
Unifying Theories of Locations

Michael Anthony Smith1,2 and Jeremy Gibbons1

1 Oxford University, UK.
2 Systems Assurance Group, QinetiQ, UK.

Michael.Smith@kellogg.ox.ac.uk

Jeremy.Gibbons@comlab.ox.ac.uk

Abstract. We present a Unifying Theories of Programming (UTP)
model of locations, where a location is either shareable or containable
depending on whether its value can be dereferenced by a pointer. Our
model of locations is similar to previous work on pointers within the
UTP; the main difference is that the previous work on pointers only
modelled shareable locations. We explain why containable locations
(whose values must be copied rather than aliased) are useful, present
an outline of our UTP model, and compare it to existing work on UTP.
We hope to convince the reader that a general model of pointers within
the UTP ought to be able to represent both shareable and containable
locations.

1 Introduction

Hoare and He’s Unifying Theories of Programming (UTP) [3] uses the notion
of a relational predicate to model various programming paradigms and features,
such as imperative, functional, and parallel programming. Here, a relational
predicate is a predicate that defines a relationship between observable input and
output variables (i.e. the variables in the predicate’s alphabet). For example,
the UTP model in [1] supports the notion of a compound data structure via
the introduction of a record datatype, which essentially maps distinct labels to
values. These labels are also used when unambiguously specifying the location
of a value and determining whether it is shared.

An object can be modelled in a similar manner to that of the record. For
example, in C++ and C# the object and record types are defined by the class
and struct datatype constructors respectively. Here, a variable of an object type
contains a pointer to an object, whereas a variable of a record type contains
the record itself. It is this distinction between variables of object and record
types that we believe is important to explicitly model in a general theory of
UTP pointers. Specifically, the contents of a record are duplicated, whereas the
contents of an object are aliased (shared).

The UML class diagram in Figure 1 provides a high level overview of our
model, which ensures that: each location has precisely one value; only shareable
locations can be directly accessed via a reference value; and field names (labels)
of a compound value represent containable locations. Such a model of locations
can be used to support our earlier UTP model of objects [9].

2 M. A. Smith and J. Gibbons

Fig. 1. Location Model – Class Diagram

1.1 Scope

The model of locations we present in this paper is not intended to support
the concepts of object ownership or reference containment, such as discussed in
ownership models [2, 5] and separation logics [7]. Nor is this model of locations
intended to support low-level pointer operations, such as those operations that
create a new pointer by adding an arbitrary offset to an existing pointer (e.g.
p = p +2) or get the address of a record’s element (e.g. p = &(r .x)). Having said
this, it is straightforward to write C++ and C# programs that do not directly use
such low-level pointer operations and this ought to be syntactically checkable.
For example, in C# this could be achieved by banning the use of the unsafe
keyword.

1.2 Family tree

Within this paper we use instances of the family tree class diagram in Figure 2
to provide data structures for us to model. Here, shareable (hollow diamond)
and composite (solid diamond) aggregations are used to distinguish between
shareable and containable locations, respectively; aggregations that have any
number of instances are represented by lists.

Fig. 2. Family Tree Example – Class Diagram

Unifying Theories of Locations 3

1.3 Structure

This paper continues by presenting a concrete model of locations (Section 2),
which is abstracted (Section 3) and then integrated into the UTP (Section 4).
Having done this, the work is related to other UTP work on pointers (Section 5)
and summarised (Section 6).

2 Concrete Representation

2.1 Concrete value notation

The two types of literal value used within this paper are the integers (e.g. −32)
and the strings (e.g. "Some text"). There is also a special unset literal constant,
denoted by ¿; this is used to represent the contents of a freshly created location,
and the value of a missing element.

The two remaining types of concrete value are the compound and reference
values. A compound value is represented by a partial map from field names
(which we identify with containable locations) to concrete values. It is denoted
by {ki=1 nmi = vi}, where the name nmi indexes the concrete value vi . A name
is denoted by an alpha-numeric word starting with a letter or the dollar symbol.
The name represented purely by a single dollar symbol, which we refer to as the
‘dollar name’, is reserved for denoting a shareable location, and thus cannot be
used as a compound value’s field name.

A reference value is either null or an index to a shareable location. Such
values are denoted by
 and `i respectively, where two non-null reference values
`i and `j index distinct shareable locations whenever i 6= j .

Figure 3 provides both an instance of the family tree’s Dates class and a
concrete value representation of this instance (object). Here, the Dates object
explicitly sets only one of its two optional Date fields, birth, to 12 Aug 1980. The
other optional field, death, is left unset. This data structure can be drawn as a

{ birth = { day = 12,
month = "Aug",
year = 1980 },

death = ¿
}

Fig. 3. Dates – object diagram and concrete representation

graph, as illustrated in Figure 4, where: a literal value is denoted by a boxed
node containing the literal; and a compound value is denoted by a circular node,
whose outgoing edges are labelled with its distinct field names. Reference values
are denoted by a diamond node that contains the reference (Figures 6 & 8).

