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Abstract

The database field has developed very powerful tech-
niques for finding efficient execution plans for declarative-
ly specified queries. However, applying these optimization
techniques in the setting of distributed information man-
agement requires centralized knowledge. The reality of
the Web is different. Future distributed query optimiz-
ers will have to exploit a rich variety of information flow
mechanisms (chaining, referral, proxying, etc.) and must
regard the Web as both a repository of information and
a computing model.

We look to mobile agent technologies for the combi-
nation of flexibility and precision needed for handling
these mechanisms. Our language-based approach uses a
mobile process calculus in combination with a powerful
query-plan language, so that messaging, migration, and
database operations all live in the same semantic space
and interact, thus creating new opportunities for opti-
mization.

1 Introduction

Starting with the classic dynamic programming tech-
nique for join ordering [20], the database field has de-
veloped powerful techniques for finding efficient exe-
cution plans for declaratively specified queries [6, 12].
However, applying these optimization techniques in
the setting of distributed information managemen-
t [17] requires a good deal of centralized knowledge.

The reality of the Web is different. Distributed query
plans must cope with significant degrees of indepen-
dence in the behavior of the data sources. A typi-
cal example, which we call referral (following [11]), is
when a site A ships a query to a site B and may get
back, instead of the answer to the query (as data),
another query that will produce this answer, if exe-

*A detailed description of these ideas has been submitted
to the VLDB’2000 conference.

cuted by A. Executing this other query may cause A
to ship a query to site C, and so on. Moreover, site B
may be independent enough that B’s choice between
a straight data answer and a referral query cannot
be determined by a query plan produced at site A.
Another strategy is chaining, where a site acts as a
proxy and forwards queries to the actual source.

Such mechanisms have not been considered in tradi-
tional distributed query processing because they do
not seem to fit in the traditional framework. But
in fact, extending the flexibility of distributed query
plans should be seen as an opportunity rather than
an obstacle to efficiency.

In this paper we explore how such mechanisms can
be exploited in building complex distributed informa-
tion management systems that integrate independent
sites in a volatile environment like the Web. The d-
ifficult questions are obvious: (a) can this be done
by deploying a relatively small generic infrastructure
in each node, and (b) is it worthwhile? We believe
that by borrowing from mobile agent technologies we
can answer (a) positively, and that in turn this will
enable us to build prototypes that can settle (b).

We look to mobile agent technologies for the combina-
tion of flexibility and precision needed for expressing,
optimizing, and deploying queries using these new
mechanisms. Mobile agent systems have been devel-
oped quite successfully in a number of domains in-
cluding e-commerce, user-interfaces, knowledge man-
agement (see [3] for a review), active networks [24],
and general distributed programming. Though de-
tails vary, these systems offer similar core function-
ality, including primitives for transparent migration,
location naming, and inter-agent communication.

Our starting point is a pi-calculus [16] enriched with
primitives for process migration and remote commu-
nication. To this we add the primitives of the query
plan language used in [9, 18] to obtain a small and
semantically clean language for expressing and eval-



uating distributed queries.

The salient characteristic of the language that we
construct by merging the pi-calculus with database
primitives is that messaging, migration, and database
operations all live in the same semantic space and in-
teract, creating new opportunities for optimization.
By using a single language we allow the optimizer to
systematically explore alternatives that exploit these
mechanisms.

The rest of the paper is organized as follows. We
first introduce some motivating examples of these
new mechanisms before we describe an architecture
to support them. We then present some related work
before we offer some future directions for research.

2 New mechanisms

We now describe some new mechanisms that repre-
sent the building bricks of distributed strategies for
query evaluation.

The various strategies we expose are illustrated in
Figure 1.
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Figure 1: Information flow mechanisms.

2.1 Chaining, referral, recruiting

These mechanisms did not arise in traditional dis-
tributed databases, yet they should be familiar to our
reader: referral (redirection) is part of HTTP —the
protocol underlying the Web—and both referral and
chaining are part of LDAP [11] (Lightweight Directo-
ry Access Protocol). Although in HTTP and LDAP
these mechanisms are used for very special data and
distribution models, our language can express them
in full generality, for any kind of distributed queries.

The HTTP referral mechanism is often used when a
resource available of a given server and identified by a
URL has been moved. The server which cannot serve
the resource anymore will send back to the client the

new URL where the resource has been moved. The
client will then have to follow this redirection.

