INTERNATIONAL COMPUTER SCIENCE INSTITUTE

1947 Center St. e Suite 600 @ Berkeley, California 94704-1198 e (510) 643-9153 e FAX (510) 643-7684

Using Value Semantic
Abstractions to Guide Strongly
Typed Library Design

B. Gomes, D. Stoutamire, B. Weissman and J. Feldman

TR-97-061

December 1997

Abstract

This report addresses typing problems that arise when modelling simple mathematical entities in
strongly typed languages such as Sather, which are eliminated by a proper distinction between
mutable and immutable abstractions. We discuss the reasons why our intuition leads us astray, and
provide a solution using statically type-safe specialization through constrained overloading. We also
discuss the type relationships between mutable and immutable classes and the notion of freezing
objects.



1.0 Introduction

When modelling mathematical entities - such as triangles and polygons,
sets and bags, irgers and complenumbers - in object oriented lan-
guages, confusion often arises as to the nature of the typing relationships
between these entities. Inspite of the clean is-a relationships between
these entities tlyedo not appear to be substitutable. In strongly (stati-
cally) typed languages, violations of substitutabilty often manifest them-
seles as problems in type-conformance. These violations, i part,

been responsible for theex-present co- vs. contrariance debate.

Behindhecovscontrariancedebate andbbject-orientedorogrammingasawhole,
isthenotionthathumansthinknaturallyintermsofobjectsand therefore thattheuse
ofthismetaphorisanaidinmodellingsystemswhenprogrammingidgitsuper-
ficiallyappearsthatwhenwemapmathematicalobjects whichweunderstandquite
well, using the object oriented metaphmiary of our intuitve catgoriza-

tions and inferences from theovid of mathematics break do.

This report presents a non-theoretical description of the problem of this
error in intuition, its consequences, and solutions. The theory behind these
relationships is described in [Cas95bi the dgree of formalism obscures
what is basically a simpleubimportant, point. Ourwn views arose inde-
pendantly from these theoretical considerations, duringehe practical
exercise of designing the Sather libraries in a type-safe manner

In short, this report prades a detailed answer to question 21.8 from the
C++ FAQ by Marshall Cline, from “wwuveis.ohio-state.eduytpertext/faq/
usenet/C++dq”:

But | hare a Ph.D. in Mathematics, and I'm sure a Circle is a kind of an
Ellipse! Does this mean Marshall Cline is stupid? Or that C++ is stupid?
Or that OO is stupid?

Similar comments may be found in [Mar96paeding squares and rectan-
gles and in [Mg96] regarding rectangles and polygons.

Section3.0 describes o the problem arises from a basic error in model-
ling mathematical objects in standard object oriented languageslirg

the error ivolves the use of abstract data types with immutable semantics,
along with the judicious use of specialization. Subsequent sections
explore the relationship between data types with mutable and immutable
semantics, and the nature of theedoading rules needed to support spe-
cialization. Along the &y, the dangers of poor naming and the importance
of right subtyping are addressed.

Acknowledgements
Many thanks to WIf Lowe and V8If Zimmerman for helpful comments
on this report.

1.1 Conformance and Substitutability

The notion of substitutability is central to our discussion. By substitutabil-
ity we mean that objects of type A may be safely replaced by objects of
ary subtype of A [Lis88], [Mar96] . Complete substitutability only occurs

if the semantics of the subtype are substitutable for the semantics of the

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 2



supertype. A portion of the method semantics mayxpeeased through

the method signatures and type cleetk Havever, in order to understand
whether a method is truly substitutable for the corresponding method in a
supertype, we sometimes need to consider more details of the method
semantics. Additonal semantic information may kpressed through
method pre- and post- conditions.

Note that we are not concerned so much with the actual expression of pre-
and post-conditionsin the language or libraries; rather, we usethemasan
aide in understanding the semantics of a method and/or a class, and thus
in addressing the issue of substitutability.

Pre conditions

The preconditions of a method are the set of conditions that must be met to
permit the method toxecute correctly The preconditions essentially
capture what the methodgects to be true when it is called - a violation of
the precondition denotes adin the client of the method [@4].

In order to ensure substitutablity of a subtype for its supertype, the meth-
ods in the subtype muskecute correctly whener the preconditions for

the supertype method are met. Thus, the preconditions of the subtype
must be implied by the preconditions of the supertype. Substitutability
requires that when a classsd_FOO with methodSuB_FOO::bar subtypes

from a classSUPER_FOO:

preconditionsUPER_FOO::bar) must imply precondi-
tions@UB_FOO::bar)

More intuitively, to ensure the substitutability of a subclgagcondi-
tions may only be weakened under subtyping

Note that iwariant preconditions are digient for most purposes; it is
very rare for a subtype to actually weakits preconditions. Hever, we
retain the notion of weaing preconditions in order to remind us of the
direction of the implication.

Post conditions

Postconditions are the omrse of preconditions - there a statement of
what the method guarantees to the caller after it is done. An error in a post-
condition denotes an error in the method implementation. In order to
guarantee substitutability of a subtype for its supertype, the postconditions
of the subtype method must imply the postconditions of the supertype
method.

postconditions]UB_FOO::bar) must imply postcondi-
tionsGUPER_FOO::bar)

More intuitively, postconditions may only be strengthened under sub-
typing.

