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1 Introduction

1.1 Background

The Curry-Howard isomorphism suugests the connection between proofs in intu-
itionistic propositional logic, simply typed lambda calculus and cartesian closed
categories. This set of ideas provides a context in which constructive proofs can
be analysed in a direct fashion. For a treatment in which the category theoretic
aspect does not dominate see [13]. By contrast analyses of classical proof the-
ory tend to be indirect: typically one reduces to the contructive case via some
form of double-negation translation. (Of course there is also work constructing
measures of complexity of classical proofs, but that is not a structural analysis
in the sense that there is one for constructive proofs.)

In [16], I sketched a proposal to analyse classical proofs in a direct fashion
with the intention inter alia of providing some kind of Curry-Howard isomor-
phism for classical proof. This is currently the focus of an EPSRC project with
principals Hyland (Cambridge), Pym (Bath) and Robinson (Queen Mary). De-
velopments have been interesting. While we still lack natural mathematical se-
mantics for an analysis along the lines of [16], the flaws in the detail proposed
there are now ironed out (see [1]). The proof net proposal of Robinson [30] was
a response to the difficulties of that approach; it has been considered in depth
by Fürhmann and Pym [11]. This leads to more familiar semantics and we have
a clear idea as to how this resulting semantics departs from the conception of
proof embodied in the sequent calculus. But we are far from understanding the
full picture.

One motivation for the project on classical proof was a desire for a systematic
approach to the idea of invariants of proofs more flexible than that of complexity
analyses. In this paper I try further to support this basic project by describing
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two abstract interpretations of the classical propositional calculus. One should
regard these as akin to the abstract interpretations used in strictness analysis.
The point is to define and compute interesting invariants of proofs. The abstract
interpretations considered here are intended to be degenerate in the same way
that the (so-called) relational model is a degenerate model of Linear Logic. There
the tensor and par of linear logic are identified; our abstract interpretations
identify classical conjunction and disjunction. (The notion of degenerate model
for Linear Logic is discussed at greater length in [19].)

In joint work with Power I have tried to put the theory of abstract inter-
pretations on a sound footing. That involves categorical logic of a kind familiar
to rather few, so here I leave that aside and simply consider some case stud-
ies in the hope of provoking interest. These cases studied can be regarded as
representative: they arise from free constructions of two different kinds. I give
some calculations (in a bit of a rush - I hope they are right) but do not take
the analysis very far. A systematic study even of the interpretations given here
would be a major undertaking; but the calculations complement those in [12]
which are for special cases of the second class of interpretations considered here.

One should observe that in this paper I get nowhere near the complexities
considered by Carbone in [4], [5] and [6]. Carbone’s work can also be regarded
as a study of abstract interpretations: it is nearest to being a precursor of the
approach taken here.

I hope that by and large the notation of the paper will seem standard. How-
ever I follow some computer science communities by using diagrammatic mota-
tion for composition:

f : A −→ B and g : B −→ C

compose to give
f ; g : A −→ C .

1.2 Abstract interpretations

We start with some general considerations concerning the semantics of proofs in
the sequent calculus for the classical propositional calculus. The basic idea, which
goes back to Szabo, is to take the CUT rule as giving the associative composition
in some polycategory. If we simplify (essentially requiring representability of
polymaps) along the Fürhmann-Pym-Robinson lines we get the following.

Definition 1. A model of classical propositional proof satisfying the Fürhmann-
Pym-Robinson equations consists of the following data.

– A ∗-autonomous category C: here the tensor is the conjunction ∧, and its
unit is the true >; dually the par is the disjunction ∨, and its unit is the
false ⊥.

– The equipment on each object A of C of the structure of a commutative
comonoid with respect to tensor.

– The equipment on each object A of C of the structure of a commutative
monoid with respect to par.
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One requires in addition

– that the commutative comonoid structure is compatible with the tensor struc-
ture (so > has the expected comonoid structure and comonoid structure is
closed under ∧);

– that the commutative monoid structure is compatible with the par structure
(so ⊥ has the expected monoid structure and monoid structure is closed under
∨);

– and that the structures correspond under the duality (so that the previous
two conditions are equivalent).

