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ABSTRACT
This paper presents experimental measurements of the dif-
ferences between a 90nm CMOS FPGA and 90nm CMOS
Standard Cell ASICs in terms of logic density, circuit speed
and power consumption. We are motivated to make these
measurements to enable system designers to make better in-
formed choices between these two media and to give insight
to FPGA makers on the deficiencies to attack and thereby
improve FPGAs. In the paper, we describe the methodology
by which the measurements were obtained and we show that,
for circuits containing only combinational logic and flip-
flops, the ratio of silicon area required to implement them in
FPGAs and ASICs is on average 40. Modern FPGAs also
contain “hard” blocks such as multiplier/accumulators and
block memories and we find that these blocks reduce this
average area gap significantly to as little as 21. The ratio
of critical path delay, from FPGA to ASIC, is roughly 3 to
4, with less influence from block memory and hard multipli-
ers. The dynamic power consumption ratio is approximately
12 times and, with hard blocks, this gap generally becomes
smaller.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Types and Design Styles

General Terms
Design, Performance, Measurement

Keywords
FPGA, ASIC, Area Comparison, Delay Comparison, Power
Comparison

1. INTRODUCTION
We were motivated to measure the area, performance and

power consumption gap between field-programmable gate
arrays (FPGAs) and standard cell application-specific inte-
grated circuits (ASICs) for the following reasons:
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1. In the early stages of system design, when system ar-
chitects choose their implementation medium, they of-
ten choose between FPGAs and ASICs. Such decisions
are based on the differences in cost (which is related to
area), performance and power consumption between
these implementation media but to date there have
been few attempts to quantify these differences. A
system architect can use these measurements to as-
sess whether implementation in an FPGA is feasible.
These measurements can also be useful for those build-
ing ASICs that contain programmable logic, by quan-
tifying the impact of leaving part of a design to be
implemented in the programmable fabric.

2. FPGA makers seeking to improve FPGAs can gain in-
sight by quantitative measurements of these metrics,
particularly when it comes to understanding the bene-
fit of less programmable (but more efficient) hard het-
erogeneous blocks such as block memory [3, 17, 28]
multipliers/accumulators [3, 17, 28] and multiplexers
[28] that modern FPGAs often employ.

In this paper we focus on a comparison between a 90 nm
CMOS SRAM-programmable FPGA and a 90 nm CMOS
standard cell technology. We chose an SRAM-based FPGA
because that approach by far dominates the market, and it
was necessary to limit the scope of comparison in order to
make this work tractable. Similarly, standard cells [8, 21]
are currently the dominant choice in ASIC implementations
versus pure gate arrays and the newer “structured ASIC”
platforms [18, 19].
We present these measurements knowing that some of the

methodology used will be controversial. We will carefully
describe the comparison process so that readers can form
their own opinions of the validity of the result. As always,
the set of benchmarks we use are highly influential on the
results, and indeed any given FPGA vs. ASIC comparison
can vary significantly based on the application, as our results
show. Since we perform measurements using a large set of
designs, it was not feasible to individually optimize each de-
sign and it is likely that manual optimizations or greater
tuning of the tools could yield improved results for any in-
dividual design; however, this is true for both the ASIC and
FPGA platforms. We believe our results are more meaning-
ful than past comparisons because we do consider a range
of benchmarks instead of focusing on just a single design as
has been done in most past analyses.
This paper is organized as follows: Section 2 describes

previous work on measuring the gap between FPGAs and
ASICs. Section 3 details the experimental methodology we
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use in this work. The approach is a fundamentally empirical
one in which the same circuits are implemented through
two computer-aided design (CAD) flows which are described
in Sections 4 and 5. Section 6 gives a precise definition of
the comparison metrics. Section 7 presents the comparison
results, and Section 8 concludes the paper.

2. PAST FPGA TO ASIC COMPARISONS
There have been a small number of past attempts to quan-

tify the gap between FPGAs and ASICs which we will review
here.
One of the earliest statements quantifying the gap be-

tween FPGAs and pre-fabricated media was by Brown et
al. [4]. That work reported the logic density gap between
FPGAs and Mask-programmable Gate Arrays (MPGAs) to
be between 8 to 12 times, and the circuit performance gap
to be approximately a factor of 3. The basis for these num-
bers was a cursory comparison of the largest available gate
counts in each technology, and the anecdotal reports of the
approximate operating frequencies in the two technologies
at the time. While the latter may have been reasonable, the
former suffered from optimistic gate counting in FPGAs.
In this paper we are seeking to measure the gap against

standard cell implementations, rather than the less com-
mon MPGA. MPGAs have lower density relative to stan-
dard cells, which are on the order of 33% to 62% smaller
and 9% to 13% faster than MPGA implementations [15].
Aside from the reliance on anecdotal evidence, the analysis
in [4] is dated since it does not include the impact of hard
dedicated circuit structures such as multipliers and block
memories that are now common [3, 28]. In this work, we
address this issue by explicitly considering the incremental
impact of such blocks.
More recently, a detailed comparison of FPGA and ASIC

implementations was performed by Zuchowski et al. [30].
They found that the delay of an FPGA lookup table (LUT)
was approximately 12 to 14 times the delay of an ASIC gate.
Their work found that this ratio has remained relatively
constant across CMOS process generations from 0.25 µm to
90 nm. ASIC gate density was found to be approximately
45 times greater than that possible in FPGAs when mea-
sured in terms of kilo-gates per square micron. Finally, the
dynamic power consumption of a LUT was found to be over
500 times greater than the power of an ASIC gate. Both
the density and the power consumption exhibited variability
across process generations but the cause of such variability
was unclear. The main issue with this work is that it also
depends on the number of gates that can be implemented by
a LUT. In our work, we remove this issue by instead focus-
ing on the area, speed and power consumption of application
circuits.
Wilton et al. [27] also examined the area and delay penalty