In addition to defining the concrete representations of the values used within
this paper, it is useful to provide some meta-variables for representing each of

4 M. A. Smith and J. Gibbons

birth "Aug"

1980¿
death

year

month

day
12

Fig. 4. Dates – concrete graph representation

the different types of value. Here we use i , j and k to represent integers; s
to represent strings; lv to represent literal values; cv to represent compound
values; rv to represent reference values; and v to represent a concrete value.
We also use meta-variable t for representing a concrete term, where a concrete
term includes the concrete values, field names, and the yet-to-be terms such
as location graphs. These meta-variables are typically used to define functions,
as illustrated by the following example, which extracts the shareable locations
contained within a term. This example also uses the generalised term notation,
t{ki=1ti}, which denotes a term t with k sub-terms, t1, . . . , tk , where a term that
has no subterms is denoted by either t{} or t{0i=1ti}.

sLocs `i =̂ {`i}
sLocs t{ki=1ti} =̂

⋃
{ki=1sLocs ti}

We read such definitions by pattern-matching from top to bottom, accepting the
first equation that matches an actual argument. Thus, the order in which the
lines of a function are presented may affect its meaning. In this case, swapping
the order would produce a function that returns the empty set.

The sLocs function is applied to terms that are yet to be defined, such as
the heap value term in Section 2.2. Note that this does not require an update to
the sLocs function as these terms are already handled by the second definitional
line, which can be applied to any term (i.e. a general term).

2.2 Concrete location heap

A location heap is a partial map from shareable locations to values; it is denoted
by {i:N `i 7→ vi}, where N is some finite subset of the natural numbers. For
example, the object diagram in Figure 5 illustrates that Jane Doe is married
to John Doe, where only the instances of the Person class are considered to be
shareable. It can be represented by the following concrete location heap, where

Fig. 5. Marriage example – object diagram

Unifying Theories of Locations 5

the contents of shared locations `3 and `5 contain the John Doe and Jane Doe
Person objects respectively.

{ `3 7→ { name = "John Doe", gender = "male", dates =
, rels = ¿ },
`5 7→ { name = "Jane Doe", gender = "female", dates =
,

rels = { $1 = { rel = "married", person = `5, with = { people = { $1 = `3 } } } }
}

}

Figure 6 provides the alternative graph representation of the example, where the
dashed edges are used to link a reference value to its contents. Note that these

rels

rels

"married"

with
ℓ3

ℓ3

$

$

gender

gender

dates

dates

"female"

$1

$1

people

"male"

"Jane Doe"
name

name

rel

ℓ5

ℓ5

"John Doe"

person

Fig. 6. Marriage example – concrete heap graph

edges are labelled with the dollar name ($) as discussed in Section 2.1.
Before moving on to present the concrete location model, we observe that

a concrete heap can reference a shareable location that it does not define; i.e.
a concrete heap can contain reference values that are not in the domain of the
heap’s partial map. In order to classify location heaps that do not have this
undesirable property, we introduce a healthiness condition, which considers a
heap to be healthy whenever all references to shared locations within the graph’s
values are defined by the graph itself.

HCh H =̂ sLocs H ⊆ dom H

where:

H is the meta variable representing a concrete location heap
dom returns the domain of a relation or function

Further, any heap can be made healthy by adding an entry for each missing

6 M. A. Smith and J. Gibbons

shared location and setting that location’s value to the unset value (¿), as follows:

MHh H =̂ H ∪ {r 7→ ¿ | r ∈ (sLocs H) \ (dom H)}

Note that a healthy heap is unaffected by the application of MHh (and vice-
versa), because all the shareable locations in the heap are contained within its
domain; i.e. (MHh H = H)⇔ HCh H .

The notion of equivalence (≡) between location heaps is more complex
than that for concrete values, which is mathematical equality (where the ordering
of elements within a set or map is not significant). Here, the equivalence relation-
ship between heaps allows for the renaming of shareable locations. Specifically,
two heaps are considered to be equivalent if there exists a bijective map (f) that
can be applied to one heap to produce the other.

H1 ≡ H2 ⇔ ∃ f • H1 = rename(H2, f)

where

rename(`i , f) =̂ `f (i)
rename(t{ki=1ti}, f) =̂ t{ki=1rename(ti , f)}

2.3 Concrete location model

Location models extend this notion of the heap by adding a starting point, which
is represented by a concrete value. Therefore, a location model is denoted by a
value-heap pair (v ,H). Here, the idea is that the value v represents the root of
a computational unit, such as a program, whose elements can share data via the
shareable locations in the heap H .

Like the location heap that preceded it, location models have a healthiness
condition which ensures that the heap is valid; that is, all the shareable locations
referenced within a model are defined by the heap.

HC1l(v ,H) =̂ sLocs(v ,H) = dom H

A location model can be made HC1l-valid in a similar manner to a heap.

MH1l(v ,H) =̂ (v ,H ∪ {r 7→ ¿ | r ∈ sLocs(v ,H) \ (dom H)})

Locations in the model are considered to be reachable if they are either con-
tained within the starting value v or indirectly contained within the contents
of v ’s reference values. For HC1l-healthy models, this can be formalised by the
following functions, where R and R′ represent the shareable locations that have
already been taken into account and are contained within a value respectively.

reachable(v ,H) =̂ reachValue(v ,H , ∅)
reachValue(v ,H ,R) =̂ sLocs v ∪ reachDeref (sLocs v ,H ,R)
reachDeref (R′,H ,R) =̂

⋃
{reachValue(H r ,H ,R′ ∪ R) | r ∈ R′ \ R}

Unifying Theories of Locations 7

The following normal-form healthiness condition ensures that there is no un-
reachable information within the model; i.e. every shareable location that is
defined by a model’s heap is reachable.