There are further categorical nuances which we do not discuss here.
The interpretation of classical proofs in such a structure is a straightforward

extension of the interpretation of multiplicative linear proofs in a ∗-autonomous
category. The algebraic structure deals with the structural rules of the sequent
calculus. The several requirements added are natural simplifying assumptions.
They do not really have much proof theoretic justification as things stand.

As indicated above we take a notion of abstract interpretation which arises
by the identification of the conjunction ∧ and disjunction ∨.

Definition 2. By an abstract interpretation of classical proof we mean a com-
pact closed category in which each object A is equipped with

– the structure t : A→ I, d : A→ A⊗A of a commutative comonoid,
– the structure e : I → A,m : A⊗A→ A of a commutative monoid,

with the structures

– compatible with the monoidal structure (I,⊗), and
– and interchanged under the duality (−)∗.

One should note that the optical graphs of Carbone [4] are in effect abstract
interpretations, but in a more general sense than that considered here.

We gloss the definition a little. According to it, each object is equipped with
commutative monoid structure to model the structural rules for ∨ and with
commutative comonoid structure to model the structural rules for ∧. Naturally
we expect the structural rules to be interchanged by the duality (−)∗. Modulo
natural identifications we have

(tA)∗ = eA∗ : I → A∗ , (eA)∗ = tA∗ : A∗ → I ,
(dA)∗ = mA∗ : A∗ ⊗A∗ → A∗ , (mA)∗ = dA∗ : A∗ → A∗ ⊗A∗ .

In addition we ask that the structure be compatible with the monoidal structure.
This means first that I should have the expected structure

tI = idI : I → I , dI = l̃I = r̃I : I → I ⊗ I ,
eI = idI : I → I , mI = lI = rI : I ⊗ I → I ,

derived from the unit structure

lA : I ⊗A→ A rA : A⊗ I → A

l̃A : A→ I ⊗A r̃A : A→ A⊗ I
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for the tensor unit I. In addition it means that the structures are preserved by
tensor: that is, modulo associativities we have

dA⊗B = dA ⊗ dB ; idA ⊗ cA,B ⊗ idB : A⊗B → A⊗B ⊗A⊗B ,
mA⊗B = idA ⊗ cA,B ⊗ idB ;mA ⊗mB : A⊗B ⊗A⊗B → A⊗B .

For the moment it is best to regard these requirements as being justified by the
models which we are able to give.

1.3 Strictness

Any honest consideration of categorical structure should address questions of
strictness. In particular one has the distinction between functors preserving
structure on the nose and functors preserving structure up to (coherent) natural
isomorphism. A setting in which such issues can be dealt with precisely is laid
out in [2]. The only issue which need concern us here is that of the strictness of
the structure in our definition of abstract interpretation.

We shall largely deal with structures freely generated by some data. So it
will be simplest for us to take the monoidal structure to be strictly associative.
Similarly we shall be able to take the duality to be strictly involutive so that

(f : A→ B)∗∗ = (f : A→ B)

and to respect the monoidal structure, so that on objects

I∗ = I and (A⊗B)∗ = B∗ ⊗A∗

on the nose, and similarly for maps. Note further that duality in a compact
closed category provides adjunctions for all the 1-cells of the corresponding one
object bicategory. That is very much choice of structure: so for us every object
A is equipped with a left (say) dual A∗ with explicit unit and counit

I −→ A⊗A∗ and A∗ ⊗A −→ I .

This is all as explained in [21]. But one should go further: in general there
should be natural coherence diagrams connecting the adjunction for A⊗B with
the adjunctions for A and B. (In a sense these conditions parallel the assumption
that the comonoid and monoid structures are preserved under tensor product.
The relevent coherence theorem extending [21] is not in principle hard, but we
do not need it here.)

For the purposes of this paper one can take the definition of abstract in-
terpretation in the strict sense indicated. But not much depends on that: the
critical issue for the background theory is simply that the notion is given by
algebraic structure over Cat in the sense of [22]. A reader to whom all this is
foreign should still understand the examples.
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1.4 Miscellaneous examples

Before turning to the interpretations which are our chief concern, we give a few
natural examples of abstract interpretations. For this section we ignore strictness
issues.

