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Abstract. This paper describes an incremental deployment algorithm for mobile sensor networks. A mobile sensor network
is a distributed collection of nodes, each of which has sensing, computation, communication and locomotion capabilities. The
algorithm described in this paper will deploy such nodes one-at-a-time into an unknown environment, with each node making
use of information gathered by previously deployed nodes to determine its deployment location. The algorithm is designed
to maximize network ‘coverage’ while simultaneously ensuring that nodes retain line-of-sight relationships with one another.
This latter constraint arises from the need to localize the nodes in an unknown environment: in our previous work on team
localization (Howard et al., 2002b) we have shown how nodes can localize themselves by using other nodes as landmarks.
This paper describes the incremental deployment algorithm and presents the results from an extensive series of simulation
experiments. These experiments serve to both validate the algorithm and illuminate its empirical properties.
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1. Introduction

This paper describes an incremental deployment algorithm for mobile sensor networks. A mobile sensor
network is composed of a distributed collection of nodes, each of which has sensing, computation,
communication and locomotion capabilities (it is this latter capability that distinguishes a mobile sensor
network from its more conventional static cousins). Locomotion facilitates a number of useful network
capabilities, including the ability to self-deploy and self-repair. We envisage the use of mobile sensor
networks in applications ranging from urban combat scenarios to search-and-rescue operations and
emergency environment monitoring. Consider, for example, a scenario involving a hazardous materials
leak in an urban environment. Metaphorically speaking, we would like to throw a ‘bucket’ of sensor
nodes into a building through a window or doorway. The nodes are equipped with chemical sensors that
allow them to detect the relevant hazardous material, and deploy themselves throughout the building in
such a way that they maximize the area ‘covered’ by these sensors. Data from the nodes are transmitted
to a base station located safely outside the building, where they are assembled to form a live map
showing the concentration of hazardous compounds within the building.

For the sensor network to be useful in this scenario, the location of each node must be determined.
In urban environments, accurate localization using GPS is generally not possible (due occlusions or
multi-path effects), while landmark-based approaches require prior models of the environment that may
be either unavailable, incomplete or inaccurate. This is particularly true in disaster scenarios, were the
environment may have undergone recent (and unplanned) structural modifications. Fortunately, as we
have recently shown (Howard et al., 2002b; Howard et al., 2002d), it is possible to determine the location
of network nodes by using the nodes themselves as landmarks. This particular technique does, however,
require that nodes maintain line-of-sight relationships with one another. Consequently, in this paper, we
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demand that nodes should deploy in such a way that they maximize the area ‘covered’ by the network,
while simultaneously ensuring that each node can be seen by at least one other node.

The deployment algorithm described in this paper is both incremental and greedy. Nodes are de-
ployed one-at-a-time, with each node making use of data gathered from previously deployed nodes
to determine its optimal deployment location. The algorithm is greedy in the sense that it attempts to
determine, for each node, the location that will produce the maximum increase in the network coverage.
Unfortunately, as we show in Section 3.2, determining the optimal placement (even in a greedy sense)
is a fundamentally difficult problem. The deployment algorithm described in this paper therefore relies
on a number of heuristics to guide the selection of deployment locations.

We have conducted an extensive series of simulation experiments aimed at characterizing the per-
formance of the incremental deployment algorithm. These experiments demonstrate that our algorithm,
which is model free, achieves coverage results that are close to those obtained using a model-based
greedy algorithm. These experiments also establish that the computation time for the algorithm is a
polynomial function of order n? in the number of deployed nodes.

2. Related Work

The concept of coverage as a paradigm for evaluating multi-robot systems was introduced by (Gage,
1992). Gage defines three basic types of coverage: blanket coverage, where the objective is to achieve a
static arrangement of nodes that maximizes the total detection area; barrier coverage, where the objective
is to minimize the probability of undetected penetration through the barrier; and sweep coverage, which
is more-or-less equivalent to a moving barrier. According to this taxonomy, the algorithm described in
this paper is a blanket coverage algorithm.

The problem of exploration and map-building by a single robot in an unknown environment has
been considered by a number of authors (Yamauchi, 1997; Yamauchi et al., 1998; Zelinksy, 1992). The
frontier-based approach described in (Yamauchi, 1997; Yamauchi et al., 1998) is particularly pertinent:
this exploration algorithm proceeds by incrementally building a global occupancy map of the envi-
ronment, which is then analyzed to find the ‘frontiers’ between free and unknown space. The robot
is directed to the nearest such frontier. The network deployment algorithm described in this paper
shares a number of similarities with Yamauchi’s algorithm: we also build a global occupancy grid of
the environment and direct nodes to the frontier between free and unknown space. However, in our
deployment algorithm the map is built entirely from live, rather than stored, sensory data. We must also
satisfy an additional constraint: that each node must be visible to at least one other node.