We use an Eiél/Sather based syntax to state pre and post conditions:

class REAL is
sqrt:REAL;
precondition self >=0;
postcondition result*result = initial(self);

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 3



The postcondition may makuse of the the speciahnableresult whose
value is set to the returmlue of the method. It is sometimes also neces-
sary to compareatues from before and after the methadation. Since

the postcondition isvaluated after the method terminates, we use the spe-
cial form initial(<expression>); to obtain the alue of <expression> from
before the methodxecution. In the abh@® example, the postcondition
states that the returralie of the square root function when multiplied by
itself must be equal to the initiahle of self.

Pre and post conditions may also be thought of as assertions that are
directly visible in the method intexte.

Class invariants

A class ivariant epresses constraints that musvays hold true of an
object of that class xeept, possiblyduring the course of a method/daa
cation on the class). Classvamiants behee like postconditions - the
child’s invariant must imply the parestinvariant. In the subtyping dia-
grams used througout this report, the direction of thenvarbetween sub-
and supetype reflects the direction of this classarnant implication.

Type-safe subtyping

The types of the formal guments to a method are a special case of pre-
conditiong - to ensure substitutability of a subtype, the declargd-ar
ments of a subtype method must be implied by (i.e. be supertypes of, or
contravariant with ) the declared guments of the corresponding subtype
method. Lilewise, the return type of a method is a special case of a post-
condition. D ensure substitutablity of a subtype, the return type of the
subtype method must imply (i.e. be a subtype otovariant with) the
return type of the corresponding supertype method. imlytithe precon-
ditions (agument types) may become less restrictind the postcondition
(return type) may become more restvietiln the gample belw, the sig-
nature SUB_FOO::bar must h&e an agument that is of typ&OO or
SUPER_FOO. The return type must be eith@O or SUB_FOO.

class SUPER_FOO
bar(FOO):SUPER_FOO;

SUPER_FOO
bar(FOO):SUPER_FOO;
class FOO
subtypes from SUPER_FOO FOO
bar(FOO):FOO; bar(FOO):FOO;

This report deals with strongly typed languages, i.e. languages in which
the subtyping ruleerifies the type-safety of the substitutability static,zally
[Lis88]. The same issues are ket to object oriented design in weakly-
typed languagesubdo not manifest themsels as readily in the type-sys-
tem.

1. The formal type of a methodgarment states the precondition that the type of
the actual gjument must be a subtype of the formal type for correct method
execution.

2. No run-time typing errors can occur in a language such as Sedbept in a
typecase.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 4



1.2 Syntax Usage

In the discussion belg while our concerns were den by Satherthe
resulting issues are by no means limited to Satthence, we ha used a

fairly generic pseudo-code that is sevhat more eplicit than direct
Sather syntax that should be more understandable to users of other similar
languages.

As a note for users of C++self as used here is egaient tothis in C++

and the term abstract class is @glént to a virtual class with all virtual
methods. Sather additionally completely separates the concepts of subtyp-
ing and code inclusion (which other practictioners sometimes refer to as
inheritance). @ avoid confusion, we do not use the term inheritance, and
since this discussion focuses on typing issues, we omitliaoussion of

code inclusion.

Other Languages

Of the other languages in the same general space as Satic@an(ef
type-safe, object oriented languages), C++ is strongly typgdas the
more restrictie typing rule of no-ariance. Jaa is similarly restricted.
Eiffel supports the a@riant rule which does not permit compile-time type
safety though there ha been recent mes in this direction [Mg96].

2.0 The Problem

The paver of object-oriented programming arises, in part, because it per-
mits the &pression of ®isting object classifications through subtyping
relationships. The tools and intuitiongaeding these»asting classifica-

tions may then be used when reasoning about the program, resulting in
code that is easier to understand, maintain atehd. Havever, in mary
seemingly straight-forard mathematical contts, reflecting standard
mathematical is-a relationships in the subtyping hiesateads to prob-

lems with substitutability

The problem is essentially the presence of specialization in the natural
inheritance hierargh A specialization from a clagsto a clas$ is a rela-
tionship in which the classvariant inB more restrictie than than the
invariant ofB. If B is a specialization of, thenlnvg => Inv,. The prob-

lem with such specialization is that method calls that g ie A may be
problematic if8 is substituted for, since thg may result in a violation of
the more restrictie class imariant. Thus, methods thave more restric-
tive preconditions i.ePre,g => Prep, 5. Supposes extends the class
invariant ofA with the predicat®, thens has the strongervariantinvas P.

A problem will arise with substitutability if the postcondition of a method
m in A contradictsP, then the postcondition of also contradicts the
invariant ofB andm cannot ®ist in B. If m cannot &ist in B, thenB cannot

be a substitutable fox.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 5



This problem may be illustrated using polygons and triangles, an illustra-
tion found in maw introductory t&ts on object oriented programming

class POLYGON
N_points:INT;
add_point(point:POINT);
postcondition n_points = initial(n_points)+1;

In the abee definition, the point addition method modifies the polygon,
resulting in a polygon with one more point. A triangle may then be con-
sidered a particular kind of polygon

class TRIANGLE subtypes from POLYGON
N_points:INT;
add_point(point:POINT);

If we consider the wariant of a polygon to be points > 2, then a triangle

is a polygon with the classvariant that the_points = 3. In the case of the
triangle, it is not at all clear what theid_point method should do. In
other words, in the postcondition afdd_point, n_points may be greater
than 3, which contradicts thevariant ofB, namelyn_points = 3. Hence,
add_point cannot gist in the triangle and therefore triangle cannot be a
subtype of polygon.