1. Consider the category Rel of sets and relations equipped with the set the-
oretic product × as tensor product. Rel is compact closed; it is contained
in the compact closed core of SupLat the category of complete lattices and
sup-preserving maps. The duality is

(−)∗ : (A F−→ B) - (B F op

−→ A)

in particular is the identity on objects. For each object A ∈ Rel there is
a natural choice of commutative comonoid structure arising from product
in Set. By duality that gives a choice of commutative monoid structure on
all objects, and by definition the structures are interchanged by the duality.
This gives a simple abstract interpretation.

2. We can extend the above example to one fundamental to Winskel’s Domain
Theory for Concurrency (see [27] for example). Following [27] write Lin (af-
ter Linear Logic) for the category with objects preordered sets and maps
profunctors between them. We can regard this also as being within the com-
pact closed core of SupLatt. We equip the preordered set P with comonoid
structure via the counit

tP : P - 1 tP(a, ?) = true

and the comultiplication

dP : P - P× P dP(a, (b, c)) = a ≥ b and a ≥ c ,

extending the definition for Rel. The duality is

(−)∗ : (P F−→ Q) - (Qop F op

−→ Pop)

and this is no longer the identity on objects. The duality induces the monoid
structure from the comonoid structure so the structures are automatically
interchanged by duality.

3. Let FVec be the category of finite dimensional k-vector spaces (and k-linear
maps) for a field k. A commutative bialgebra is an object A of FVec equipped
with the structure

t : A→ I, d : A→ A⊗A

of a commutative comonoid and the structure

e : I → A,m : A⊗A→ A
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of a commutative monoid, satisfying the equations

eA; tA = idI

mA; tA = tA ⊗ tA;mI

eA; dA = dI ; eA ⊗ eA

mA; dA = dA ⊗ dA; idA ⊗ cA,A ⊗ idA; mA ⊗mA

(Hopf algebras (that is, bialgebras with antipode) are amongst the staples of
representation theory. There is a plentiful supply of such: the standard group
algebra kG of a finite group G is a Hopf algebra.) If we take the category
whose objects are bialgebras, with maps linear maps of the underlying vector
spaces, we get an abstract interpretation in our sense.

2 Frobenius Algebras

2.1 Frobenius abstract interpretations

Definition 3. A commutative Frobenius algebra in a symmetric monoidal cat-
egory is an object A equipped with the structure A, t : A → I, d : A → A⊗ A of
a commutative comonoid and the structure A, e : I → A,m : A ⊗ A → A of a
commutative monoid, satisfying the equation

A⊗ d;m⊗A = m; d = d⊗A; A⊗m .

Note that an algebra is a module over itself (on the left and on the right),
and a coalgebra a comodule over itself (again on both sides). We can write the
Frobenius equations in diagrams as

A⊗A⊗A ¾d⊗A
A⊗A

A⊗ d- A⊗A⊗A

A⊗A

A⊗m

?
¾

d
A

m

?

d
- A⊗A

M ⊗A

?

and we see that they say that d is a map of right and left modules. Equivalently
(and by symmetry) they say that m is a map of right and left comodules.

In mathematics algebras with a Frobenius structure have played a role in
representation theory for a century, certainly since Frobenius [10]. The condition
is explicitly identified in work of T. Nakayama and C. Nesbitt from the late 1930s.
Sources for this early history are mentioned in [23]. An important conceptual
understanding of the Frobenius condition or structure was suggested by Lawvere
[24].

Definition 4. We say that an abstract interpretation is Frobenius if all the
comonoid and monoid structures satisfy the equations of a Frobenius algebra.
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We note that for an object A in Rel one readily calculates that

A⊗ d; m⊗A = m; d = d⊗A;A⊗m

is the relation A × A → A × A identifying equal elements of the diagonal. So
Rel is a Frobenius abstract interpretation. In view of remarks below, one could
regard this as explaining why the objects in Rel are self-dual! One the other
hand it is easy to see that the Frobenius condition fails for Lin. This is related
to the fact that we do not generally have Pop ∼= P for posets P.

Since the comonoid structure of a Frobenius algebra is not natural with
respect to the monoid structure (and dually not vice-versa either), we are not
dealing with a commutative sketch in the sense of [17]: rather one needs the more
general theory of [18]. As a consequence the identification of the free Frobenius
algebra, given in the next section, is non-trivial. However a simplifying feature
of Frobenius algebras is that they carry their own duality with them. In fact
Frobenius algebras are self dual: one has the unit

I
eA - A

dA- A⊗A ,

and the counit

A⊗A
mA - A

tA - I .

