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Quantum gravity as a group field theory: a sketch
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Abstract. We give a very brief introduction to the group field theory approach to quantum
gravity, a generalisation of matrix models for 2-dimensional quantum gravity to higher
dimension, that has emerged recently from research in spin foam models.

1. Introduction: sum-over histories quantum gravity and the 3rd quantization idea

Quantum gravity remains the elusive dream of fundamental theoretical physics. The multitude of
approaches that are currently pursued is vast [1]. Some of these approaches attempt to realise on
solid grounds the idea of defining quantum gravity as a sum-over-histories of the gravitational
field. This would work roughly as follows. Consider a compact 4-manifold (spacetime) with
trivial topology M and all the possible geometries (spacetime metrics up to diffeomorphisms)
that are compatible with it. The partition function of the theory would then be defined [7] by
an integral over all possible 4-geometries, with a diffeomorphism invariant measure, weighted by
the exponential of the action of General Relativity. For computing quantum gravity transition
amplitudes, one would instead consider a manifold M, again of trivial topology, with two disjoint
boundary components S and S′ and given boundary data, i.e. 3-geometries, on them: h(S′) and
h′(S′), and define the transition amplitude by:

ZQG

(

h(S), h′(S′)
)

=

∫

g(M|h(S),h′(S′))
Dg ei SGR(g,M) (1)

i.e. by summing over all 4-geometries inducing the given 3-geometries on the boundary. The
expression above is purely formal, in absence of a rigorous definition of a suitable measure in the
space of 4-geometries; also, its physical interpretation is challenging, given that the formalism
seems to be bound to a cosmological setting, where our usual interpretations of quantum
mechanics are not applicable. This has not prevented physicists to propose generalisations.
Why not to include also spacetime topology into the set of dynamical variables and allow for
spatial topology changing processes? One could just extend the sum over geometries above to
include a sum over different manifolds, but faces the impossibility of classifying topologies in
4 dimensions, and no clearcut criterion could be found for assigning a weight to each topology
in the sum. A “3rd quantization”formalism [8, 9] was then proposed, in which the topology
changing processes are described as a field theoretic ‘interaction of universes’. The idea is to
define a (scalar) field φ(3h) in superspace H, i.e. in the space of all possible 3-geometries (3-
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metrics 3hij up to diffeos), with action:

S(φ) =

∫

H
D3hφ(3h)∆φ(3h) + λ

∫

H
D3hV

(

φ(3h)
)

(2)

with ∆ being the Wheeler-DeWitt operator of canonical gravity here defining the free
propagation of the field, while V(φ) is a generic, e.g. cubic, and possibly non-local (in superspace)
interaction term, governing topology change. The partition function Z =

∫

Dφe−S(φ), produces,
in perturbative expansion in Feynman graphs, the quantum gravity path integral for trivial
topology, representing a sort of one particle propagator, thus a Green function for the Wheeler-
DeWitt equation, plus a sum over topologies with definite weights. Note two features of this
formalism: 1) the classical field equations will be a non-linear extension of the Wheeler-DeWitt
equation of canonical gravity, due to the interaction term in the action, i.e. due to topology
change; 2) the perturbative 3rd quantized vacuum of the theory will be the “no spacetime”state,
and not any state with a semiclassical smooth geometric interpretation, e.g. Minkowski space.

2. Modern approaches: matrix models, dynamical triangulations, spin foams

These “3rd quantization”ideas were realised rigorously, although in a much simpler context, in
matrix models for 2-d Riemannian quantum gravity [10]. Consider the action

S(M) =
1

2
tr M2 − λ

3!
√

N
tr M3 (3)

for an N × N hermitian matrix Mij , and the associated partition function Z =
∫

dMe−S(M).
This can be expanded in Feynman diagrams; propagators and vertices of the theory can be
represented diagrammatically, and Feynman diagrams, obtained as usual by gluing vertices with
propagators, are given by fat graphs of all topologies. Moreover, propagators and vertices can
be understood as topologically dual to edges and triangles of a 2-dimensional simplicial complex
dual to the whole fat graph; one can then define 2d quantum gravity, via the perturbative
expansion for the matrix model above, as sum over all 2d triangulations T of all topologies.
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Figure 1. Propagator and vertex
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Figure 2. Dual picture

Each Feynman diagram amplitude can be related to the Regge action for simplicial gravity
for fixed edge lengths N and positive cosmological constant, and the partition function is:

Z =

∫

dMe−S(M) =
∑

T

1

sym(T )
λn2(T )Nχ(T ) (4)

where sym(T ) is the order of symmetries of the triangulation T , n2 is the number of triangles in
it, and χ is the Euler characteristic of the same triangulation. Many results have been obtained
over the years for this class of models, for which we refer to the literature [10], among which
the link with continuum formulations of 2d quantum gravity. Matrix models manage to treat
topology as a dynamical variable in a simplicial context, while rigorously defining a simplicial
path integral formulation of quantum gravity for given topology. This raised the hopes that
similar techniques and structures could be used to define a path integral for gravity also in
higher dimensions and possibly for the Lorentzian signature. The dynamical triangulations



approach [11] is defined exactly on these bases. A path integral for gravity (for fixed topology)
can be given meaning in a simplicial setting, modelling D-dimensional spacetime as the simplicial
complex with fixed edge length a, thus encoding the degrees of freedom of the gravitational field
in the combinatorics of the simplicial complex only, and defining the partition function as a sum
over all triangulations with fixed topology weighted by the Regge action for gravity:

Z(G,λ, a) =
∑

T

1

sym(T )
eiSR(T,G,Λ,a)) (5)

where G is the gravitational constant and Λ is a cosmological constant. In the Lorentzian
case one also distinguishes between spacelike and timelike edges, and imposes some additional
restrictions on the topology considered and on the way the triangulations are constructed. This
leads to a well-defined partition function of gravity, that can be dealt with both analytically and
numerically to extract physical predictions. In particular, one may look for a continuum limit of
the theory, corresponding to the limit a → 0 accompanied by a suitable renormalisation of the
constants of the theory Λ and G. And exciting recent results [11] seem to indicate that, in the
Lorentzian context and for trivial topology, a smooth phase with the correct dimensionality is
obtained even in 4 dimensions, which increases the confidence in the correctness of the strategy
adopted. Spin foam models [2, 3] are yet another implementation of the path integral idea.
Here spacetime is represented by a 2-complex (a collection of vertices, edges joining them and
faces bounded by these edges), the histories of the gravitational field (4-geometries) are given
by spin foams, i.e. by these 2-complexes labelled with irreps ρ of the Lorentz group assigned
to their faces, and boundary data (3-geometries) are spin networks, i.e. graphs (boundary of
the 2-complexes) labelled by irreps of the same type, assigned to the links of the graph.
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Figure 3. A spin foam
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Figure 4. A spin network

The geometric degrees of freedom are thus encoded in purely combinatorial and algebraic
data, and the model is defined by an assignment of a quantum probability amplitude (here
factorised in terms of face, edge, and vertex contributions) to each spin foam σ, and by a sum
over both 2-complexes and representations, for given boundary spin networks Ψ,Ψ′:

Z =
∑

σ|Ψ,Ψ′

w(σ)
∑

{ρ}

∏

f

Af (ρf )
∏

e

Ae(ρf |e)
∏

v

Av(ρf |v).

The crucial point is how to choose the quantum amplitudes, e.g. from some discretization
of a classical action for gravity. Whatever the starting point, one would have a rigorous
implementation of a sum-over-histories for gravity in a combinatorial-algebraic context, and
should then prove that one can both analyse fully the quantum domain, and recover classical
and semi-classical results in some appropriate approximation. Spin foam models have grown to
a promising approach to quantum gravity only recently, but a multitude of results have been
already obtained in this context, for which we refer to the literature [2, 3].

3. The group field theory formalism

Let us now discuss how the dream of third quantization is realised (at least tentatively) in group
field theories, by extending to higher dimensions the structures of matrix models.



3.1. General structure of GFTs

The general structure of a group field theory, independently of the spacetime signature, is as
follows [12, 13, 2, 3]. Consider a (real or complex) scalar field over D copies of a group manifold
G (for quantum gravity, the Lorentz group) whose classical dynamics is governed by the action:

SD(φ, λ) =
1

2

∏

i=1,..,D

∫

dgidg̃iφ(gi)K(gig̃
−1
i )φ(g̃i) +

λ

(D + 1)!

D+1
∏

i6=j=1

φ(g1j)...φ(gD+1j)V(gijg
−1
ji ),

where of course the exact choice of the kinetic and interaction operator is what defines the
model. One usually imposes on the field invariance under simultaneous multiplication by a
group element, and under their permutations (maybe only even ones). The quantum theory is
coded in the partition function, defined again by its perturbative expansion in Feynman graphs:

Z =

∫

Dφ e−S[φ] =
∑

Γ

λN

sym[Γ]
Z(Γ).