HC2l(v ,H) =̂ dom H = reachable(MH1l(v ,H))

Note that we apply the MH1l healthiness constructor prior to performing the
reachability calculation, in order to ensure that HC2l calculation is defined. If a
location model is not in normal form (i.e. HC2l-healthy), it can be made so by
ensuring that it is HC1l-healthy and then removing all the unreachable locations.

MH2l(v ,H) =̂ let (v1,H1) =̂ MH1l(v ,H) in
(v1, {rv | rv ∈ H1 ∧ (first rv) ∈ reachable(v1,H1)})

where first(x , y) =̂ x .
We are now in a position to define an equivalence relation over location

models. It is similar to that of heaps, except that we first ensure that models are
made healthy before performing the check, as we only want to consider reachable
elements in a model’s heap. In other words, two location models are equivalent iff
there exists some bijective shareable-location-renaming function f that enables
two normalised heaps to be made equal.

(v1,H1) ≡ (v2,H2)
⇔
∃ f • MH2l(v1,H1) = rename(MH2l(v2,H2), f)

It is this notion of equivalence up to which our UTP model of locations is fully
abstract, as described in Section 4.3.

The family tree example can now be extended to illustrate a concrete location
model, by adding an object to represent the family tree, as illustrated in Figure 7.
The concrete graph representation of this example is provided by Figure 8, where

Fig. 7. Family tree example – object diagram

the explicit visualisation of the heap has been removed, as it is no longer required
for representing the shareable locations. Such locations are now represented by
the dashed edges within the graph, which are now guaranteed to exist due to
the reachability healthiness condition.

8 M. A. Smith and J. Gibbons

rels

rels

"married"

with

$2

family

ℓ3

ℓ3

$

$

$

$

gender

gender

dates

dates

"female"

$1

$1

$1
people

people

"male"

"Jane Doe"
name

name

rel

ℓ5

ℓ5

"John Doe"

person

Fig. 8. Family tree example – concrete model graph

2.4 Paths and their operations

A compound value path describes a route from a compound value to one of its
elements, via a non-empty dot-separated sequence of field names. Compound
value paths are essentially used to describe routes to contained locations, which
we can access and update by using the following functions:

∗cv .nm =̂ cv nm
cv .nm := v =̂ cv ⊕ {nm 7→ v}
cv .nm.p := v =̂ cv ⊕ {nm 7→ (∗cv .nm).p := v}

where p is the meta-variable for paths, () is the function or map application
operation, and (⊕) is the function override operation. This notion of a path
is extended to define location model update and access functions as follows:

∗(v ,L) =̂ v
∗(v ,L).p =̂ ∗v .p
∗(v ,L).`i =̂ L `i

∗(v ,L).`i .p =̂ (L `i).p
(v ,L) := v ′ =̂ (v ′,L)
(v ,L).p := v ′ =̂ (v .p := v ′,L)
(v ,L).`i := v ′ =̂ (v ,L⊕ {`i 7→ v ′})
(v ,L).`i .p := v ′ =̂ (v ,L⊕ {`i 7→ (L `i).p := v ′})

Further, it is possible to extend this notion to copy a value from one location to
another, as follows:

(v ,L).lp := (v ,L).lp′ =̂ (v ,L).lp := ∗(v ,L).lp′

Unifying Theories of Locations 9

where: ∅ denotes the empty path and lp denotes either a path (p), a shareable
location index (`i), or a shareable location index followed by a path (`i .p); and
(v ,L).∅ denotes (v ,L).

It is also straightforward to define other operations, such as for deleting
elements from compound values and the heap; we omit these constructions for
reasons of space.

3 Abstract Model

In Section 2.3, graphs represented healthy concrete location models, where:

– the solid and dashed edges denote distinct compound and potentially shared
shareable locations, respectively;

– the rectangular, circular, and diamond nodes denote literal, compound, and
reference values, respectively.

This section presents: a brief overview of the trace-based graph abstraction; some
utility operations for manipulating traces; a model of nodes as a set of traces;
and an overview of the trace-based location graph model.

3.1 Graph abstraction

We can determine the value of dereferencing a reference node of a concrete
location graph by following that node’s outbound edge (as shown in Figure 8).
That is, the shareable location index contained within a reference node is not
required. Thus, this unused data can, and will, be ignored in our abstraction.

We observe that the outbound edges of each node within a healthy concrete
location graph have distinct labels. Therefore, we can use a finite non-empty
sequence of names to unambiguously define a path from a graph’s root node to
any other node. Such a path is from now on referred to as an absolute path.

The location of a node within a concrete location graph can be modelled by
the set of all absolute paths to that node, which we from now on refer to as an
absolute path-set. Hence, one way of providing a UTP model of locations would
be as a partial map from such an absolute path-set to an appropriate abstraction
of the data directly associated with its corresponding node. For example, the data
associated with:

– a literal or null-reference node could be modelled by its concrete value;
– a compound node could be modelled by its set of outbound edge labels;
– a non-null reference node could be modelled by its outbound edge label.

