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Abstract

Collecting subjective information from multiple parties is a
common problem in collective intelligence. However, incen-
tivizing truthful reports is difficult when there is no ground
truth to verify the reports against. Peer prediction mecha-
nisms use collected reports alone to provide good theoreti-
cal incentives for truthful reporting, but make assumptions
that are difficult to satisfy in the real world. They also ad-
mit uninformative equilibria where coordinating participants
provide no useful information. Using a multiplayer, real-time
repeated game, we conduct the first controlled online experi-
ment of a peer prediction method. Our results show that play-
ers learn to adopt more profitable strategies through repeated
use of the mechanism, and that there is a distinct incentive for
participants to converge to the uninformative equilibria.

1 Introduction
Businesses and organizations often face the challenge of
gathering accurate and informative evaluation or feed-
back from separate individuals. A notable example are
community-based websites such as Yelp, Amazon, Quora,
and Stack Overflow, which are largely dependent on ratings,
questions, and answers that are voluntarily contributed by
the users of these sites. At the same time, the proliferation
of online labor markets has created an opportunity for out-
sourcing subjective tasks, including classifying images and
identifying abusive or adult content on the web, to a readily
available online workforce. In all of these settings of collect-
ing subjective information, there exists the significant chal-
lenge of incentivizing the participants to honestly contribute
their subjective evaluation about some item of interest.

There has been a long line of work on proposing and the-
oretically analyzing mechanisms to truthfully elicit subjec-
tive evaluations from individuals. Yet, in many cases, indi-
vidual reports cannot be compared to or verified by an ob-
servable ground truth. This led to the idea of peer predic-
tion mechanisms, where one participant’s report is compared
to those of his peers to induce a truthful reporting equilib-
rium among the participants: with proper incentives, it is
in a participant’s best interest to report his evaluation truth-
fully if he believes all other participants will also be truth-
ful. Miller, Resnick, and Zeckhauser [7] devised the first
such peer prediction mechanism (MRZ mechanism), lead-
ing to subsequent mechanisms with good theoretical proper-

ties [4, 9, 11, 12].
To the best of our knowledge, there have been few ex-

perimental or empirical studies on the performance of peer
prediction mechanisms in realistic settings. The properties
of these mechanisms reveal several difficulties for doing so.
First, the earlier mechanisms often impose strong common
knowledge assumptions regarding how participants form be-
liefs about the item of interest and about other participants’
private information. If such a mechanism is used in a set-
ting where these assumptions are not satisfied, then it would
be unsurprising if the theoretical guarantees did not hold
as well. Moreover, although some peer prediction mecha-
nisms are able to relax these strong assumptions, their pay-
ment rules are often described by complicated mathematical
formulas. If the participants cannot plainly understand these
payment rules, one might wonder if they would actually be-
have optimally as predicted by the theoretical analyses. Fi-
nally, perhaps the most serious problem with peer predic-
tion mechanisms is the existence of uninformative equilibria
where participants can blindly agree on their reports without
revealing any useful information. This is unavoidable when
participants’ reports are compared only with each other, and
the existence of such equilibria raises questions about the
usefulness of these mechanisms; the theory provides little
assurance that the participants will choose to play the truth-
ful equilibrium in practice. The above problems inspire two
important questions:

• Can the peer prediction mechanisms be adapted and used
in a realistic scenario?

• If so, how would participants behave toward peer predic-
tion mechanisms in the presence of multiple equilibria?

We take a first step toward answering these questions by
conducting a controlled experiment on the MRZ mechanism
via Amazon Mechanical Turk (MTurk), testing it as a re-
peated game with multiple players. By definition, the MRZ
mechanism is a one-shot game. Yet, if peer prediction is used
in practice, we might expect participants to interact with and
learn about the mechanism through multiple tasks. Hence,
we allow the participants to play the game repeatedly so
that they may learn to improve their strategies by interact-
ing with others. By having a game with multiplayer, real-
time interaction, we capture the learning dynamics of par-
ticipants when faced with a peer prediction mechanism and



study whether they will converge to one of the multiple pure
strategy equilibria of the game.