By straightforward calculation one has

(eA; dA)⊗ idA; idA ⊗ (mA; tA) = e⊗ idA; d⊗ idA; idA ⊗m; idA ⊗ t

= e⊗ idA; m; d; idA ⊗ t

= idA; idA = idA

giving one of the triangle identities; And symmetrically one has

idA ⊗ (eA; dA); (mA; tA)⊗ idA

which is the other. This shows that in any symmetric monoidal closed category
the Frobenius objects live in the compact closed core. Moreover it is easy to see
that the intrinsic duality interchanges the comonoid and monoid structures on
a Frobenius algebra. So the abstract interpretation aspect is also automatic. So
overall to give abstract interpretations it suffices to find Frobenius algebras in
some symmetric monoidal closed category.

2.2 The free Frobenius algebra

In recent times the study of Frobenius algebras has become compelling following
the identification of 2-dimensional Topological Quantum Field Theories (TQFT)
with commutative Frobenius algebras [9]. A readable intuitive explanation is
given in [23]. In essence this arises from an identification of the free symmetric
monoidal category generated by a Frobenius algebra. We state this in the cus-
tomary rough and ready way: though we make some of the ideas more precise
in a moment, there is a limit to what it is useful to do here.
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Proposition 1. The free symmetric monoidal category generated by a Frobenius
algebra can be described in the following equivalent ways.
1. It is the category of topological Riemann Surfaces. Objects are finite disjoint
sums of the circle and maps (from n circles to m circles) are homeomorphism
classes of surfaces with boundary consisting of n + m marked circles.
2. It is the category of one dimensional finitary topology up to homology. The
objects are finite discrete sets of points and the maps from n points to m points
are homology classes of one dimensional simplicial complexes with n+m marked
points as boundary.

To make things more precise, we might as well engage at once with the
strict version of the above. In that view the free symmetric monoidal category
generated by a Frobenius algebra has objects

0, 1, 2, ... , n, ...

which should be regarded as representatives of finite sets. The maps from n to
m are determined by an equivalence relation on n + m, which one can think of
as giving connected components topologically, together with an association to
each of these connected components of a natural number (the genus).

Dijkgraaf’s identification of two-dimensional TQFT has been independentally
established more or less precisely by a number of people. I not unnaturally like
the account in Carmody [7] which already stresses the wiring diagrams in the
sense of [17] and [18], as well as rewriting in the style of the identification of
the simplicial category by generators and relations [26]. We shall show that the
TQFT aspect of Frobenius algebras runs parallel to a simple topological idea of
abstract interpretation.

2.3 Representative Calculations

We consider here the obvious interpretation of classical proofs in the symmetric
monoidal category generated by a Frobenius algebra. In this interpretation all
atomic propositions are interpreted by the generating Frobenius algebra, so are
not distinguished. Also the interpretation is not sensitive to negation. Despite
that the intrepretation does detect some structural features of proofs. We already
explained the data for a map in the free symmetric monoidal category generated
by a Frobenius algebra: it consists of a collection of connected components and
a genus attached to each. A proof π in classical propositional logic gives rise to
its interpretation V (π) which is thus a map of this kind. One loses just a lttle
information if one considers only the invariants given by the homology

H0(π) = H0(V (π),Q) and H1(π) = H1(V (π),Q)

of a proof π. We set

h0(π) = dim H0(π) and h1(π) = dim H1(π) .

Usually we ensure there will be just one connected component so that one loses
no information in passing to homology: the invariant reduces to the genus usually
written g = h1(π).
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1. Proofs in MLL The Frobenius algebra interpretation of proofs in Multi-
plicative Linear Logic should be regarded as one of the fundamentals of the
subject. For simplicity we follow [14] in dealing with a one-sided sequent
calculus.
– For an axiom

A `α A

we have
h0(α) = 1 and h1(α) = 0 .

– For the ∧-R rule `π1 Γ,A `π2 ∆,B

`π Γ, ∆, A ∧B

we have

h0(π) = h0(π1) + h0(π2) + 1 and h1(π) = h1(π1) + h1(π2) .