of using programmable logic. The approach taken for the
analysis was to replace part of a non-programmable de-
sign with programmable logic. They examined the area and
delay of the programmable implementation relative to the
non-programmable circuitry it replaced. This was only per-
formed for a single module in the design consisting of the
next state logic for a chip testing interface. They estimated
that when the same logic is implemented on an FPGA fabric
and directly in standard cells, the FPGA implementation is
88 times larger. They measured the delay ratio of FPGAs to
ASICs to be 2.0 times. Our work improves on this by com-

paring more circuits and using an actual commercial FPGA
for the comparison.
Compton and Hauck [11] have also measured the area dif-

ferences between FPGA and standard cell designs. They im-
plemented multiple circuits from eight different application
domains, including areas such as radar and image process-
ing, on the Xilinx Virtex-II FPGA, in standard cells on a
0.18 µm CMOS process from TSMC, and on a custom con-
figurable platform. Since the Xilinx Virtex-II is designed in
0.15 µm CMOS technology, the area results are scaled up to
allow direct comparison with 0.18 µm CMOS. Using this ap-
proach, they found that the FPGA implementation is only
7.2 times larger on average than a standard cell implemen-
tation. The authors believe that one of the key factors in
narrowing this gap is the availability of heterogeneous blocks
such as memory and multipliers in modern FPGAs and, in
our work, we quantify these claims.
While the present work aims to measure the gap between

FPGAs and ASICs, it is noteworthy that the area, speed and
power penalty of FPGAs is even larger when compared to
the best possible custom implementation using full-custom
design. It has been observed that full-custom designs tend
to be 3 to 8 times faster than comparable standard cell
ASIC designs [8]. In terms of area, a full-custom design
methodology has been found to achieve 14.5 times greater
density than a standard cell ASIC methodology [12]. Fi-
nally, the power consumption of standard cell designs has
been observed as being between 3 to 10 times greater than
full-custom designs [7, 9].

3. NEW FPGA TO ASIC COMPARISON
The measurements of the gaps between between FPGAs

and ASICs described in the previous section were generally
based on simple estimates or single-point comparisons. To
provide a more definitive measurement, our approach is to
implement a range of benchmark circuits in FPGAs and
standard cells with both designed using the same IC fabri-
cation process geometry. The two implementations are then
compared in terms of silicon area, maximum operating fre-
quency and power consumption.
This comparison was performed using 90 nm CMOS tech-

nologies to implement a large set of benchmarks. We se-
lected the Altera Stratix II [3] FPGA based on the avail-
ability of specific device data [10]. This device is fabricated
using TSMC’s Nexsys 90 nm process [1]. The IC process we
use for the standard cells is STMicroelectronic’s CMOS090
Design Platform [22]. This platform offers standard cell li-
braries optimized for speed or density and both high-VT and
standard-VT versions are available. While the TSMC and
STMicroelectronics processes are not identical, we believe
they are sufficiently similar to allow them to be compared
in this work. The results from both platforms will assume a
nominal supply voltage of 1.2 V.

3.1 Benchmark Selection
The selection of benchmarks can significantly impact the

results and, therefore, before considering how these bench-
marks are implemented, we describe how the benchmarks
were initially selected. We considered a variety of bench-
marks (coded in either Verilog or VHDL) from a range of
sources including publicly available designs from Opencores
(http://www.opencores.org/) and designs developed for
projects at the University of Toronto.
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There were two critical factors that had to be considered
in benchmark selection. The first was ensuring that the Ver-
ilog or VHDL RTL was synthesized similarly by the different
tools used for FPGA and ASIC implementation. We did not
have access to a single synthesis tool that could adequately
target both platforms. Therefore, we had to ensure that the
results from the two synthesis tools were sufficiently sim-
ilar. To check this, we compared the number of registers
inferred by the two synthesis processes, which we describe
in Sections 4 and 5.1. We rejected any design in which the
register counts deviated by more than 5%. Some differences
in the register count are expected because different imple-
mentations are appropriate on the different platforms. For
example, FPGA designs tend to use one-hot encodings for
state machines because of the low incremental cost for flip-
flops.
The other issue impacting benchmark selection was en-

suring that the designs can make use of the block memories
and dedicated multipliers on the Stratix II. This is impor-
tant because one of the aims of our work is analyzing the
improvements possible when these hard dedicated blocks are
used. However, not all designs will use such features which
made it important to ensure that the set of benchmarks in-
clude both cases when these hard structures are used and
not used.
Based on these two factors, the set of benchmarks in

Table 1 were selected for use in this work. To provide an
indication of the size of the benchmarks, the table also lists
the number of Altera Stratix II ALUTs, 9x9 multipliers and
memory bits used by each design. The ALUT is slightly
more powerful than the traditional 4-input LUT-based logic
block [3]. The 9x9 multipliers are the smallest possible di-
vision of the Stratix II’s DSP block. These basic blocks can
be combined to form larger multipliers (four can be used to
make an 18x18 multiplier and eight are needed to make a
36x36 multiplier). While all the benchmarks are relatively
modest in size, we believe that the circuits are sufficiently
large to give us an accurate measure of the gap between
FPGAs and ASICs.

