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Abstract

This thesis is concerned with automatic transcription of monophonic audio
signals into the MIDI representation. The transcription system incorporates
two separate algorithms in order to extract the necessary musical information
from the audio signal. The detection of the fundamental frequency is based on
a pattern recognition method applied on the constant Q spectral transform.
The onset detection is achieved by a sequential algorithm based on compu-
ting a statistical distance measure between two autoregressive models. The
results of both algorithms are combined by heuristic rules eliminating the
transcription errors. Finally, new criteria for evaluation are proposed and
applied on transcription results of several musical recordings.

Keywords: music transcription, pitch detection, fundamental frequency
tracking, onset detection, monophonic audio

Abstrakt

Tato diplomova prace se zabyva automatickou transkripci jednohlasych
hudebnich signali do formatu MIDI. Transkripéni systém zahrnuje dva sa-
mostatné algoritmy nezbytné pro ziskani hudebni informace z audio signalu.
Detekce zakladni harmonické slozky je zalozena na metodé hledani vzorti
ve spektralni transformaci s konstantnim cinitelem jakosti Q. Detekce za-
¢atkl not je dosazeno pomoci sekvenc¢niho algoritmu zaloZzeného na vypoctu
statistické metriky mezi dvéma autoregresnimi modely. Vysledky obou al-
goritml jsou slouceny pomoci heuristickych pravidel odstranujicich chyby
transkripce. Zavérem jsou navrzena nova kritéria pro vyhodnocovani, ktera
jsou pouzita na vysledky transkripce nékolika hudebnich nahravek.

Klicova slova: transkripce hudby, detekce zakladni harmonické, detekce
nestacionarit, jednohlasa hudba
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Chapter 1

Introduction

1.1 Characterization of the Problem

Automatic transcription of music is a task of converting a particular piece
of music into symbolic representation by means of a computational system.
Symbolic representation is generally depicted using the standard music no-
tation which consists of notes characterized by specific frequency and du-
ration. From the transcription point of view, music can be classified as po-
lyphonic and monophonic. The former consists of multiple simultaneously
sounding notes, whereas the latter contains only a single note at each time
instant, such as a saxophone solo or singing of a single vocalist.

Automatic transcription of music is related to several fields of science,
including Musicology, Psychoacoustics, and Computational Auditory Scene
Analysis (CASA). It belongs to the music content analysis discipline which
consists of other audio research topics, such as rhythm analysis, instrument
recognition, and sound separation. It has been studied since 1970s.

1.2 Literature Review

The state-of-the-art in music transcription is focused on the polyphonic
transcription, since the monophonic transcription is considered as practi-
cally solved [Klapuril998|, [Martins2001]. However, it represents an impor-
tant case which should be treated separately with much stricter demands on
the transcription quality, which still seems to be relatively limited for poly-
phonic transcribers. Extensive review of published polyphonic systems can
be found in [Klapuril998].



Since monophonic music share various properties with speech, many al-
gorithms suitable for the music transcription purposes originate in speech
processing [Rabiner1976], [Hess1983], [Andre-Obrecht1986],[Medan1991]. Re-
cent works in monophonic music transcription explore the potential of the
wavelet transform [Cemgil1995a], [Cemgil1995b], [Jehan1997], time-domain
techniques based on autocorrelation [Bello2002], and probabilistic modelling
using Hidden Markov Models [Ryynédnen2004]. In addition to that, [Botil2003]
developed a simple and robust algorithm for real-time MIDI conversion, re-
ferred to as DFE algorihtm (Direct Time Domain Fundamental Frequency
Estimation). This system performs separate monophonic analysis of a signal
from each guitar string, and therefore illustrates that monophonic transcri-
bers can be used in special polyphonic transcription systems.

1.3 Applications

Applications of automatic transcription systems are numerous, though limi-
ted due to insufficient reliability and robustness. The following list presents
the potential areas of interest.

o Computer music applications

Music transcription system is a useful tool for composers and musicians,
since it provides means to easily analyze and edit the music recordings.
It is especially attractive for the real-time transcription of sounds to
musical score.

e Coding of audio signals

Conversion of signal samples to symbolic representation significantly
reduces the amount of data, and can be therefore used for the com-
pression purposes. An example method is the structured audio (SA)
coding described in the MPEG-4 Standard.

e Mobile technology

Reliable transcription systems could be commercially applied in cellu-
lar phones to automatically create monophonic or polyphonic Ring-
tones. Such feature would allow customers to record their own musical
compositions by a cellular phone and transmit the MIDI files via the
Internet or the GSM network.



e Machine perception

Analogically to computer vision, the ability of computers to hear mu-
sic would improve the interaction between humans and systems with
artificial intelligence.

o Music teaching

Future transcription systems could be used in training of singers and
solo instrument players, as well as assist in ear training of novice mu-
sicians. Such systems would compare the exact musical notation with
the performance of an artist and objectively evaluate the performance
quality.

1.4 Organization of the thesis

This thesis inclines to be oriented more practically than theoretically, and
thus briefly explains only the essential background information and refers the
reader to other publications, often available online. For this reason, it omits
a separate theoretical chapter and defines the necessary terms ”on-the-fly”
during the description of the transcription system.

This thesis is organized as follows. Chapter 2 gives an overview of the
MIDI standard. Chapter 3 presents the implemented solution. In Chapter
4, new criteria for evaluation are proposed and the transcription results are
presented. Finally, Chapter 5 summarizes the accomplishments.



Chapter 2
The MIDI Standard

2.1 MIDI Introduction

The Musical Instrument Digital Interface (MIDI) provides a standardized
means of conveying musical performance information as electronic data. It
has been accepted and utilized by musicians and composers since its concep-
tion in 1983, and is nowadays widely used for communication between sound
cards, musical keyboards, sequencers, and other electronic instruments. A
complete description of the MIDI protocol is defined in the MIDI 1.0 Spe-
cification established and updated by the MIDI Manufacturers Association
[MMA2004].

The main advantage of MIDI is data storage efficiency: a typical MIDI
sequence requires approximately 10 Kbytes of data per minute of sound.
Contrary to WAV files, which contain digitally sampled audio in the PCM
format, the MIDI files consist of MIDI messages which can be understood
as special instructions for synthesizers to generate the real sounds. These
messages thus provide very efficient symbolic representation of music. More-
over, the MIDI files are also editable, allowing the music to be rearranged or
even composed interactively.

2.2 MIDI Basics

The MIDI architecture consists of three main components: hardware interface

(connector), a communication protocol (language), and a distribution format
(Standard MIDI File).



2.2.1 MIDI Hardware Interface

The MIDI interface of each instrument is generally provided by three MIDI
connectors, labeled IN, OUT, and THRU. The only approved MIDI connector
is a 5-pin DIN connector. The physical MIDI channel is divided into 16 logical
channels, each capable of transmitting MIDI messages from and to a single
musical instrument.

2.2.2 MIDI Communication Protocol

The MIDI data stream is a unidirectional asynchronous bit stream at 31,25
Kbits/s with 10 bits transmitted per byte (a start bit, 8 data bits, and one
stop bit). The MIDI protocol is composed of MIDI messages in a binary
form; each message is formed by an 8-bit status byte, followed by one or two
data bytes.

MIDI messages are processed in real time, i.e. when a MIDI synthesizer
receives a note-on message, it plays the appropriate sound, and stops this
sound when the corresponding note-off message is received. Similarly, when
a key is pressed on the musical instrument keyboard, the note-on message
is immediately generated, as well as the note-off message is generated when
this key is then released. Therefore, no timing information is transmitted
with the MIDI messages in the real time applications.