Multi-robot exploration and map-building has been explored by a number of authors (Dedeoglu
and Sukhatme, 2000; Rekileitis et al., 2000; Thrun et al., 2000; Simmons et al., 2000; Burgard et al.,
2000; Lopez-Sanchez et al., 1998) who use a variety of techniques ranging from topological matching
(Dedeoglu and Sukhatme, 2000) to fuzzy inference (L6pez-Sanchez et al., 1998) and particle filters
(Thrun et al., 2001). Once again, there are two key differences between these earlier works and the
work described in this paper: our maps are built entirely from live, not stored, sensory data, and our
deployment algorithm must satisfy an additional constraint (i.e. line-of-sight visibility). On the other
hand, the heuristics used by both (Simmons et al., 2000) and (Burgard et al., 2000) to select goal
points for exploration are strikingly similar to the heuristics used in this paper to select goal points

howar d_ar 02a. tex; 4/09/2002; 11:03; p.2



3

for deployment (see Section 3.2). In effect, these heuristics state that one should not only explore the
boundary of known space, but that one should also bias the exploration towards regions in which a robot
is likely to uncover large areas of previously unknown space. Burgard describes an adaptive algorithm
for making estimates of these otherwise unpredictable quantities.

A distributed algorithm for the deployment of mobile robot teams has been described by (Payton
et al., 2001). Payton introduces the concept of ‘virtual pheromones’: localized messages that are emit-
ted by one robot and detected by nearby robots. Virtual pheromones can be used to generate either
‘gas expansion’ or ‘guided growth’ deployment models. The key advantage of this approach is that the
deployment algorithm is entirely distributed, and has the potential to respond dynamically to changes
in the environment. This algorithm does, however, lead to relatively slow deployment; it is also unclear,
from the published results, how effective this algorithm is at producing good area coverage. A somewhat
similar algorithm based on artificial potential fields is described in (Howard et al., 2002c).

The deployment problem described here is similar to that described by (Bulusu et al., 2001), who con-
sider the problem of adaptive beacon placement for localization in large-scale wireless sensor networks.
These networks rely on RF-intensity information to determine the location of nodes; appropriate place-
ment of RF-beacons is therefore of critical importance. The authors describe an empirical algorithm
that adaptively determines the optimal beacon locations. In a somewhat similar vein, (Winfield, 2000)
considers the problem of distributed sensing in an ad-hoc wireless network. Nodes are introduced into
the environment en masse and allowed to disperse using a random-walk algorithm. Nodes are assumed
to have a limited communication range, and the environment is assumed to be sufficiently large such
that full network connectivity cannot be maintained. Hence the network relies on continuous random
motion to bring nodes into contact, and thereby propagate information to the edges of the network. Our
work differs from that described by these authors in a number of significant ways. Whereas both Bulusu
and Winfield are concerned only with sensor range, we assume that network nodes are equipped with
sensors that require line-of-sight to operate (such as cameras or laser range-finders). Unlike Winfield, our
deployment algorithm is specifically designed to preserve line-of-sight network connectivity, and aims
to produce controlled deployment rather than random diffusion. Finally, unlike Bulusu, our algorithm is
incremental rather than adaptive; once nodes are deployed, they do not change location.

A mobile sensor network can also be viewed as a large-scale mobile robot formation. Such forma-
tions have been studied by a number of authors (Balch and Hybinette, 2000; Fredslund and Mataric,
2001; Scheider et al., 2000), all of whom describe methods for creating and maintaining formations
via local interactions between robots. In this research, interaction with the environment is of secondary
importance to interaction between the robots themselves. In contrast, the work described in this paper
emphasizes interaction with environment, and attempts to minimize interaction between network nodes.

Finally, we note that the problem of deployment is related to the traditional art gallery problem in
computational geometry (O’Rourke, 1987). The art gallery problem seeks to determine, for some polyg-
onal environment, the minimum number of cameras that can be placed such that the entire environment
is observed. While there exist a number of algorithms designed to solve the art gallery problem, all of
them assume that we possess good prior models of the environment. In contrast, we assume that prior
models of the environment are either incomplete, inaccurate or non-existent. The sensor network must
therefore determine the structure of the environment empirically and incrementally.

howar d_ar 02a. t ex; 4/09/2002; 11:03; p.3



3. Thelncremental Deployment Algorithm

The algorithm described here is an incremental deployment algorithm: nodes are deployed one at a time,
with each node making use of information gathered by the previously deployed nodes to determine its
ideal deployment location. The algorithm aims to maximize the total network coverage, i.e. the total
area that can be ‘seen’ by the network. At the same time, the algorithm must ensure that the visibility
constraint is satisfied; i.e. each node must be visible to at least one other node. The algorithm relies on
a number of key assumptions, as follows.