We make the following contributions:

1. We conduct the first controlled online experiment of the
MRZ mechanism through a multiplayer, real-time, and re-
peated game via MTurk. To our knowledge, this is the first
peer prediction method tested in a repeated setting.

2. We formulate a simple story to explain the rules of the
peer prediction game to the participants. This story incor-
porates the required common knowledge assumption in
a natural way. We design an intuitive user interface from
which the participants can learn to improve their strategies
by examining the history of game play.

3. We show that there is a strong incentive for players to
converge to the coordinating equilibria, which have higher
payoffs than the truthful equilibrium. We present evidence
that players can perform simple inference with the prior
when choosing their strategies.

Related Work Following the MRZ mechanism [7], sev-
eral peer prediction mechanisms have been developed to re-
lax the common knowledge assumptions [4, 9, 11, 12], al-
though they often require the participants to make an addi-
tional probabilistic report and use much more complicated
payment rules to achieve incentive compatibility. Dasgupta
and Ghosh [1] study a crowdsourcing setting in which the
effort level of a participant determines the probability of ob-
serving the correct label, and they propose a mechanism in-
centivizing both high efforts and truthful reports.

To the best of our knowledge, the only experimental
studies on peer prediction mechanisms have been for the
Bayesian truth serum (BTS) [10, 8, 3]. The study of Prelec
and Seung [8] focus on showing that BTS scores can be used
to obtain the ground truth even if most participants’ subject
judgements are wrong. John, Loewenstein, and Prelec [3]
surveyed psychologists about their estimates of questionable
research practices and scored them using BTS. This study of
the BTS is in a one-shot setting, whereas we test the MRZ
mechanism in the setting of a repeated game; we believe that
repetition more accurately reveals long-run behavior in prac-
tice. Shaw, Horton, and Chen [10] conducted an online ex-
periment using the BTS description as the contextual manip-
ulation for one of the financial incentives tested, but they did
not pay the workers according to the mechanism. Gao et al.
[2] used the peer prediction method proposed by Witkowski
and Parkes [11] to elicit ratings for short tourism ads col-
lected through MTurk, but they simply adopted the method
without evaluating it experimentally.

2 Background
We introduce the MRZ mechanism, first proposed by Miller,
Resnick, and Zeckhauser [7] and further analyzed by Jurca
and Faltings [4].

Consider an item of interest with a finite set Ω of possible
types, and let ω be the true type of this item. There are n ≥ 3
participants who have some experience about this item. The
experience of participant i is represented by a private signal
si drawn from a finite signal space Si. Each private signal is

only observed by the intended participant, not by any other
participant or the mechanism. In this work, we assume that
the item has a binary type and each participant receives a
signal drawn from a common binary signal space.

There is a prior probability distribution Pr(ω) over the
possible item types (

∑
ω∈Ω Pr(ω) = 1). Before the game

starts, nature draws the true type of the item according
to Pr(ω). After that, each participant’s private signal is
drawn according to the conditional probability distribution
Pr(s|ω), s ∈ S. A critical assumption of the MRZ mecha-
nism is that the common prior, consisting of both Pr(ω) and
Pr(s|ω), is common knowledge for all participants and for
the mechanism.

Once all participants receive their signals, each participant
makes a report ri ∈ S, which may or may not be same as
his private signal. Given all participants’ reports, the mech-
anism determines the participants’ payments as follows. For
participant i, the mechanism randomly chooses one of the
other participants as i’s reference participant. The reference
participant’s report is called i’s reference report fi. The pay-
ment to participant i, denoted by u(ri, fi), is uniquely deter-
mined by i’s report ri and i’s reference report fi.

The participants are rational and risk-neutral agents. The
payment rule for the MRZ mechanism rule can be derived
using strictly proper scoring rules such that truthful report-
ing is a Bayes-Nash equilibrium (BNE) of the mechanism:
a risk neutral participant maximizes his expected payoff by
truthfully reporting his private signal if he believes that all
other participants will also be truthful. However, for each
possible signal s ∈ S, there also exists a coordinating BNE
in which all participants make the same report s regardless
of their private signals. At any such coordinating BNE, the
mechanism obtains no information from the participants.