2.2.3 Standard MIDI Files

However, in order to store the MIDI data as a data file, time-stamping of
the MIDI messages must be performed to guarantee playback in a proper
time sequence. In other words, each message is assigned a value of time in
the SMPTE format (hours : minutes : seconds : frames) and the resulting
specification is referred to as the Standard MIDI File (SMF) format. In ad-
dition to that, the SMF specification further defines three MIDI file formats,
because the MIDI sequencers can generally manage multiple MIDI data stre-
ams, called tracks.

e MIDI Format 0 stores all MIDI data in a single track, although it may
represent several musical parts at different MIDI channels.

e MIDI Format 1 stores MIDI data as a collection of tracks (up to 256),
each musical part separated in its own track.

e MIDI Format 2, which is relatively rare and often not supported, can
store several independent songs.



Since this work is concerned with the monophonic audio, only the MIDI
Format 0 is used and the terms track and MIDI channel are interchangeable.
It should also be noted that the MIDI files can be converted by the MIDI
File Format Conversion Utility provided by [Glatt2004].

Finally, a MIDI file can also be understood as a "musical version” of
an ASCII text file, except that it contains binary data. Indeed, [Glatt2004]
also offers the MIDI File Dis-Assembler Utility converting a MIDI file to a
readable text, which can then be edited in a text editor and converted back
to a modified MIDI file.

2.3 MIDI File Representations

Although there are many different types of MIDI messages, this work is
concerned only with the note-on and note-off messages carrying the musical
notes data, and hence comprising most of the traffic in a typical MIDI data
stream. The remaining MIDI messages are applied mainly for hardware tasks,
such as selecting which instrument to play, mixing and panning sounds, and
controlling various aspects of electronic musical instruments.

At the highest level, MIDI messages are classified into system messages
and channel messages. The latter are also called MIDI events consisting of
such events as a Note, Pitch Wheel, and Aftertouch. On the other hand, a
MIDI file can also store other information related to a musical performance
using special non-MIDI events, including Tempo, Lyric, Track and Device
Name, Time and Key Signature, Copyright, and others (see [Martins2001,
Appendix B] for a detailed description).

Both MIDI and non-MIDI Events form an event list, which can be viewed
by commercial audio software programs, such as [Cakewalk2004]. Figure
2.1(a) shows the event list for the case of polyphonic music (multiple tracks,
MIDI Format 1), whereas Figure 2.1(b) shows the monophonic case (a single
track, MIDI Format 0). The former gives some examples of MIDI and non-
MIDI events in the Kind column, and also illustrates the varying values in
the Ch and Trk columns (MIDI channel and track, respectively), typical for
multi-instrumental MIDI files. Notice that polyphony and chords can easily
be achieved by placing several note events at a specific time instant (for
example, C#4 and F#4 at 00:00:10:19).

As can be seen in the comparison of Figure 2.1(b) with Figure 2.2, the
event list provides the MIDI data representation equivalent to the note staff
and the piano roll. Note staff expresses the MIDI data from the musical
point of view, while the piano roll is commonly used as a simple and practical
depiction of the transcription results (see Chapter 4). Figure 2.1(b) also shows
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Onset Note MIDI note | MIDI key MIDI
time [s] | duration [s] | number [-] | velocity [-] | channel [-]
0.0878 0.1372 35 127 0
0.2250 0.2035 o7 110 0
0.4285 0.1518 99 90 0
2.0867 0.3731 79 100 0

Table 2.1: Simplified event list

that only the note events are necessary to describe the tones of a digitally
sampled audio, and therefore, event list can be reduced to a simplified version
shown in Table 2.1.

2.4 Event List Parameters

As can be observed, each line in Table 2.1 contains an individual note event
comprising the following event list parameters:

2.4.1 Omnset Time

This parameter characterizes the exact time of the beginning of a note, re-
ferred to as onset, which is directly connected to the note-on MIDI message.
Analogically, the offset is the termination of a note, and is connected to the
note-off MIDI message. For a monophonic signal, it can naturally be assumed
that an onset of a new note causes the offset of the previous note.

2.4.2 Note Duration

The duration of a note is defined as a time difference between the onset and
the offset of a particular note. It is important to mention that rests (musi-
cal pauses) are therefore not explicitly defined, since they are automatically
produced when the onset time plus the duration of the current note is less
than the onset time of the next note.

2.4.3 MIDI Note Number

Each MIDI note number (integer between 0 and 127) defines a fixed value
of frequency corresponding to a certain note (see the Data column in Figure
2.1(b)). For instance, the note A2 (A is the note name, number 2 indicates



the second octave) has the frequency of 440 Hz and is defined by the MIDI
note number 69 (see Figure 3.2).

As further explained in Section 3.1, the individual MIDI note numbers
are calculated from the detected values of pitch in an audio signal. Pitch is
commonly defined as perceived fundamental frequency, although these terms
are usually interchanged [Klapuril998].

2.4.4 MIDI Key Velocity (Volume)

The MIDI key velocity parameter (0 to 127) is derived from the velocity with
which a piano hammer hits a string, and therefore expresses the note volume
(loudness) or sound intensity. Nevertheless, some MIDI devices are velocity
insensitive.

2.4.5 MIDI Channel

The MIDI channel parameter (0-15) gives the index of the logical channel
used for transmission of the MIDI message corresponding to the current
event. This parameter is not of our interest, since the monophonic audio
requires only a single channel, and is hence by default set to zero.

10



Chapter 3

Music Transcription System

This chapter provides a detailed description of the proposed music transcrip-
tion system. As implies from the preceding Chapter, the simplified event list
incorporates all data necessary to create a monophonic MIDI file. Therefore,
given an input audio signal, the essential objective of the transcription sys-
tem is to extract the event list parameters discussed in Section 2.4. This task
is divided into the individual building blocks as follows (see Figure 3.1).
The Pre-processing block normalizes the signal to the unit power, and
inserts silence before the beginning and after the end of the signal. The
Pitch Detection block is mainly responsible for tracking the fundamental
frequency in the signal, but also contributes to the determination of the
note onset and offset times, which is the principal task of the Detection of
FEvents block (whose output can conversely affect the fundamental frequency
tracking). Since none of these blocks yield ideal results, the Estimation of
Power block is added to provide supportive data for both the event detection,

Pitch |
™ Detection
L]
Detection Combining Notes
Input | Pre-' - of - the - to | —» MIDI
Signal processing Events Results MIDI File
_»
Estimation
- of —
Power

Figure 3.1: Transcription system overview.
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and the calculation of the MIDI volume. Finally, the Combining the Results
block processes the outputs of the three preceding sections, and generates
the complete event list in an appropriate format.

Fortunately, a Matlab code performing the final Notes to Midi conversion
is available on the Internet [Cemgil2004], so the MIDI standard must have
been studied only to the limited extent presented earlier. For implementation
details, refer to the Appendix A.5.

3.1 Pitch Detection

Great effort was devoted to explore various algorithms of the pitch detection,
in order to find the best solution suitable for this thesis. It was soon revealed
that the monophonic transcription is practically a solved issue [Klapuril998],
hence the remaining problem was to discover some advanced method feasible
in a relatively short time.

Numerous pitch detection techniques were originally developed for the
speech applications [Rabiner1976], but unfortunately, many of them are less
appropriate for the audio processing purposes due to the reasons summarized
in the conclusion of [Cemgil1995a]. Finally, a solution based on the Constant
Q@ Transform (CQT) was selected, since it offers the best results in terms of
the time-frequency trade-off among the methods compared in [Cemgil1995a].
In addition to that, the primary articles explaining this transform and the
Matlab implementation are available [Brown2004].