Such a model of locations is similar to that presented in [1], which uses the idea
of an entity group to model shared locations. Here each group contains the set
(equivalence class) of fully qualified variables that share the same location.

Another approach is to change the notion of an absolute path-set, from rep-
resenting the location of a node to representing both the location and contents

10 M. A. Smith and J. Gibbons

of a node. To avoid confusion, we refer to such paths as traces. Here, the idea is
that the last value in a trace represents its content, and the front of the trace its
location. In other words, a trace is a path p followed by a trace label l , where l
represents either a name, a literal value, or the null-reference value; it is denoted
by p.l . This is the basis of the UTP model of locations we present in this paper
(Section 4). Such a model of locations is similar to that presented in [4], which
uses trace-sets to model both locations and values. Here, the main difference is in
our introduction of a containable location and its effect on assignment (which [4]
refers to as ‘pointer swing’). Specifically, within our model the contents of con-
tained locations need to be duplicated, whereas the contents of shared locations
are referenced.

3.2 Traces

As previously stated, a trace is denoted by p.l , where p is a path and l is a trace
label (i.e. a name, a literal, a null-reference). One consequence of this is that it is
only possible to concatenate two traces (denoted by tr1.tr2) when the last label
in the first trace tr1 is a name, as only names are allowed within a path.

The remainder of this section defines some utility operations on traces and
trace-sets, that are used in the construction of our abstract model of locations.
First we introduce two operations front and last for extracting the location and
content components of a non-empty trace.

front p.l =̂ p last p.l =̂ l

The front operation can be used to generate the set of locations visited by a trace,
as characterised by their paths, where each path within this set is considered to
be a prefix of the original trace. Such a set of paths is referred to as the proper
prefixes of the given trace. The function prefixest defines the non-proper version
of the prefix set.

prefixest ∅ =̂ {∅}
prefixest tr =̂ {tr} ∪ prefixest(front tr)

The prefixes also provide a natural ordering over traces.

tr1 <t tr2 =̂ prefixest(tr1) ⊂ prefixest(tr2)
tr1 ≤t tr2 =̂ prefixest(tr1) ⊆ prefixest(tr2)

Having defined an ordering over traces, it is now possible to use that ordering
to define a subtraction operation. This is eventually used to define the relative
paths between nodes in a set.

(−t) =̂ λ tr1, tr2 | tr2 ≤t tr1 • pick{tr | tr1 = tr2.tr}

where the pick function picks the singleton element from a set (i.e. pick{x} =̂ x).

Unifying Theories of Locations 11

Before leaving the trace utilities, we lift the definitions of the front, last,
and prefixest operations to trace-sets. The first two are lifted by applying their
definitions to each non-empty trace with the set. The latter one is lifted to a
trace-set (denoted by TR) by applying the prefixes operation to each trace within
the set and merging the results.

frontTraces TR =̂ {front tr | tr ∈ (TR \ {∅})}
lastLabels TR =̂ {last tr | tr ∈ (TR \ {∅})}
prefixesn TR =̂

⋃
{prefixest tr | tr ∈ TR}

3.3 Trace-based node

A trace-based graph node is modelled by a set of traces that satisfies two health-
iness conditions. Both of these conditions follow from the observation that the
only way a concrete location graph node may have more than one incoming edge,
is if all these edges are labelled with the dollar name. Consequently, every trace
to a node is guaranteed to end with the same label, except for the root node
which has no label. This is modelled by the first healthiness condition, which
states that all incoming edges to a node have the same label.

HC1n(n) =̂ # lastLabels(n) ≤ 1

Another consequence of the observation is that a node may only have multiple
parents if it is stored in a shareable location. This is modelled by the second
healthiness condition, which states that the trace to any node that has more
than one parent must end with the special shareable location label.

HC2n(n) =̂ # lastLabels(frontTraces(n)) > 1⇒ lastLabels(n) = {$}

Any healthy node can be denoted by P .l , where each path in the path-set P is
extended by the trace-label l to form the trace-set {p.l | p ∈ P}. The remainder
of this section now presents some useful utility relations and operations on nodes.

Node relations: The child-of and descendant-of relations test whether one node
is an immediate child of or a descendant of another node. These tests assume
that the nodes come from a healthy graph, where all the routes to the parent
are contained within the child.

n1 childOf n2 =̂ n2 ∈ frontTraces(n1)
n1 descendantOf n2 =̂ n2 ∈ prefixesn(frontTraces(n1))

In addition to knowing whether two nodes are related, it is sometimes useful to
identify the relative traces from a parent to child node.

tracesn(n1,n2) =̂ {tr2 −t tr1 | tr1 ∈ n1 ∧ tr2 ∈ n2 ∧ tr1 ≤t tr2}

12 M. A. Smith and J. Gibbons

Such trace-sets are used to determine whether two nodes are related via shareable
or via containable locations. Here, two nodes are related by a shareable location
if one of the traces within the trace-set includes the dollar label. Similarly they
are related by a containable location if one of the traces within the trace-set
does not contain the dollar label.

n1 shareDescOf n2 =̂ n1 descendantOf n2 ∧ $ ∈t tracesn(n2,n1)
n1 containDescOf n2 =̂ n1 descendantOf n2 ∧ $ 6∈t tracesn(n2,n1)

where l ∈t tr =̂ ∃ p • p.l ∈ prefixest tr .
Note that the only way a node can be both a shareable and a containable

descendant of another node, is if the nodes are both contained in the same cycle.
In this case, all the containable descendants are also shareable descendants.