Homogeneous nodes: all nodes are assumed to be identical. We also assume that each node is
equipped with a range sensor (such as a laser range finder or sonar array), a broadcast communications
device (such as wireless Ethernet), and is mounted on some form of mobile platform.

Static environment: the environment is assumed to be static, at least to the extent that gross topology
remains unchanged while the network is deploying. We assume, for example, that open doors remain
open. Note that the deployment process itself will modify the environment, since deployed nodes will
both occlude and obstruct one another.

Model-free: there are no prior models of the environment. This algorithm is intended for applications
in which environment models are unavailable; indeed, a key task for the network may be to generate
such models.

Full communication: we assume that all nodes in the network can communicate with some remote
base-station on which the deployment algorithm is executed. Note that this does not automatically imply
that all nodes must be within radio range of the base-station: the nodes may, for example, form an ad-hoc
multi-hop network (Intanagonwiwat et al., 2000).

Localization: we assume that the pose of each node is known in some arbitrary global coordinate
system. In our previous work on team localization (Howard et al., 2002b; Howard et al., 2002d), we
have shown how nodes may be localized using only the measured relationships between them. This
technique does not require external landmarks or prior models of the environment, but does require
that each node is visible to at least one other node. It is this requirement that gives rise to the visibility
constraint, i.e., each node must be visible to at least one other node at its deployed location. Note that
this constraint does not necessarily imply that nodes must be visible at all times: we assume that nodes
are equipped with some form of odometry or inertial navigation that allows them to localize themselves
during periods when they cannot be seen.

We evaluate the incremental deployment algorithm using two performance metrics: coverage, i.e.,
the total area visible to the network’s sensors; and time, i.e., the total deployment time, including both
the time taken to perform the necessary computations and the time taken to physically move the nodes.
Naturally, we wish to maximize the coverage while minimizing the deployment time.

3.1. ALGORITHM OVERVIEW

The incremental deployment algorithm has four phases: initialization, selection, assignment and execu-
tion.

— Initialization. Nodes are assigned one of three states: waiting, active or deployed. As the names
suggest, a waiting node is waiting to be deployed, an active node is in the process of deploying,
and a deployed node has already been deployed. Initially, the state of all nodes is set to waiting,
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Figure 1. (a) A fragment of the simulated environment containing a single node. (b) Occupancy grid: black cells are occupied,
white cells are free, gray cells are unknown. (c) Configuration grid: black cells are occupied, white cells are free, gray cells
are unknown. (d) Reachability grid: white cells are reachable, gray cells are unreachable.

with the exception of a single node that is set to deployed. This node provides a starting point, or
‘anchor’, for the network, and is not subject to the visibility constraint.

— Sdlection. Sensor data from the deployed nodes is combined to form a common map of the
environment. This map is analyzed to select the deployment location, or goal, for the next node.

— Assignment. In the simplest case, the selected goal is assigned to a waiting node, and the node’s
state is changed from waiting to active. More commonly, assignment is complicated by the fact
that deployed nodes tend to obstruct waiting nodes, necessitating a more complex assignment al-
gorithm. That is, the algorithm may have to re-assign the goals of a number of previously deployed
nodes, changing their state from deployedto active.

— Execution. Active nodes are deployed sequentially to their goal locations. The state of each node
is changed from activeto deployed upon arrival at the goal.

The algorithm iterates through the selection, assignment and execution phases, terminating only when
all nodes have been deployed.

3.2. SELECTION

The selection phase determines the next deployment location, or goal. Ideally, this goal should maximize
the coverage metric while simultaneously satisfying the visibility constraint. Unfortunately, there is no
way of determining the ‘optimal’ goal a priori, not even in a greedy or local sense. Since we lack a prior
model, and must instead rely on sensed data from deployed nodes, our knowledge of and reasoning
about the environment is necessarily incomplete. The algorithm described here therefore avoids such
reasoning altogether, and instead uses a number of relatively simple goal selection policies, each of
which relies on heuristics to guide the selection process.

As a first step, sensor data from the deployed nodes are combined to form an occupancy grid (Elfes,
1987; Elfes, 1990). Each cell in this grid is assigned one of three states: free, occupied or unknown.
A cell is free if it is known to contain no obstacles, occupied if it is known to contain one or more
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obstacles, and unknown otherwise. We use a standard Bayesian technique (Elfes, 1990) to determine the
probability that each cell is occupied, then threshold this probability to determine the state of each cell.