An LDAP-based network directory can be viewed as
a highly distributed database, in which the directo-
ry entries are organized into a hierarchical tree-like
namespace and can be accessed using database-style
search functions. An server, when asked for a lookup,
can face the following situations: (1) the resource
points to its own namespace or (2) the resource points
to outside of its namespace. For (1), the server will
simply return the resource if it exists. For (2), the
server will try to resolve the naming context by walk-
ing up or down the LDAP tree.

For a given incoming query from the client, this tree
traversal can be performed in two ways. With chain-
ing (Figure 1) the server being asked for a resource
will cooperate with other LDAP servers to get the re-
sult back to the client. The query resolution is com-
pletely invisible to the client. With referral (Fig-
ure 1) the server will simply tell the client which serv-
er to contact to get the corresponding information.

In our language we will use query process migra-
tion and channel-based communication between query
processes in order to capture these mechanisms.

We show here how to express in our query process
language chaining and referral. We describe these
mechanisms for uni-target queries, i.e., queries that
need data residing on just one server.

The implementation is described in the tables below,
where each column represents the running query pro-
cesses at a given site and each row a step of process
evaluation (PE), local query evaluation (LQ), or op-
timization (OPT). The client K requests the result
of query ¢ from server A. Server A knows that the
desired answer can be obtained by running query ¢
at server B. The meaning of the principal constructs
of the language are presented in section 5.

K A ‘ B ‘ step ‘
qaA Q
new c in
<go A do caKlg> || ?c PE
2c caKlq PE
7c caK!(q'aB) OPT

Figure 2: Steps common to all mechanisms

The rewriting of ¢ to q'eB is an optimization step.
We regard it as such because in general ¢ and ¢’ may
not retrieve information in the same way. When ¢ is
simply an abstract resource name (such as a relation
name), q'eB is more a “definition” than an optimiza-
tion, but for simplicity we shall let the optimizer take
care of these cases too. All this corresponds to the



four common steps in Figure 2.

From this point on, the strategies differ. Referral
relies on an optimization that migrates back to K the
referral for evaluating ¢’ at B (figure 3). For chaining
(not detailed here), ¢’ is evaluated at B, the result
sent back to B then to K.

K ‘ A ‘ B ‘ step ‘
starting from the last step of Figure 2
7c <go K do cl(q'@B)> opPT
7c || c!(q'@B) PE
cho”Bc;E)nE"N@cK!:L || 7c¢) PE
?c || <go B do caKl!q'> opPT
2c ceKlq' | PE
7c ceKlv | LQ
v PE

Figure 3: Referral

Upon examination of these two mechanisms, a third
alternative, recruiting, (not offered by LDAP, but
available in KQML [13]) suggests itself. The strategy
is the following: the server A already has the name of
the channel on which the client K expects the answer.
It then simply asks B to evaluate ¢’ and send the
answer on that channel (see Figure 4).

‘ K ‘ A ‘ B ‘ step ‘
starting from the last step of Figure 2
?7c | <go B do caK!q™> OPT
2c ceKlq' | PE
7c caeKlv | LQ
v PE

Figure 4: Recruiting

For referral, we can also capture the case where serv-
er A sends back to client K the answer as a partial
result value combined with a query that needs to be
evaluated by the client on server B. Going back to
Figure 3, we could write the first step for server A as:
<go K do value U c!(q'eB)>. This strategy is frequent
for directory services (information is partitioned).

2.2 Reducing data shipping

Query migration can also be used to capture various
optimization techniques for multi-target, i.e. queries
that need data residing on several servers. Semi-
join programs [2] are an example of such a technique,
where the ¢dea is to ship around only necessary data.

Even more interestingly, the core idea of semijoin
programs can be generalized to make use of physi-
cal access information such as join indexes, gmaps,
etc., cached in convenient locations. To do so, our
optimizers need to “rewrite queries using views” [14]
where “views” is interpreted broadly to also mean
cached queries and cached physical access data.

The following example illustrates the implementation
in our language of the idea of query rewriting and
decomposition for minimizing communication costs.
Suppose that servers A and B host respectively rela-
tions R and S and that M is a "mediator” site (see
Figure 5) that needs the result of the following ” gen-
eralized” join: R S.

We could use a semijoin-like technique to actually
compute the join. There exist several plans to evalu-
ate it and we list three main ones, and give for each
its corresponding query plan process for an agent at
site M:

Plan 1: M sends II;(JIgrs) to A, gets back R
IT, (JIRrs), and in parallel sends II(JIgs) to B and
gets back S > Il (JIgs); finally M computes the
result locally.

Plan 2: M sends II; (JIrs) to A, asking A to com-
pute R < II; (JIrs) and to send it to B; at the same
time, M sends II»(JIrs) to B and asks it to compute
the result (using what comes from A) before sending
it back to M (see Figure 5).