Node unlinking (deletion): Part of the assignment process involves the removal
of previously held data. This is the purpose of the following unlinking operations,
which remove all traces of either a node (n1) or its children from the specified
target node (n2).

unlinkn n1 from n2 =̂ n2 \ {tr2 | tr1∈n1 ∧ tr2∈n2 ∧ tr1≤t tr2}
unlinkChildrenn n1 from n2 =̂ n2 \ {tr2 | tr1∈n1 ∧ tr2∈n2 ∧ tr1<t tr2}

These operations can be lifted to the graph context by unlinking a given node
from a node-set.

unlinkg(N ,n) =̂ {(unlinkn n from n ′) | n ′ ∈ N }
unlinkChildreng(N ,n) =̂ {(unlinkChildrenn n from n ′) | n ′ ∈ N }

Node duplication (replacement): It is sometimes useful to construct a new node
from a pair of existing nodes, a source node (n2) and one of its descendants (n3).
Here the idea is to extract the traces between the source and descendant nodes,
and then append them to a new source node (n1), which is the target of the
duplication.

replacen n1 for n2 in n3 =̂ {tr1.tr | tr1 ∈ n1 ∧ tr ∈ tracesn(n2,n3)}

Instead of replacing one parent for another, we may want to add a parent; for
example, when copying a reference to a shareable location. This is essentially
achieved by performing the replacement operation and merging in the original
data.

addn n1 to n2 in n3 =̂ (replacen n1 for n2 in n3) ∪ n3

These operations can then lifted so that they operate on node-sets, by reparent-
ing each node in the set.

replaceg n1 for n2 in N =̂ {(replacen n1 for n2 in n) | n ∈ N }
addg n1 to n2 in N =̂ {(addn n1 to n2 in n) | n ∈ N }

We use these operations to prepare a subgraph for being moved or copied to a
new location.

Unifying Theories of Locations 13

3.4 Trace-based graph

A trace-based graph is a set of trace-based nodes that satisfies four healthiness
conditions. The first healthiness condition states that each of the graph’s nodes
is healthy.

HC1g(G) =̂ ∀n | n ∈ G • HC1n(n) ∧ HC2n(n)

The second healthiness condition states that the nodes of a graph are disjoint.
This ensures that an absolute trace can be used to identify a single node.

HC2g(G) =̂ ∀n1,n2 | {n1,n2} ⊆ G ∧ n1 6= n2 • n1 ∩ n2 = ∅

For a graph (G) that satisfies condition HC2g, it is possible to define an operation
for extracting the node (n) that has an absolute trace (p), so long as the trace
is within the graph.

nodeg(G , tr) =̂ λG , tr | HC2g(G) ∧ tr Ag G • pick({n | tr ∈ n ∈ G})

where the (Ag) relation determines whether a trace is in the graph:

p Ag G =̂ p ∈ (
⋃

G)

The third healthiness condition states that each of a node’s traces is consistently
extended; i.e. if it is possible to take an edge with label l from node n1 to node
n2, then the trace-set formed by appending the label l to each of n1’s traces is
a subset of n2’s trace-set.

HC3g(G) =̂ ∀n1,n2, tr1, tr2, l |
{n1,n2} ⊆ G ∧ {tr1, tr2} ∈ n1 •

tr1.l ∈ n2 ⇒ tr2.l ∈ n2

The fourth healthiness condition states that the parents of a node are contained
within the graph; in other words, the traces within a graph are prefix closed.

HC4g(G) =̂ ∀ tr , l | tr .l Ag G • tr Ag G

The combination of the first three graph healthiness conditions defines what it
means for the trace model to have a consistent, but not necessarily complete, set
of nodes. Thus, these conditions should be satisfied by any healthy subgraph.

The remainder of this section provides operations for manipulating the con-
tents of a location graph model, such as operations for: extracting a subgraph;
extracting the value at a location; and assigning a value to a location.

Children and descendants subgraphs: Subgraphs can be formed by selecting only
some of a graph’s nodes. The childOf and descendantOf relations can be used to
filter a graph to form children and descendants subgraphs respectively.

children =̂ λG ,n | n ∈ G • {n ′ | n ′ ∈ G ∧ n ′ childOf n}
descendants =̂ λG ,n | n ∈ G • {n ′ | n ′ ∈ G ∧ n ′ descendantOf n}

Note that a node can be a descendant of itself if, and only if, there is a non-empty
sequence of edges back to itself.

14 M. A. Smith and J. Gibbons

Dereferencing a location’s value: A location is represented by a healthy node
whose last label is either a field name or the dollar name. Such a node can
be represented by a path-set, as each trace within this node may only contain
names. The value of a location node is determined by recursively examining its
children, or more specifically its child labels. There are three cases to consider.

1. There is a single null-reference or literal value (nlv) child label. In this case,
the label value is returned as the location’s value.

2. There is a single child label that contains the dollar name. In this case the
path-set (reference value) that models the child node is returned.

3. There is a set of child-labels that contain field names. In this case a compound
value is recursively constructed from its children.