* Raise anxception. The problem with this solution is that Haey-
GON:add_point method does not raise axception. Hence, if we were
to substitute a triangle for a polygon object, xpexted gceptions
might occur Raising &ceptions that could not be raised in the super-
class may be vieed as a special case of violating the postcondition of
the method.

* Permit the user to “undefine” theid_point method of the triangle.
Once agin, substitutability is violated and run-time type errors may
result if the methodidd_point is called on aariable of typeOLYGON.

¢ Eliminate the dending method frol®OLYGON. The supertype no
longer has a method whose post-condition violates the predicate added
to the irvariant in the subtype. Thisarks and is a correct solutiorytb
it still does not gplain why the mathematical subtyping relationship
cannot be xpressed.

* Eliminate the subtyping relationship. Thiemks too, lot, as question
28.1 of the C++4dq asks, wi cant we subtype when mathematically a
triangle really is a kind of polygon.

None of these solution is pleasant; a clean mathematical relationship can-
not be cleanly modelled in the type-system. The problem with circles and
ellipses is identical to the triangle/polygon case mentionedeabo

3.0 The Real Problem

The real problem lies in a tBrence between the mathematical conception
of objects, and the standard object-oriented conception. This iarttile f

iar distinction betweenalues and references in a slightlyfeiiént dis-
guise. The mathematical notion of a polygon is fundamentally immutable.
A new polygon may arise by considering a particular triangle and an addi-

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 6



tional point. Havever, this does notwer modify the original triangle. The
issue is obious when you consider more basic mathematical entities such
as the number three - adding and subtractahges neer modify the num-

ber three.

The problem is partially one of education - object oriented practitioners
are used to thinking in terms of persistant, modifiable objects, which is
quite diferent from the platonic objects in th@md of mathematics. The
point we wish to stress is that there is no problem with mathematical hier-
archies as we think of them, nor is therg problem with object oriented
programming. There is, in@ver, a problem, with modelling mathemati-
cal entities as if the were modifiable andxpecting the mathematical
hierarchies to continue to hold.

In the cont&t of rectangles and polygons and also ostriches and birds,
[Mey94] says:

| should note in passing that some people criticize [methediding]

as incompatible with a good use of inheritance.yTdre deeply wrong.

It is a sign of the limitations of the human ability to comprehend the
world -- similar perhaps to undecidability results in mathematics and
uncertainty results in modern ysics -- that we cannot come up with
operationally useful classifications withouedping room for some
exceptions. Descendant hiding is the crucial tooVjaiog such fleibil-

ity. Hiding add_ertex from RECTANGLE or fly from OSTRICH is not

a sign of slopp design; it is the recognition that other inheritance hier-
archies that wuld not require descendant hidinguid inevitably be
more complg and less useful.

There is something disturbing about this notion; tfieady of object-ori-

ented programming depends in part, at least, on the belief that humans
think in terms of objects and that the intuition from human objects can
drive an object-oriented type hierayclf this is not so, if our human intu-
itions are fraught with errors, this spells trouble for the metaphorical basis
behind object-oriented programming.

We would like to note that the wvproblems - that of an ostrich being a
subtype of birds and rectangle being a subtype of polygon arediftate

ent. If we are basing the bird hieraycbn the common notion of birds,
then the common human notion also notes that therexespt@nal birds
such as penguins, emus and ostriches that do notffly point is that the
exception is noted in the guiding human hiergrael well. If the bird hier-
arcty is based on a more precise biological notion of birds, then flying will
not be a property of birds to gie with, and the problem does not arise.

However, we ne&er think of the relationship between rectangles and poly-
gons as being in grway exceptional. Exceptions only arise when we try

to model unchanging mathematical entities using modifiable objects - all
bets are df and implications from the evld of mathematical polygons

may well be violated in this bva nev world of modifiable polygons. This

is not to say that mutable polygons are useless or “wrong” - just tlyat the
are a diferent concept from the mathematical entities we are used to;
modifiable polygons should not be called polygons (mathematics has pre-
cedence, and has already claimed the name to mean a particular kind of
entity, which our modifiable polygons are not).

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 7



4.0 Immutable Abstractions

The solution is to model mathematical entities as immutable entities.
Operations definedver immutable types are siddegdt free and therefore
referentially transparent (gngiven epression alays ealuates to the
same result). When an entity is immutable, it is natural fproperation

to return a n& entity as a result of the operation; indeed, this is what hap-
pens in may mathematical packages such as Matlab and Mathematica.
For slightly more compbe cases, as we shall see latéiere are a &
problems that must be addressed in the type system in order ¢othigk
work cleanly

Returning to our originalxample of polygons and triangles,

class POLYGON
n_points:INT;
add_point(point:POINT):POLYGON

The add_point method nav returns a ne polygon object containing the
additional point. It is then possible to pide a clean ersion of the trian-
gle class

class TRIANGLE subtypes from POLYGON
n_points:INT;
add_point(point:POINT):POLYGON; -- returns a polygon

The add_point method simply creates awgolygon which includes the
additional point (in this case, it might be reasonable for it to retRECE
ANGLE as well, which is still perfectly typesafe (@oiant in the return

type).

In terms of method postconditions, thed_point method nw has the
postcondition that esult.n_points = initialself.n_points)+1, which can be
maintained by thedd_point method of the triangle class. The important
point is that, by making the postcondition say something about the return
type rather than about self, the clas&mmant on self in trianglen(points =

3) may be preseed.

