-
cause it provides support for the allocation of re-
sources for mesh structures such as VPN
topologies. All VPN connection management
tasks are handled by the Beagle daemon on the
VPN controller and the Beagle daemons on the
routers that are part of the virtual topology. In
Fig. 5, we show this setup procedure for one of the
routers that is part of the VPN.

For virtual link resource reservations, the Bea-
gle daemon on every router of a VPN configures

142 L.K. Lim et al. | Computer Networks 36 (2001) 137-151
Host running Controller Virtualizable Router
VANESA Node
Delegate
Runtime —»!| Other
—— Environment delegates
< VPN Controller 4| executed
e per VPN
VANESA T
» A Routing
User beagle 474'(beagle ‘ delegate
Space \
Kernel \
Space Y VR
Classifier H-FSC Routing
Scheduler Table
Virtualization
per-VPN

Fig. 5. Control path in VNS.

the local classifiers and schedulers of the appro-
priate network interfaces to reserve resources.
Beagle is also used to deploy VPN-specific routing
and signaling protocol modules on the routers of a
VPN. The customization of control protocols is
discussed in Section 3.2.

During the setup of a VPN, Beagle also per-
forms two configuration steps that are specific to
edge routers. The first step is to provide edge
routers with VPN membership information and
the globally unique VPN identifier (VPN-ID) that
was chosen by VANESA; this information is nee-
ded so edge routers can inject packets appropri-
ately into the VPN. The second VPN-specific step
is to establish security associations between the
edge routers; the security associations are used to
provide authentication and encryption of the data
that travels over the VPN. Both operations are
described in more detail below.

2.4. VPN operation

The operation of a VPN is based on IP-in-IP
tunneling, but support is provided to maintain
privacy of the data and to allow per-VPN cus-
tomization of packet handling inside the core of
the network. We discuss the main tasks performed
during the operation of a VPN in more detail in
this section (Fig. 6).

As in a private physical network, we believe the
basic security service a VPN should have is the
confidentiality of data and principals when VPN
packet flows in the core of the network. This is
provided in VNS by establishing ESP [17] tunnels
between the ingress and egress edge routers. This
means that for any VNS data stream, crypto-
graphic packet processing is performed at edge
routers only. It can be argued that this is less
secure than an alternative model that requires

Classification
Encapsulation

Encryption

Forwarding Table Lookup

Src G

CMUPC
ingress
edge
router

10.3.2.x/24

Forwarding Table Lookup
Classification

core
routers

Decapsulation
Decryption
Forwarding Table Lookup

MITPC
egress

(]
/ edge =]
router DstF

10.3.3.x/24

security association is from edge to edge

Fig. 6. Datapath through a VNS-enabled network.

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 143
Outer ESP Original ESP ESP
IP header VPN_ID Header IP header Payload Trailer Authentication
“7 encrypted 4"

authenticated 4"

Fig. 7. VNS packet format.

re-keying at every link. Our choice in keeping the
security model simple is motivated by a perfor-
mance trade-off, i.e., we reduce the overhead on
the core routers.

Using the membership information provided to
them by Beagle, an ingress edge router can cor-
rectly identify packets that belong to a VPN. It
then injects the packet in the appropriate IP-in-IP
tunnel and tags the packet with the globally unique
VPN-ID of the VPN. The VPN-ID is necessary
because once a packet enters a VPN tunnel, the
original packet is encrypted, so core routers can no
longer use the header fields to identify what VPN
the packet belongs to. To differentiate between
packets so as to enable per-VPN forwarding and
resource management, the VPN-ID is added to the
encapsulating header at the ingress edge router as
an ITPOPT_SATID IP option. This approach does
not support inter-VPN communication, though an
easy extension to enable this would be to supple-
ment a pair of VPN-IDs identifying the source
VPN and destination VPN, respectively.

By relegating the task of tagging packets with a
VPN-ID to the edge routers, we allow any end
host to become a VPN member without requiring
any changes. Implicitly, this limits the freedom of
hosts to directly control what VPNs they partici-
pate in, since the information of what traffic uses
what VPN has to be stored on the edge routers
using a signaling protocol. End-hosts can be given
more control by making them VNS-aware so they
can insert a VPN-ID into the packets they send.
This way, the end host can control more easily
which specific VPN-ID they want to use for spe-
cific applications.