4. FPGA CAD FLOW
The Altera Quartus II v5.0SP1 FPGA software was used

for all stages of the CAD flow. Synthesis is performed us-
ing Quartus II Integrated Synthesis (QIS). Quartus II was
configured to perform balanced optimization which opti-
mizes the speed of timing critical portions of the design and
area for the remainder of the design. When large memo-
ries were required, they were coded by explicit instantiation
in the RTL using an appropriate configuration of Altera’s
altsyncram design library function. To enable further opti-
mization of the design, QIS was left in its default configu-
ration in which it automatically instantiates ROMs, RAMs
and DSP blocks (the latter of which contains hard multiply-
accumulate circuits) when needed. All other options were
also left at their default setting.
Placement and routing with the Quartus II “fitter” was

performed using the “Standard Fit” effort level. This is the
highest effort level and the tool attempts to obtain the best
possible timing results irrespective of any timing constraints
[2]. We rely on this high effort level to produce the fastest
design possible, since we do not constrain the design with
any timing constraints. Similar results were obtained when
the design was constrained to an unattainable 1 GHz. After

Table 1: Benchmark Summary

Design ALUTs Total Memory
9x9 Bits

Multipliers

booth 68 0 0
rs encoder 703 0 0
cordic18 2 105 0 0
cordic8 455 0 0
des area 595 0 0
des perf 2 604 0 0
fir restruct 673 0 0
mac1 1 885 0 0
aes192 1 456 0 0
fir3 84 4 0
diffeq 192 24 0
diffeq2 288 24 0
molecular 8 965 128 0
rs decoder1 706 13 0
rs decoder2 946 9 0
atm 16 544 0 3 204
aes 809 0 32 768
aes inv 943 0 34 176
ethernet 2 122 0 9 216
serialproc 680 0 2 880
fir24 1 235 50 96
pipe5proc 837 8 2 304
raytracer 16 346 171 54 758

placement and routing, the Quartus Timing Analyzer was
used for static timing analysis.
In this flow, we allow the fitter to select the specific Stratix

II device used; however, we restrict the selection process to
use only the fastest speed grade parts. FPGA manufactur-
ers test the speed of their parts after manufacturing and
then bin the parts into typically three different speed grades
which capture different portions of the manufacturing range
of the process. An ASIC’s delay is based on the worst case
temperature, voltage and process since ASIC parts gener-
ally are not speed binned; therefore, using the fastest speed
grade devices could arguably favour the FPGA. To address
this issue, we will also present results using the slowest speed
grade parts. Device selection is also important because it af-
fects the available resources. For industrial FPGA designs,
generally the smallest (and cheapest) part would be selected.
As will be described later, our FPGA to ASIC comparison
optimistically ignores the issue of device size granularity.
It is also important to note that the final operating fre-

quency of the design can vary depending on the random seed
given to the placement tool. Therefore, we repeated the en-
tire FPGA CAD flow five times using five different seeds.
Any results we report are derived from the placement that
resulted in the fastest operating frequency.

5. ASIC CAD FLOW
The standard cell CAD flow is significantly more com-

plicated than the relatively push-button approach for FP-
GAs. The flow was built around tools from Cadence and
Synopsys that were provided by CMC Microsystems (http:
//www.cmc.ca). We relied on vendor documentation, tuto-
rials created by CMC Microsystems and tool demonstration
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Figure 1: ASIC CAD Flow

sessions provided by the vendors to determine how best to
use these tools. Figure 1 illustrates the steps in the CAD
flow and this section describes each in greater detail.

5.1 ASIC Synthesis
In the ASIC flow, synthesis was performed using Synop-

sys Design Compiler V-2004.06-SP1. A common compile
script was used for all the benchmarks. The approach for
the compilation was a top-down approach [23] in which all
the modules starting from the top-level module down are
compiled together. This preserves the design hierarchy. It
is a reasonable approach because individually the bench-
marks have relatively modest sizes and therefore, neither
CPU time nor memory size is a significant issue during com-
pilation. The script starts by first analyzing the hardware
description language (HDL) source files for the benchmark
and then elaborating and linking the top level module. Next
the constraints for the compilation are applied.
As a starting point, the clocks in the design are initially

constrained to operate at 2 GHz. This unrealistic constraint
ensures that the compilation attempts to achieve the fastest
clock frequency possible for each of the circuits. To ensure
the area of the design remains reasonable, the maximum
area is constrained to 0. This is a standard approach [23]
for ensuring area optimization despite the fact that it too is
an unreasonable constraint.
The ST 90 nm process design kit available to us includes

four different standard cell libraries. Two of the libraries
are designed for area efficiency but there are relatively few
cells in these libraries. The other two libraries are opti-
mized for speed. In each of the two cases, area or speed
optimization, one of the libraries uses a low leakage high-VT

implementation while the other library uses higher perform-
ing standard-VT transistors. In Synopsys Design Compiler,
we set all four libraries as the target libraries which means
that it can select cells from any of these libraries as it sees
fit.
After setting the optimization constraints and target cells,

the design is compiled using Design Compiler’s high-effort
compilation setting. After this full compilation is complete,
a high-effort incremental mapping is performed. This com-

pilation either maintains or improves performance by per-
forming gate-level optimizations [24].
For any modern design, Design for Testability (DFT) tech-

niques are necessary to enable testing for manufacturing de-
fects. In standard cell ASICs, it is customary to use scan
chains to facilitate testing [26]. These scan chains require
that all sequential cells in a design are replaced with their
scan-equivalent implementation and, therefore, in all the
compilations performed with Design Compiler we make use
of its Test Ready Compile option which performs this re-
placement automatically. For the FPGA-based implemen-
tation, testing is performed by the manufacturer and the
inherent programmability of the FPGA generally means no
extra circuitry is required.
Once these two compilations have been performed, a rea-