∗g(G , p) =̂ ∗g(G , nodeg(G , p))
∗g(G ,P) =̂ ∗g(G , children(G ,P))
∗g(G , {P .nlv}) =̂ nlv
∗g(G , {P .$}) =̂ P .$
∗g(G , {ki=1 P .nmi}) =̂ {ki=1 nmi = ∗g(G ,P .nmi)}

Recall that we introduced P .l as an alternative notation for denoting a healthy
node, in Section 3.3, where P .l =̂ {p.l | p ∈ P}.

Preparing a location for assignment: The preparation required for assigning a
value to a location depends on a number of factors, such as whether the location
already exists. We could limit assignments to existing locations, but then this
would not mirror our concrete model, which defined assignment in terms of the
map overriding operation (⊕). Instead we categorise a potential location as
either existing (Epm), freshly containable (Cpm), freshly shareable (Spm), or
invalid (Upm), as follows:

prepMode(G ,P .nm) =̂


Epm , if P .nm∈G
Spm , if P .nm /∈G ∧ nm =$
Cpm , if P .nm /∈G ∧ nm 6=$ ∧ ∗g(G ,P)∈CV
Upm , otherwise

where CV denotes the set compound values (i.e. the compound value type). Note
that the above definition of freshly created locations ensures that a compound
value may only contain containable locations (and vice versa). In general, a
path-set P is considered to represent an assignable location within a graph G
whenever it has a valid assignable location mode.

P assignableIng G =̂ prepMode(G ,P) 6= Upm

It is now possible to define the preparation for an assignable location by ensuring
that it exists and contains no contents. This can involve the clearing (unlinking)

Unifying Theories of Locations 15

of an existing node’s contents and the creation of a new location node.

prepg(G ,P) =̂ prep(G ,P , prepMode(G ,P))
prep(G ,P ,Epm) =̂ unlinkChildreng(G ,P)
prep(G ,P .l ,Spm) =̂ unlinkChildreng(G ,P) ∪ {P .$}
prep(G ,P .l ,Cpm) =̂ G ∪ {P .l}

Assigning a null-reference or literal value: A null-reference or literal value (nlv)
can be assigned to a graph location by preparing the location and setting its
contents to the given value.

(G , p) :=g nlv =̂ (G , nodeg(G , p)) :=g nlv
(G ,P) :=g nlv =̂ prepg(G ,P) ∪ {P .nlv}

Assigning an encapsulated compound value: An encapsulated compound value is
a concrete compound value that contains no shareable locations (i.e. a compound
value in the set {cv | sLocs cv = ∅}). Such values are represented by the meta-
variable ecv . It can be assigned to a location by preparing the location and
setting its contents to the subtree that represents the compound value.

(G , p) :=g ecv =̂ (G , nodeg(G , p)) :=g ecv
(G ,P) :=g ecv =̂ prepg(G ,P) ∪

⋃
{P .tr | tr ∈ (cvTrs ecv)}

where the cvTrs function converts an encapsulated compound value into a pre-
fix closed set of traces, representing each trace through the compound value’s
structure.

Assigning the contents of an existing location: In the concrete model, we referred
to this as the copying of a location’s value. This is more tricky than the previous
cases for a number of reasons. One significant reason is that the location we are
copying may be contained within the target location that we are assigning to. In
such a case, the location preparation process could remove (clear) the location
we want to copy. This limitation can be overcome by a three-step process. First,
copy the value to a fresh temporary location, which is not contained within the
contents of the target location. Second, prepare the target location and copy the
value of the temporary location to it. Last, remove the temporary location.

What would make a good temporary location is dependant on what the
location graph is being used to model, so in general we cannot specify this.
Having said that, what we can do is specify how to assign the contents of a
location to a prepared location node.

Assigning to a cleared location node: When assigning the contents of a cleared
location, care has to be taken to ensure that the contents of reference values are
pointed to rather than duplicated. In order to facilitate this, two utility opera-
tions are defined: one for identifying the referenced nodes (copyRefSG); and the

16 M. A. Smith and J. Gibbons

other to add the copied pointer (path) to these identified nodes (copyRefNodes).

copyRefSG(G ,n) =̂ {n ′ | n ′ ∈ G ∧ n ′ shareDescOf n}
copyRefNodes n1 to n2 in G =̂ addg n2 for n1 in copyRefSG(G ,n1)

Care also has to be taken to ensure that a duplicate of the value nodes are added
to the copy node. This is facilitated by two utility operations: one for identifying
the nodes to be duplicated (copyValSG); and the other to perform the duplication
(copyValNodes) using the node replacement operation.

copyValSG(G ,n) =̂ {n ′ | n ′ ∈ G ∧ n ′ containDescOf n}
copyValNodes n1 to n2 in G =̂ replaceg n2 for n1 in copyValSG(G ,n1)

It is now possible to define the graph transformation operation of copying the
contents of a source node to the empty location as the union of: the appropriately
updated reference nodes; the descendant nodes that were not updated; the non-
descendant nodes; and the duplicated value nodes.

copyg n1 to n2 in G =̂ (copyRefNodes n1 to n2 in G)
∪ descendants(G ,n1) \ copyRefSG(G ,n1)
∪ G \ descendants(G ,n1)
∪ (copyValNodes n1 to n2 in G)