Plan 3: is the same scenario, except that M does
not send the data along with the query but asks the
remote nodes to fetch it.

New cq, Cp in
<go A do c,aMI(R <1 I (JIrs))>
Plan 1 | <go B do cyaMI(S <1 Iy (JIrs))>
|| ?Ca > ?Cb
new c,c’ in
<go A do c'eBI(R px1 1, (J1Irs))>
Plan 2|\ " 00 B do caMi(7c’ 51 (S < Tha(JIxs)))>
| 7c
new c,c’ in
<go A do c'eB!(R <1 (new ¢, in <go M do
CG@A!(Hl(JIRs))> || ?Ca))>
Plan 3 || <go B do caM!(7c’ <1 (S p<i (new cp in <go
M do Cb@B!(Hz(JIRs))> || ?cb)))>
|| 7c

2.3 Other important mechanisms

There are two other mechanisms (orthogonal to the
ones considered previously)that we briefly mention
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Figure 5: Plan 2, where V = JIgg

(they are described thoroughly in the full version of
the paper): subscription and leasing.

The concept of subscription has been around for a
while: just look at newspapers. When a query ¢ is
recurring, we may decide to install a subscription at
site Publisher for q.

Subscriptions can also be used to store remotely (out-
source) the result of local computations. The remote
site could send the data back to a housekeeping pro-
cess that will cache it locally. Servers can also estab-
lish mirrors to bring information closer to clients.

In order to manage such mechanisms — that might be
greedy in terms of resources —, leasing is a good can-
didate. A lease is a contract that grants use of access
to a resource. The interesting aspects of leasing are
that: (1) it is an intuitive concept; (2) it fits both
client and server concerns; and (3) it is being already
used for distributed architectures!.

3 Architecture

The infrastructure available at each node is present-
ed in Figure 6. At the top level, each node’s process
evaluator runs a collection of query processes in par-
allel, which may grow as incoming query processes
migrate in or shrink as query processes terminate or
migrate elsewhere. The process evaluator interact-
s with the migration manager who handles both
incoming and outgoing process migrations and with
the channel manager who handles communication.

The query evaluator is called on expressions with
database primitives and abstract resource names.
Each time the query evaluator is called, it begins by
invoking the single query optimizer.

The infrastructure also contains a continuous opti-
mizer [7] that runs as a separate thread. It is respon-
sible for identifying some interesting local patterns

11t is already heavily used by protocols like DHCP or more
recently JINI.
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Figure 6: The architecture at each node

and for installing local/remote caches and subscrip-
tions useful in future optimizations.

The continuous optimizer periodically examines a
history of plans chosen by the single query optimiz-
er. By keeping track of historical and structural infor-
mation (similar to [21, 1, 7]), using techniques such as
common subexpression identification, and using var-
ious statistics in order to make decisions about cost
and amortized cost, the continuous optimizer can de-
cide when a certain expression is worthy of attention.

Example of continuous optimizations include: fre-
quently used relations could be cached; recurring
(sub)queries could be transformed into subscription-
based queries; frequently usable physical access struc-
tures could be materialized. For simplicity, we shall
call them all “views”.

The information about available views is stored in a
view table updated by the continuous optimizer and
used by the single query optimizer, eg.:

ViewExpression ‘ ViewImplementation

JIgrs scan(localCache)

RaPublisher ?chanSubscr

Through the rewriting-using-views procedure, one or
more occurrences of the ViewExpression is replaced in
the query by its corresponding Viewlmplementation.
The latter could be as simple as a scan of a local
cache, or listening on a channel for subscription data,
as illustrated by examples above?.

4 Related work

Distributed Query Processing: The state of the
art in distributed query processing is nicely presented
in the recent survey [12] by Kossmann while the clas-
sic work in distributed databases is covered in [17].
The traditional optimization algorithm used to gener-
ate the best query plan is an extension of the dynamic

2Note that, as usual, several rewritings may be possible and
the optimizer will choose between plans based on cost.



programming algorithm (in System R* [20]) and its
textbook generalization is described in [12].

In contrast with the relatively centralized approach
of System R*, Mariposa [23] offers a decentralized so-
lution where every node is governed by economic mo-
tivations. Optimization decisions are based on bids
and offers with negotiated prices and given budget-
s. Although decentralized, the approach of Mariposa
and ours are complementary. Moreover it does not
focus on information flow mechanisms, that is of in-
terest to us.

More recently the use of continuous queries [15, 7]
has pointed out the need for the need for continu-
ous optimization. The importance of cost models has
been re-emphasized for mediator-based architectures
in [19]. The system that is closest to what we try to
capture is ObjectGlobe [10].