Jurca and Faltings [4] further showed that to sustain the
truthful BNE, it suffices for the payment rule to satisfy the
following constraints:∑

s∈S
Pr(s|ri)(u(ri, s)− u(rliei , s)) ≥ 0,∀ri ∈ S (1)

where rliei denotes the signal in S which is not ri. We use
this method to derive the payment rules for our experiment
since it allows more choices of parameters for the payment
rule. Jurca and Faltings also proved that for the MRZ mech-
anism in the binary setting, the uninformative coordinating
equilibria always exist.

3 The Trick or Treat Story
Perhaps the biggest challenge of studying a peer prediction
mechanism in an experimental setting is to present the mech-
anism in an accessible and intuitive way. This is our main
motivation of using the MRZ mechanism: in our setting, the
payment rule of the MRZ mechanism consists of 4 param-
eters and can be presented in a simple table of four rows.
Also, each participant need only make a single binary report
based on a binary signal, avoiding the potential difficulty of
estimating probabilities or continuous values.

The most complicated detail of the MRZ mechanism
is the strong common knowledge assumption. To test the



mechanism in a controlled setting, we choose a fixed com-
mon prior. Moreover, we create a simple and fun story about
trick or treating on Halloween night to incorporate the com-
mon knowledge assumption as a natural part of the scenario.
We describe this trick or treat story below:

A group of kids are trick or treating on Halloween
night. There are two types of houses giving out two
types of candies, the M&M’s and the gummy bears,
in different proportions. The kids randomly choose a
house to go trick or treating; the house can be one of
the two types with equal chance and the kids don’t know
which type of house was chosen. Each kid secretly and
privately gets one randomly selected candy from the
chosen house. A clown shows up and asks each kid tell
him the type of candy received, promising a payment
in return. Each kid may claim to have either type of
candy to the clown. To determine the kids’ payments,
the clown first collects a reports from all the kids. Then
for each kid X , the clown randomly selects another kid
Y in the group, and kid X’s reward is determined by
kid X’s claim and kid Y ’s claim according to a table
of payment rules.

The story conveys several important details of the peer
prediction game, such as the common prior, the concept of
private information, and the concept of misreporting. In our
experiment, each player is a ’kid’, a particular house is the
type of the item, and the candies are the signals and reports.
The large supply of candy at each house explains the condi-
tional independence of signals. Finally, the clown is a neutral
character that plays the role of the mechanism.

Introduced as part of the background information, the
common prior becomes a natural and integral part of the
story. This allows us to communicate this potentially dif-
ficult concept effectively to the average participants. It was
tricky to convey the idea that the proportion of candies given
remains the same regardless of how many candies the house
has given out (i.e. the signals are conditionally independent)
since candies are concrete objects rather than abstract no-
tions. We decided that stating this as a fact was the most
straightforward way to convey this idea.

Although the concept of private information and misre-
porting are common in mechanism design, we were careful
to communicate these concepts to MTurk participants in a
credible way. Many MTurk workers are wary of the conse-
quences of rejections and blocks, and they typically antici-
pate what the requester of the task expects and try to sub-
mit the correct or the expected answer. Hence, we wanted to
ensure that participants would understand that there was no
consequence to misreporting their private information. First,
we put special emphasis on the fact that each player’s pri-
vate signal is obtained in secret and it is not observed by any
other participant or the mechanism. We used the clown as a
proxy for the mechanism instead of the requester. In addi-
tion, we chose to describe each participant’s action as “mak-
ing a claim”, which is a neutral phrasing in lieu of words
with negative connotations such as “lying” or “cheating”, so
as not to invoke the participants’ fear of punishments. We
also emphasize the fact that each player can claim to have

either type of candy, and the clown cannot verify whether
the player’s claim matches the actual type of the player’s
candy.

In what follows, we use MM and GB to denote the two
possible signals or reports. We refer to the two coordinating
equilibria as the MM and GB equilibria.