VPN membership is maintained at each network
interface of an edge router in the form of <VPN-
ID, member src IP, member dst IP, in-

gress IP, egress IP> tuples. The member
source address in the tuple identifies a VPN mem-
ber that is reachable through that network inter-
face. Using the source and destination addresses of
a packet, the packet is classified to be part of a VPN
if it matches the <member src IP, member dst
IP> portion of a tuple in the membership list. The
packet is then encrypted by IPSEC and prepended
with the corresponding VPN-ID, and at last the
packet is encapsulated with the ingress and egress
routers’ IP addresses found in the tuple. Fig. 7 il-
lustrates the resulting packet format. We can pro-
vide more fine grain control over what traffic enters
a VPN by using additional fields (e.g., source and
destination port numbers) in the filter that is used
to classify packets.

When a core router receives a packet, it uses the
VPN-ID to identify the VPN that the packet be-
longs to. It can then service the packet in a way that
is appropriate for that VPN. Packet forwarding
and packet scheduling (QoS) can be customized on
a per-VPN basis, as is discussed in more detail in
Section 3. This allows packets to be scheduled
based on the policies of the VPN and forwarded
according to the VPN’s topology. At the egress
edge router, the packet is decrypted and decapsu-
lated. The inner packet is then examined and for-
warded to the locally attached VPN destination.

We have also modified the route, tracero-
ute and netstat commands for the VNS envi-
ronment such that we can create the initial routing
table setup and verify VPN routes.

3. Virtualization

In this section, we describe in detail how we
virtualize VNS routers.

144 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

155 Mbps Link

VPN #1

audio vid%

Fig. 8. Hierarchical resource tree of link bandwidth.

3.1. Virtualization of link bandwidth

Enforcement of bandwidth guarantees to vir-
tual links is performed using a packet classifier and
a hierarchical packet scheduler. For any router, we
represent the division of the bandwidth of a link at
the router as a hierarchical resource tree. In the
context of VNS, each VPN virtual link created
over a physical link is represented by a node ! in
the first tier of nodes underneath the root node in
the hierarchical resource tree. A certain amount of
bandwidth is reserved for each node at the VPN
set up time. The effect of this is that each virtual
link will have a guaranteed capacity. Fig. 8 is an
example of what a resource tree at a physical link
might look like with three VPNs. In this example,
VPN #3 reserved 40% of the link bandwidth,
which ensures that the virtual link of VPN #3 has
a capacity of about 62 Mb per second. The hier-
archical scheduler allows a VPN to further divide
its bandwidth across the traffic classes it carries by
creating a subtree. For instance, VPN #3 allocates
40% of its bandwidth to its TCP traffic in our ex-
ample.

VNS uses the H-FSC [27] packet scheduler de-
veloped in the context of Darwin. An advantage of
using H-FSC as opposed to other class-based
scheduling discipline such as H-PFQ [2] and CBQ
[14] is H-FSC’s flexibility in defining and enforcing
QoS on a multi-tier hierarchy. Unlike H-PFQ and

! Generally, a node corresponds to one or multiple flows. A
flow is defined using a flow_spec which includes fields from IP
and transport layer headers and an optional application ID.

CBQ, H-FSC is capable of decoupling the alloca-
tion of delay and bandwidth resources and char-
acterizing the provided service precisely. As a
result, real-time traffic can enjoy a low delay
without over-reserving resources. This allows the
router to have greater flexibility in resource allo-
cation and increases resource utilization. We ex-
tended the packet classifier from the Darwin
implementation to support VPN-ID-based classi-
fication. *

Another important property of the H-FSC
scheduler is that it allows sibling nodes in the re-
source tree to borrow bandwidth from each other
when possible. This means that if a flow inside a
VPN does not use all the bandwidth that is allo-
cated to it, other flows within the same VPN will
first have the opportunity to use that bandwidth. If
a VPN does not fully utilizing its capacity on a
virtual link, the extra bandwidth will be shared by
traffic belonging to other coexisting VPNs. This
additional performance gain from statistical mul-
tiplexing demonstrates that VPNs in VNS can
actually do better than a physical private network
with fixed capacity.

3.2. Virtualization of the control plane protocols

The control plane of a commodity PC router
running the Unix operating system typically con-
sists of user-level daemons that implement various
control protocols. For example, a routing daemon
creates and maintains the routing table on a rou-
ter, which governs the packet forwarding behav-
ior, by exchanging routing protocol messages with
peer routing daemons on other routers in the
network. In a traditional (physical) network, net-
work administrators can deploy a different routing
protocol by installing new routing daemons on the
routers within the network. Similarly, we would
like the administrators of VPNs to be able to
choose and deploy their own control plane pro-
tocols and network management policies within
their VPN. To meet this requirement, the control

2 In the case of encrypted traffic, an additional flow identifier
must be added to the packet header at the ingress router in
order to differentiate between flows inside the VPN. This
feature is not implemented in the current VNS prototype.