There are manways to implement immutable objects. Immutable objects
may be implemented as actualwes (primitve or composite) or as refer-
ences to actualalues or een as applied closures yielding actualues,

but in all cases thealue of the immutable object is the same angene
changes for as long as kists. In contrast, mutable objects are best used
to model entities that kia an identity plus a current state. The idea of an
object identity bound to a modifiable state introduces sigetsfinto the
language, which can malepressions referentially opaque (aqpeession
involving a reference object mayatuate to a dférent result each time
that it is irvoked).

5.0 Methods with Arguments

In the aboe discussion, only the return type needed to be specialized.
What happens when thegament must also be specialized? This fre-

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 8



quently occurs in operations where, when both operands are of the same
type, the result is also guaranteed to be of the same type.

Consider B which is a specialized subtype of A, such that the method m
has the signaturen(a:A):A in A. We then wish to support the signature
m(b:B):B in the class.

For a concrete>ample, consider sets which are a kind of bag, with the
stronger class vrariant that no element in a bag is repeated. Implementing
the bag abstraction, with a couple of sample methods might look as fol-
lows (for nav, we ignore the parametrization of the container class for the
sale of simplicity).

class BAG
union(arg:BAG):BAG;
a:BAG; -- Contains 3
b:BAG; -- Contains 1,1,2,4
c:BAG := a.union(b); -- ¢ now contains 1,1,2,3,4
-- Postcondition - c.size =5

In the abee example, we assume that the union operation is defined to
return a bag with the maximum number of occurences in either self.
Thus, this definition of union is consistent with the standard set-theoretic
definition of union (when both self and thgament do not contain dupli-
cates, neither does the union).

Specialize the argument and return type?

A natural solution is to attempt to support the signaiupa:B in the class

B. Since the gument types are a special case of the precondition, and
sinceB is a subtype oA, n Pre;,g => Prey, o which is not sufcient to
support substitutability

In the case of ourxample ivolving sets:

class SET subtype of BAG
union(arg:SET):SET;

From the point of vier of substitutability this is a non-startelf we were
to replace th&AG ‘o’ by aseT in the xkample abwe, the union operation
would have the wrong @gument and return types.

Specialize only the return type?

Another choice is towid the typing problem by generalizing theyar
ment type by supporting the methodbo:A):B. Though this eliminates the
typing problem in the gument position, the return type of the method
may no longer be sfifient. For the kinds of operations we are consider-
ing, the operation is only guaranteed to stay within the same domain if
both operands are of the same type.

Returning to ourxample:

class SET subtype of BAG
union(arg:BAG):SET;

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 9



This second definition of union still violates substitutabilitythe abge

$:SET := 3;

a:BAG :=s; -- Contains 3

b:BAG; -- Contains 1,1,2,4

C:BAG := a.union(b); -- Contains 1,2,3.4

code, if ‘a’ were to be substituted by a SHie result wuld be a set as
well, and would not be able to containyaduplications of the number ‘1'.
Thus, the result of using a set instead of a bag for ‘a’ will berdiit, and
the implicit postcondition, that the number of items in the result is 5, will
be violated.

More preciselythe union operation inAG has the postcondition

Oitems i in self and g result.n_occurs(i) = initial(max(n_occurs(i),
arg.n_occurs(i)) (EQ1)

The postcondition in SEhowever is
O items i in self and g result.n_occurs(i) = 1 (EQ2)

Keep the same signature?

A final solution is to @id the method specialization altogethEnus, we
may support the methadb:A):A in the class. Clearly this causes no
problems with subtyping, since botlgament and return types areani-
ant.

We can see this in the case of tharaple:

class SET subtype of BAG
union(arg:BAG):BAG;

In this case substitutability is not violated. wWéwer, a more serious prob-
lem is introduced. It becomes impossible to stay within a domain without
constantly slipping into weak and weadr supertypes.

Q:SET; -- contains 1,2
b:SET; -- contains 3
C:BAG := a.union(b);

As may be seenyen though we can guarantee that the result of the union
operation will be &ET, the return type of the signature i8A4G. In prac-

tice, this weaking is completely unacceptable. It means that we cannot
operate on sets cleanly - wedp getting bmped up to a highervel of
abstraction, when we are certain that the resudt be a set.

A further disadantage of this approach is that it is harder toanade of
more eficient algorithms that may beailable to perform the same opera-
tion.

6.0 Static Covariance: The Overloading Rule

What we need is to be able to choose the right method based on both the
type of self and the type of thegament i.e. a multi-method. ¥ multi-
methods, the inteate to thesET class may contain wseparate methods,

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 10



one to handle the general case of a union with bags, and the other to han-
dle the more specialized case of a union of a set with another set.

class SET subtype of BAG
union(arg;BAG):BAG;
union(arg:SET):SET;

Languages such as CLOS [BK88] and Cecil [Cha93] permit multi-meth-
ods which dispatch on more than ongusment. This is a viableubexpen-

sive solution; multi-method dispatch is inherently considerably more
comple than singly dispatched methods. Though vigorous type-inference
might eliminate some of these costs, thipanse \as not a viable design
choice for a high-performance language such as Sather

Fortunately multi-methods are not required, since the choice of method
may be made statically through the usewsrtmading. Thus, the solution

is to support both methods in the interd of B,m(a:A)A as well as
m(b:B):B. The choice of method is determined at compile-time, based on
the declared type of thegament.

In addition to the benefit of fafiengy, with overloading the choice of
method is changed from a dynamic decision to a static one, permitting
compile-time type checking.