3.1.1 MIDI Frequencies

As can be observed in Figure 3.2(a), the MIDI standard defines only 128
possible musical notes corresponding to an exponentially increasing set of
frequencies in the linear scale (geometric series). This concept was borrowed
from the classical western music theory, in which all frequencies chosen to
form the musical scales are also spaced exponentially. Such scales are re-
ferred to as equally tempered scales [Klapuril998| or equal temperament sca-
les [Martins2001].

The principal reason for this choice is that the human ear is characterized
by the logarithmic frequency resolution, i.e. the absolute resolution is finer
at low frequencies, and coarser at high frequencies. Therefore, exponentially
spaced musical frequencies are perceived with constant quality within the
whole frequency range, as can be seen in Figure 3.2(b).

12
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Figure 3.2: Spacing of musical frequencies
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Figure 3.3: Tiling of the time-frequency plane by the CQT

3.1.2 Time-Frequency Representation

Since the musical frequencies form a geometric series, it is desirable to repre-
sent the signal with spectral transform corresponding to a filter bank with
center frequencies spaced in the same manner. Such transform was introduced
in [Youngberg1979], [Brown1991] and is referred to as Constant Q Transform
(CQT). Similarly as in the DFT, the frequency range is divided into frequency
bins, each represented by a bandpass filter with a center frequency f, and
filter bandwidth A fi. However, the CQT bins are geometrically spaced, re-
sulting in variable resolution at different octaves.

Figure 3.3 shows the tiling of the time-frequency plane by the CQT filter
bank and reviews the crucial properties of the transform.

1. Center frequencies fj increase exponentially (i.e. form a geometric se-
ries).

14



| Quantity \ CQT \ DFT |
Center frequencies | exponential in k linear in k
szfo(W)k fo=k-Af
Window length | variable = N (k) | constant = N
Filter bandwidth | variable = f;/@Q | constant = f;/N
Resolution constant = Q variable = k

Table 3.1: Comparison of CQT and DFT.

2. Filter bandwidths A f; become narrower towards low frequencies, and
wider towards high frequencies.

3. With b being the number of filters per octave, the CQT filter bank is
equivalent to 1/b™ octave filter bank, which shows its close relationship
with the wavelet transform [Cemgil1995a]. Hence, when b = 1 (see the
blue lines), the CQT is identical to the standard octave filter bank, and
the quality factor Q) = fi/Afr equals to unity.

The western music divides each octave into 12 intervals, called semito-
nes, corresponding to b = 12. For this reason, b = 24 is typically used
to obtain "twice as good” (i.e. quarter-tone) resolution, necessary to
reliably detect semitones anywhere in the musical frequency range.

4. Variable window length N (k)
Since the windows at low frequencies become extremely long, a fixed
parameter of maximum window length N,,.. (see the red line) is used
to reduce these windows in order to preserve sufficient time resolution,
since N,,q. 18 also used as a window length for the segmentation of the
signal, similarly as in STFT. This improvement of CQT is called the
Modified CQT (MCQT) and was introduced in [Brown1993].

Previous observations are summarized in Table 3.1. Note that f, =

fo (W)k is indeed a formula for geometric series with quotient v/2, and that
the spacing of all frequencies depends on the minimal center frequency fy. For
further theoretical background, refer to [Brown1991] and [Blankertz2004].
Figures 3.4 and 3.5 provide a visual comparison between the CQT and the
DFT transforms for the time-frequency analysis of the sound from a violin
playing G major scale from G3 (196 Hz) to G5 (784 Hz). Both CQT repre-
sentations show very clearly the spectral content of the signal, so the note
changes can easily be observed (due to the obvious separation of the funda-
mental frequencies), as well as the formant region around 3000 Hz. Also note
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that the first two notes (G3 and A3) have an almost undetectable fundamen-
tal frequency. The STFT spectrogram, on the other hand, demonstrates that
the DFT indeed does not map to musical frequencies efficiently, providing
very little information at low frequencies, and too much information at high
frequencies.

3.1.3 Pitch Detection System

After briefly explaining the motivation for using the Constant Q Transform, a
CQT-based pitch detector can now be presented. Figure 3.6 depicts the basic
building blocks representing the internal structure of the Pitch Detection
block in Figure 3.1. The main principle is adopted from [Brown1992a], which
was subsequently improved in [Brown1993] using phase changes of the Fourier
transform. However, the technique described in the latter article did not prove
advantageous, so it was removed from the overall structure.

The pitch detection system operates as follows: first of all, the input sig-
nal is divided into overlapping segments (using the Hamming window by
default), which are then transformed by the CQT block. The CQT spectrum
is then processed by a frequency tracker based on pattern recognition (PR),
computing an estimate of the fundamental frequency within the given seg-
ment (see Section 3.1.4). Finally, all detected values of pitch are nonlinearly
smoothed by median filters in order to eliminate gross errors (see Section
3.1.5).

3.1.4 Frequency Tracking

The CQT spectral components form a constant pattern when plotted against
the logarithmic frequency axis (see [Brownl1991, Figure 1]). Indeed, it can
easily be shown that the spacing between harmonics is independent of the
fundamental frequency:
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Figure 3.7: Frequency tracking based on pattern recognition

log (fn) — log (f,) = log (J}—m) ~ log (Zﬂ' 5;) —log (%) (3)

In other words, the relative positions between harmonics are constant for
all musical notes, and only the absolute positions depend on the fundamental
frequency. This property can be employed to determine the fundamental
frequency as a maximum value of the cross-correlation function between an
ideal (theoretical) pattern and the pattern in the actual CQT spectrum, as
outlined in Figure 3.6.

Figure 3.7 presents the results of this procedure for a particular signal
segment. Figure 3.7(a) shows the CQT amplitude spectrum of the segment,
as well as the initial and the final positions of the ideal pattern (chosen to
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consist of 14 harmonics). The initial position is created with the fundamen-
tal situated at zero frequency. As the cross-correlation function is calculated
for increasing values of lags (each corresponding to a CQT component or
bin), it can be visualized as generating a new pattern with higher position of
the fundamental, or equivalently, shifting the original pattern by one CQT
bin ”to the right”. Please note that this explanation is somewhat popular,
and the correct mathematical interpretation is to be found in [Brown1992a].
After performing such operation within the whole frequency range, the fun-
damental is determined as the frequency corresponding to the CQT at the
maximum of the cross-correlation function. The values at higher harmonics in
the ideal pattern are linearly decaying in order to emphasize the fundamental
frequency, and thus reduce the octave errors during the pattern recognition
[Brown1993].

3.1.5 Post-processing of Results

As depicted in Figure 3.6, the results are finally post-processed by the me-
dian filtering block performing a nonlinear smoothing operation. This block
consists of two successive median filters (of orders 3 and 5, respectively) re-
ferred to as combination median smoother ([Rabiner1975|, [Hess1983]). In
this case, it is inherently capable of removing 3 isolated gross errors in a
5-point interval.

Figure 3.8(a) illustrates the frequency tracking results for the signal of
the violin (introduced in Figure 3.4 and 3.5). Each point here corresponds
to an individual value of pitch determined in each segment. As can be seen,
the median 3 filter first removes single discontinuities (red crosses), followed
by the median 5 filter eliminating the remaining 2-point deviations (black
crosses), resulting in an almost ideal "stairs” (blue dots).