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 145

plane of the network that supports VPN services
needs to be virtualized. In other words, the control
plane can be sub-divided into multiple VPN con-
trol planes, each running a VPN-specific set of
control daemons.

3.2.1. Darwin programmability support

To control the behavior of the router, a control
protocol daemon needs to interact with modules in
the data plane, e.g., a routing daemon must be able
to update the routing table in the kernel, and a
signaling daemon must be able to change the states
of the classifier and scheduler. However, a tradi-
tional router is shipped as a “closed box™ with a
set of standard vendor protocols. It is difficult if
not impossible for users to install any customized
control protocols. In this project, we take on a
programmable network approach to support
control plane virtualization. In a programmable
network, the control plane functionality of the
routers can be extended dynamically by installing
customized control protocols on the router. These
protocol can modify the forwarding behavior of
the data plane in a controlled fashion through a
programming interface.

VNS leverages the programmability of the
Darwin system [8] to dynamically deploy VPN-
specific control protocols. In Darwin, mobile code
segments, called delegates, can be transferred to
the router and instantiated in the delegate runtime
environment (DRE) using the Beagle signaling
protocol. Delegates can implement control plane
protocols, customized control policies or custom-
ized services. They run at user level within the
DRE and change the router’s behavior by con-
trolling data plane modules, such as the classifier,
routing table and the scheduler through Darwin’s
programming interface, the router control inter-
face (RCI) [16]. Delegates can only modify the
forwarding behavior of the traffic flows that are
explicitly assigned to them.

3.2.2. Routing virtualization

We demonstrate control plane virtualization by
showing that VPN-specific routing protocols can
be deployed using delegates. During VPN setup,
delegates implementing a selected routing protocol
are installed on all the virtual routers of the VPN.

The coordinated actions of these routing delegates
will create VPN-specific routing tables according
to the VPN’s topology. This means that a virtual
router will have multiple routing delegates run-
ning, each responsible for the traffic of a separate
VPN.

To demonstrate the concept of routing virtual-
ization, we use RIP-2 [19] as an intra-VPN routing
protocol. For each VPN, a separate RIP-2 routing
daemon will be started by Beagle. We modified the
existing CAIRN routing daemon, mrtd [26], to
support multiple RIP clouds over a single physical
network. The RIP-2 specification requires all RIP
messages to be exchanged at the multicast address
224.0.0.9 and port 520. In order to support mul-
tiple RIP clouds, we extend the RIP protocol to
support the exchange of RIP messages at an as-
signable port number. The idea here is to allow a
VPN to select an unused port number at the RIP
multicast address and have VPN routing daemons
use that port number for RIP messages. This way,
we ensure isolation of VPN-specific RIP messages
and prevent VPNs from /leaking routes into each
others’ domain. In our implementation, port 520
remains as the port used by RIP-2 for default
routing, and for each VPN deployed, VANESA
assigns a unique and well-known port number to
the VPN. All RIP-2 messages pertinent to this
VPN will then be exchanged via this port.

Another possible approach would be to assign
each VPN with a specific multicast address for
RIP-2 protocol messages. This address would be
chosen from the administratively scoped range
(239.192/14) [21] and the only requirement is that
the multicast address must be uniquely mapped to
a specific VPN. This approach has the advantage
that a router will only receive VPN-specific RIP-2
messages if the router is a virtual router in the
VPN, but it requires that multicast is available.

The VNS approach of executing independent
per-VPN routing daemons on a router offers cus-
tomers the flexibility of deploying VPN-specific
routing protocols. However, it has the disadvan-
tage that it will not scale well to large numbers of
VPNs. Each routing daemon will consume re-
sources such as CPU cycles and memory, which
may degrade the router’s performance when it
supports a large number of VPNs. When multiple

146 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

VPNs use the same routing protocol, we can re-
duce the number of routing daemons by deploying
a single routing delegate that sends and receives all
the routing messages belonging to the VPNs using
the same routing protocol. The delegate then
demultiplexes the messages internally to compute
routes for each VPN separately.

Besides multiple routing daemons, routing vir-
tualization also requires multiple routing tables in
the data plane. We made extensions to the FreeBSD
Unix forwarding mechanism so that packets be-
longing to different VPNs are forwarded by looking
up the next hop in a VPN-specific forwarding table.
We discuss the details of this extension to the for-
warding mechanism later in this section.