In the combined occupancy grid, any cell that can be seen by one or more nodes will be marked as
either free or occupied; only those cells that cannot be seen by any node will marked as unknown. We
can therefore ensure that the visibility constraint is satisfied by always selecting goals that lie somewnhere
in free space. Not all free space cells represent valid deployment locations, however: since nodes have
finite size, they cannot be placed near cells that are either occupied or unknown (unknown cells may turn
out to be occupied). There may also exist free cells that are far from both occupied and unknown cells,
but are nevertheless unreachable: a node may, for example, be able to see free space through an opening
that is too narrow to allow passage. To facilitate this kind of analysis, we post-process the occupancy
grid to form both a configuration grid and a reachability grid.

As the name suggests, the configuration grid is a representation of the nodes’ configuration space
(Lozano-Perez and Mason, 1984). Each cell in the configuration grid can have one of three states: free,
occupied and unknown. A cell is free if and only if all the occupancy grid cells lying within a certain
distance d are also free (the distance d is usually set to a value greater than or equal to the node’s
radius). A cell is occupied if there are one or more the occupancy grid cells lying within distance d that
are similarly occupied. All other cells are marked as unknown. A node can be safely placed at any free
cell in the configuration grid. To determine whether such a cell is also reachable, we further process the
configuration grid. This is done by applying a flood-fill algorithm to free space in the configuration grid,
starting from the location of each deployed node in turn. Cells in the resultant reachability grid are thus
labeled as either reachable or unreachable.

Figure 1 shows an example of the occupancy, configuration and reachability grids generated for a
single node in a simulated environment. Note that the set of reachable cells is a subset of the set of free
configuration cells, which is in turn a subset of the set of free occupancy cells. Thus, by selecting a goal
that lies within reachable space, we simultaneously ensure that the deploying node will be visible to at
least one other node, that it will not be in collision with the environment, and that there exists some path
such that the node can reach the goal.

Having determined the reachability space, the selection algorithm makes use of two heuristics to
guide the final goal selection: a boundary heuristic and a coverage heuristic. Both heuristics operate on
the reachability grid. The boundary heuristic states that nodes should deploy to the boundary between
reachable and unreachable space; this heuristic effectively minimizes the overlap between adjacent
sensory field by placing the nodes as far apart as possible. The coverage heuristic states that nodes
should deploy to the (reachable) location from which they will cover the greatest area of presently
unknown space (in the occupancy grid). This heuristic seeks to place nodes at the location at which they
have the greatest potential to increase the coverage area, given that we make the optimistic assumption
that all unknown areas are, in fact, free space. There is no guarantee that this assumption is correct, of
course: the node may deploy to a location that appears to cover a large area of unknown space, only to
find that it has deployed itself into a closet.

In and of themselves, these heuristics do not necessarily specify a unique goal. They can, however, be
incorporated into a number of unique goal selection policies. We have implemented four such policies:

— P1: randomly select a location in reachable space.

— P2: randomly select a location on the reachable/unreachable boundary.
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Figure 2. (a) A typical obstruction problem, with a waiting node unable to reach its deployment location. The gray area
indicates the region of space that is not yet covered by the network. (b) The obstruction is resolved by re-assigning the
deployment location to another node.

— P3: select the reachable space location that maximizes the coverage heuristic.
— P4 select the reachable/unreachable boundary location that maximizes the coverage heuristic.

These policies express all possible combinations of the two heuristics, including the ‘control’ case in
which neither heuristic is used (policy P1). The first two polices are stochastic, while the latter two are
deterministic. Note also that P4 is a special case of P3: it is included partly for completeness, and partly
because it can be computed much more rapidly than P3. In Section 4, we will compare the performance
of these four policies in an experimental context, and attempt to determine the relative contributions of
the underlying heuristics.

3.3. ASSIGNMENT

The assignment phase of the algorithm attempts to assign the newly selected goal to a waiting node.
This process is complicated by the fact that nodes may find themselves unable to reach some parts of the
environment due to obstruction by previously deployed nodes. Such obstruction becomes increasingly
likely as the size of the nodes approaches the size of openings in the environment. There is, fortunately,
a very natural solution to this problem that exploits the homogeneity of the network nodes: an obstructed
node may swap goals with the node obstructing it. Thus, if node A is obstructed by node B, node B
can move to A’s deployment location, while A replaces B at its original deployment location. Since all
nodes are assumed to be equivalent, this goal-swapping makes no functional difference to the network.
For complex environments, with many obstructions, this resolution strategy may need to be applied
recursively: A replaces B, B replaces C, C replaces D and so on.