Figure 3.8b depicts the transcription of a piano sound obtained by resyn-
thesis of a MIDI file back to an audio WAV file. Contrary to the previous
case, this transcription involves additional error values, corresponding to si-
lent regions in the input signal. Each of these errors is caused by failure in
pattern recognition, indicated by a maximum of cross-correlation function
at a negative value of the CQT component k., (see Figure 3.7(b)). To ena-
ble further calculations, the negative values are replaced by ones, resulting in
erroneous frequencies located in the "valleys” in Figure 3.8(b). Such frequen-
cies are therefore omitted by the median filters, and are subsequently utilized
in the final decision procedure (see Section 3.4.2).

Notice that the piano sound in Figure 3.8(b) plays several notes at two
distinct frequencies 57 Hz and 68 Hz. While the tones of the former frequency
can readily be recognized due to the ”error valleys”, the latter frequency is
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merged into a single line. However, it can be shown that the nearby "red cros-
ses” do not represent gross errors of the frequency tracking, but in fact, they
clearly indicate each new note. From this point of view, it might seem that
the median smoothing excludes some information about the note detection
provided by the CQT. On the other hand, such method for the note detection
would be very inaccurate and problematic (as shown in Figure 3.8(a)), and
thus a separate onset detection algorithm must be implemented.

3.2 Detection of Events

The algorithm for detection of acoustic changes (events) is based on the ar-
ticle [Basseville1983], further improved in [Andre-Obrecht1988], and discus-
sed in [Jehan1997]. Jehan received the algorithm written by Andre-Obrecht
in Fortran, and included the C-language implementation in his MSc. Thesis.
This code was then rewritten and much work has been made to remove the
old-fashioned programming style, and to optimize it as a Matlab MEX-file.
Great advantage of this algorithm is the statistical time-domain approach
performed on a sample-by-sample basis, thus providing very accurate locati-
ons of the onset and offset times.

3.2.1 AR Modeling

The main idea is to model the signal by an autoregressive (AR) model, and
to use test statistic to sequentially detect changes in the parameters of this
model. The signal is assumed to be described by a string of homogeneous
units, each characterized by the AR model M = (a, 02) of the following form
(p is the order of the model).

p
z[n] = — Z a;x[n —i] + e[n] (3.2)
i=1
1. Vector of AR coefficients:

a = (a,as,...a,) (3.3)

Since the AR coefficients represent the LPC spectrum of a signal, this
part of the model is responsible for tracking abrupt changes in spectral
characteristics, typical for the transient parts (attacks) of the signal.
Equivalently, transients are characterized in the time domain by a very
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steep increase in amplitude (see Figure 3.11), also requiring rapid chan-
ges in the AR model (when interpreted as a linear predictor of the
consecutive sample).

2. Variance of the prediction error signal:

var (e[n]) = 02> = ¢? = P, = a (3.4)

This part of the model describes changes in power of the signal, as
implied by the above formula. The error signal e[n| is assumed to be a
zero-mean white noise, with the variance o2 constant inside the homo-
geneous units.

In general, there are three possible cases for detection of an event: a change
in AR coefficients, a change in power, and a change in both. Therefore, it
has become necessary to perform a separate power analysis (see Section 3.3)
in order to distinguish between the cases, and classify the events into onsets
and offsets.

3.2.2 Divergence Test

Although classical methods based on one AR model exist, [Basseville1983]
demonstrated the advantages of the statistical test based on two AR models,
between which a suitable distance measure is monitored. This distance me-
asure is referred to as conditional Kullback’s divergence, hence the name of
the algorithm (which will be often used in the sequel).

Figure 3.9 shows the locations of the two AR models M, and M;. The
former is a global (or long-term) model, whereas the latter is a local (or
short-term) model. As can be seen, the global model is represented by a
growing window, beginning at the first sample of the signal, while the local
model is symbolized by a sliding window of the constant length L. For this
reason, the global model is recursively updated using a sample-by-sample
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growing memory Burg algorithm (described in [Basseville1982, Appendix I}),
while the local model is calculated using the autocorrelation method. The
identification of both models is followed by the computation of their distance
measure, and a new event is announced whenever the distance exceeds a
specific threshold value. That is, the two AR models disagree due to some
abrupt change during the last L samples of the signal. Finally, the exact
time instant of this change is estimated by the Hinkley’s (stopping-time)
test, providing a sophisticated detection with very small delay. The overall
process is summarized in the flow chart in Figure 3.10.

It is worth mentioning that the short-term window is not sliding throu-
ghout the entire signal waveform, due to the second ”decision” in the flow-
chart, requiring at least L newly analyzed samples (after detection of a previ-
ous event). Therefore, the sliding window can reappear only after satisfying
this condition, resulting in a certain minimal time between each two succes-
sive events.

3.2.3 Parameters Selection

As elaborately discussed in [Basseville1983] and [Andre-Obrecht1988], the

segmentation results are strongly dependent on two primary parameters:
a) Sliding window length L

As stated above, the short-term model is identified using the autocorre-
lation method based on solving the Yule- Walker equations R-a = —Rp,
where a is the vector of autoregressive coefficients and R is the auto-
correlation matrix. This matrix consists of autocorrelation coefficients,
which can be calculated using the biased estimate of the autocorrelation
function:

L—k—1
Z zn]-zn+k] fork=0,1,...p (3.5)

n=0

R[k] =

e~ =

b) AR model order p

In theory, the model order should not be a fixed number, since the
optimal value may progress in time. Fortunately, this is was not a severe
problem in the tested signals, since a relatively high order was used to
assure detection of all possible events. Generally, the higher is the model
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Figure 3.11: Attack-Decay-Sustain-Release (ADSR) model of a typical note.

order, the more events are detected, and thus the higher probability
of undesired oversegmentation. Nevertheless, such phenomenon can be
allowed to a certain extent, because the output of the event detector
is corrected by the Combining the Results block (described in Section
3.4). Accordingly, the order 30 is selected as a default, contrary to
[Jehan1997] who experimented with very low values (2, 4, and 6) for
real-time calculations.

3.3 Estimation of Power

3.3.1 ADSR Model

As discussed in Sections 3.1 and 3.2, the main motivation for estimating the
signal power is the fact that the results of the divergence test provide no
information about the origin of the detected event. The test locates not only
the majority of onsets and offsets, but for some notes also an attack, decay,
and release, defined in the ADSR envelope model shown in Figure 3.11.

The attack is defined as a region between the zero amplitude and the
peak, and exhibits the steepest ascent of power in the ADSR model. It is
then followed by a decay region, also attended by an abrupt change in power,
which may cause a detection of an incorrect event. Such error can be avoided
by accepting this event only when its signal power is reasonably low to regard
it as an offset (i.e. the end of a release region). Therefore, there is a need for
determination of local power minima, which are then used to eliminate the
main errors of the divergence test, such as:

e False alarms due to inadequate length of the sliding window

e Mistakes arising from oversegmentation
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3.3.2 Leaky Integrator

Because the musical signals are non-stationary by its nature, it is necessary
to track the signal power in time. As discussed in [Sovka2003], there are two
main approaches for power estimation, namely the block estimate, and the
recursive estimate. After several experiments, it emerged that more suitable
results are obtained by the latter system, referred to as the leaky integrator.
As can be seen in Figure 3.12, it is a simple first-order recursive digital filter
(RDF), characterized by the following difference equation:

Pn]=X-Pln—1+ (1+\)-2%n] (3.6)

where ) is the forgetting factor and z?[n] = p[n] is the instantaneous
power of the input signal, which is being smoothed by the filter. The dif-
ference equation can be Z transformed and rewritten to obtain the system
transfer function and the impulse response:

) = 76 = Tore @)
hin]=(1—=X)-A™ forn=0,1,...00 (3.8)

Figure 3.13 displays the exponential impulse response of the IIR filter
H(z), as well as its time constant T defined in this case as:

A & A =exp(—1/7) (3.9)
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Figure 3.14: Estimate of power with the desired local minima.