– For the ∨-L rule
`π′ Γ, A, B

`π Γ,A ∨B

we have
h0(π) = h0(π′) and h1(π) = h1(π′) + 1 .

The final claims need to be justified inductively using the fact that we always
have one connected component, that is, we always have h0 = 1.
We deduce from the above that for a proof π, in multiplicative linear logic,
the genus counts the number of pars (that is for us occurences of ∨) in the
conclusions. Thus the Frobenius algebra interpretation points towards the
Danos-Regnier correctness criterion. (My student Richard Garner has given
a full analysis along these lines.)

2. Distributive law Perhaps the simplest interesting non-linear proofs are
those of the distributive laws. Consider first the proof

A ` A B ` B
A, B ` A ∧B

A ` A C ` C
A,C ` A ∧ C

A,A, B ∨ C ` A ∧B,A ∧ C

A,B ∨ C ` A ∧B, A ∧ C

A ∧ (B ∨ C ` (A ∧B) ∨ (A ∧ C) .

From the proof net one readily sees that one has h0 = 1, that is one has one
connected component, and that h1 = 3. There are just two occurences of
∨, so a linear proof would have h1 = 2. Thus the invariant does detect the
non-linearity.
I do not give here the most natural proof of the converse distributive law:
(A∧B)∨ (A∧C) ` A∧ (B ∨C). It seems necessarily more complex, in that
the most obvious proof has h0 = 1 but g = h1 = 8. The proof does not just
reverse.
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3. The Natural Numbers Recall that (up to βη-equivalence) the constructive
proofs of (A ⇒ A) ⇒ (A ⇒ A) correspond to the Church numerals in the
lambda calculus. (Implicitly we should rewrite (A ⇒ A) ⇒ (A ⇒ A) as
(A ∧ ¬A) ∨ (¬A ∨ A); but there are obvious corresponding proofs.) Let πn

be the proof given by the nth Church numeral λf, x.fn(x). We compute
the invariants for these proofs πn. With just one conclusion we have forced
h0(πn) = 1, so we just look at the genus. The proof net picture immediately
show us that h1(πn) = n + 1. So the invariant readily distingushes these
proofs.
Now consider what it is to compose proofs πn and πm with the proof µ =
λa, b, f. a(b(f)) of

(A⇒ A)⇒ (A⇒ A) , (A⇒ A)⇒ (A⇒ A) ` (A⇒ A)⇒ (A⇒ A)

corresponding to multiplication on the Church numerals. This gives a proof
µ|πn|πm with cuts. We compute the invariants for the interpretation V (µ|πn|πm)
in our model. This is just an exercise in counting holes. Generally we find
that

h0(µ|πn|πm) = 1 and h1(µ|πn|πm) = n + m.

However the case n = m = 0 is special. We get

h0(µ|π0|π0) = 2 and h1(µ|π0|π0) = 1 .

(Note that the Euler characteristic is consistent!)
Of course if we reduce µ|πn|πm to normal form we get πnm with

h0(πnm) = 1 and h1(πnm) = nm + 1 .

So the interpretation distinguishes proofs from their normal forms. The need
to think this way about classical proof was stressed in [16].

3 Traced monoidal categories

3.1 Background

With our Frobenius Algebra interpretation we got the compact closed aspect
of our abstract interpretation for free. For our second example we exploit a
general method for contructing compact closed categories from traced monoidal
categories. We recall the basic facts concerning traced monoidal categories. We
do not need the subtleties of the braided case explained in the basic reference
[20]. So for us a traced monoidal category is a symmetric monoidal category
equipped with a trace operation

f : A⊗ U → B ⊗ U

tr(f) : A→ B



Abstract Interpretation of Proofs: Classical Propositional Calculus 15

satisfying elementary properties of feedback. A useful perspective and diagrams
without the braidings in [20] is provided by Hasegawa [15]. It is a common-
place amongst workers in Linear Logic that traced monoidal categories provide
a backdrop to Girard’s Geometry of Interaction.

If C is a traced monoidal category, then its integral completion Int(C) is
defined as follows.