The assignment phase uses a slightly modified version of this procedure that avoids the need to
directly infer which nodes are obstructing which other nodes. The algorithm is as follows.

— Construct a graph in which each vertex represents a network node and each edge represents a
reachability relationship between two nodes (i.e. node A can reach node B’s position, and vise
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versa). The length of each edge corresponds to the distance between the nodes, and the goal is
represented by a dummy vertex.

— Find the shortest path from a waiting node to the goal. The length of any path through the graph is
given by the sum of edge lengths, and the shortest path is found using Dijkstra’s algorithm.

— Mark every node on the shortest path as active, and assign each node the goal of reaching the
position currently occupied by the next node along the path.

This algorithm is illustrated in Figure 2, which shows a proto-typical graph with the shortest path
highlighted. Note that while it is not strictly necessary for all of the nodes on this path to move, the
potential obstruction has been resolved. Note also that while any number of deployed robots may change
locations, the sequence of movements alway terminates in the deployment of exactly one waiting robot.

The assignment algorithm requires that we determine the reachability relationship and distance
between n(n — 1)/2 pairs of nodes. In principle, this requires that we generate a plan for reaching
every node from every other node. In practice, we can simplify this process by generating a unique
distance transform (Zelinksy, 1992) for each node. The distance transform is generated using a variant of
Dijkstra’s algorithm (Dijkstra, 1959): distances are propagated out from the goal node, traveling through
free configuration space and around occupied or unknown cells. Ultimately, a distance is assigned to
each cell from which the node can be reached. The graph is constructed by simply reading off these
distances.

The assignment algorithm described above produces some interesting behavior: the network will
tend to ‘ooze’ out from its starting location, with many nodes being active at any given point in time.
In addition, as the nodes spread throughout the environment, the same nodes will tend to remain on the
edge of the network. It possible, of course, to design different assignment algorithms which generate
quite different behavior (such as ‘leap-frog’ or ‘bounding overwatch’); such algorithms are, however,
beyond the scope of this paper.

3.4. EXECUTION

During the execution phase, active nodes are deployed to their goal locations. Nodes are deployed using
sequential execution; i.e., we wait for each node to reach its goal before deploying the next node. Active
nodes are deployed in the order in which they were assigned goals: the first node will move to the new
deployment location, the second will move to take up the first node’s old location, and so on. Since
there is only one node in motion at any given point in time, and since the goal assignment algorithm
ensures that each successive goal is unobstructed, there is no possibility for interference between nodes.
Sequential execution is, however, quite slow: execution time is proportional to the sum of the distances
traveled by the active nodes, which is, in turn, equal to the distance a single node would have to travel
if there were no obstructions. As the area covered by the deployed network becomes larger, nodes will
have farther to travel, and hence we expect that execution time will increase with the number of deployed
nodes.

Note that there are alternatives to sequential execution: if we assume that nodes are equipped with
some mechanism for resolving interference, we can use concurrent execution, in which all active nodes
are set in motion at the same time. With some appropriate modifications to the assignment phase of the
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Figure 3. (a) A fragment of the simulated environment. (b) Occupancy grid produced by a typical deployment (policy P4 with
a sensor range of 4m).

algorithm, it is possible, in principle, to create an overall algorithm in which execution time is constant,
irrespective of network size. This topic is, unfortunately, beyond the scope of this paper.

4. Experimentsand Analysis

We have conducted a series of simulation experiments aimed at determining the empirical properties of
the incremental deployment algorithm. Two metrics are of particular interest: coverage (the area covered
by the network) and time (both computation and execution). In both cases, we are interested not only
in the specific properties of the 50-node network used in these experiments, but also in the implied
scaling properties of the algorithm. That is, based on these experiments, we would like to understand
the consequences of increasing the network size into the range of hundreds or thousands of nodes.

Our experiments were conducted using the Player robot server (Gerkey et al., 2001) in combination
with the Stage multi-agent simulator (Vaughan, 2000). Stage simulates the behavior of real sensors and
actuators with a high degree of fidelity; algorithms developed using Stage can usually be transferred to
real hardware with little or no modification. The sensor network for these experiment consisted of 50
nodes, each equipped with a 360 degree scanning laser range finder mounted on a differential mobile
robot base. Each node was also equipped with an ‘ideal’ localization sensor that provides accurate
position and orientation information. The simulated nodes were placed in the environment shown in
Figure 3; this is a fragment of a much larger environment representing a single floor in a large hospital.