It was decided to use the value of 7 equivalent to the window length N,
for MCQT (see Figure 3.3), which corresponds to 7 = % 1000 ~ 93 ms and
A = 0.99. Such selection provides the desired tracking of amplitude changes
in a signal at the expense of rather fluctuating estimate of power, which
tends to follow many unimportant variations. Nevertheless, this drawback is
insignificant, since we are primarily interested in accurate time localization
of local power minima P,,;, depicted in Figure 3.14.

Let us first repeat that each sample of the incremental estimate of power
Pin] is the output of the IIR(1) leaky integrator with the exponential im-
pulse response h[n]. Since this response is highly asymmetrical, the power
P[n] steeply increases during attacks in the signal z[n|, and slowly decreases
afterwards, which creates an evident local minimum of power at each note
onset. Moreover, it can clearly be observed that these power minima always
coincide with the correct events detected by the divergence test (marked in
Figure 3.14 by red crosses), and can thus be used for reliable elimination of
the errors discussed in Section 3.3.1.
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Figure 3.15: Principle of the iterative smoothing function.

3.3.3 Iterative Smoothing Function

This section describes a function smoothing the fluctuations in the power P[n]
in order to locate its most significant minima F,,;,,. The function is based on
the mathematical principle defining a minimum as a point preceded by a
negative value of derivation, and succeeded by positive derivation. Since this
principle inherently finds all local minima, the procedure must be performed
iteratively, as illustrated in Figure 3.15.

The upper picture displays the solid blue curve representing the smoo-
thed version of P[n] already after two iterations. Then, all local minima are
detected (shown as dots), and interconnected into a dashed line. Finally, the
resulting line is depicted on the lower picture again as a solid curve, and the
process is repeated. As you can notice, the curve visibly becomes piecewise
linear with each new iteration, and also the amount of local minima is rapidly
reduced. The process is stopped when this amount is less than the number
of events from the divergence test, requiring typically three to five iterations
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(depending on the signal length).

Additionally, an analogical procedure is executed for detection of the most
significant local maxima of power, each corresponding to an amplitude peak
at the end of a note attack (see Figure 3.11). These maxima are also utilized
in the final decision procedure, described in the next section.

3.4 Combining the Results

As introduced in Chapter 3, the purpose of the Combining the Results block is
to produce a final event list based on the outputs of the three previous blocks.
Principally, this block applies several heuristic rules to correctly choose the
best candidate for the onset time and MIDI frequency of each note. These
rules form an eliminative competition between two sets of candidates, and
are the contents of Section 3.4.2.

3.4.1 CQT-based Segmentation

First of all, we will extend the results from Section 3.1.5 to create the first
set of candidates. Figure 3.16(a) shows a portion of the violin sound presen-
ted earlier, whereas Figure 3.16(b) illustrates the frequency tracking results
obtained from those in Figure 3.8(a) by quantizing the detected frequencies
to MIDI note numbers.

Figure 3.16(b) graphically supports a straightforward assumption that
every change in frequency causes a new note, so the CQT indeed provides
elementary onset detection in the input signal z[n]. Such onsets constitute
an initial set of note candidates, and are depicted in Figure 3.16(a) together
with the candidates nominated by the divergence test. As can be observed,
the segmentation based on the CQT seems to be rather inaccurate because
of the time resolution dependent on the window length N,,.,. Furthermore,
the overall pitch detection system tends to generate several false tones, such
as the short note at approximately 1,62 s.

The divergence test, on the other hand, offers nearly exact localization
of the signal changes owing to the sample-by-sample approach. However, it
suffers many short-comings (see Section 3.3.1) causing the difficulty to dis-
tinguish between the offset-onset pair around 1,25 s, and two nearby onsets
around 1,78 s (probably due to oversegmentation). Consequently, the errors
of both algorithms must be eliminated in a competitive manner described in
the sequel.
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3.4.2 Eliminative Competition

This procedure makes a final decision on the correctness of candidates by the
CQT and the divergence test. Let us for simplicity denote the former set of
candidates as cqtseg, and the latter as divseg. Then, the competition can
be divided into separate rounds or rules, each responsible of eliminating or
accepting a specific subset of candidates.

Round One

The decisive rule applied in the first round can briefly be summarized as: ” The
winner is the nearest”. Specifically, the algorithm sequentially processes the
cqtseg candidates, and assigns to each member the nearest candidate (in
samples) from the divseg. Any cqtseg member is automatically discarded
when there are no divseg candidates in the region between the previous and
the next cqtseg member. When two cqtseg members share the same divseg
candidate as a winner, only the member corresponding to a longer note is
preserved.

Indeed, such operations appear to remove most of the undesired candi-
dates (shown in Figure 3.16), and effectively correct the onset times of the
cqtseg candidates.

Round Two

As demonstrated in Figure 3.14, the correct divseg candidates are often
located in the vicinity of power minima P,,;, preceding the note attacks.
This property is thus the necessary condition of the second round, which
allows an additional acceptance of the divseg candidates rejected in Round
1. It should be emphasized that such rule is capable of recognizing successive
notes of the same frequency, and hence allows the time segmentation which
would not be possible solely with the CQT approach.

Round Three

The third round is based on the observation that all monophonic audio signals
contain an attack between each two consecutive onsets. In other words, the
power P[n| must have at least one local maximum P,,,, to consider such
onsets as beginnings of two separate notes. This criterion represents the third
eliminative rule illustrated in Figure 3.17.

As can be observed, this rule excluded the divseg candidate at appro-
ximately 1,14 s for the benefit of the candidate at 1,2 s. The former was
chosen in Round 1 (as the closest to the cqtseg candidate), while the latter
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was accepted in Round 2 for satisfying the condition of proximity to a power
minimum. Finally, the former candidate is removed because it violates the
condition of Round 3, which was easily satisfied by the true note onsets at
1,2 s and 0,95 s (as can be seen in the upper figure).
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Chapter 4

Simulation Results

This chapter presents the evaluation of the transcription system described in
Chapter 3. Section 4.1 describes the criteria of transcription quality, Section
4.3 specifies the settings of transcription system parameters, Section 4.2 de-
picts the methods of creating the testing data, and finally Section 4.4 discus-
ses the results based on several examples.

4.1 Transcription Quality Criteria

This section describes the criteria for evaluating the performance of the
proposed transcription system. The criteria represent an attempt to nume-
rically quantify the transcription results, since pure listening and word com-
mentary is insufficiently informative. The new criteria were developed due
to the absence of objective measures at the time of writing of this thesis.
However, [Ryyninen2004] have recently published other useful criteria with
some properties similar to those described in Section 4.1.3.

The criteria can be divided into two separate groups: time-based criteria
and note-based criteria. The former is described in Section 4.1.1, whereas the
latter is explained in Section 4.1.3.