4 Experiment Setup
To run our experiment online, we use TurkServer [5], a
framework and API for conducting online experiments with
synchronicity and real-time interaction. In each game, 3
players play repeatedly for 20 rounds. By using a small num-
ber of players, we aim to make it easy for each player to rea-
son about other players’ actions. At the same time, the large
number of rounds gives players sufficient time to explore
and improve their strategies.

Each player is paid a $1.00 base payment upon finishing
the game. The player also receives a bonus equal to his/her
average reward in the 20 rounds of the game (ranging from
$0.10 to $1.50). While most tasks on MTurk pay primarily
through the base payment, we use the size of the bonus rela-
tive to the base payment to motivate workers to pay attention
to their reward in the game.

To ensure that no player in a game has prior experience,
we limited each worker to participate only once in any ex-
periment. Moreover, we restricted our tasks to US workers,
for two reasons. First, our experiment requires synchronic-
ity, and a real-time connection to a US server, so US workers
minimize the likelihood of connection issues. Second, con-
trolling for geography avoids unexpected behavior if people
from other regions have different behavioral norms or a lan-
guage barrier in understanding the instructions.

The Task Users progress through the task in several sec-
tions. The initial page describes some general information
and requires consent. This is followed by an 11-page tuto-
rial, consisting mainly of pictures. The first half of the tu-
torial describes the trick or treat story, and the second half
explains the game interface. After the tutorial, the partici-
pant must take a quiz, selecting all correct (true/false) state-
ments out of a total of 14 statements about the task. Each
participant has 3 attempts to pass the quiz with a score of at
least 80%. If they fail all 3 attempts, they are permanently
blocked from our task. After participants pass the quiz, they
must wait in a virtual lobby for enough players to start a
new game. Whenever there are enough players in the lobby,
a ’READY’ button appears for each player, and a new game
starts when enough players press this button. We explain the
game interface in the next section. Finally, participants com-
plete a short exit survey after the game, describing the strate-
gies and reasoning they used.

Interface Figure 1 shows the organization of the main
game interface. The top section describes the general infor-
mation of the game, such as the total number of rounds and
the total number of other players. The rest of the interface
consists of 2 columns. The left column displays the steps
for the current round, and the right column displays the re-
sults of the previous rounds and the current round. Other



Figure 1: The Game Interface

than viewing previous reports, players cannot communicate
with one another during the task.

We carefully considered how to show the right amount of
information to participants when designing the right column
to show the history of game play. With too much informa-
tion, a participant may become distracted or confused, and
pay less attention to the task. If there is not enough informa-
tion, a participant may not be able to learn or improve his
strategy by observing other participants’ actions. After sev-
eral redesigns, we chose to display the other participants’
claims as an aggregate summary for the current participant,
since this is the most concise representation that still shows
all other participants’ actions.

To control for position biases on the game interface, we
randomize the row order of the payment rule once for each
participant and show this randomized table throughout the
task. We also randomize the order of questions on the quiz
and order of the radio buttons for choosing claims.

Dealing with errors In a typical MTurk task, workers ex-
pect the task to progress smoothly as long as they are atten-
tive. However, in a synchronous experiment players can dis-
connect or experience other technical issues. To ensure that
a game progresses smoothly when such issues occur, we ex-
pel a participant from the game if disconnected for at least
1 minute (a reasonable threshold since a typical game takes
less than 5 minutes to finish). An expelled player cannot re-
connect to the game, and the server will choose truthful re-
ports on behalf of the expelled player. This ensures that other
players experience the game as normal, but we exclude all
games with expelled players in our analysis because of the
fake replacement.

Treatments We conducted two experimental treatments
using different payment rules. In the first treatment, we
would like to answer the following question:

• Given a typical payment rule, will the players learn to play
one of the pure strategy equilibria and if so, which equi-
librium will they converge to?

The prior and the payment rule used are shown in Equation 2
and Table 1 respectively. We construct the payment rule such
that all four combinations of report and reference report re-
sult in different payoffs. Also, a report of MM may result
in either the maximum or the minimum payment, so neither
report dominates the other in terms of the possible realized
payments. In terms of maximizing payoffs, the MM equilib-
rium seems to be the most favorable choice. However, under
this prior, if one player receives a given signal, it is more
likely that another player also receives the same signal. This
simple reasoning may influence players to be truthful if they
believe other players are also truthful.