We conducted a large set of trials, varying for each trial the selection policy, starting location and
sensor range. Starting locations were chosen from a set of 10 pre-selected points; sensor range was taken
to be 2, 4, 6 or 8m. For the stochastic policies P1 and P2, 10 trials were conducted for each combination
of initial location and sensor range (a total of 400 trials for each policy). For the deterministic policies P3
and P4, a single trial was conducted from each combination of initial location and sensor range (a total
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Figure 4. Network coverage for selection policies P1 to P4; the sensor range is 4m. Note that most of the error bars have been
suppressed for the sake of clarity.

Table I. Coverage factors for selection policies P1 to P4 with a sensor range
of 2, 4, 6 and 8m.

Range
Policy 2m 4m 6m 8m

P1 1.50+0.07 4.01 £0.20 6.07 £ 0.42 7.48 £0.39
P2 3.63£0.04 10.56+0.13 14.30+£0.31 15.68 £0.40
P3 4.86+0.056 13.31£0.11 1840+0.38 19.33+0.48
P4 4.86£0.05 13.42+0.09 18.20£0.38 19.30=+0.48
Greedy 5.71+£0.03 17.01+0.11 24.654+0.44 27.14+0.88

of 40 trials for each policy). In each trial, we measured network coverage, computation and execution
time.

4.1, COVERAGE

Figure 4 shows a plot of network coverage as a function of the number of deployed nodes. Coverage
is measured by counting the number of free cells in the occupancy grid and multiplying by the area
covered by each cell. The figure shows the results for each policy, averaged over all initial locations;
the sensor range is 4m. The variance is indicated by the error bars (most of which have been omitted
for clarity). Inspecting these plots, it is apparent that coverage increases linearly with the number of
deployed nodes, irrespective of the selection policy. It is also clear that the selection policies P2 to P4,
which make use of the heuristics described in Section 3.2, perform significantly better than policy P1,
which is the control case (i.e., random deployment).
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We can make this comparison more precise by defining, for each policy, a coverage factor « that
measures the average area ‘covered’ by each node. That is, « is such that the total network coverage
is approximately equal to an + 3, where n is the number of deployed nodes and 3 is some constant.
Table | lists the coverage factors for sixteen different combinations of selection policy and sensor range
(determined using linear regression). It should be noted that these values are meaningful only when the
total coverage area is much less than the total area of the environment. In any bounded environment,
network coverage must eventually saturate, and boundary effects are likely to introduce significant non-
linearities. In our experiments, the environment was very large and boundary effects have minimal
impact (although one can possibly see the start of such effects in some of the coverage plots in Figure
4).

Inspecting the values in Table I, it is apparent that the three goal selection policies that incorporate
one or more of the heuristics described in Section 3.2 (policies P2 to P4) perform significantly better
than the control case (policy P1). Policies P3 and P4, in fact, produce an almost 3-fold improvement
over simple random deployment. It is also apparent that most of this improvement can be achieved
using the boundary heuristic alone: policy P2 (which uses only the boundary heuristic) is almost as
good as policy P3 (which uses only the coverage heuristic). Furthermore, policies P3 and P4 are almost
indistinguishable, suggesting that the coverage heuristic will, in almost all situations, deploy nodes to
the reachable/unreachable boundary. Thus, it makes sense to use policy P4 in preference to P3, since the
latter requires much more time to compute and produces negligible improvement in network coverage
(we will look at exactly how much more time P3 requires in the next section).

Comparing the coverage factors obtained using different sensor ranges is also illuminating, not so
much for what it tells us about the algorithm, but for what it tells us about the environment. Naively, one
would expect network coverage to increase as the square of the sensor range, since doubling the range
of a single sensor will quadruple its coverage area. In a real environment, of course, things are not quite
so simple: occlusions, not sensor range, will dominate the placement of nodes. Inspecting Table I, we
can see that there is significant improvement in coverage as one increases sensor range from 2m to 6m,
but minimal improvement thereafter. This is true for all four selection policies. For this environment,
6m appears to be a ‘characteristic length’: this distance may, for example, correspond to the average
distance between doorways, or to the average size of a room. It would be interesting to conduct further
experiments in different environments, in an attempt to correlate coverage factors with environment
structure.

Ideally, we would like to compare these coverage results against the optimal value, i.e., the greatest
possible coverage that can be obtained for a network that satisfies the visibility constraint. Naturally,
when determining the optimal coverage, we assume that we have a perfect a priori model of the envi-
ronment. Even so, determining the optimal coverage is extremely difficult, since it necessitates a search
over the space the space of all possible networks. This space is vast. Consider a network of n nodes in
an environment of area A. If we discretize this environment into locations that are distance D apart, the

total number of possible networks is % (not all of which will satisfy the visibility constraint,

of course). For a relatively small network with n = 10, A = 100m? and D = 0.1m, the number of
possible networks is around 104°. Clearly, a brute force search of this space is impractical. While there
may exist closed form solutions or good approximations for this problem (it is, for example, similar
to the art gallery problem (O’Rourke, 1987)), we are not aware of any such solutions at this time.
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Figure 5. Selection time (CPU) for policies P1 to P4. The scale is log-log. Most of the error bars have been suppressed for the
sake of clarity.