3.2.3. QoS management within a VPN

A virtualized router control plane allows a VPN
to deploy other VPN-specific control plane pro-
tocols. As an example, we discuss how a VPN can
deploy its own signaling protocol to perform
VPN-specific resource management.

As discussed earlier, each virtual router em-
ploys a hierarchical packet scheduler, i.e., the
bandwidth of each link is shared in a hierarchical
fashion. As shown in Fig. 8, the first level in the
resource tree corresponds to the bandwidth shar-
ing across the VPNs running on the physical link.
To further exploit the merit of the hierachical
scheduler, the owner of a VPN link, i.e., a node in
the first tier of the resource tree, can set up more
sophisticated bandwidth sharing policies for ap-
plications running within its VPN, as is illustrated
for VPN #3 in Fig. 8.

To manage the resource reservations within a
virtual network, a VPN may need to deploy its
own signaling protocol. This can be done by in-
stantiating per-VPN signaling deamons (e.g.,
Beagle, RSVP), similar to what VNS does for
routing daemons. Sigaling messages must be tag-
ged with a VPN-ID, the same way as other VPN
traffic, and they will be forwarded according to the
VPN topology, i.e., use the VPN forwarding table
managed by the routing delegate of that VPN. The
actions of the signaling daemon will be restricted
to the resources of a specific VPN, i.e., the daemon
will only be able to modify the resource allocations
within a specific subtree of the resource tree.

3.3. Virtualization of forwarding mechanism

In this section, we will discuss a specific virtu-
alization technique for forwarding packets ac-
cording to virtual topologies. Conceptually, this
means that we may have to forward packets des-
tined for the same destination (egress router) dif-
ferent. However, FreeBSD Unix only supports
single path routing [20]. This is an inherent limi-
tation of the forwarding table radix-tree-based
lookup algorithm and data structures [25].

Our solution for route isolation in the for-
warding mechanism is to simply require the system
to maintain a separate forwarding table for each
VPN. Every forwarding table is populated with
routes computed based on the VPN’s virtual to-
pology. Whenever a packet arrives at a router and
needs to be forwarded, the forwarding mechanism
classifies the packet. If the packet is classified to a
VPN, it will be forwarded based on a route lookup
using that VPN’s forwarding table. Moreover, our
system’s routing architecture must correctly de-
multiplex routing messages that are exchanged
between the user space and the kernel space. In the
remainder of this section, we present the extensions
that we made to the FreeBSD Unix routing system.

3.3.1. Packet forwarding in FreeBSD Unix

In a FreeBSD Unix router, the user-level rout-
ing daemon and the kernel communicate using
messages [32]. The core information carried in
these messages are addresses of destinations and
gateways. These addresses are stored as one or
more sockaddr structures in the payload of these
messages. Fig. 9 is a simplified illustration of the
forwarding mechanism in FreeBSD Unix.

Forwarding and routing are organized on the
basis of different address families. Separate routing
tables are used for different address families, and
routing daemons inform the kernel what family of
addresses they are responsible for. To make this
system work correctly, routing messages must be
demultiplexed to the appropriate routing daemon
and forwarding table updates have to be applied to
the right table. Also when there are local changes
in routes or route policies, the kernel’s routing
subsystem must be able to dispatch these changes
to the correct routing daemon.

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 147

routing —

daemon <protocol family,len,value>

| & User space

§ | <PEoROUTE,RAW,AF_INET-

Kernel space
Lsocket raw socket control blocks
<domain, protocol family> ‘ <PF_ROUTE, 0> ‘

rt_tables

[1

Forwarding

Mechanism

lq——

forwarding table
for IP network

Fig. 9. Forwarding mechanism in FreeBSD Unix.

To demultiplex to the correct forwarding table,
a pointer to the forwarding table is obtained by
using the sa_family field of addresses as an in-
dex into the rt_tables[] array. Similarly, to
dispatch routing messages to routing daemons, the
forwarding mechanism searches through the con-
trol block list in the kernel in order to find a
control block which would give a back pointer to
the routing daemon. The search strategy is an ex-
haustive search that returns any control block that
has its <domain, protocol> values match the
key <PF_ROUTE, protocol family of ad-
dress>.

It is clear that the above routing architecture
cannot support the multiple forwarding table so-
lution needed for per-VPN packet forwarding and
routing. All addresses in the VPNs are IP ad-
dresses and will therefore have the protocol family
field set to AF_INET. As a result, all VPNs will
share the same IP forwarding table and any rout-
ing update will be dispatched to all VPN routing

user space

daemons. Any forwarding table updates will
“leak” to other VPNs.