Pr(A) = 0.5, Pr(MM | A) = 0.2, Pr(MM | B) = 0.7 (2)

ref report = GB ref report = MM
report = GB $1.20 $0.30
report = MM $0.10 $1.50

Table 1: Typical Payment Rule

For the second treatment, we would like to test whether
making the payoffs for the two coordinating equilibria equal
can deter the players from reaching either coordinating equi-
librium, especially when they cannot communicate with one
another. We use the same prior as the first treatment and
change to a simpler payment rule rewarding agreement be-
tween the two reports, as shown in Table 2. A participant
receives the maximum payment if his report agrees with the
reference report, and the minimum payment otherwise.

5 Results and Challenges
We collected the results of 103 and 104 games (exclud-
ing games with expelled players) for the two treatments re-



ref report = GB ref report = MM
report = GB $1.50 $0.10
report = MM $0.10 $1.50

Table 2: Payment Rule Rewarding Agreement

spectively. We characterize the games converging to each
pure strategy equilibrium, and propose a statistical model of
strategies to analyze the learning effect throughout the game.

We received generally positive feedback about the de-
sign of our task and its difficulty, clarity, and enjoyability.
While we were initially concerned about the complexity of
the task, 81% of workers who attempted the quiz eventu-
ally passed it before being locked out. This suggests that
the quiz was of appropriate difficulty and that most work-
ers were able to understand the tutorial. Moreover, partici-
pants provided positive feedback about the task in their exit
survey comments, claiming that the game was easy to un-
derstand, quick, smooth and enjoyable. These observations
suggest that, with careful design of the interface, the MRZ
mechanism can indeed be made accessible to most people.

Equilibrium Convergence The usefulness of peer predic-
tion in practice depends on a simple question: which one of
the multiple pure strategy equilibria (i.e. truthful, MM, and
GB) will the players converge to and why?

We first examine this convergence with a simple method.
Let t be a particular strategy under consideration (truthful,
MM, or GB.) To determine if all players in a game con-
verged to playing strategy t reasonably early, we find the
earliest round dti such that player i’s actions from round di to
round 20 are all consistent with strategy t, and we take round
maxi d

t
i to be the round at which all players converged to us-

ing strategy t. Note that due to the realization of signals, a
sequence of actions may be consistent with more than one
pure strategy. Finally, we compute t∗ = arg mint(maxi d

t
i).

We chose 15 to be the threshold for determining whether the
convergence occurred early enough in the game, If t∗ ≤ 15,
then we consider the game to have converged to the pure
strategy equilibrium with strategy t∗. Otherwise, the game
remains unclassified. We use this method to classify the
games, and the results are shown in Table 3.

MM GB Truthful Unclassified Total
Treatment 1 47 4 5 47 103
Treatment 2 7 34 7 56 104

Table 3: Simple equilibrium convergence classification

The simple method is not robust if players deviate and ex-
plore other strategies. To account for these explorations, we
use a relaxed method that allows for up to 3 reports to devi-
ate from the particular strategy when determining round dti
(3 is small enough to limit the extent of allowable deviations
while allowing more games to be classified). The new cutoff
threshold is 15 minus the number of deviated reports (up to
3). This relaxed method allows us to classify more than 75%
of games in each treatment, as shown in Table 4.

Tables 3 and 4 show similar results. For treatment 1, a ma-
jority of the games converged to the MM equilibrium, as ex-
pected. Yet, to our surprise in treatment 2, the majority of the

MM GB Truthful Unclassified Total
Treatment 1 62 11 18 12 103
Treatment 2 12 47 22 23 104

Table 4: Relaxed equilibrium convergence classification

games converged to the GB equilibrium instead of the truth-
ful equilibrium. The total number of games converging to a
coordinating equilibrium in treatment 2 is comparable to that
of treatment 1, suggesting that giving the two coordinating
equilibria equal payoffs did not appear to significantly de-
ter the participants from choosing them. Participants’ com-
ments revealed that they chose the GB equilibrium in treat-
ment 2 because the probability of receiving the GB signal is
greater than that of the MM signal. Together, these two treat-
ments point toward a strong incentive to choose the coordi-
nating, uninformative equilibria when they result in higher
payoffs than the truthful equilibrium.