sonable operating frequency for the clocks in the design
should be available. The desired clock period for each clock
in the design is then adjusted from the unrealistic 0.5 ns con-
straint to the critical path delay that was obtained in the
compilation. A final high effort compilation is performed
using these realistic clock constraints. For this final compi-
lation, we enable sequential area recovery optimizations
which allows Design Compiler to remap sequential elements
that are not on the critical path in order to save area. Fol-
lowing this compilation, scan-chains are inserted to connect
the scan-enabled flip flops. Finally, once the scan chains
have been inserted, the final netlist and the associated con-
straints are saved for use by the placement and routing tools.
In cases where the benchmark circuits required memo-

ries, the appropriate memory cores were generated by STMi-
croelectronics’ memory compilers. CMC Microsystems and
Circuits Multi-Projets (CMP) (http://cmp.imag.fr) coor-
dinated the generation of these memory cores with STMi-
croelectronics. We chose to use low power 1.2 V memories,
which resulted in memories that were significantly slower
than regular memories. (We were not able to obtain higher
speed memories in time for this work) Within this low power
class of memories, we selected compilers for higher speed
over higher density or further reduced power consumption.
We also opted to make the memories as square as possi-
ble. The models provided for the memories did not exactly
match our voltage and temperature analysis conditions and,
to account for this, we scaled the delay and power mea-
surements using scaling factors determined by performing
HSPICE simulations.
In all of the compilations, no effort was made to opti-

mize the power consumption of the design. This is likely
atypical for modern designs but we believe it ensures a fair
comparison with the FPGA implementation. With the cur-
rent FPGA CAD tools, power optimization is not an option
and, therefore, using tools such as Synopsys Power Compiler
to optimize the standard cell designs would demonstrate an
excessively large disparity between the approaches.

5.2 ASIC Placement and Routing
The netlist and constraints produced by synthesis were

placed and routed with Cadence SOC Encounter GPS v4.1.5.
The flow was adapted from the one described in the En-
counter Design Flow Guide and Tutorial [5] and will be de-
scribed below.
The sizes of our benchmark designs allow us to avoid the

hierarchical chip floor-planning steps required for large de-
signs. Instead, we implement each design as an individual
block and we do not perform any design partitioning. We
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found this approach to be reasonable in terms of run time
and memory size for our benchmarks.
The first step was to create a floorplan; a key decision

here was to set the target row utilization to 85% and the
target aspect ratio to 1.0. Row utilization is the percentage
of the area required for the standard cells relative to the to-
tal row area allocated for placement. A high row utilization
minimizes wasted area but makes routing more difficult. We
selected a target of 85% to minimize any routing problems.
This is intentionally below higher utilizations of > 85 %
that make placement and routing more challenging [29]. We
encountered difficulty placing and routing the circuits with
the large memory macro blocks; therefore, the target row
utilization in those benchmarks was reduced to 75%. After
the floorplanning with these constraints, placement is per-
formed. This placement is timing-driven using the worst-
case timing models. After placement, scan chain reordering
is performed to reduce the wirelength required for the scan
chain.
Next, the placement is refined using a built-in congestion

optimization command and Encounter’s optDesign macro
command. This macro command performs optimizations
such as buffer additions, gate resizing and netlist restruc-
turing. After these optimizations, the clock tree is inserted.
Setup and hold time violations are then corrected using the
new true clock tree delay information. Once the violations
are fixed, filler cells are added to the placement in prepara-
tion for routing.
Routing is performed using Encounter’s Nanoroute en-

gine. We allow the router to use the seven metal layers
available in the STMicroelectronics process. After routing
completes, we add any metal fill required to satisfy metal
density requirements. A detailed extraction is then per-
formed. This extraction is not of the same quality as the
sign-off extraction but is sufficient for guiding the timing-
driven optimizations. The extracted information is used
to perform post-routing optimizations that are focused on
improving the critical paths. These optimizations include
drive strength adjustments. After these in-place optimiza-
tions, routing is again performed and the output is again
checked for any connectivity or design rule violations. The
final netlist is then saved in various forms as required for
the subsequent steps in the CAD flow.

5.3 Extraction and Timing Analysis
With our current tool and technology kit setup, the RC

information we provide to SOC Encounter GPS is not suit-
able for the final timing and power analysis. Therefore,
after the final placement and routing is complete, a final
sign-off quality extraction is performed using Synopsys Star-
RCXT V-2004.06. This final RC extraction is saved for use
in final timing and power analysis by Synopsys PrimeTime
SI version X-2005.06 and Synopsys PrimePower version V-
2004.06SP1 respectively.

6. COMPARISON METRICS AND MEAS-
UREMENT METHOD

Once the designs were implemented using both the ASIC
and FPGA approaches and we were confident that the im-
plementations were directly comparable, the area, delay and
power of the designs were compared. In this section, we give
a precise definition of each metric and the method used for
measurement.

6.1 Area
Determining the area of the standard cell implementa-

tion is straightforward as it is simply the final core area of
the placed and routed design. For the FPGA, the area is
calculated using the actual silicon area of each of the re-
sources used by the design. This means that we take the
final number of Altera Stratix II resources including the ba-
sic logic LABs, the M512, M4K, MRAM memories and DSP
blocks and multiply each by the silicon area of that specific
block[10]. This includes the area for the routing surround-
ing each of the blocks. The entire area of a block is used
regardless of whether only a portion of the block is used. For
example, if only a single memory bit were used in one of the
large 589 824-bit MRAM blocks we would include the entire
area of the MRAM block. We recognize that this approach
may be considered optimistic for a few reasons. First, it ig-
nores the fact that FPGAs unlike ASICs are not available in
arbitrary sizes. A designer is forced to select one particular
discrete size even if it is larger than required for the design.
While this is an important factor, our goal is to focus on the
cost of programmable fabric itself; therefore, we believe, it
is acceptable to ignore any area wasted due to the discrete
nature of FPGA device families. Related to this, is the fact
that we are also handling the heterogeneity of the FPGA op-
timistically. With commercial FPGAs, a designer is forced
to tolerate fixed ratios of logic, memories and multipliers.
Again, since our focus is on the cost of programmability it-
self, we consider it acceptable to ignore the impact of the
fixed heterogeneous block ratios.
For both implementation media, we do not consider the