4.1.1 Time-based Criteria

The time-based evaluation is inspired by the criteria in [Pollak2002], which
were partially adopted from [Rosca2002]. These criteria originate in speech
processing and were designed to evaluate the performance of Voice Activity
Detectors (VAD). In our context, they serve to assess the accuracy of onset
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OVF OVerlap at the Front OON Overlap at ONset
OVB OVerlap at the Back OOF | Overlap at OFfset
TRF | TRuncation at the Front || TON | Truncation at ONset
TRB | TRuncation at the Back || TOF | Truncation at OFfset

Table 4.1: Terminology of the time-based criteria

and offset detection, which represents a parallel to the task of speech segmen-
tation. Therefore, analogous criteria can simply be obtained by substituting
the Front and the Back of a speech activity by the note Onset and Offset,
respectively, as shown in Table 4.1.
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Figure 4.1: Illustration of time-based criteria
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Since it is somewhat difficult to mathematically define the time-based cri-
teria, Figure 4.1 provides an illustrative example. As can be seen, each ”sub-
figure” shows the piano roll representation (see Section 2.3) of the reference
note (painted gray) and the corresponding transcribed note (painted black).
In all four cases, the frequency of both notes is 440 Hz corresponding to the
MIDI note number 69 (note that transcribed notes are "narrower” only to
be visually distinguishable from reference notes).

Figure 4.1(a) and 4.1(b) depict the onset errors OON and TON, respecti-
vely, which represent too early and too late detection of a note onset, whereas
Figure 4.1(a) and 4.1(b) depict the offset errors OOF and TOF, respectively,
which represent too late and too early detection of a note offset. Each crite-
rion counts the number of samples between the reference and the detected
event (i.e. onset or offset) and sums the contributions from all notes to obtain
the total amount of a particular error in the transcription. Alternatively, this
amount can be divided by the total duration of notes in the reference MIDI
recording to obtain the proportional time error in percentage.

It should be emphasized that these criteria also add the contributions
from the notes transcribed with a frequency error, provided that certain
minimum time overlap is satisfied. The meaning of the overlap is clarified in
the following section.

4.1.2 Overlapping measures

This section introduces two overlapping measures expressing the mutual
time overlap within each reference note - transcribed note pair. When used
in conjunction with correct pitch detection, the measures indicate the ove-
rall transcription correctness bilaterally in context of the reference and the
transcription. Therefore, these measures are applied in Section 4.1.3 for clas-
sification of notes into specific categories constituting the note-based criteria.

Similarly as in the preceding section, definitions of both overlapping me-
asures are given in words only, supported by examples displayed in Figure
4.2.

ROT - Reference Overlapping Transcription

This parameter indicates how much is the transcribed note covered by the
reference note, i.e. how large portion of the transcribed note is indeed correct.
If ROT is greater than 75%, for instance, it means that the transcribed note
is correct in itself - although it may not entirely represent the reference note,
it at least corresponds to some its certain portion, and thus increases the
transcription quality. If ROT = 100%, it merely means that the transcribed
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note is completely located inside the reference note (see Figure 4.2(c)), but
does not indicate the transcribed area of the reference (which the purpose
of the complementar measure TOR). It is interesting to mention that ROT
penalizes both too long and too short transcriptions, as demonstrated in

Figure 4.2(a) and 4.2(b), respectively.

ROT =50% ; TOR = 100% ROT =50% ; TOR =25%
70 ‘ ‘ ] 70 ‘ ‘
- i
[ @
2 69 2 69
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() (d)

Figure 4.2: Overlapping measures between reference and transcribed notes

TOR - Transcription Overlapping Reference

This parameter indicates the percentage of the reference note covered by the
transcribed note, i.e. how large portion of the reference is correctly detected.
If TOR = 100%, it only means that the transcribed note entirely overlaps
the reference note, though the ideal result can be a subset of the transcribed

note (see Figure 4.2(a)).
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4.1.3 Note-based criteria

As the name implies, this section presents criteria performing the eva-
luation using the notes as independent units. As mentioned in Section 4.1,
this approach share some ideas with [Ryyndnen2004]. Nevertheless, our note-
based evaluation is approached mainly from the reference notes perspective
and compensates this imperfection by penalizing the transcriber for errors.
On the other hand, the symmetry is in fact embedded in our conception
as well, since the overlapping measures (see Section 4.1.2) characterize the
bilateral relationship between the reference and transcribed notes.

The note-based evaluation classifies each reference-transcription pair into
one of the note categories, according to the measures ROT and TOR, as well
as the correctness of frequency detection. Each criterion then simply counts
the number of notes in the respective note category defined in the sequel.

CTN - Completely Transcribed Notes

A reference note is completely transcribed by a note from the transcription,
when the MIDI note frequencies agree and the notes exhibit large overlap in
time:

foel = f o (4.1)
ROT +TOR > 150%,  ROT >60%, TOR > 60% (4.2)

Three joint conditions in Equation (4.2) appear to be more flexible and
yield better results than simple requirement of ROT or TOR to exceed a
specific minimum value. Indeed, all four pairs in Figure 4.1 satisfy the above
conditions, resulting in classification of the reference notes as CTN. On the
other hand, the examples in Figure 4.2(a) and 4.2(c) violate the condition
either for ROT or TOR (although satisfying the most difficult condition for
the sum), and thus fall to the following category PTN.

PTN - Partially Transcribed Notes

A reference note is partially transcribed by a transcribed note when the
frequency condition (4.1) is met and the notes satisfy less demanding overlap
than CTN:

TOR + ROT >100%,  TOR > 40% (4.3)
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As suggested by an example PTN in Figure 4.2(d), this approach may
result in a somewhat undervalued score, since listeners would probably con-
sider the transcription as correct due to a hardly perceivable time shift. On
the other hand, monophonic transcription is a significantly simpler task com-
pared with polyphonic transcription, hence the quality demands should be
much stricter. Moreover, such errors become considerably more audible with
increasing note duration and decreasing tempo of the recording.

FER - Frequency ERrors

A reference note is classified as transcribed with a frequency error, when the
notes exhibit time overlap defined in Equation (4.3) or (4.2), but Equation
(4.1) is not fulfilled.

OER - Octave ERrors

Octave errors represent a special case of frequency error greater than or equal
12 semitones:

> 12 (4.4)

mid mid

‘f ref _ pitrn

MIN - Mlssed Notes

A reference note is classified as missed when no appropriate transcription
candidate exists, or when the candidate is too inaccurate in time, regardless
of the error in frequency detection. Specifically, the MIN criterion counts the
references notes not identified by the previous criteria CTN, PTN, FER or
OER.

FAN - FAlse Notes

This criterion counts the notes in the transcribed MIDI sequence not invol-
ved in the original recording. In other words, false notes are constituted by
redundantly transcribed notes coupled with no reference note. In addition to
that, a transcribed note is considered false (FAN) whenever the correspon-
ding reference note is classified as missed (MIN). An illustrative example of
this situation is depicted in Figure 4.2(b).

NDA - Note Detection Accuracy

Based on the preceding note criteria, we can characterize the overall quality of
transcription by introducing the Note Detection Accuracy parameter defined
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as:

CTN +3-PTN —2-OER— FAN
N

where N is the total number of reference notes. As can be observed, this
parameters takes into an account both the reference and the transcription
point of view. While the former is represented by the CTN, PTN and OER
criteria, the latter is described by the FAN criterion. FER errors are not
penalized for two reasons. First, classification of a particular note as FER is
automatically reflected as a proportional decrease in C'TN or PTN criterion.
Second, FER errors express the correctness of onset/offset detection. On the
other hand, octave errors OER are strongly penalized since they symbolize
gross errors causing especially unpleasant impression of the transcribed me-
lody.

NDA = -100% (4.5)

4.2 Preparation of Testing Signals

This section provides brief description of the two methods used to prepare
suitable test data. Although [Ryyn#nen2004] reports rapid growth of music
databases, no standardized database was unfortunately available to us.