Query rewritings using views and caches:
Many of the optimizations shown in our this use
query rewritings with materialized views and caches.
Previous work on using caches include [1]. There has
been much work on rewriting with views, most re-
cently [9, 18], see the nice survey [14] by Levy.

Software Agents: A survey of recent developments
in agent-based technologies appears in [3]; [8] discuss-
es more specifically the benefits of mobile agents.

Mobile Processes: Previous work on process cal-
culi has mainly focus on communications and ex-
change of small messages. Cardelli’s recent work
on service combinators [5] and mobile ambients [4]
considers more general computations that address
database related concerns.

5 Future Directions

In this extended abstract, we have proposed a flexible
framework for representing, optimizing, and evaluat-
ing distributed queries, combining the strengths of
distributed database and mobile agent technologies.
We are starting to build a prototype to test these
ideas. An interesting trade-off here is whether the s-
tart with a distributed query system and add process
behavior or with a mobile agent system and build a
query layer on top. Still, many interesting question-
s need to be answered before we can assess whether
this approach is feasible and worthwhile.

Do the process primitives discussed here offer enough
expressiveness? Or perhaps they are too powerful
and do not admit sufficiently efficient implementa-
tions? If so, do we need to restrict them via a type
system?

The most important questions pertain to adapt-

ing traditional distributed database cost models to
our richer framework. Where do we cost refer-
ral/recruiting queries?” How do we organize shar-
ing/updating of cost information between nodes?
Can the same (extended) cost model be used by both
the Single and the Continuous query optimizer?

Finally, we are hoping to find additional interactions
between process and database primitives that can be
exploited in optimization. An important issue here is
how to define the correctness of optimizations when
caches and subscriptions can supply fresh or stale in-
formation.
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Our query process language

Our language can be described as a combination
of primitives from the nomadic pi-calculus [22] with
the primitives of a language for expressing database
query plans[9]. We focus here on the aspects of the
language dealing with distributed query plans, omit-
ting on purpose the database primitives.

The basic values of the calculus are the entities that
can be the final results of evaluating an expression or
sent from one process to another along a communi-
cation channel.

The syntax of our calculus is divided into two parts:
processes (P) and expressions (e). Processes simply
compute until they are finished and then terminate.
Expressions, on the other hand, are expected to re-
turn a value that will be used by some enclosing com-
putation.

Most of the process constructors are familiar from
the pi-calculus: the inert process 0 has no behav-
ior; the parallel composition P || P’ runs P and P’
as separate lightweight threads; the channel creation
expression new c in P ensures that ¢ is a fresh name,
different from any other name used anywhere else in
the system, and then behaves like P; the input pro-
cess c?x. P reads a value from the channel ¢, binds it
to the variable z, and executes P; the replicated pro-
cess * P behaves like an infinite number of copies of P
running in parallel. Two more novel constructs (both
taken from nomadic pi-calculus) are the located out-
put primitive cesle, which evaluates the expression e
and sends the result on the channel ¢ to any receiver
at the site s (if there is no receiver on c¢ currently

running at s, the message is held at s until there is
one), and the migration <go s do P>, which starts the
process P running at the site s.

The spawning expression P ||e runs a process P in
parallel with the evaluation of the expression e—it
is the analog in the “expression world” of parallel
composition of processes. Similarly, channel creation
new c in e is analogous to channel creation in pro-
cesses. Remote evaluation ees is the remote execution
of e at site s; the result is sent back and it becomes
the value of eas. The channel input expression ?¢
waits for a communication on ¢ and yields the val-
ue read as its result. Other syntactic forms used in
the examples (e.g., sequential expressions e;e’) can
be derived from these basic forms as syntactic sugar.

The most interesting construct here is the remote
evaluation of expressions. This is implemented by
rewriting it in terms of migration and channel com-
munication. The expression exprasite calls for the e-
valuation of expr at site. When we come to evaluating
such an expression on site A, we replace it by new ¢
in <go B do caAle> || ?c. That is, we create a new
private channel ¢, spawn a process that migrates to
site B and evaluates e, and listen on ¢ for the result
sent by this process.

Processes

0 inert process

P |P parallel composition
* P replicated process

new c in P channel creation

cle local output (send e on channel c)
casle output (send e on channel c at site s)
c?z. P input (receive x on channel c)

<go s do P> migration

Expressions

s site name

R abstract resource name

v basic value

X variable

P |le process spawning

new cin e channel creation

eas remote evaluation of e at site s
?c channel

(omitted) database primitives

Figure 7: Our language