impact of any input or output cells. As well, to avoid dis-
closing any proprietary information, no absolute areas will
be reported in this work; instead, we will only report the
ratio of the FPGA area to the ASIC area.
6.2 Speed
Static timing analysis was used to measure the critical

path of the each design. This timing analysis determines
the maximum clock frequencies for each design. In the case
of the eth top benchmark which contains multiple clocks,
we compare the geometric average of all the clocks in each
implementation. Timing analysis for the FPGA was per-
formed using the timing analysis integrated in Quartus II.
For the standard cell implementation, Synopsys PrimeTime
SI (which accounts for delay due to cross-talk) was used with
the worst-case timing models.

6.3 Power
Power has become one of the most important issues sep-

arating FPGA and ASIC designs but it is one of the most
challenging metrics to compare. In this section, we first de-
scribe how we measure the static and dynamic components
of a design’s power consumption. The two contributions
are separated both to simplify the analysis and because we
are only able to report meaningful results for the dynamic
power consumption comparison. In an attempt to ensure a
fair and useful comparison, we adjusted the measurements
of the static power and we describe our adjustments later
in this section so as to explain the limited static power con-
sumption results we are able to report.

6.3.1 Dynamic and Static Power Measurement
The preferred measurement approach, particularly for dy-

namic power measurements, is to stimulate the post-placed
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and routed design with designer-created testbench vectors.
For the present work, we take this approach when an appro-
priate testbench is available for a benchmark, and the result
tables will indicate if this was possible. Useful testbenches
are generally not available and, in those cases, we use a less
accurate approach that relies on arbitrary settings of toggle
rates and static probabilities for the nets in the designs.
All the power measurements were taken at a junction tem-

perature of 25 ◦C using typical silicon. Both the FPGA and
ASIC implementations are simulated at the same operat-
ing frequency to allow us to directly compare the dynamic
power consumptions. The operating frequency for all the
designs was kept constant at 33 MHz. This frequency was
selected since it was a valid operating frequency for all the
benchmark designs on both platforms. We now describe the
process used to generate the power consumption estimates
for the FPGA and ASIC designs.
For the FPGA implementation, the placed and routed de-

sign is exported as a netlist along with the appropriate delay
annotations from Quartus II. If there are test bench vectors
available for the benchmark, then digital simulation is per-
formed using Mentor Modelsim 6.0c, which creates a Value
Change Dump (VCD) file containing the switching activities
on all circuit nodes. The Quartus Power Analyzer reads this
file and determines the static and dynamic power consump-
tion. The activities are computed with glitch filtering en-
abled so that transitions that do not fully propagate through
the routing network are ignored. Since we are only focused
on the programmable fabric in this investigation, only core
power (supplied by VCCINT) reported by the power analyzer
is considered. The power analyzer breaks this power con-
sumption down into static and dynamic components.
For the standard cell design, simulation of the placed and

routed netlist with back-annotated timing is performed us-
ing Cadence NC-Sim 5.40. This also produces a VCD file
capturing the states and transitions for all circuit nodes in
the design. This file, along with the parasitic information
extracted by Star-RCXT, is used to perform power analysis
with the Synopsys PrimePower tool, version V-2004.06SP1.
For this dynamic analysis, PrimePower automatically han-
dles glitches by scaling the power when the interval between
toggles is less than the rise and fall delays of the net. Prime-
Power also divides the power consumption into the static
and dynamic components.
For most designs, proper testbenches were not available.

In such cases, power measurements were taken by assuming
all the nets in all designs toggle at the same frequency and
that all the nets have the same static probability. While this
is not realistic, it provides a rough estimate of the power
consumption differences between implementations. When
this approach is used for measurements, it is noted. We
chose this approach over statistical vectorless estimation
techniques that use toggle rates and static probabilities at
input nodes to estimate the toggle rates and probabilities
throughout the design because the two power estimation
tools produced significantly different activity estimates.

6.3.2 Dynamic and Static Power Comparison Method-
ology

We believe that the ASIC and FPGA dynamic power con-
sumption measurements can directly be compared but the
static power consumption requires adjustment before a re-
liable comparison is possible. This adjustment is necessary

because many of the benchmarks do not fully utilize a spe-
cific FPGA device. To account for this, the static power con-
sumption reported by the Quartus Power Analyzer is scaled
by the fraction of the core FPGA area that the circuit uses.
This decision is arguable as any purchaser of an FPGA is
necessarily limited to specific devices and, therefore, would
indeed incur the extra static power consumption. However,
this device quantization effect obscures the underlying prop-
erties that we seek to measure, and changes depending on
an FPGA vendor’s decision on how many devices to put in
an FPGA family. We also anticipate that future generations
of FPGAs will allow the power shutdown of unused portions
of the devices.
To be clear, we give a hypothetical example of the frac-

tional static power calculation: if a circuit used 1 LAB and 1
MRAM block occupying a hypothetical area of 101 µm2 on
an FPGA that contained a total of 10 LABs and 2 MRAM
blocks occupying an area of 210 µm2, we would multiply
the reported static power consumption by 101/210 = 0.48
to obtain the static power consumption used for comparison
purposes. This approach assumes the leakage power is ap-
proximately proportional to the total transistor width of a
design which is reasonable based on [14] and that the area
of a design is a linear function of the total transistor width.
It is important to note that these measurements compare

the power consumption gap as opposed to energy consump-
tion gap. An analysis of the energy consumption gap would
have to reflect the slower operating frequencies of the FPGA.
The slower frequency means that more time or more paral-
lelism would be required to perform the same amount of
work as the ASIC design. To simplify the analysis in this
work, only the power consumption gap will be considered.