Therefore, instead of comparing our results with the optimal solution, we instead compare them with
the best greedy solution. The greedy solution is obtained by constructing the network incrementally,
choosing for each node the location that produces the greatest coverage. The greedy solution is, in
addition, a fairer test for our algorithm: it represents the best result that can be expected for any form of
incremental deployment algorithm.

We generate the greedy solution using the simulator and a modified form of the incremental de-
ployment algorithm. For each node, we first compute the reachability grid, then ‘teleport’ the node to
every reachable cell in succession. At each location, we measure the network coverage. At the end of
this processes, the node is teleported back to the location that produces the greatest coverage, and the
process is repeated for the next node.

Table 1 shows the coverage factors for the greedy solution. Note that the factors for policies P3 and
P4 are within 70% to 80% of the greedy values: this suggests that our heuristics are very good indeed,
and that our policies are as good as they are likely to get for a model-free algorithm.

4.2. TIME

Figure 5 shows the measured computation time for the selection phase of the algorithm, plotted against
the number of deployed nodes (note that this is a log-log scale). The four selection policies are plotted
separately, with each plot representing an average over all initial locations. The sensor range in all cases
is 4m. Note that all four plots become linear as the number of deployed nodes n increases: this implies
that computation time is a polynomial function of the number of deployed nodes. If we assume that this
function has a high-order term of the form bn®, we can characterize each policy in terms of its exponent
a and coefficient b. Table 11 lists the a and b values for polices P1 to P4. These values were calculated
using linear regression in log-log space, using only the last 30 data points for each policy (we are trying
to capture the highest-order term only).
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Table 1l. Time constants for the three phases of the algorithm. Time is assumed to be a polynomial
function of the number of deployed nodes n, with a high-order term of the form bn®.

Selection Assignment Execution
Policy a b a b a b

P1 0.30£0.00 0.524+£0.01 1.824+0.02 0.01+£0.00 0.91+0.09 0.77+0.24
P2 0.314+£0.00 0.50+0.01 1.80+£0.01 0.01£0.00 0.77£0.08 2.05=+0.60
P3 0.79+£0.02 11.33+£092 186+0.01 0.01+£0.00 0.51+0.10 2.2240.79
P4 0.244+0.04 266+043 1.86+0.01 0.01£0.00 0.50+£0.11 2.41+0.98

Inspecting this table, two results are immediately apparent. First, and most important, the selection
time scales sub-linearly with the number of deployed nodes (the exponent a for all policies is less
than 1). This result conforms only partially to our theoretical expectations. The selection phase of the
algorithm can be broken into two parts: map generation and policy application. For map generation, data
from each node are added to the occupancy grid sequentially and independently; hence we expect map
generation to scale linearly. For policy application, the computation time is dependent on the particular
selection policy used: for policies using the boundary heuristic, computation time will be proportional
to the free/lunknown boundary length; for policies using the coverage heuristic, computation time will
be proportional to the free space area. If we assume that both boundary length and free space area are
proportional to the number of deployed nodes, computation time for policy application will also scale
linearly. We therefore attribute the sub-linear results in Table Il to a combination of two factors: selection
time is dominated by policy application rather than map generation, and our assumption that boundary
length scales linearly with the number of deployed nodes is most probably incorrect. If we were to
increase the number of nodes in these experiments, we expect that map generation would ultimately
dominate, and that ¢ would subsequently approach 1.

The second result to note from Table Il is that policy P4, which is almost indistinguishable from
P3 in terms of coverage, is about 4 times faster (consider the coefficient b); this confirms our earlier
conclusion that P4 should, in general, be used in preference to P3.

Figure 6 shows the measured computation time for the assignment phase of the algorithm (on a log-
log plot). The four selection policies are plotted separately, with each plot representing an average over
all initial locations; the sensor range in all cases is 4m. These plots are clearly linear, suggesting that
computation time for the selection phase is a polynomial function of the number of deployed nodes.
Table 11 lists the a and b values for the assignment phase: it is apparent that this phase scales as n? in the
number of deployed nodes n. This conforms exactly to our theoretical expectations: during this phase,
we generate n separate distance transforms, the computation time for each of which scales linearly with
the free space area. Since the free space area also scales linearly with n (as shown in Section 4.1), the
assignment phase will necessarily scale as n x n = n?.