Note that the implementation of the more general union operation could be
written using the more specific method as:

union(arg:BAG):BAG is
typecase arg
when SET then return union(arg): -- Uses the second union method
else
-- perform the more general bag union
end;
end;

6.1 The Overloading Rule

The minimum dgree of @erloading that must be permitted to support the
above usage is determined by the nature of specialization. The nature and
design rationale behind the Sathereioading rule is described in a
related report [GSW9I7].

In summary two methods are permitted toeyload if there is a subtyp-

ing relationship betweervery pair of correspondinggument types. Dif-
ferences in the return type are not used in determiniadaading. At the

point of call, the most specific method that matches is chosen; it is an error
if there is more than one most specific method. In Xaeele abwe, the

two version of theunion operator tak aguments ofET andBAG respec-
tively. SinceseT subtypes fronBAG, the werloading is permitted

The design of the Satheverloading rule is complicated by the presence
of supertyping in the language; other languages which do not support
supertyping can pxade a less restriced form oferloading. It is interest-

ing, havever, to note that the kind ofverloading that is permissible in the

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 11



presence of supertyping igaetly that which is required to support spe-
cialization. In some ways, this restriction onverloading is desirable in
ary case, to preent users from erloading methods which happen to
have the same nameibwhich are not specializations of each ather

6.2 Overloading vs. Overriding

It is also possible towerride an inherited method by generalizing it. The
distinction lies in the nature of thegaments to the method. If thegar
ments to a method are more general than (supertypes ofpthraeants to
the inherited method, the wemethod, being more widely applicable,
overrides the inherited method. If thegaments are specialized, then
overloading occurs, pxided that the methods can cxist in the interace
according to thewerloading rule.

Another way of looking at this distinction is in terms of pre conditions.
Generalization, orverriding of a method occurs when the method pre-
conditions become less restngi(contraariant). Specialization byer-
loading of a method should be used when the method preconditions
become more restrie (covariant). When a method is specialized, the
general ersion must still be madevalable in order to ensure substitut-
ability.

7.0 What about Mutable Classes?

The abwe discussion presents a clean inheritance higranawided that
immutable abstractions are used. wdeer, since immutable classes pro-
vide a cop of the class when gmmodification occurs, tlyemay be con-
siderably less étient than their mutable counterparts. What should the
interfaces of these mutable classes look,liktnd are the possible typing
relationships between them?

We start with the mutable polygons mentioned in Se@&ibn(with the
names amended to reflect their mutable semantics).

class MUT_POLYGON
Nn_points:INT;
add_point(point:POINT);
postcondition result.n_points = initial(n_points)+1;

class MUT_TRIANGLE
N_points:INT;

The postcondition of the mutating method add_pointiri_POLYGON
cannot be maintained IMUT_TRIANGLE, since this violates the triangle
invariant that it has»actly three points. Hence, there is no subtyping rela-

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 12



tionship between mutable triangles and mutable polygores.caf, ha-
ever, add non-mutating operations to the polygon and triangle actesf

class MUT_POLYGON
N_points:INT;
add_point(point:POINT);
add_point(point:POINT):MUT_POLYGON;

class MUT_TRIANGLE
N_points:INT;
add_point(point:POING):MUT_POLYGON;

The immutable methods are common to both the mutable and immutable
abstractions. W abstract this intersection of theotimteraces into a read-
only interface. V& denote these read-only abstractions with the prefix
RO_. The read-only inteate corresponds to adtoring out of the contra-
variant methods common to the mutable and immutable clasgesdre
importantly correspondsxactly to the distinction between mutable and
immutable methods.

RO_POLYGON

MUT_POLYGON POLYGON

RO_TRIANGLE

MUT_TRIANGLE TRIANGLE

Note that the read-only intaxde, though it may ka the same set of meth-

ods as the immutable intade, has different meaning from the immu-

table interface. A variable which has the type of a read-only irgeef
makes only the immutable intexe visible. The object referred to by the
variable, havever, may be mutable and may be mutated through other
aliases which prdde the mutation-permitting intex€e. [DL92] sha

that if aliasing is prohibited, immutable types may be subtypes of mutable
abstractions, since the mutating operations cannot be observbed through
the immutable supertype intade.

The abee diagram illustrates the potential subtyping relationships
between thearious abstractions. Not all of these types or subtyping rela-
tions need be represented in the type system. Furthermore, type relations
between mutable classes may also ballgrovided the subtype presew

the class mariant. Since there are no direct subtyping relationships
between mutable polygons and trianglesy application that seeks to
exploit the relationship between triangles and polygons muse msé of

the read-only intedfce, which praides all the immutable operations only

i.e. all the operations that may be safely used on polygeas vehen thg

are substituted by triangles.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 13



7.1 The Value of a Mutable Object

It is possible to tad& an immutable snapshot of an object 3t particular
point in time, and this is the &ue” of the object at that particular instant.
Thus, all our mutable inteaa€e proide the methods such as
MUT_TRIANGLE::value:TRIANGLE. This method preides a cowersion from
an mutable to an immutable object.

8.0 Object Equality

In the contet of mutable objects, the nature of equality may sometimes
get confusing - is it the equality of the object pointers or the equality of the
contents? Some languagesvide seeral levels of equality (theadmous

eq, eql and equal), frequently a source of confusiondgmbimg program-
mers. The theoretical aspects of equality relations are dealt with in
[Cas95]. V¢ merely point out that the notion of immutable object equality
may be used to guide our notion of mutable object equality

In the mathematical erld, this confusion does not arise:otwbjects that
have the same set oblues (tvo triangles with the same coordinates, for
instance) are equalent in all respects and therefore equal.