7. RESULTS
The measurement methodology described above was ap-

plied to each of the benchmarks listed in Table 1, and the
metrics were compared. In the following sections, the area,
delay and power gap between FPGAs and ASICs will be
reported and discussed.

7.1 Area
The area gap between FPGAs and ASICs for the bench-

mark circuits is summarized in Table 2. The gap is reported
as the factor by which the area of the FPGA implementation
is larger than the ASIC implementation. As described pre-
viously, this gap is sensitive to the benchmarks’ use of het-
erogeneous blocks (memory and multipliers) and the results
in the table are categorized in four ways: Those benchmarks
that used only the basic logic fabric of clusters of LUTs are
labelled “Logic Only.” Those that used logic clusters and
hard DSP blocks containing multiplier-accumulators are la-
belled “Logic and DSP.” Those that used clusters and mem-
ory blocks are labelled “Logic and Memory,” and finally
those that used all three are labelled “Logic, DSP and Mem-
ory”. We implemented the benchmarks that contained mul-
tiplication operations with and without the hard DSP blocks
so results for these benchmarks appear in two columns, and
allow the direct measurement of the benefit of these blocks.
First, consider those circuits that only use the basic logic

LUT clusters: the area required to implement these circuits
in FPGAs compared to standard cell ASICs is on average a
factor of 40 times larger, with the different designs covering
a range from 23 to 55 times. This is significantly larger than
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the area gap suggested by [4], which used extant gate counts
as its source. It is much closer to the numbers suggested by
[30].
We can confirm the plausibility of this larger number

based on our recent experience in designing and building
complete FPGAs [16, 20]. As part of this work, we created
a design similar to the Xilinx Virtex-E, a relatively modern
commercial architecture. If we consider such a design, only
the lookup tables and flip-flops perform the basic logic oper-
ations that would also be necessary in a standard cell design.
The FPGA however also requires additional circuitry to en-
able programmable connections between these lookup tables
and flip-flops. This excess circuitry is the fundamental rea-
son for the area gap. Using our model of the Virtex-E, we
calculated that the LUT and flip-flop only take up 3.4 % of
the total area for a Virtex-E cluster and its neighbouring
routing. The absolute area in the standard cell design re-
quired to implement the functionality implemented by the
LUT and flip-flop will be similar to area for the FPGA’s
LUT and flip-flop. This suggests the area gap should be at
least 100%/3.4% = 29. This is similar to our experimental
measurement.
The hard heterogeneous blocks do significantly reduce this

area gap. As shown in Table 2, the benchmarks that make
use of the hard multiplier-accumulators and logic clusters
are on average only 28 times larger than an ASIC. When
hard memories are used, the average of 37 times larger is
slightly lower than the average for regular logic and when
both multiplier-accumulators and memories are used, we
find the average is 21 times. Comparing the area gap be-
tween the benchmarks that make use of the hard multiplier-
accumulator blocks and those same benchmarks when the
hard blocks are not used best demonstrates the significant
reduction in FPGA area when such hard blocks are available.
In all but one case the area gap is significantly reduced1.
This reduced area gap was expected because these hetero-
geneous blocks are fundamentally similar to an ASIC im-
plementation with the only difference being that the FPGA
implementation requires a programmable interface to the
outside blocks and routing.
These results demonstrate the importance of the introduc-

tion of these heterogeneous blocks in improving the compet-
itiveness of FPGAs. It is important to recall that for these
heterogeneous blocks, the analysis is somewhat optimistic
for the FPGAs. As described earlier, we only consider the
area of blocks that are used, and we do not consider the
fixed ratio of logic to heterogeneous blocks that a user is
forced to tolerate and pay for.
It is noteworthy that significant variability in the area gap

is observed in the benchmarks that make use of the hetero-
geneous blocks. One contributor to this variability is the
varying amounts of heterogeneous content. Our classifica-
tion system is binary in that a benchmark either makes use
of a hard structure or it does not but this fails to recognize
the varying amounts of heterogeneity in the benchmarks. To
address this, we can consider the fraction of a design’s area
that is used by heterogeneous blocks. If we consider only
the benchmarks that employ DSP blocks, we find that the

1The area gap of the rs decoder1 increases when the
multiplier-accumulator blocks are used. This is atypical and
it appears to occur because the 5 bit by 5 bit multiplications
in the benchmark are more efficiently implemented in regu-
lar logic instead of the Stratix II’s 9x9 multiplier blocks.

Table 2: Area Ratio (FPGA/ASIC)

Name
Logic Logic Logic Logic,

& & Memory
Only DSP Memory & DSP

booth 33
rs encoder 36
cordic18 26
cordic8 29
des area 43
des perf 23
fir restruct 34
mac1 50
aes192 49
fir3 45 20
diffeq 44 13
diffeq2 43 15
molecular 55 45
rs decoder1 55 61
rs decoder2 48 43
atm 93
aes 27
aes inv 21
ethernet 34
serialproc 42
fir24 9.8
pipe5proc 25
raytracer 36

Geomean 40 28 37 21

percentage of the total area which is used by DSP blocks ex-
hibits a correlation of -0.87 with the area gap measurement.
This relatively strong inverse correlation corresponds with
our expectations since as the DSP area content is increased
the design becomes more like a standard cell design thereby
resulting in a reduced area gap.