Note that,we would ideally prefer this phase of the algorithm to scale linearly or better; we are
actively seeking alternative assignment algorithms with this property.

Figure 7 shows the wall-clock time (i.e., the elapsed real time, not CPU time) for the execution phase
of the algorithm (plotted on a log-log scale). The four selection policies are plotted separately, with each
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Figure 7. Execution time (wall-clock) for policies P1 to P4. The scale is log-log. Most of the error bars have been suppressed
for the sake of clarity.

plot representing an average over all initial locations. The sensor range in all cases is 4m. While there
is clearly a great deal of variance in the deployment time, the general trend in all four plots is linear,
suggesting once again that execution time is a polynomial function of the number of deployed nodes.
Table 11 lists the a and b values for the execution phase; inspecting the a values, it is apparent that while
the execution time for policy P1 scales more-or-less linearly with the number of deployed nodes n, the
remaining policies scale sub-linearly.

These results are intriguing, but not entirely unexpected. With sequential deployment, execution time
is proportional to the sum of the distances traveled by the active nodes, which is, in turn, equal to the
distance that would be traveled by a single node in an obstruction-free environment. For the random

howar d_ar 02a. t ex; 4/09/2002; 11:03; p.14



15

deployment policy P1, we expect that this distance will scale linearly with the free space area and hence
with the number of deployed nodes. For the remaining selection policies, which seek to place nodes on
the free-space boundary (either explicitly, as in the case of P2 and P4, or implicitly, as in the case of P3),
the scaling properties will depend on the nature of the environment. If, for example, the environment
consists of a single corridor which can only fit one node abreast, the distance to the boundary will
scale linearly with the free space area. If, on the other hand, the environment is completely empty, the
distance traveled will scale as the square-root of the free space area. The results in Table 11 suggest
that, for policies P3 and P4, this environment is effectively ‘empty’ (i.e., these policies scale as n%). For
policy P1, on the other hand, the environment is only partially empty.

Ideally, we would like execution time to be constant rather than linear or n2. Consider the network
coverage rate, i.e., the change in coverage as a function of wall-clock time. If execution time is linear,
this rate will necessarily decrease as the number of deployed nodes grows; network coverage will
therefore increase only logarithmically with time. Linear growth in coverage can only be achieved if
execution time is constant, which implies that some form of concurrent execution must be used (i.e.,
many nodes must move at the same time). As noted in Section 3.4, concurrent execution requires a more
advanced assignment algorithm, together with some form of interference resolution strategy. While we
are actively researching these topics, they are, unfortunately, beyond the scope of this paper.

4.3. DISCUSSION

The experiments described above clearly establish the utility of the incremental deployment algorithm
and the heuristics on which it is based. The coverage values for policies P3 and P4 are between 70% and
85% of the value obtained for a model-based greedy algorithm. The algorithm scales as a polynomial
function of the number of deployed nodes, and is in the worst case of order n2. On a practical note,
we have also demonstrated that the algorithm can handle a large number of nodes (50) using modest
computational resources: our simulations were performed in real-time on a single workstation.

The key weakness of these experiments is, of course, their reliance on an idealized localization
system, in which the pose of each node is accurately determined. With more realistic localization, we
expect the algorithm’s performance to degrade: poor estimates for the pose of individual nodes will
result in poor registration of range data in the combined occupancy grid. This will, in turn, result in poor
selections for deployment locations and/or assignment sequences. We do, however, expect the algorithm
to degrade gracefully rather than catastrophically, since it does not rely on precise coordination between
nodes. Note also that in separate experiments on team localization (Howard et al., 2002b; Howard et al.,
2002d) we have demonstrated the ability to accurately localize the nodes in a mobile sensor network,
using only the nodes themselves as landmarks, even when all of the nodes are in continuous motion.
Thus, we are highly optimistic that these two techniques — deployment and team localization — can be
merged into an integrated system that exhibits near-optimal performance.

5. Conclusion and Further Work

The incremental deployment algorithm described in this paper can be used to deploy mobile sensor
networks into unknown environments. The algorithm will deploy nodes such that network coverage
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is maximized while full line-of-sight connectivity is maintained. Furthermore, the algorithm does not
require prior models of the environment yet is able to produce coverage results that are close to those
obtained using a greedy model-based algorithm.

In addition to the simulation results described in Section 4, we have also taken the first steps to
demonstrating the algorithm running on real hardware in a real environment. The algorithm has been
implemented and tested on a four node network in a controlled environment (Howard et al., 2002a),
and we are currently preparing a much more ambitious experiment involving up to 9 nodes. Thus we
expect to demonstrate the utility of the incremental deployment algorithm for real applications in real
environments.
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