The immutable definition of equality presesvthe substitutability princi-

ple - if two supertype objects are equal, substituted subtype objects must
also be equal. The clean definition of equality in the case of immutable
objects can be used to define the equality of mutable objeatsminable
objects are considered equal ay d@me if their \alue is equal. Vo
objects references are equal if the objectyg pant to return alues that

are equal. Thus, the equality ofaweference objects is defined in terms

of the equality of the corresponding immutable objects at that time, which
includes all of their contained state.

9.0 The Cost of Immutability: Freezing

Given the abee discussion, it is clearly cleaner and safer (immutable
objects do not stdr from hugs caused by aliasing) to use immutable
objects in may contets. The main problem with immutable objects is the
inordinate cost ivolved in all modification operations.In this section, we
mention one simple ay to aoid much of this verhead, which is actually
used in the standard Sather library

The cost sa@ngs is based on the obsation that it is adirly common pro-
gramming practice to makuse of the modification operations when set-

ting up a data structure and tovaemodify the data structure afteaws it

has been created. In the case of a graph, for instance, it maybaieah

to create an empty graph and then add nodes and edges until it assumes the
desired structure. From that point on, the structure mesritee modified.

This notion can be captured by the notion of freezing mutable object:

* Freezing a mutable object sets a boolean in the object after which no
further modifying operations are permitted. The “is_frozen” flag is

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 14



checled in the precondition of all mutating operations. This concept is
used in other libraries such as JGL [Gla97].

* Frozen vievs are adaptor classes thataakfrozen mutable class and
provide an immutable wrapper

class MUT_POLYGON_IMPL

readonly attr is_frozen:BOOL; -- Set initfially to false
freeze is is_frozen := frue; end;

add_point(p:POINT)
precondition ~is_frozen

value:POLYGON is
if is_frozen then
return FROZEN_POLYGON_VIEW::create(self);
else
return POLYGON::create(points);
end;

The adapter that present frozen polygons as immutablevisidiedowv :

class FROZEN_POLYGON_VIEW
subtypes from POLYGON RO_POLYGON
private attr from:MUT_POLYGON;
-- Delegate calls to “from”
POLYGON
create(from:MUT_POLYGON):SAME
precondition from.is_frozen

. FROZEN_POLYGON_VIEW
IS

All calls on the adaptor are dghed to the pviate attrilute from.

There are a f& points to note about freezing

* Freezing is cheap - it onlyvolves setting a boolearasiable, and the
precondition checks may be eliminated inwigdped production code.

* Freezing is one-ay - an object once frozen mayweebe unfrozen.
This is critical to the immutable semantics.

Freezing is similar to the use of a mutable class through its read-only inter-
face. Hovever, while using a frozen class will guarantee immutability
using the read-only intea€e will result in errors if the original object is
modified through aliases unless the aliasing is restricted.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 15



10.0 Numbers - Complex, Real and Integer

Using \alue semantics (as is usually done with these classey itaan)
we can coveniently model the basic number hieraratnthe comentional
mathematical manner.

CPX
plus(arg:CPX):CPX;
magnitude:REAL;

REAL
-- magnitude:REAL;
-- plus(arg:CPX):CPX;
plus(arg:REAL):REAL;
is_It(arg:REAL):BOOL;

?

INT
-- magnitude:REAL;
-- plus(arg:CPX):CPX
-- plus(arg:REAL):REAL;
plus(arg:INT):INT;
-- is_It(arg:REAL):BOOL;
is_It(arg:INT):BOOL;

The abwoe hierarcly demonstrates mothe overloading rule may be used
to obtain clean subtyping relations in the presence of specialization.

10.1 64 and 32 bit numbers

In [LM95] it is claimed that “smaller intgers cannot be a subtype of
larger intgyers because of obsahie diferences in behdor; for example,
an overflow exception that wuld occur when adding tw32-bit intgjers
would not occur if the were 64-bit intgers”.

The substitutability of a 32 bit inger type for a 64 bit intgger type actu-
ally depends on thexact nature of the classviariant that must be pre-
sened. For instance, if we taka 64 bit intger abstraction to embody the
invariant that itvalue < 2764, and a 32 bit infger to embody the Wariant

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 16



that itsvalue < 2A32, then the imariant of the 32 bit intgers certainly
implies the irariant of the 64 bit ingeer and we may ke

INT64
plus(INT64):INT64
MiNus(INT64):INT64;

?

INT32
Plus(INT64):INT64;
PIUs(INT32):INT32;
MINuUS(INT64):INT64;
mMiNus(INT32):INT32;

The 32 bit intger class pnades specialized 32 bit methods for addition
and subtraction, in addition to the general methodsigked in the 64 bit
class.Note that the substitutability is safe, in terms of behavior, overfiow
exceptions and in all other respects.

We could define the 64 bit irger class in such aay that substitutability
is impossible, for instance, with thevariant that it has»actly 64 bits.
Then the methodNT64::does_not_have_64_bitst cannot be properly sub-
typed inINT32. Then,INT32 clearly violates this wariant, and subtyping is
not possible. This is, ever, an intentionally pemrse definition of
INT64, which specifically prohibits certain kinds of subtyping.

The same reasoning holds for thd_SET example presented in [LM95].
Unsurprisingly if the invariant of a class is that elements mayenebe
removed, then it is not possible to substitute it with a class that violates
precisely that imariant. By design of an abstract type, it is possible to pro-
scribe certain kinds of subtyping.