7.2 Speed
The speed gap for the benchmarks used in this work is

given in Table 3. The table reports the ratio between the
FPGA’s critical path delay relative to the ASIC for each of
the benchmark circuits. As was done for the area compar-
ison, the results are categorized according to the types of
heterogeneous blocks that were used on the FPGA.
Table 3 shows that, for circuits with logic only, the average

FPGA circuit is 3.2 times slower than the ASIC implemen-
tation. This generally confirms the earlier estimates from
[4], which were based on anecdotal evidence of circa-1991
maximum operating speeds of the two approaches. How-
ever, these results deviate substantially from those reported
in [30], which is based on an apples-to-oranges LUT-to-gate
comparison.
For circuits that make use of the hard DSP multiplier-

accumulator blocks, the average circuit was 3.4 times slower
in the FPGA than in an ASIC, and in general the use of
the hard block actually slowed down the design as can be
seen by comparing the second and third column of Table 3.
This result is surprising since one would expect the faster
hard multipliers to result in faster overall circuits. We exam-
ined each of the circuits that did not benefit from the hard
multipliers to determine the reason this occurred. For the
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Table 3: Critical Path Delay Ratio (FPGA/ASIC) -
Fastest Speed Grade

Name Logic Logic Logic Logic,
& & Memory

Only DSP Memory & DSP

booth 4.8
rs encoder 3.5
cordic18 3.6
cordic8 1.8
des area 1.8
des perf 2.8
fir restruct 3.5
mac1 3.5
aes192 4.0
fir3 3.9 3.4
diffeq 4.0 4.1
diffeq2 3.9 4.0
molecular 4.4 4.5
rs decoder1 2.2 2.7
rs decoder2 2.0 2.2
atm 2.7
aes 3.7
aes inv 4.0
ethernet 1.6
serialproc 1.0
fir24 2.5
pipe5proc 2.5
raytracer 1.4

Geomean 3.2 3.4 2.3 2.1

molecular benchmark, the delays with and without the DSP
blocks were similar because there are more multipliers in the
benchmark than there are DSP blocks. As a result, even
when DSP blocks are used the critical path on the FPGA is
through a multiplier implemented using regular logic blocks.
For the rs decoder1 and rs decoder2 benchmarks, only small
5x5 bit and 8x8 bit multiplications are performed and the
DSP blocks which are based on 9x9 bit multipliers do not sig-
nificantly speed up such small multiplications. In such cases
where the speed improvement is minor, the extra routing
that can be necessary to accommodate the fixed positions of
the hard multiplier blocks can eliminate the speed advantage
of the hard multipliers. Finally, the diffeq and diffeq2 bench-
marks perform slower when the DSP blocks are used because
the 32x32 bit multiplications performed in the benchmarks
are not able to fully take advantage of the hard multipli-
ers which were designed for 36x36 bit multiplication. As
well, those two benchmarks contain two unpipelined stages
of multiplication and it appears that implementation in the
regular logic clusters is efficient in such a case. We believe
that with a larger set of benchmark circuits we would have
encountered more benchmarks that could benefit from the
use of the hard multipliers, particularly if any designs were
more tailored to the DSP block’s functionality. However, as
these results demonstrated, the major benefit of these hard
DSP blocks is not the performance improvement, if any, but
rather the significant improvement in area efficiency.
For the circuits that make use of the block memory the

FPGA-based designs are on average 2.3 times slower and
for the few circuits using both memory and multipliers the

Table 4: Critical Path Delay Ratio (FPGA/ASIC) -
Slowest Speed Grade

Name Logic Logic Logic Logic,
& & Memory

Only DSP Memory & DSP

booth 6.6
rs encoder 4.7
cordic18 4.9
cordic8 2.5
des area 2.6
des perf 3.8
fir restruct 5.0
mac1 4.6
aes192 5.4
fir3 5.4 4.6
diffeq 5.4 5.5
diffeq2 5.2 5.4
molecular 6.0 6.1
rs decoder1 3.0 3.6
rs decoder2 2.7 3.0
atm 3.6
aes 4.9
aes inv 5.5
ethernet 2.2
serialproc 1.4
fir24 3.3
pipe5proc 3.5
raytracer 2.0

Geomean 4.3 4.5 3.1 2.8

FPGA is on average 2.1 times slower. The use of memory
blocks does appear to offer a performance advantage; how-
ever, this effect is exaggerated because of the slow low power
memories used for the standard cell design as described in
Section 5.1. We believe that, if higher speed memories were
used instead for the ASIC, the performance advantage of
the block memories would be relatively minor since, based
on gate delays, the speed can be improved by over 20% [25,
6]. Therefore, our conclusion for the memory blocks is the
same as for the DSP blocks, which is that the primary ben-
efit from such blocks is improved area efficiency.
As described earlier, the FPGA delay measurements as-

sume the fastest speed grade part is used. Comparing to the
fastest speed grade is useful for understanding the best case
disparity between FPGAs and ASICs but it is not entirely
fair. ASICs are generally designed for the worst case process
and it may be fairer to compare the ASIC performance to
that of the slowest FPGA speed grade. Table 4 presents this
comparison. For logic only circuits, the ASIC performance
is now 4.3 times greater than the FPGA. When the circuits
make use of the DSP blocks the gap is 4.5 times and when
memory blocks are used the performance difference is 3.1
times. For the circuits that use both the memory and the
multipliers, the average is 2.8 times. As expected, the slower
speed grade parts cause a larger performance gap between
ASICs and FPGAs.