3.3.2. Routing and packet forwarding in VNS

We provide per-VPN packet forwarding by
supporting demultiplexing to different forwarding
tables based on the VPN-ID, as is illustrated in

Fig. 10. This requires that we virtualize the various

kernel data structures involved in routing and

packet forwarding:

1. Create an array vpn_rt_tables[] for VPN
forwarding tables: At compile time the kernel al-
locates two arrays; vpn_rt_tables[] for
VPN forwarding tables and rt_tables[]
for forwarding tables of all other protocol fam-
ilies. Each entry in vpn_rt_tables[] con-
tains a pointer to a forwarding table and an
unsigned integer that stores the VPN-ID for
the associated forwarding table.

. Initialize routing daemon with VPN-ID: When a
routing daemon is instantiated, it is given the

kernel space

Forwarding |,
mechanism

A\

&%)

forwarding

Y

VPN
Forwarding|
Table

mechanism

N

¥a

L|[Forwarding|

Default

Table

‘ IP Input HIP Forward)—}{ IP Out:

A

put
IF Output

Network Interface Device Driver

Network Interface

=5—

Fig. 10. Virtualization of forwarding mechanism in a VNS router’s kernel.

148 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

VPN-ID of the VPN it is responsible for. This
VPN-ID is used by the routing daemon to inter-
act with the kernel.

3. Label routing sockets with a VPN-ID: We aug-
mented the kernel socket structure with an ad-
ditional unsigned integer field named vpn_id.
After a VPN routing daemon has created a
routing socket, it will make an additional io-
ctl() system call to set the vpn_id field of
the socket structure in the kernel to the VPN-
ID of the VPN.

4. Label the raw socket control blocks with a VPN-
ID: We modified the raw socket control block
structure by adding a field named vpn_id. As
in step 3, vpn_id is set to the VPN-ID of the
VPN associated with the routing daemon.

All the functions responsible for processing
routing messages entering the kernel from user
space have access to the kernel socket structure of
the process that generated the routing messages.
As a result, we can use the vpn_id field in the
kernel socket to associate the routing messages
with the correct VPN. For example, using the
vpn_id field as the index to the vpn_rt_tables
array, we can easily obtain the pointer to the ap-
propriate VPN forwarding table.

In the other direction, when routing messages
need to be dispatched to the routing daemon, we
cannot easily associate these routing messages with
a kernel socket. In the IP domain, the forwarding
mechanism uses <PF_ROUTE, AF _INET> as the
search key to find a match from the list of raw
socket control blocks. We extended the search to
use the tuple <PF_ROUTE, VPN-ID>. Within the
forwarding mechanism, we overloaded the func-
tionality of the sa_family field in sockaddr to
encode the VPN-ID in the following way. If its
value falls outside the set of well-known protocol
families, then we know that sa_family must be a
VPN-ID. Consequently, in the search for the cor-
responding raw socket control block, the vpn_id
field in the control block structure will be used for
comparison.

Finally, an extra step is added into the packet
forwarding mechanism. As shown in Fig. 10, a
route lookup is performed in the TP_FORWARD
module after the IP_INPUT module determines
that a packet has yet to reach its final destination.

In VNS, the extra step involved in this lookup
consists of a classification step to determine if the
packet belongs to a VPN. The classification step
checks for the availability of the TPOPT_SATID
option in the packet header. If the option exists,
the packet is assumed to be a VPN packet and the
option value is used as the VPN-ID. The destina-
tion address of the packet is then packed into a
sockaddr structure and tagged with the VPN-
ID. This sockaddr structure is then passed to the
forwarding mechanism for a route lookup.

Our virtualization of the forwarding mechanism
is straightforward and results in no changes to the
tree-based forwarding table lookup algorithm and
its associated data structures. An alternative
would be revamp the forwarding table lookup al-
gorithm and data structures, as is done in the
Detour project [10] or to use MPLS. A more de-
tailed discussion of Detour and MPLS in com-
parison to VNS is provided in Section 4.

4. Related work

One of the distinguishing features of VNS is
that it can provide VPN services with customizable
intra-VPN QoS support. To the best of our
knowledge, other approaches such as the X-Bone
[30], Genesis [6] and Supranet [13] are more fo-
cused on providing an overall service architecture
and have not fully developed techniques for en-
abling per-VPN QoS. Earlier research in VPNs,
such as in [7,15,24] focused on VPN services on
broadband ATM networks, i.e., they developed
methods for managing and mapping VPNs on
virtual circuits. While some measure of QoS is
attainable through dedicated virtual circuits, these
ATM-based solutions typically do not allow
bandwidth sharing across VPNs, since VPN flows
are mapped directly to virtual circuits. This leads
to a lower utilization of the bandwidth resources.
Other QoS strategies that regulate traffic exclu-
sively at the ingress router, such as in [5,12], also
cannot capitalize on statistical multiplexing gains
as easily.