– The objects of Int(C) are pairs (A0, A1) of objects of C.
– Maps (A0, A1)→ (B0, B1) in Int(C) are maps A0 ⊗B1 → B0 ⊗A1 of C.
– Composition of f : (A0, A1)→ (B0, B1) and g : (B0, B1)→ (C0, C1) is given

by taking the trace tr(σ; f ⊗ g; τ) of the composite of f ⊗ g with the obvious
symmetries

A0 ⊗ C1 ⊗B0 ⊗B1
σ−→ A0 ⊗B1 ⊗B0 ⊗ C1 ,

and
B0 ⊗A1 ⊗ C0 ⊗B1

τ−→ C0 ⊗A1 ⊗B0 ⊗B1 .

– Identities (A0, A1)→ (A0, A1) are given by the identity A0⊗A1 → A0⊗A1.

The basic result from [20] is the following.

Theorem 1. (i) Suppose that C is a traced monoidal category. Then Int(C) is
a compact closed category.
(ii) Int extends to a 2-functor left biadjoint to the forgetful 2-functor from com-
pact closed categories to traced monoidal categories.

3.2 Abstract Interpretations via traces

Suppose that we have a traced monoidal category C in which every object A is
equipped with the structure of a commutative comonoid

I
w←− A

d−→ A⊗A

and of a commutative monoid

I
e−→ A

m←− A⊗A .

Consider the compact closed category Int(C). Given an object (A0, A1), we have
maps

(A0, A1) −→ (I, I) given by A0 ⊗ I
w⊗e−→ I ⊗A1

(A0, A1) −→ (A0 ⊗A0, A1 ⊗A1) given by A0 ⊗A1 ⊗A1
d⊗m−→ A0 ⊗A0 ⊗A1

which clearly equip it with the structure of a commutative comonoid; and dually
we have maps

(I, I) −→ (A0, A1) given by I ⊗A1
e⊗w−→ A0 ⊗ I

(A0 ⊗A0, A1 ⊗A1) −→ (A0, A1) given by A0 ⊗A0 ⊗A1
m⊗d−→ A0 ⊗A1 ⊗A1
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which equip it with the structure of a commutative monoid. These structures
are manifestly interchanged (on the nose) by the duality. Thus such situations
will always lead to abstract interpretations.

3.3 Traced Categories with biproducts

We consider the special case where the tensor product in a traced monoidal
category is a biproduct (see for example [25]). Under these circumstances one
has a canonical choice of commutative comonoid and monoid structure, and so
a natural abstract interpretation.

We recall that a category C with biproducts is enriched in commutative
monoids. More concretely each hom-set C(A,B) is equipped with the structure
of a commutative monoid (which we write additively) and composition is bi-
linear in that structure. It follows that for each object A its endomorphisms
EndC(A) = C(A,A) has the structure of what is now called a rig, that is to say
a (commutative) ring without negatives. One can explain in these terms what it
is to equip a category with biproducts with a trace. Here we concentrate on the
one object case, which is the only case considered in the main reference [3].

We recall the notion of Conway Algebra (essentially in Conway [8]) as artic-
ulated in [3]

Definition 5. A Conway Algebra is a rig A equipped with a unary operation

(−)∗ : A −→ B ; a→ a∗

satisfying the two equations

(ab)∗ = 1 + a(ba)∗b
(a + b)∗ = (a∗b)∗a∗

It is immediate that in a traced monoidal category C whose tensor product is a
biproduct each EndC(A) is a Conway Algebra, the operation (−)∗ being given
by

a∗ = tr
(

0 1
1 a

)
.

In the case of a category generated by a single object U , the requirement that
EndC(U) be a Conway algebra is in fact sufficient. Generally one takes the trace
of a map A⊕ C −→ B ⊕ C given by the matrix

(
a b
c d

)

with a ∈ C(A,B), b ∈ C(C, B), c ∈ C(A,C) d ∈ C(C, C) using the natural
formula

tr
(

a b
c d

)
= a + bd∗c
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So to identify the free traced monoidal category with biproducts on an object U
it suffices to identify the free Conway algebra on no generators.

Fortunately that is already known. In [8] Conway effectively identifies the
elements of the free Conway algebra on no generators: the distinct elements are
those of the form

{n |n ≥ 0} ∪ {n(1∗)m |n, m ≥ 1} ∪ {1∗∗}.
The algebraic structure can be deduced from the following absorbtion rules.