7.3 Power Consumption
In Table 5, we list the ratio of FPGA dynamic power con-

sumption to ASIC power consumption for the benchmark
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circuits. Again, we categorize the results based on which
hard FPGA blocks were used. As described earlier, two ap-
proaches are used for power consumption measurements and
the table indicates which method was used. “Sim” means
that the simulation-based method (with full simulation vec-
tors) was used and “Const” indicates that a constant toggle
rate and static probability was applied to all nets in the de-
sign. Static power results are not presented for reasons that
will be described later.
The results indicate that on average FPGAs consume 12

times more dynamic power than ASICs when the circuits
contain only logic. If we consider the subset of designs for
which the simulation-based power measurements were used
we observe that the results are on par with the results from
the constant toggle rate method. We are more confident in
the results when this technique is used. However, the results
using the constant toggle rate approach are relatively similar
and the simulation-based outcome is within the range of the
results seen with the constant toggle rate method.
When we consider designs that include hard blocks such

as DSP blocks and memory blocks, we observe that the
gap is 12, 9.2 and 9.0 times for the cases when multipliers,
memories and both memories and multipliers are used, re-
spectively. The area savings that these hard blocks enabled
suggested that some power savings should occur because a
smaller area difference implies fewer excess transistors which
in turn means that the capacitive load on the signals in
the design will be less. With a lower load, dynamic power
consumption is reduced and we observe this in general. In
particular, we note that the circuits that use DSP blocks
consume equal or less power when the area efficient DSP
blocks are used as compared to when those same circuits
are implemented without the DSP blocks. The one excep-
tion is again rs decoder1 which suffered from an inefficient
use of the DSP blocks.
In addition to the dynamic power, we measured the static

power consumption of the designs for both the FPGA and
the ASIC implementations; however, as will be described, we
were unable to draw any useful conclusions. We performed
these measurements for both typical silicon at 25 ◦C and
worst-case silicon at 85 ◦C. To account for the fact that the
provided worst case standard cell libraries were character-
ized for a higher temperature, the standard cell results were
scaled by a factor determined from HSPICE simulations of
a small sample of cells. We did not need to scale the results
for typical silicon. The results we observed for these two
cases deviated significantly. For logic only designs, on av-
erage the FPGA-based implementations consumed 87 times
more static power than the equivalent ASIC when measured
for typical conditions and typical silicon but this difference
was only 5.4 times under worst case conditions for worst
case silicon.
The usefulness of either of these results is unclear. De-

signers are generally most concerned about worst-case con-
ditions which makes the typical-case measurements unin-
formative and potentially subject to error since more time
is spent ensuring the accuracy of the worst-case models.
The worst-case results measured in this work suffer from
error introduced by our temperature scaling. As well, static
power, which is predominantly due to sub-threshold leak-
age for current technologies[13], is very process dependent
and this makes it difficult to ensure a fair comparison given
the available information. In particular, we do not know the

Table 5: Dynamic Power Consumption Ratio
(FPGA/ASIC)

Name Method Logic Logic Logic Logic,
Only & & Memory

DSP Memory & DSP

booth Sim 16
rs encoder Sim 7.2
cordic18 Const 6.3
cordic8 Const 6.0
des area Const 26
des perf Const 9.3
fir restruct Const 9.0
mac1 Const 18
aes192 Sim 12
fir3 Const 12 7.4
diffeq Const 15 12
diffeq2 Const 16 12
molecular Const 15 15
rs decoder1 Const 13 16
rs decoder2 Const 11 11
atm Const 11
aes Sim 4.0
aes inv Sim 3.9
ethernet Const 15
serialproc Const 24
fir24 Const 5.2
pipe5proc Const 12
raytracer Const 12

Geomean 12 12 9.2 9.0

confidence level of either worst-case leakage estimate. These
estimates are influenced by a variety of factors including the
maturity of a process and, therefore, a comparison of leak-
age estimates from two different foundries, as we attempt
to do here, may reflect the underlying differences between
the foundries and not the differences between FPGAs and
ASICs that we seek to measure. Another issue that makes
comparison difficult is that, if static power is a concern for
either FPGAs or ASICs, manufacturers may opt to test the
power consumption and eliminate any parts which exceed a
fixed limit. Both business and technical factors could impact
those fixed limits. Given all these factors, to perform a com-
parison in which we could be confident, we would need to
perform HSPICE simulations using identical process mod-
els. We did not have these same concerns about dynamic
power because process and temperature variations have sig-
nificantly less impact on dynamic power.
Despite our inability to reliably measure the absolute static

power consumption gap, we did find that, as expected, the
static power gap and the area gap are somewhat corre-
lated. (The correlation coefficient of the area gap to the
static power gap was 0.80 and 0.81 for the typical and worst
case measurements respectively.) This was expected because
transistor width is generally proportional to the static power
consumption [14] and the area gap partially reflects the
difference in total transistor width between an FPGA and
an ASIC. This relationship is important because it demon-
strates that hard blocks such as multipliers and block mem-
ories, which reduced the area gap, reduce the static power
consumption gap as well.
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8. CONCLUSION
This paper has presented empirical measurements quan-

tifying the gap between FPGAs and ASICs. We observed
that for circuits implemented entirely using LUTs and flip-
flops (logic-only), an FPGA is on average 40 times larger
and 3.2 times slower than a standard cell implementation.
An FPGA also consumes 12 times more dynamic power than
an equivalent ASIC on average. We confirmed that the use
of hard multipliers and dedicated memories enable a sub-
stantial reduction in area and power consumption but these
blocks have a relatively minor impact on the delay differ-
ences between ASICs and FPGAs.
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