11.0 Correct Method Naming

Methods that beha differently must hee different names. This may
seem lile an obious point, lot it is one that is easy to violate if method
signatures alone, and not the method semantics, @ itatlo account. In
other words, type signatures are neegything. [LM95] males this point

by considering other aspects of the class semantics via the notion of con-
straints on behéor.

1. INT64::does_not_have_64_bits:BOOL will return false, while
INT32::does_not_have_o64_bits:BOOL will return true, thus violating the
upward implication of preconditions required for substitutability

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 17



We illustrate the point with the case of the ‘insert’ method in sets and in
bags. Br example, it seems reasonable to supporA&Binsert which is
then specialized in the SET abstraction.

class BAG{T}
insert(element:T):.BAG{T};

class SET{T} subtype of BAG{T}
insert(element:T):SET{T};

There is no problem with the typing of the abanethods. The return type
of the SETinsert is specialized, and is therefore conformant to
BAG::insert. Havever, the second method is not substitutable for the first.
Consider the post conditions of the methodssabo

class BAG{T}
insert(e:T):BAG{T};
postcondition result.size = initial(size)+1;

class SET{T} subtype of BAG{T}
insert(e:T):SET{T};
postcondition initial(contains(e)) and result.size = initial(size)
or result.size = initial(size)+1;

The postcondition in the case of the Set states that the resulting size
remains the same if the set already contained the element, otherwise the
resulting size is increased by 1. The crucial test for substitutability is
whether the postcondition ofSeT:insert implies the postcondition of
BAG::insert.

initial(contains(e)) and result.size = initial(size) or result.size = ini-
tial(size)+1

?=>

result.size = initial(size)+1;

Clearly when the element is already in the set, the antecedent is true with
the size of the result equal to the initial size, and the consequetgds f
Thus the implication does not hold as&lr is not substitutable f@AG as

they are defined here.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 18



The right approach is to distinguish between the tations of insertion.

class BAG{T}

append(e:T):BAG{T}
-- add e to the bag, even if it is already present
postcondition result.size = result.size + 1;

insert(e:T):BAG{T}
--insert only if e is not already in self
postcondition initial(has(e)) and result.size = initial(size) or

result.size = initial(size)+1;

class SET{T} subtype of BAG{T}
append(e:N:BAG{T}; -- Same postcondition as BAG::append
insert(e:T):SET{T}; -- Same postcondition as BAG::insert

With the abee definition, thensert routine may be safely specialized - the
postcondition is the same in both cases. ditgend routine must con-
tinue to return 8AG, since appending an element t&Bmay result in the
presence of duplicate elements, requiririga.

Using the structure of these immutable abstractions to guide the mutable
abstraction,MUT_BAG should preide both an append and an insert
method, while thé1uT_SET abstraction can only pvale the insert method.

The Eifel library design recommends consistent naming, which means
using the “same names for all structuragardless of the semantic ff-
ences” [M&94]. Rules such as this can end up obscuring importdet-dif
ences in method semantics and may promote erroneous subtyping
relationships.

12.0 Related Work

This report is aimed at object-oriented practitioners; in the course of
designing the Sather libraries, the problems related here arose repeatedly;
indeed, the confusion is quite widespread, as we illustrate by our quotes.
The problem arises principally from flifences between the mathematical
and the object based metaphors that underlie library design. The underly-
ing theoretical ideas ka been eplored, though not, to our kmtedge, in

the conta&t of actual library design.

[LW94] explicates guaranties of substitutability under subtyping, based on
object behwaior, and the importance of considering object protocol in addi-
tion to type signatures when determining substitutabilibe distinction
between specialization (usingaeyloading) and subtyping that we drin

this report is lagely a restatement of [Cas95]. Otherséhaoted that
some subtyping problems may heiged by considering immutable data
types ([Ock95], [Vih97]). It has also been siva in [DL92] that subtyping
between mutable and immutable types is possible if aliasing is restricted,
so that an object may only be wied via a subtype or a superty@iable,

but not both at the same time. The problem has mosly bgaored from

the perpspeate of the formal semantics of objects, rather than from the
point of viev of correct modelling. The formal semantics, while useful in
understanding language restrictions, obscures the simple nature of the
underlying modelling problem. Our primary goaas\to &plain, in a non-

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 19



theoretical mannethe modelling problem, whthe problem arises, our
solution in Sather and the implications for practical library design.

Libraries, such as the collections package wa Jéraries by D. Lea
[Lea97] distinguish betweeralue and reference semantics as weoadv
cate. Havever, they do not deal with the issues of subtyping and cannot
malke use of the a@riant specialization that ouverloading rule permits.

Other libraries, such as the Karla library [FNZ97] dedé€esvely with

the problem of mutable classes. Since the is-a relationships from mathe-
matics do not hold in theawvld of, for instance, mutable graphs,\tieve
devised a generator for the combinatorial humber of possible concrete
classes that may arise.

13.0 Conclusions

The answer to theA®) question 28.1 mentioned in the abstraction runs (in
part) as follavs:

The sad reality is that it means your intuition is wrong. Lookyéha
receved and answered dozens of passionate e-mail messages about this
subject. | hae taught it hundreds of times to thousands of sofvpro-
fessionals all eer the place. | kne it goes aginst your intuition. But

trust me; your intuition is wrong.