Our approach to QoS is based on an IP layer
mechanism that provides bandwidth guarantees to
VPNs and has the added benefit of statistical

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 149

multiplexing gained through the use of the H-FSC
packet scheduler. When flows are inactive, their
unused bandwidth can be utilized by other active
flows.

A programmable network router architecture
facilitates the virtualization of a router’s control
plane. Projects such as Tempest [31], Genesis [6],
and Virtual Active Network (VAN) [28] represent
recent efforts in using concepts of programmable
networks for deploying virtual networks. Their
approaches are conceptually similar to ours. Ar-
chitecturally, Tempest is an ATM-based solution
that uses logical entities called switchlets for iso-
lating multiple control architectures. Genesis on
the other hand, has an architecture for spawning
virtual networks through the operating system
services of the Genesis kernel. VAN uses a func-
tional language [11] to specify virtual networks
and virtual networks generated from VAN are
deployed as application layer tunnels using UDP
encapsulation. In VNS, we leverage Darwin’s
programmable router architecture, which provides
programmability of the routers through the use of
delegates and an open programming interface
called RCI.

Virtualization of packet forwarding can be im-
plemented in several different ways. To our
knowledge, VNS and Detour are the only two
projects that implement virtual forwarding by
modifying the behavior of the forwarding mecha-
nism in a router’s kernel. VNS virtualizes the
forwarding mechanism by maintaining multiple
forwarding tables to isolate VPN routes. In De-
tour, the forwarding mechanism looks up routes in
a flow database and tunnels packets using [P-in-IP
encapsulation every time the packet traverses from
one virtual node to another virtual node. In our
approach, encapsulation occurs only once at the
edge of the network and no tunneling is needed in
the core of the network. Furthermore, because
routing algorithms are not considered as part of
the Detour framework, the flow database used for
route lookups in Detour are manually configured
with routes. The VNS approach allows for auto-
matic construction of a VPN forwarding table by
using a VPN-specific routing protocol.

MPLS-based VPN solutions such as in [22,23]
have also been proposed. For QoS, these ap-

proaches rely on traffic engineering and regulating
traffic at the ingress router using service models
such as DiffServ [3]. For the purpose of labeling
packets, MPLS-based solutions require the inser-
tion of a shim layer between layer 2 and layer 3
protocols or overloading of existing layer 2 pro-
tocol fields. The networks where such a service is
deployed must therefore be MPLS aware. In con-
trast, the VNS approach is an IP layer solution
and is independent of the underlying link layer.

5. Summary

In this paper, we presented the design and a
prototype implementation of VNS, a VPN service
that is customizable and supports VPN-level QoS.
We had three design goals. First, we wanted VPN
support at the IP level for interoperability across
multiple network technologies. Second, we wanted
VPNs to be very similar to physical networks by
providing the flexibility to use a variety of QoS
models inside the VPNSs. In fact, we want VPNSs to
be better than physical networks in the sense that
heavily used VPNs can share the unused capacity
of lightly loaded VPNs through statistical multi-
plexing. Finally, users should be able to customize
the management and control functions of their
VPN.

Our proposed VNS design uses IP tunnels and
IP security as the basic VPN infrastructure. To
support the VPN isolation and customization that
is needed to meet the above goals we use three
complementary mechanisms. A H-FSC scheduler
provides bandwidth isolation between VPNs and
allows each VPN to independently manage the
bandwidth that is assigned to it. Customization of
control plane functionality is provided by using a
programmable router platform that supports the
execution of third party control plane protocols.
These customized control protocols can control
the data path functions for the traffic they are
responsible for through a RCI. Finally, we virtu-
alized critical functions in the data plane. The
H-FSC scheduler already supports virtualization
of resource allocation (scheduling) and in our
prototype we also demonstrate the virtualization
of packet forwarding.

150 L.K. Lim et al. | Computer Networks 36 (2001) 137-151

We implemented a VNS prototype based on
this design using the Darwin network as a foun-
dation. Darwin is a programmable network that
uses the H-FSC scheduler and it also provides a
signaling protocol that makes bandwidth reserva-
tions and installs customized control protocols.
Our prototype is rich enough to demonstrate
bandwidth isolation, isolation of bandwidth
management, and customization of routing and
packet forwarding. We plan to expand our pro-
totype to further evaluate the possibilities of our
approach, e.g., by providing support for custom-
ized signaling protocols and hierarchical VPNs.