As in ordinary QFT, the field can be expanded in modes (momenta), and the Feynman
amplitudes written in both configuration and momentum space; the modes of the field are
labelled by representations of the group, whose elements define the configuration space of the
field. As in matrix models Feynman graphs are represented by fat graphs given by D parallel
lines for each propagators being re-routed at each vertex of interaction, and again one can give
a dual interpretation of propagators and vertices in terms of (D-1)-simplices and D-simplices
respectively. In this way, the Feynman graphs are cellular complexes (links identifying faces,
that in turn close to form 2-cells, etc) that are topologically dual to D-dimensional triangulated
(pseudo-)manifolds of all topologies. The Feynman amplitudes of the theory turn out to be
given, when all fields are expanded in representations of the group G and thus the amplitude are
given as a sum over these representations of appropriate functions of them, by spin foam models,
with representation data assigned to the faces of the Feynman graph. When one restricts the
sum over Feynman graphs to tree level, only manifolds with trivial topology are included [12],
then boundary data and transition amplitudes acquire a canonical interpretation: boundary data
define canonical quantum states of gravity and the transition amplitude between them defines
a projection onto physical states, i.e. those satisfying the Hamiltonian constraint of canonical
gravity, and thus the inner product of the canonical theory. The observables of the theory are
gauge invariant (with respect to the symmetries of the action) functions of the field operators;
for example, polynomial functionals can be expanded in spin networks. In particular, one defines
transition amplitudes by inserting appropriately contracted field operators as observables in the
partition function, as customary in field theory, and this produces (after perturbative expansion,
and in momentum space) a sum over spin foams with spin network states on the boundary,
reflecting the combinatorics of field operators in the observables whose expectation value is
being evaluated. All this has a consistent quantum geometric interpretation: each field is
understood as a 2nd quantized (D-1)-simplex, with its D arguments representing the (D-2)-
simplices on its boundary; the evolution and interaction of these fundamental building blocks
(quanta of space), that can in turn be phrased in terms of their creation/annihilation, and
represented diagrammatically in Feynman graphs, is what generates a D-dimensional spacetime;
depending on the actual graph considered (a possible spacetime history of interactions of the
quanta of space), the resulting spacetime can have arbitrary topology and complexity, depending
on the complexity of the states involved. The representations labelling the Feynman graphs and
being summed over in the partition function are also interpreted geometrically: they represent
the volume of the (D-2)-simplices they correspond to, while the group elements integrated over
in configuration space correspond to holonomies of the gravity connection. In addition, the
amplitude for each process, i.e. for each discrete spacetime, can be related to a discretization of
the gravity action on that specific spacetime.



3.2. An example: 3d Riemannian Quantum Gravity

An explicit realisation of the formalism will make clear the above picture. We consider
explicitely the 3d Riemannian quantum gravity case (where the local gauge group is SU(2)),
whose group field theory formulation was first given by Boulatov [5]. The other existing
models in 3 and 4 dimensions have a very similar formulation [6, 14]. Consider the real field:
φ(g1, g2, g3) : (SU(2))3 → R, with the symmetry: φ(g1g, g2g, g3g) = φ(g1, g2, g3), imposed
through the projector: φ(g1, g2, g3) = Pgφ(g1, g2, g3) =

∫

dg φ(g1g, g2g, g3g) and the symmetry:
φ(g1, g2, g3) = φ(gπ(1), gπ(2), gπ(3)), with π an arbitrary permutation of its arguments. In this
specific case, the interpretation is that of a 2nd quantized triangle with its 3 edges corresponding
to the 3 arguments of the field; the irreps of SU(2) labelling these edges in the mode expansion
of the field have the interpretations of edge lengths. The classical theory is defined by the action:

S[φ] =
1

2

∫

dg1..dg3[Pgφ(g1, g2, g3)]
2 −

− λ

4!

∫

dg1..dg6[Ph1
φ(g1, g2, g3)][Ph2

φ(g3, g5, g4)][Ph3
φ(g4, g2, g6)][Ph4

φ(g6, g5, g1)],

whose structure is chosen so to reflect the combinatorics of a 3d triangulations, with four triangles
(fields) glued along their edges (arguments of the field) pairwise, to form a tetrahedron (vertex
term), and two tetrahedra being glued alog their common triangles (kinetic term). The partition
function is defined in terms of perturbative expansion in Feynman graphs:

Z =

∫

dφ e−S[φ] =
∑

Γ

λN

sym[Γ]
Z(Γ).