The real problem is your intwi# notion of “kind of” doesn’match the

OO notion of proper inheritance (technically called “subtyping”). The
bottom line is that the deed class objects must be substitutable for the
base class objects. In the case of Circle/Ellipse, the setSize(x,y) member
function violates this substitutability

While the abwe answer is true, it does not capture the real cause of the
problem, which is the distinction betweealwe and reference abstrac-
tions. We have described the distinction in detail, and the usevefload-

ing in correctly modelling mathematical entities usimdue abstractions.

We also describe ko these clean mathematical abstractions may be used
to guide the design of the mordigient, mutable abstractions.

Some of the lessons we dréor library design:

* Pay close attention to the underlying object metaphor of the domain
being modelled. If the metaphor used when modelling ferdifit from
the original domain metaphadhen entailments from the original
domain will not hold in the modelled domain.

e Clarity is important; terms from theonld of mathematics (such as
polygon, graphs, sets etc.) should not be used to name classes that
model entities that are subtly fdifent. Inferences from the mathemat-
ical domain may not hold in this modelled domain, and this should be
made clear to clients of the class (and, often, to the class designer as
well!).

* When type-safe substitutability is possibleedoading may be neces-
sary to permit specialization of operations. In general, caarieance

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 20



Appendix A

MUT_POLYGON

(or invariance) of the preconditions only causes problems when there is
some underlying problem with the substitutability relation.

Signatures are noverything; methods with dérent semantics must
be gven diferent names,ven if they happen to hae conforming sig-
natures.

Mutable, Immutable and Frozen Polygons

The complete code for mutable, immutable and frozen polygonswsisho
belon. We first present the abstract classes.

class RO_POLYGON

class MUT_POLYGON subtypes from RO_POLYGON

class POLYGON subtypes from RO_POLYGON
-- same interface as RO_POLYGON

is_frozen:BOOL;
value:POLYGON;
N_points:INT;
add_point(p:POINT):SAME;

add_point(p:POINT);

The typing relationships are as shobelaw.

RO_POLYGON

POLYGON

MUT_POLYGON_IMPL POLYGON_IMPL FROZEN_POLYGON_VIEW

Note that the leges of the type graph are implementation classes, while all
interior nodes are abstract.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 21



The mutable polygon may then be defined asviallo

class MUT_POLYGON
private attr points: ARRAY of POINT;
readonly atir is_frozen:BOOL;

create:SAME is
res:SAME = new;
res.points := new ARRAY of POINT;
res.is_frozen = false;
return res;
end;

add_point(p:POINT):MUT_POLYGON is
res:SAME := MUT_POLYGON::create;
for old_point:POINT in points
res.points.append(old_point);
return res;
end;

add_point(p:POINT) precondition ~is_frozen is
points.append(p);
end;

freeze is is_frozen := frue; end;

value:POLYGON is
if is_frozen then return FROZEN_POLYGON_VIEW::create(self);
else return POLYGON(self); end;

end;

end;

References

[BK88] Daniel G. Bobrow and Gregor KiczaleSommon L ISP ob-
ject system specification. Technical Report 89-003, MOP Draft
number 10, MIT, December 1988.

[Cas95]Guiseppe Castagn&ovariance and contravariance: Con-
flict without a cause. ACM Transactions on Programming Lan-
guages and Systems, 17(3):431-447, March 1995.

[Cha93]Craig ChambersThe cecil language: Specification and ra-
tionale. Technical report, University of Washington, March 1993.

[DL92] Krishna K. Dhara and Gary T. Leaveraubtyping for muta-
bletypesin object-oriented languages. Technical Report 92-36,
lowa State University, November 1992.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 22



[FNZ97] Jozsef Frigo, Rainer Neumann, and Wolf Zimmermavire-
chanical generation of robust class hierarchies. In TOOLS97,
1997.

[Gla97]G. Glass.The Java Generic Library. C++ Report, 9(1):70—
74, January 1997.

[GSW97]Benedict Gomes, David Stoutamire, and Boris Weissman.
Theoverloading rulein Sather. Technical Report Unknown, In-
ternational Computer Science Institute, July 1997.

[Lea97]Doug Lea.Overview of the collections package. http://
gee.cs.oswego.edu/dl/classes/collections/index.html, 1997.

[Lis88] Barbara Liskov.Data abstraction and hierarchy. SGPLAN
Notices, 23(5), may 1988.

[LW94] Barbara Liskov and Jeannette Wing.behavioral notion of
subtyping. ACM Transactions on Programming Languages and
Systemsn, November 1994,

[Mar96] Robert C. Martin.The Liskov substitution principle. The
C++ Report, March 1996. http://www.sigs.com/publications/
docs/cppr/9603/cppr9603.c.martin.html.

[Mey94] Bertrand Meyer Reusable Software: The Base Object-Orient-
ed Component Libraries. Prentice Hall, 1994.

[Mey96] Bertrand Meyer.Static typing and other mysteries of life.
Object Currents, 1(1), January 1996. http://www.sigs.com/publi-
cations/docs/oc/9601/0c9601.c.meyer.html.

[Ock95]John OckerbloomExploiting structured data in wide-area
information systems. Technical Report CMU-CS-95-184, Carn-
egie Mellon University, 1995.

[Sha96]David Shang.Are cows animals. Object Currents, 1(1), Jan-
uary 1996. http://www.sigs.com/publications/docs/oc/9601/
0c9601.c.shang.html.

[Win97] Jeannette M. WingSubtypingfor distributed object stores.
Technical Report CMU-CS-97-121, Carnegie Mellon University,
April 1997.

Using \alue Semantic Abstractions to Guide Stronglpdd Library DesigApril 24, 1998 23