Synthesized signals As the name suggests, synthesized signals can be
obtained by synthesizing a WAV file from a MIDI file. This is especially at-
tractive because the exact reference score is readily available, and moreover,
it can automatically be accomplished by a software Wave Table synthesizer
(such as [TiMidity2004]) in order to prepare large database of testing signals.
Unfortunately, the resulting WAV files generated by [TiMidity2004] contain
undesirable amount of additive noise. Since filtering the noise would distort
the audio signal, all reference WAV files were manually recorded using a sound
card and [CoolEdit2004] during the playback of MIDI files in [Cakewalk2004].

Real signals Real signals from musical instruments were manually transcri-
bed in order to obtain reference musical notation. First of all, note onsets
and offsets were labeled similarly as in speech processing. Then, correct MIDI
notes were detected by repeated listening, and the reference MIDI file was
generated using the software by [Cemgil2004]. Finally, the resulting MIDI file
was played several times to adjust the offsets in such a way, that all notes
sound as closely as possible as the original instrument.
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’ Title \ Author \ Instrument \ Genre ‘

Violin scale unknown violin etude
Chameleon Herbie Hancock | synthesizer jazz
Horn fanfare unknown horn brass music
Kadan City Blues Natravena 5 saxophone blues
Could You Be Loved? Bob Marley MIDI guitar reggae

Table 4.2: Description of the testing audio signals

Since the number of testing signals is small, we have chosen musical in-
struments with very distinctive frequency spectra, as well as recordings from
various musical styles. The testing signals are summarized in Table 4.2

4.3 Settings of the Transcription System

This section presents the parameters settings of the proposed transcription
system. Since the desired task of the system is the automatic transcription
of music, all parameters retain constant values shown in Table 4.3. The only
exception is the number of harmonics parameter, which strongly affects the
results of the pitch detection algorithm (see Section 3.1.4) and must be the-
refore individually tuned for each musical instrument. The chosen values are
given in Table 4.4.

4.4 Transcription Examples

This section presents several examples of transcribed audio signals and dis-
cusses the results based on the criteria presented in Section 4.1. It is intended
as a study of the transcription system properties, rather than generalization
based on statistical evaluation. Transcription results are commented in words
for each instrument, and summarized in Table 4.4.

4.4.1 Violin

This signal was used in Section 3.1.2 for demonstration of efficient spectral
analysis with the constant Q transform, as depicted on Figure 3.4 and 3.5(a).
For this reason, the transcription results are almost perfect using only the
pitch detection algorithm, as shown in Figure 3.8(a). Nevertheless, the onset

!These figures are similar to [Brown1991, Fig. 5]. The audio recording can be obtained
at [Brown2004].
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Parameter \ Value ‘

window type Hamming
window length 93 ms
overlapping 85%
number of bins per octave, b 24
maximum frequency, faz fs/2
minimum frequency, fin 16.35 Hz
threshold for CQT matrix, minval 0.054
DFT phase-based correction off
AR model order, p 30
sliding window length, L 40 ms
threshold in Hinkley’s test, A 40
bias in Hinkley’s test, d 0.2
audibility threshold, P,,q 0.05
time constant of leaky integrator, 7 93 ms
window length of moving average 30 ms

Table 4.3: Default algorithm parameters

Instrument | harm | notes | avgdur || NDA || OON | TON | OOF | TOF
FL | B | ms] | (] | (A | (%] | [%] | [%]

violin 14 15 156 100 298 | 0.67 | 0.67 | 2.94
synthesizer 6 12 257 87.5 || 0.20 | 5.17 | 3.38 | 0.07
horn 4 23 120 78.3 || 871 | 5.56 | 10.11 | 6.32

saxophone 14 28 193 76.8 || 7.50 | 3.89 | 4.78 | 16.35

MIDI guitar 3 10 169 70 3.01 | 13.52 | 58.14 0

Table 4.4: Summary of transcription results (harm - number of harmonics
parameter, notes - total number of notes in the recording, avgdur - average
duration of notes)
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detector further refines the signal segmentation, and heuristic rules eliminate
a short false note shown on Figure 3.16(b). As a result, the transcription
is errorless in terms of note-based criteria, and the time error is negligible
despite the rapidity of the recording.

4.4.2 Synthesizer

This example shows the ability of the transcription system to deal with very
low-pitched instruments (around 50 Hz). Although the audio signal comes
from a CD recording, the instrument itself is a synthesizer imitating the real
bass. Therefore, the CQT spectrum exhibits strong fundamental frequency
(see Figure 4.3(a)) responsible for relatively successful transcription (NDA =
87,5%). As can be seen in Figure 4.3(b), one note was detected partially, one
false note was generated, and all remaining notes were transcribed correctly.

The time criteria yield the following results: TON = 5.2%, OOF = 3.4%,
OON = 0.2%, TOF = 0.07%. This means that note onsets are predominantly
detected with a slight delay originating in the Hinkley’s test (see Section
3.2.2), and only very seldom the detection occurs before the actual onset.
Similar situation happens with offsets, delayed due to detection based on
simple thresholding of signal power. Histograms of TON and OOF criteria
are shown on Figure 4.3(c) and 4.3(d), respectively. As can be observed,
majority of the former error is caused by a single note (classified as PTN),
whereas the latter error is formed by comparable constributions of almost all
notes.

4.4.3 Horn

This example of horn melody illustrates a typical drawback of the transcrip-
tion system. As can be observed in Figure 4.4(a), the onset detection algo-
rithm fails several times to detect an evident note onset, resulting in three
missed notes. This error can be reduced by decreasing the threshold A\ to
accept smaller ”jumps” of the Kullback’s divergence corresponding to less
abrupt changes in the audio signal. However, this may introduce undesired
oversegmentation causing division of longer notes into several shorter frag-
ments.

As can be observed in Figure 4.4(c), both onsets and offsets tend to be
overlapped rather than truncated, though the segmentation is excellent for
majority of notes. As shown in Figure 4.4(b) and 4.4(d), the frequency was in-
correctly detected only in a single case, resulting in satisfactory transcription
with NDA = 78,3%.

44



log(f) [Hz]

MIDI note [-]
S

35 |

30
05 ! 15 2 2.5 3 35 4 45
ts]
(b)
TON histogram 4 OOF histogram
10
[%] 8 g 3
g Is]
2 c
= 6 =
o o 2
o (]
3 Qo
o 4
: 2
2 2,
2
0 - L ._ 0
0 50 100 150 0 5 10 15 20 25

t [ms] t[ms]

(c) (d)
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4.4.4 Saxophone

This recording? presents a piece of blues solo played on alto saxophone. Con-
trary to pure sound of horn, this wind instrument is characterized by harmo-
nically rich spectrum containing approximately 14 harmonics (see Table 4.4).
As can be seen in Figure 4.5(d), the main shortcoming of the transcription
are the frequency errors caused by the Combining the Results block. Indeed,
the comparison of the note at t = 5 s in Figure 4.5(a) and 4.5(b) reveals that
the fundamental frequency was detected correctly, but the heuristic rules
assigned wrong frequency to the note candidate. The frequency error origi-
nates in spectral analysis of the note attack, which often yields uncertain
frequency estimates due to noisy character of the sound. Consequently, the
decision procedure rejected the true frequency candidate owing to specific
conditions in signal power.

It seems that this problem could be easily solved by simple requirement
of certain minimum note duration. However, this may eliminate correct notes
in rapid recordings (typical for jazz or hard rock), because some false notes
can last for almost 100 ms.