1 + (1∗)n = (1∗)n

(1∗)n + 1∗∗ = 1∗∗ + 1∗∗ = 1∗∗

n.1∗∗ = 1∗.1∗∗ = 1∗∗.1∗∗ = 1∗∗

1∗∗∗ = 2∗ = 1∗∗

3.4 Representative Calculations

The objects in the free traced monoidal category with biproducts generated by
a single object are (as we had earlier)

0, 1, 2, ... , n, ...

representatives of finite sets. But now the maps from n to m are given by m×n
matrices with entries in the free Conway algebra just described.

Taking Int gives us objects of the form (n,m) with n and m finite cardinals.
We consider the interpretation which arises when each atomic proposition A is
interpreted by the object (1, 0) with ¬A therefore interpreted by (0, 1). Proofs
π will have interpretations V (π) which will be suitably sized matrices as above.

1. Proofs in MLL The data in an interepretation of a proof in multiplicative
linear logic is familiar. Again we follow [14] by considering only one sided
sequents. Suppose we have `π Γ . There will be some number, n say, of
occurences of atomic propositions (literals) and the same number of the
corresponding negations. So Γ will be interpreted by the object (n, n), and π
by an n×n matrix. For MLL this matrix will always be a permutation matrix
giving the information of the axiom links in π. (Of course the permutation
is just a construct of the order in which the literals and their negations are
taken.)

2. Distributive laws For simple proofs like those of the distributive laws the
interpretation continues just to give information akin to that of axiom links.
Consider first the proof of

A ∧ (B ∨ C ` (A ∧B) ∨ (A ∧ C)

which we gave earlier. The interpretation is a map from (3, 0 to (4, 0), and
so is given by a 4× 3 matrix: it is




1 0 0
0 1 0
1 0 0
0 0 1


 .
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The natural proof of the converse distributive law,

(A ∧B) ∨ (A ∧ C) ` A ∧ (B ∨ C) ,

may seem more complicated, but our current interpretation does not notice
that. One gets 


1 0 1 0
0 1 0 0
0 0 0 1


 ,

which is just the transpose of the previous matrix.
3. Natural Numbers The interpretation of (A⇒ A)⇒ (A⇒ A) is (2, 2) so

the natural number proofs πn are interpreted as 2× 2 matrices. We get

V (π0) =
(

0 0
0 1

)
, V (πn+1) =

(
n 1
1 0

)
.

As before we consider what it is to compose proofs πn and πm with the proof
µ = λa, b, f. a(b(f)) of multiplication. This is interpreted by the (obvious
permutation) matrix 



0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0




where the first two rows and columns come from the codomain. Essentially
we have to compose and take a trace. At first sight this is not very exciting
and things seem much as before. We find

V (µ|πn+1|πm+1) =
(

n + m 1
1 0

)
.

But the connectivity of π0 introduces an unexpected nuance. To compute
V (µ|π0|πm+1), we can compose one way to get the matrix




0 0 0 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 m 1
0 0 0 1 0 0
0 1 0 0 0 0




and then we need to take a not so obvious trace. We end up with

V (µ|π0|πm+1) =
(

0 0
0 m∗

)
.
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For V (µ|π0|π0), the calculations are marginally simpler and we end up with

V (µ|π0|π0) =
(

0 0
0 1∗

)
.

One sees that even simple cuts can produce cycles in a proof of a serious
kind, and these are detected by our second interpretation.

4 Summary

In this paper I hope to have presented evidence that there are mathematical
interpretations of classical proof which produce what can be regarded as invari-
ants of proofs. Clearly there are many more possibilities than those touched on
here. It seems worth making a couple of concluding comments.

First while the interpretations given do handle classical proofs, they do not
appear to detect any particular properties of them. All examples given concern
(very simple) familiar constructive proofs. There would have been no special
interest for example in treating Pierce’s Law.

Secondly, these interpretations are sensitive to cut elimination. This appears
to be a necessary feature of any mathematical theory of classical proof respecting
the symmetries. Even for constructive prrofs it suggests a quite different crite-
rion for the identity of proofs than that given by equality of normal form. This
criterion would have the merit of being sensitive inter alia to the use of Lemmas
in mathematical practice.
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