References

[1] Collaborative Advanced Inter Agency Research Network.
http://www.cairn.net.

[2] J.C.R. Bennett, H. Zhang, Hierarchical packet fair queue-
ing algorithms, IEEE/ACM Transactions on Networking 5
(5) (1997) 675-689 (also in SIGCOMM’96).

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.
Weiss, An Architecture for Differentiated Services, Request
for Comments (Informational) 2475, Internet Engineering
Task Force, December 1998.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
Resource Reservation Protocol RSVP — Version 1 Func-
tional Specification, Request for Comments (Standards
Track) 2205, Internet Engineering Task Force, September
1997.

[5] T. Braun, M. Gunter, I. Khalil, An architecture for
managing QoS-enabled VPNs over the Internet, in: 24th
IEEE Annual Conference on Local Computer Networks
(LCN 99), Lowell, Boston, MA, October 1999.

[6] A.T. Campbell, M.E. Kounvanis, D.A. Villela, J. Vicente,
K. Miki, H.G. De Meer, K.S. Kalaichelvan, Spawning
networks, IEEE Network Magazine, July/August 1999.

[7] M.C. Chan, A.A. Lazar, R. Stadler, Customer manage-
ment and control of broadband VPN services, in: Pro-
ceedings of the Fifth IFIP/IEEE International Symposium
on Integrated Network Management, May 1997.

[8] P. Chandra, A. Fisher, C. Kosak, T.S.E. Ng, P. Steenkiste,
E.Takahashi, H. Zhang, Darwin: resource management for
value-added customizable network service, in: Sixth IEEE
International Conference on Network Protocols
(ICNP’98), Austin, TX, October 1998.

[9] P. Chandra, A. Fisher, P. Steenkiste, A signaling protocol
for structured resource allocation, in: Proceedings of the
IEEE Infocomm ’99, New York, March 1999.

[10] A. Collins, The Detour framework for packet rerouting,
Ph.D. Qualifying Examination, Department of Computer
Science and Engineering, University of Washington, No-
vember 1998.

[11] S. DaSilva, D. Florissi, Y. Yemini, NetScript: a language-
based approach to active networks, Technical Report,
Computer Science Department, Columbia University, New
York, January 1998.

[12] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K.
Ramakrishnan, J.E. van der Merwe, A flexible model for
resource management in virtual private networks, in:
Proceedings of the ACM SIGCOMM 1999, September
1999, pp. 95-108.

[13] D. Ferrari, L. Delgrossi, Supranets, Technical Report
CTR-96-001, Center for Research on the Applications of
Telematics to Organizations and Society (CRATOS),
Universita Cattolica, Piacenza, Italy, September 1996.

[14] S. Floyd, V. Jacobson, Link-sharing and resource man-
agement models for packet networks, IEEE/ACM Trans-
actions on Networking 3 (4) (1995) 365-386.

[15] S. Fotedar, M. Gerla, P. Crocetti, L. Fratta, ATM virtual
private networks, Communications of the ACM 38 (2)
(1995).

[16] J. Gao, P. Steenkiste, E. Takahashi, A. Fisher, A
programmable router architecture supporting control
plane extensibility, IEEE Communications Magazine,
March 2000.

[17] S. Kent, R. Atkinson, IP Encapsulation Security Payload
(ESP), Request for Comments (Standards Track) 2406,
Internet Engineering Task Force, November 1998.

[18] S. Kent, R. Atkinson, Security Architecture for the Internet
Protocol, Request for Comments (Standards Track) 2401,
Internet Engineering Task Force, November 1998.

[19] G. Malkin, RIP Version 2, Request for Comments
(Standards Track) 2453, Internet Engineering Task Force,
November 1998.

[20] M.K. McKusick, K. Bostic, M.J. Karels, J.S. Quarterman,
in: The Design and Implementation of the 4.4BSD Unix
Operating System, Addison-Wesley, Reading, MA, 1996.

[21] D. Meyer, Administratively Scoped IP Multicast, Request
for Comments (Best Current Practice) 2365, Internet
Engineering Task Force, July 1998.

[22] K. Muthukrishnan, A. Malis, Core MPLS IP VPN
Architecture, Internet draft draft-muthukrishnan-mpls-
corevpn-arch-03.txt, Work in Progress, expires December
2000.