4.4.5 MIDI Guitar

This signal was obtained by MIDI to WAV conversion described in Section
4.2. As can be observed in Figure 4.6(a), the signal waveform is visibly ar-
tificial, which may imply simplicity of the transcription task. However, the
guitar melody consists of multiple short notes of the same frequency,® and is
therefore difficult for the segmentation algorithm. In fact, it would be hardly
possible to resolve these notes without the onset detector, since the pitch
tracking algorithm only detects a frequency ”line” of long duration.

As can be seen in Figure 4.6(d), the overlap at offset error is extremely
high (OOF = 58%), although the transcription sounds similarly as the re-
ference. This can be explained by comparing the signal envelope with the
reference MIDI sequence in Figure 4.6(a) and 4.6(b) respectively, which re-
veals that each correct MIDI offset is located approximately in the middle
of the release region (recall the ADSR envelope model in Section 3.3). As a
consequence, it is clearly impossible to precisely detect such offsets since the
signal power is too high. For this reason, the demands on offset detection
accuracy should probably be less restrictive.

2Inclusion of this song expresses author’s pride and joy of his hometown, as well as his
former band.

3This is a characteristic feature of bass and lead guitar melodies in Jamaican music,
such as reggae, ska and dub. Another typical example is shown in Figure 3.8(b).
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Chapter 5

Conclusions

This thesis is concerned with automatic transcription of monophonic au-
dio signals to MIDI representation. In the initial stage, large documentation
research was done in order to find a solution which would be modern and ro-
bust, yet manageable by an undergraduate student. I am happy to state that
my decision was correct, and I have finally managed to develop a transcrip-
tion system which is modular, well documented, and capable of application
in real enviroment.

An essential part of every music transcription system is a reliable fun-
damental frequency detector. I have chosen the solution based on the Con-
stant Q Transform (CQT) for two main reasons. First, the Matlab imple-
mentation was available by the author [Brown1991|, which greatly simplified
the implementation. Second, recent publications in this field [Cemgil1995a],
[Blankertz2004] referenced CQT as a suitable and efficient method for variety
of signals. Therefore, I have studied and optimized the code for calculation
of CQT, and subsequently implemented the rest of the pitch detection algo-
rithm shown in Figure 3.6.

Although the pitch detector in itself is able to transcribe some signals,
equal importance in the system is given to the onset detector, which is re-
sponsible for precise signal segmentation. Partially implemented solution was
again found in the literature [Jehan1997|, though it resembled a ”program-
mer’s nightmare” to rewrite the algorithm exactly as published by [Basseville1983].
Great advantage of this algorithm is the statistical time-domain approach
performed on a sample-by-sample basis, which helped to improve the time
resolution of CQT, constrained by the time-frequency tradeoff.

The design of the transcription system was accomplished by development
of several heuristic rules which combine the results of both algorithms, and
extract the final onset times and MIDI note frequencies. Then, an emphasis
was put on development of graphical user interface (GUI) to provide an
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effective tool to analyze and evaluate the transcription process in a single
environment. Such tool can be utilized in future with other pitch or onset
detection algorithms, and moreover, it can also include a separate algorithm
for instrument recognition, which would be an interesting future task.

Finally, new criteria for the transcription performance evaluation were
developed. Although not proved by extensive statistical simulations, the me-
thod appears to be suitable for rapid musical passages, able to deal with
various musical sounds, and applicable within a wide range of MIDI frequen-
cies.

Iregret that the article [Brown1993] is finally not functional in the transcrip-
tion system. It was attempted to implement, but unfortunately, the final re-
sults yielded no improvement probably due to lack of my understanding to
problems of phase unwrapping. Therefore, it could be a future task, as well
as the above mentioned statistical evaluation on large signal database.
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Appendix A

List of Source Codes

wav2mid.m Main function of the transcription system

A.1 Pitch Detection

CQTmtx.m CQT matrix (temporal and spectral kernels)
CQTpattern.m Ideal pattern of spacing of harmonic frequency components
f2mid.m MIDI note quantization or interpretation

phiCorrect.m Pitch detection based on phase changes of DFT

sigMat.m Reshape signal into a matrix form

stcqt.m Constant QQ Transform of a signal

A.2 Detection of Events

divTest.m Interface function with mxDivTest.dll

mxDivTest.dll Matlab MEX-file for computation of the divergence test
mxDivTest.c Source code for compilation of mxDivTest.dll
divTestC.m Interface with the C implementation of the divergence test
divTestM.m Divergence Test algorithm - Matlab implementation
recurBurg.m Identification of the global autoregressive model M,
acorrAR.m Identification of the local autoregressive model M,
recurACF.m Recursive computation of the autocorrelation function
chshape.m Matrix reorganization for multichannel signals

d2int.m Conversion of a signal from double to integer (for savebin.m)
savebin.m Save vector as integer binary data file
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Levinson recursion (reflection coefficients — AR coefficients)

rc2ar.m - Matlab help file
rc2ar.c - C source code
rc2ar.dll - Matlab MEX-file

AR coeflicients — cepstral coefficients

ar2ccO0.m - Matlab help file
ar2cc.c - C source code
ar2cc.dll - Matlab MEX-file

Six modifications of cepstral distance
cepDist.m - Matlab help file
cepDist.c - C source code
cepDist.dll - Matlab MEX-file

A.3 Estimation of Power

EstPow.m Block and recursive estimate of short-time power
localExtr.m Find local extremes to a given level of significance

A.4 Combining the Results

combResults.m Combine the results using heuristic rules
saveRes.m Auxiliary function for saving decision results
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A.5 Notes to MIDI Conversion

A.5.1 Notetrack Methods
display.m Display Function

horzcat.m Merges two notetracks

length.m Number of Note events

minus.m Shifts Note by backward by delta time
mpower .m Transpose the pitches by halfnote steps
mrdivide.m  Scales durations and onset times by factor
mtimes.m Scales durations and onset times by factor
notetrack.m Constructor (load)

save.m Saves as a midi File

subsasgn.m  Subscripted assignment
subsref.m Subscripted Reference to Notetrack Objects

play.m Plays a notetrack (needs an external program)
plot.m Plot Function

plus.m Shifts Note forward by delta time

vertcat.m Concatenation of two tracks in time

A.5.2 C++ Source Codes

common. Cpp Support classes

m ifstrm.cpp Midi Input Stream

m_ofstrm. cpp Midi Output Stream

midisong.cpp Container Classes

mid2txt.cpp Test Program

midi2notes.cpp Mex function to read a MIDI file into a cell array
notes2midi.cpp Mex function to write a cell array into a midi file

A.6 Evaluation of Transcription Quality

createRefMid.m Create reference MIDI file given a labeled information
cellToStruct.m Convert cell array to structure array

compareMid.m Compare reference and transcribed midi file for criteria evaluation
evalCrit.m Evaluate music transcription criteria

getNoteTrack.m Return notetrack objects for reference and transcription midi file
testCritEval.m Script for time-based and note-based criteria evaluation

a7



A.7 WAV to MIDI Tool (GUI)

wav2midTool.m
paramEdit.m
paramEditIni.m

wav2midTest.m
loadSig.m
defaultParam.m
compAuxParam.m
copyAxes.m
mid2wav.m
pianoroll.m

Main GUI window for transcription, playback and displaying
GUI window for adjusting and loading or saving parameters
Initialization script for paramedit.m

Script for executing the algorithm without the GUI
Load the signal to be transcribed by wav2midtest.m
Return default parameters for the transcription system
Calculate auxiliary parameters (for showing in GUI)
Create a copy of current axes in a new figure

Synthesis of a wav file from a midi file

Piano roll plot of a midi file

o8