Learning through rounds We use a probabilistic model
of strategies to further investigate the learning effect
throughout the repeated game. First, using all available data
for each treatment, we use the expectation-maximization
(EM) algorithm to simultaneously estimate a set of K mixed
strategies and a prior probability distribution over these
strategies. For each round of each game, we assume that a
mixed strategy is drawn based on the prior distribution, and
that the three players’ reports are generated independently
from this strategy. Then, for each round, we estimate the
posterior probability distribution of this set of strategies us-
ing all games in that round. This allows us to observe how
the distribution over these strategies changes over successive
rounds.

Given the three pure strategy equilibria, we choose K =
3 and plot the posterior distribution over the strategies in
Figures 2a and 2b. A strategy in the figure is denoted by
(Pr[ri = MM | si = MM ],Pr[ri = MM | si = GB]),
the probability of reporting MM given the MM and GB sig-
nals respectively.

Each strategy that we learned can be associated with a
pure equilibrium strategy. The MM and GB strategies are
quite apparent, while the third strategy in red is closest to
truthful. In both figures, the coordinating strategies show
upward trends, with one being clearly dominant (the MM
strategy in Figure 2a and the GB strategy in Figure 2b). This
shows the same conclusion as our previous analysis, and in
both cases the truthful strategy is crowded out. Hence, as the
game progresses, more players are adopting the MM or the
GB strategies, which have higher payoffs than the truthful
equilibrium.

Experimental Challenges To carry out our experiment on
MTurk, we used methods building on those used by Mason
and Suri [6]. On MTurk, a requester typically posts some
tasks and waits for workers to complete these tasks. This
does not work well for our experiment, for several reasons.
Since each game requires multiple workers to participate si-
multaneously, workers will need to wait in the lobby for a
long time if they accept our tasks at very different times. If
this happens, games may start with players not paying atten-
tion, causing further frustrations for other players. The re-
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Figure 2: Estimated strategies & distribution over rounds.

quirement of unique workers further exacerbates this prob-
lem. Since each worker participates only once, there is no
way to contact them beforehand (for example, to recruit a
group for a specified time).

To solve this problem, we used an idea similar to the re-
cruitment process for lab experiments. Typically, subjects
sign up for a lab experiment with their email addresses and
will be notified of the time and place for experiments. Sim-
ilarly, we create a separate recruitment task where a worker
consents to participation and provides specific times of day
when he/she is available to participate. Once many workers
have completed this recruitment task, we schedule experi-
ments at ideal times and invite them to participate through
email. For each specified time, we post tasks during a limited
time window, to encourage the timely arrival of the partici-
pants and avoid long waiting periods.

This recruitment process worked extremely well for our
experiment, collecting data for the required number of
games significantly more quickly than running ad hoc ex-
periments. We also observed many fewer games with con-
nection issues, giving better data quality as a result.

6 Discussion
Our experiments are the first online experiment of the MRZ
peer prediction mechanism through a multi-player, real-
time, repeated game. We demonstrate that the MRZ mech-

anism is accessible to laypeople by explaining its details in
a simple and fun story. Using an intuitive user interface, we
studied how the mechanism affects players’ strategies over
repeated rounds, and discover that there is a strong trend for
players to choose the coordinating equilibria, with higher
payoffs, over the course of the game. This raises questions
about the usefulness of peer prediction mechanisms in real-
istic settings where users may participate multiple times.

Given the strong incentives to choose the uninformative
equilibria, a clear future direction is to explore different
techniques, ranging from social or psychological to techni-
cal, for influencing players to choose the truthful equilib-
rium. For example, the interface could be augmented to dis-
play statements about the truthful equilibrium, or we could
add honest artificial players to each game. Our results also
suggest that participants can perform simple inference us-
ing prior information, but how much does the prior actually
affect their decision? We can imagine testing this by examin-
ing behavior when the payment rule does not induce a truth-
ful equilibrium for the given prior.
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