[23] E. Rosen, Y. Rekhter, BGP/MPLS VPNs, Request for
Comments (Informational) 2547, Internet Engineering
Task Force, March 1999.

[24] J.M. Schneider, T. Preuss, P.S. Nielsen, Management of
virtual private networks for integrated broadband com-
munication, in: Proceedings of the ACM SIGCOMM 1993,
September 1993, pp. 224-237.

[25] K. Sklower, A tree-based packet routing table for Berkeley
UNIX, in: Proceedings of the Usenix Winter Conference,
Dallas, TX, January 1991.

[26] Software available for download at http://www.mrtd.net.

[27] 1. Stoica, H. Zhang, T.S.E. Ng, A hierarchical fair service
curve algorithm for link sharing, real-time and priority
service, in: Proceedings of the ACM SIGCOMM, Septem-
ber 1997.

L.K. Lim et al. | Computer Networks 36 (2001) 137-151 151

[28] G. Su, Virtual Active Network: A White Paper. http://
www.cs.columbia.edu/~gongsu.

[29] E. Takahashi, P. Steenkiste, J. Gao, A. Fisher, A
programming interface for network resource management,
in: Proceedings of the 1999 IEEE Open Architectures and
Network Programming, New York, March 1999, pp. 34—
44.

[30] J. Touch, S. Hotz, The X-Bone, in: The Third Global
Internet Mini-conference in Conjunction with Globecom
’98, Sydney, Australia, November 1998.

[31] J.E. van der Merwe, S. Rooney, I.M. Leslie, S.A. Crosby,
The Tempest — a practical framework for network
programmability, IEEE Network 12 (3) (1998) 20-28.

[32] G.R. Wright, W.R. Stevens, TCP/IP Illustrated. Vol. 2.
The Implementation, Addison-Wesley, Reading, MA,
1995.

L. Keng Lim received his M.S. in In-
formation Networking (2000) and B.S.
(1993) in Math/Computer Science
from Carnegie Mellon University. His
research interest is in virtualization of
network infrastructure for providing
QoS to scalable overlay IP networks.
He is currently a software engineer
working on a new class of optical In-
ternet switching systems that combines
optical and IP technologies at Laurel
Networks Inc.

Jun Gao received his B.S. degrees in
Engineering Physics and Computer
Science in 1995 from Tsinghua Uni-
versity, Beijing, China, and an M.S.
degree in Nuclear Engineering in 1997
from University of Virginia, and an
M.S. degree in Computer Science in
1999 from Carnegiec Mellon Univer-
sity. He is currently a Ph.D. candidate
of Computer Science at Carnegie
Mellon. His research interests include
network resource management mech-
anisms and customizable Internet ser-
vices.

T.S. Eugene Ng received his B.S. in
Computer Engineering from Univer-
sity of Washington in 1995 and M.S. in
Computer Science from Carnegie
Mellon University in 1998. He is cur-
rently a Ph.D. candidate in Computer
Science at CMU. His thesis research
focuses on developing a 3rd-party
network service to enable connectivity
across Internet networks of heteroge-
neous address spaces, and perfor-
mance optimization techniques in a
wide range of 3rd-party network ser-
vices.

Prashant R. Chandra received his B.E.
in Electronics Engineering from
Bangalore University in 1991, M.S. in
Computer Engineering from West
Virginia University in 1994 and Ph.D.
in Computer Engineering from Car-
negie Mellon University in 2000. He is
currently a network architect at Intel
Corporation. His research interests are
in the areas of programmable net-
works, signaling protocols and traffic
engineering.

Peter Steenkiste is an Associate Pro-
fessor in the School of Computer Sci-
ence and the Department of Electrical
and Computer Engineering at Carne-
gie Mellon University. He received the
degree of Electrical Engineer from the
University of Gent in Belgium in 1982,
and M.S. and Ph.D. degrees in Elec-
trical Engineering from Stanford Uni-
versity in 1983 and 1987. His research
interests are in the area of network
support for electronic services.

Hui Zhang is the Finmeccanica Asso-
ciate Professor at the School of Com-
puter Science of Carnegie Mellon
University. He received a B.S. in
Computer Science from Beijing Uni-
versity in 1988, an M.S. in Computer
Engineering from Rensselaer Poly-
technic Institute in 1989, and Ph.D. in
Computer Science from the University
of California at Berkeley in 1993. Hui
Zhang’s research interests are in
scalable solutions for QoS and value-
added services over the Internet. He
received the National Science Foun-
dation CAREER Award in 1996 and
the Alfred Sloan Fellowship in 2000.