Now given that the location with path $copy is an assignable location that does
not exist within the graph, the copy assignment can be defined as follows:

(G , p) :=g p′ =̂ (G , p) :=g nodeg(G , p′)
(G , p) :=g P ′ =̂ (G , nodeg(G , p)) :=g P ′

(G ,P) :=g P ′ =̂ let G1 =̂ (copyg P ′ to {$copy} in (G ∪ {$copy}))
G2 =̂ (copyg{$copy} to P in prepg(G1,P))

in unlinkg(G2, {$copy})

4 UTP Model

Our UTP model of locations uses the Abstract Location Trace Graph (ALTG)
of Section 3.4 to provide a semantics of locations, where the special logical vari-
ables altg and altg ′ to represent the before and after states of the graph. The
contents of this ALTG are then linked to the normal UTP program variables,
using a technique inspired by [1]. In our case, the values of normal program
variables are mirrored by correspondingly named first-level nodes in the graph.
For example, the logical input and output variables for a UTP program variable
x are represented by the node {x} in the altg and altg ′ graphs respectively. Note
that whenever there could be confusion between whether a variable is being used
to denote its name rather than its value, we prefix the variable with a dash to

Unifying Theories of Locations 17

get its name. For example, the predicate x = ∗g(altg , 'x) holds whenever the
value of variable x equals the value of extracting its corresponding element from
the graph altg (i.e. the one with the path name 'x).

The remainder of this section introduces the healthiness conditions on the
UTP model of locations, provides the definitions for a few operations, such as
assignment, and relates the abstract and concrete models. Here the meta variable
Q denotes a relational predicate that defines a UTP location model program.

4.1 Healthiness conditions

Before we formalise the relationship between a program’s variables and the
ALTG, it is worth introducing a healthiness condition to ensure that both the
altg and altg ′ graphs are healthy (as defined in Section 3.4).

HC1u(Q) =̂ Q = (Q ∧ HCu(altg) ∧ HCu(altg ′))
HCu(G) =̂ HC1g(G) ∧ HC2g(G) ∧ HC3g(G) ∧ HC4g(G)

The first step in formalising the link between the graph and program variables
is by insisting that the first-level nodes within the graph correspond precisely to
the UTP program variables other than the model variables (i.e. altg and altg ′).

HC2au(Q) =̂ Q = (Q ∧ {'x | 'x ∈ invαQ} = labelsg(altg ,∅))
HC2bu(Q) =̂ Q = (Q ∧ {'x | 'x ′ ∈ outvαQ} = labelsg(altg ′,∅))
HC2u(Q) =̂ HC2au(Q) ∧ HC2bu(Q)

where: invαQ and outvαQ represent the input and output alphabets of program
Q except for the model variables altg and altg ′ respectively; and the child labels
of graph path are defined by labelsg(G , p) =̂ {l | P .l ∈ children(G , nodeg(G , p))}.

The second, and last, step in formalising the link between the graph and
program variables is to ensure that the value of a variable is the same as the
value stored within the ALTG.

HC3au(Q) =̂ Q = (Q ∧ (∀ x | 'x ∈ invαQ • x = ∗g(altg , 'x)))
HC3bu(Q) =̂ Q = (Q ∧ (∀ x | 'x ′ ∈ outvαQ • x = ∗g(altg ′, 'x)))
HC3u(Q) =̂ HC3au(Q) ∧ HC3bu(Q)

4.2 Operations

Due to space limitations, we only present those operations that significantly differ
from those of the standard UTP relational model, as presented in Chapter 2 of
[3]: specifically, the assignment and program variable management operations.

The assignment operation is broken down into three cases, depending on the
type of the r-value (i.e. the value to be assigned). These mirror the three cases
presented in the trace-based graph model, except that the location is always

18 M. A. Smith and J. Gibbons

defined in terms of a possibly empty path from a UTP program variable. It is
defined as follows:

x .p := nlv =̂ HCsu(altg ′ = ((altg , 'x .p) :=g nlv))
x .p := ecv =̂ HCsu(altg ′ = ((altg , 'x .p) :=g ecv))
x .p := y .p1 =̂ HCsu(altg ′ = ((altg , 'x .p) :=g 'y .p1))

where x .∅ = x and HCsu(Q) =̂ HC3u(HC2u(HC1u(Q))). Note that the com-
bined healthiness condition ensures that the consequences of updating shared
values can be seen by all participating UTP program variables.

The variable introduction and elimination operations are also defined in terms
of their effects on the ALTG. Here the variable introduction operation provides
a default unset value to the introduced variable; and the variable elimination
operation removes all references to the value from the graph.

var x =̂ ∃ x • HCsu(altg ′ = ((altg , 'x) :=g ¿))
end x =̂ ∃ x ′ • HCsu(altg ′ = unlinkg(altg , 'x))

4.3 Full abstraction

The ALTG-based UTP model of locations, outlined here, is fully abstract in the
sense described earlier: two concrete location graphs are equivalent, as defined in
Section 2.3, iff their corresponding ALTGs are equal. This is essentially because
the underpinning ALTG model is fully abstract by design; it removes the need
for explicitly indexed shareable locations. Here, each location has precisely one
path-set that represents it.