In order to construct explicitely the quantum amplitudes for the Feynman graphs, we need to
identify propagator and vertex amplitude. These are read out from the action to be:

P = K−1 = K =
∑

π

∫

dgdḡ δ(g1gḡ−1g̃−1
π(1))δ(g2gḡ−1g̃−1

π(2))δ(g3gḡ−1g̃−1
π(3)),

V =

∫

dhi δ(g1h1h
−1
3 g̃−1

1 )δ(g2h1h
−1
4 g̃−1

2 )δ(g3h1h
−1
2 g̃−1

3 )δ(g4h2h
−1
4 g̃−1

4 )δ(g5h2h
−1
3 g̃−1

5 )δ(g6h3h
−1
4 g̃−1

6 )

See the picture for a diagrammatic representation, with boxes representing the integration over
the group. The Feynman graphs are obtained as usual by gluing vertices with propagators.

= + +

Figure 5. Propagator Figure 6. Interaction vertex

Let us see how they look like. Each line in a propagator goes through several vertices and for
closed graphs it comes back to the original point, thus identifying a 2-cell; these 2-cells, together
with the set of lines running parallel in each propagator, and the set of vertics of the graph,
identify a 2-complex for each given Feynman graph. Each of these 2-compelxes is dual to a 3d
triangulation, with each vertex correspondings to a tetrahedron, each link to a triangle and each
2-cell to an edge of the triangulation (see picture). The sum over Feynman graphs is thus
equivalent to a sum over 3d triangulations of any topology.



Figure 7. Tetrahedron Figure 8. Tetrahedron +
dual 2-complex

Figure 9. Dual 2-complex

Let us now identify the quantum amplitudes that the theory assigns to the Feynman graphs.
In configuration space the amplitude for each 2-complex is:

Z(Γ) =

(

∏

e∈Γ

∫

dge

)

∏

f

δ(
∏

e∈∂f

ge)

which has the form of a lattige gauge theory partition function with simple delta function weights
for each plaquette (face of the 2-complex) and one connection variables for each edge; the delta
functions constraint the curvature on any face to be zero, as we expect from 3d quantum gravity
[4]. To have the corresponding expression in momentum space, one expands the field in modes
φ(g1, g2, g3) =

∑

j1,j2,j3
φj1j2j3

m1n1m2n2m3n3
Dj1

m1n1
(g1)D

j2
m2n2

(g2)D
j3
m3n3

(g3), where the j’s are irreps
of SU(2), obtaining, for the propagator, vertex and amplitude:

P = δj1 j̃1
δm1m̃1

δj2j̃2
δm2m̃2

δj3 j̃3
δm3m̃3

V = δj1 j̃1
δm1m̃1

δj2j̃2
δm2m̃2

δj3 j̃3
δm3m̃3

δj4 j̃4
δm4m̃4

δj5j̃5
δm5m̃5

δj6 j̃6
δm6m̃6

{

j1 j2 j3

j4 j5 j6

}

Z(Γ) =





∏

f

∑

jf





∏

f

∆jf

∏

v

{

j1 j2 j3

j4 j5 j6

}

where ∆j is the dimension of the representation j and for each vertex of the 2-complex we have
a so-called 6j − symbol , i.e. a scalar function of the 6 irreps meeting at that vertex. The
amplitude for each 2-complex is given then by a spin foam model, the Ponzano-Regge model for
3d gravity without cosmological constant, about which a lot more is known [4]. The full theory
is defined by the sum over all Feynman graphs weighted by the above amplitudes:

Z =
∑

Γ

λN

sym[Γ]





∏

f

∑

jf





∏

f

∆jf

∏

v

{

j1 j2 j3

j4 j5 j6

}

v

.

This gives an un-ambigous realisation, in purely algebraic and combinatorial terms, of the sum
over both geometries and topologies, i.e. of the third quantization idea. More precisely, it is a
simplicial third quantization, a quantum field theory of simplicial geometry, with fundamental
classical dynamical objects being triangles, quantum states given by collections of quantum
triangles represented as 3-valent spin networks, and histories given by 3d triangulations.