5 Related Work

Our model of locations was inspired by Hoare and He’s trace-based model of
pointers [4]. It introduces the notion of a containable location. This significantly
complicates the — already non-trivial — notion of assignment, which in [4] is
defined in terms of swinging the pointer of the assigned location to its new
contents. In our model, several contained pointers can be swung at once by an
assignment operation, as the contents of:

– a containable location are duplicated on assignment;
– a shareable location are referenced (shared) on assignment;
– a location can include many shareable and containable locations.

The benefit of this extra complexity is that our location model enables the
atomicity of assignment to be directly specified (or supported). For example,
the copying of a struct in C++ or a record in Pascal can be captured.

Schieder has also adapted Hoare and He’s work on trace-based pointers to
provide a weakest precondition semantics for pointers [8]. Here, the object maps
have been totalised in order to avoid undefinedness; this leads to the null pointer

Unifying Theories of Locations 19

being modelled by a node that has outbound edges (all of which point to itself).
However, like [4] it does not support the notion of a containable location.

Cavalcanti, Harwood, and Woodcock have an entity group [6] inspired model
of pointers and records [1]. Here, an entity group contains the set of path names
that can be used to access the same value, where a path name is either:

1. a simple name of a UTP user variable; or
2. a rooted field name, which is a simple name extended by a dot-separated

sequence of record field labels.

This notion of a path is similar to the one we use, in the sense that both use
dot-separated labels to define a route from a given starting point to a location.
The main difference is that every location in [1] is potentially shareable, whereas
only some of the locations within our model are shareable. Specifically, [1] does
not support the notion of a containable location.

A further difference between our model and those of [4], [8] and [1] is that we
have an explicit notion of a pointer value (i.e. sharable location), as represented
by a path-set of the form ‘P .$’. One consequence of this is that our model directly
supports the notion of a handle, which is a pointer to a pointer. Here the second
pointer value (path-set) includes a path of the form ‘p.$.$’.

6 Conclusions

6.1 Summary

This paper augments the general relational model of the UTP with an Abstract
Location Trace Graph (ALTG), which enables complex relationships between
locations and their data to be represented. Here, both shareable and containable
locations are modelled by a path-set. They differ in that only shareable locations
can be dereferenced by a pointer, whose value is the shareable location’s path-set
itself. The key point is that containable locations actually contain rather than
reference their contents, thus when they are copied their contents are duplicated
rather than referenced. This mirrors situations where the whole of a compound
value, such as a Pascal record or a C++ struct, is duplicated on assignment.
In general, being able to control the amount of data that gets duplicated on as-
signment provides a means for directly supporting different levels of containment
within a data structure.

One consequence of modelling a pointer’s value as the path-set that defines
its location is that it is possible to directly represent the concept of a handle (i.e.
a pointer to a pointer). The combination of having direct support for contained
locations and pointer values mirrors the features of our UTP model of objects
[9]; it is what led to the development of this model from [4] and [1].

Overall, we argue that a general UTP model of pointers ought to consider
both shareable and containable locations. Such models will provide support for
languages like C# (and our UTP object model), which have language constructs
for building containable locations and handles.

20 M. A. Smith and J. Gibbons

6.2 Future work

In this paper we have presented both concrete and abstract models of locations.
What we have not done is prove that the two models are consistent. We have
also not shown how this model of locations can be applied to either UTP designs
or objects [3, 9]. Finally, we have not considered the issues of:

– location ownership and encapsulation (e.g. as presented in [2, 5, 7]);
– location typing (e.g. augment a location with the type of its contents);
– location visibility (e.g. augment a location with read-only or scope modifiers).

Augmenting the UTP model of locations to handle any of these issues is left as
future work.

References

1. Ana Cavalcanti, Will Harwood, and Jim Woodcock. Pointers and records in the
unifying theories of programming. In Steve Dunne and Bill Stoddart, editors, First
International Symposium on Unifying Theories of Programming, volume 4010 of
Lecture Notes in Computer Science. Springer-Verlag, 2006.

2. Daev Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, October 2002.

3. C.A.R. Hoare and J. He. Unifying Theories of Programming. Computer Science.
Prentice Hall, 1998.

4. C.A.R. Hoare and Jifeng He. A trace model for pointers and objects. In 13th

European Conference on Object-Oriented Programming, pages 1–17, 1999.
5. James Noble, Daev Clarke, and John Potter. Object ownership for dynamic alias

protection. In Technology of Object-Oriented Languages and Systems (TOOLS),
1999.

6. R.F. Paige and J.S. Ostroff. Erc: an object-oriented refinement calculus for Eiffel.
Formal Aspects of Computing, 16(1):51–79, April 2004.

7. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th Annual IEEE Symposium on Logic in Computer Science, 2002.

8. Birgit Schieder. Pointer theory and weakest preconditions without addresses and
heap. In Dexter Kozen and Carron Shankland, editors, MPC 2004, 7th International
Conference on the Mathematics of Program Construction, volume 3125 of Lecture
Notes in Computer Science, pages 357–380. Springer, 2004.

9. Michael Anthony Smith and Jeremy Gibbons. Unifying Theories of Objects. In
Jim Davies and Jeremy Gibbons, editors, Integrated Formal Methods, volume 4591
of Lecture Notes in Computer Science, pages 599–618. Springer-Verlag, July 2007.