3.3. GFT: the general picture

• GFT are thus a local, because one can easily consider bounded regions of space evolving
or ‘timelike ’boundaries, discrete, because it deals with discrete spacetimes, algebraic and

combinatorial, because such are the variables in the theory, 3rd quantization of gravity;

• in fact, in GFTs both geometry and topology are dynamical, with precise quantum
amplitudes assigned to each possible geometric and topological configuration of spacetime;



• D-dimensional spacetime emerges via creation/annihilation of “chunks”of it, of spacetime
quanta represented by (D-1)-simplices, as a Feynman diagram;

• spacetime is therefore purely virtual in the quantum theory: just as the trajectory of a
quantum particle or any specific interaction process in particle physics; no single spacetime
configuration is realised as the “truly existing”spacetime, but all of them should be summed
over to obtain a physical quantity, that is the probability of a specific bundary configuration;

• Quantum Gravity is described by an (almost) ordinary QFT, although with peculiar
structure, and one that uses even a background metric “spacetime” (although here
interpreted as an internal space only), given by a group manifold;

• the GFT formalism has the potential to represent a unified framework for many current
non-perturbative approaches to Quantum Gravity: Loop Quantum Gravity, Spin Foam
models, Dynamical Triangulations, Quantum Regge Calculus, because its incorporates most
of the basic ingredients on which these approaches are based, as one can easily realise: spin
network states on the boundary, spin foam amplitudes for the histories, a dual sum over
triangulations picture for its perturbative expansion, and a sum over geometric data, with
amplitudes related to the Regge action for simplicial gravity.

4. What lies ahead

However fascinating the picture outlined above may be, we do not know enough about group
field theories to see it clearly in all its detials, and therefore to fully believe. Even if lots is known
about the Feynman amplitudes of the theory, in various models in 3 and 4 dimensions[2, 3, 12], in
addition to what is known about matrix models in 2d, it is probably fair to say that at present we
do not know what a group field theory is, and we can only deduce or guess some of its properties
on the basis of its Feynman amplitudes. In particular the physical and geometric interpretation
given above rests at present on intuition only and it is not solidly based on mathematical results.

We list here a few of the directions that need to be explored if one has to take GFTs seriously
as a fundamental formulation of Quantum Gravity.

First of all, we do not know much about the classical field theories behind the perturbative
expansion in spin foam we have described: what are the solutions, in symmetric reduced cases
at least, of the classical equations of motion following from the above actions? and what is their
geometric interpretation? Work on this in indeed in progress [15].

What are the symmetries of the above action and the corresponding Ward identities for
Feynman graphs? Even in the simple 3d case it is not easy to identify at the GFT level the
translation symmetry that we know it is present in the corresponding spin foam amplitudes
[4]. Most important, what is the GFT analogue of the diffeomorphism symmetry of continuum
gravity? what kind of other symmetries should we expect in a theory in which topology change
is realised?

What is the physical meaning of the parameters of the action, i.e. in the model we described,
of the coupling cnstant λ? It can be related to the cosmological constant in a simplicial gravity
setting [16] and/or it has the interpretation of a parameter governing the strength of topology
changing processes [12], but much remains to be understood.

At the quantum level, even though the picture of spacetime as a process of
creation/annihilation of fundamental simplicial building blocks is appealing, it is at present
only a tentative picture; in fact, the Fock structure of the theory has not been analysed in detail
and rigorously, with a suitable definition of creation/annihilation operators, on the basis of a
classical symplectic structure, and the definition of a 3rd quantized Fock vacuum.

The relation with a canonical theory based on spin network states is also unclear; while one
can give a precise and well-posed definition of a canonical inner product between canonical states
using a GFT [12], it would be interesting to be able to extract from this the corresponding



hamiltonian constraint operator and compare it to the existing proposals in loop quantum
gravity; also, it would be interesting to compute the corrections to the hamiltonian constraint
equation coming from topology changing terms, as in the formal continuum setting.

There is much more in a quantum field theory than its Feynman amplitudes in perturbative
expansion, and all this has still to be unveiled for the GFT case; in particular, it is crucial
for the issue of the continuum approximation of these quantum gravity models to develop non-
perturbative techniques, probably after a suitable re-phrasing of them in statistical mechanical
terms, that would allow to study the phase structure of the theory, and the emergence of a
smooth spacetime in it, with continuum General Relativity as an effective description of the
degrees of freedom of the theory in this phase.

The coupling of matter and gauge fields at the group field theory level, and the unification
of these with gravity, is a whole area for future developments, and work on this has just started
[17, 18].

Also, as in ordinary quantum field theory, it should be possible to define different types of
transition amplitudes for the same group field theories, with different uses and interpretation,
as seems to be confirmed by recent work [19].

Finally, it remains to be checked if the group field theory approach can maintain its promise
of being a general framework for as different approaches to quantum gravity as loop quantum
gravity, spin foam models, dynamical triangulations and Regge calculus; many details of the
links with them have still to be understood and many gaps filled, but recent results give reasons
to hope [19].
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