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Abstract

A method of robust feature-detection is proposed for visual tracking with a pan-tilt head.

Even with good foreground models, the tracking process is liable to be disrupted by strong

features in the background. Previous researchers have shown that the disruption can be

somewhat suppressed by the use of image-subtraction. Building on this idea, a more

powerful statistical model of background intensity is proposed in which a Gaussian mixture

distribution is �tted to each of the pixels on a \virtual" image plane. A �tting algorithm

of the \Expectation-Maximisation" type proves to be particularly e�ective here. Practical

tests with contour tracking show marked improvement over image subtraction methods.

Since the burden of computation is o�-line, the online tracking process can run in real-

time, at video �eld-rate.

Introduction

This paper presents a statistical treatment of background modelling for use in visual curve

trackers. The new methods are tested using a real-time tracker based on snakes deforming

over time [18, 10, 3], represented by B-spline curves [22, 8]. The tracker runs at video

�eld rate (50Hz) and is stabilised using a shape template [14, 16, 5, 30] incorporated into

the dynamical model used as a predictor. It runs at video �eld-rate (50Hz) in a cycle of

prediction and measurement. The background modelling technique described here is not

restricted to curves; it could also be applied to real-time trackers based on polygons or

other geometrical representations [27, 17, 20]. Some tracking applications, surveillance

for instance, call for a panoramic �eld of view which can be achieved by a pan-tilt head

[9, 26, 25, 7]. Such a head is used in the experiments reported here.

0yThe �rst author now works for Canon Research Europe Limited, Surrey Research Park, Guildford,
UK, GU2 5YF
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A major problem in achieving robust object tracking is the distracting e�ect of back-

ground objects|clutter. Strong features in the background compete for the attention

of the tracked curve and may eventually succeed in pulling it away from the foreground

object. This e�ect is clearly visible in �gures 1a){d) and 2a){d). Immunity to distraction

can be enhanced by both by modelling of the foreground and of the background. A fore-

ground model may include a template, object dynamics [29, 12] and intensity pro�les for

certain object features [30, 11]. Such measures reduce the likelihood of erroneous matches

of all or part of the tracked curve to spurious background features. The likelihood of

such error can be reduced still further in the case that foreground events happen against

a stationary background. Then the background also can be modelled and features which

appear to match the background model can be ignored by the tracker.

This paper deals with modelling the background. It develops a statistical model of

the distribution of intensities at each point in the background, which can then be used

to discriminate the foreground object from the background. The model is applied to an

image stream taken from a video camera mounted on a pan-tilt head|a situation where

the previously used technique of image di�erencing proves ine�ective.

It should be noted that there may be slight di�erences between the image sequences

used to present results with the moving head in this paper, this is due to these tests being

performed on live data. Ideally, recorded data would be used as standard tests but we

currently have no facility for recording video together with head position data. Hence

recorded benchmarks are currently only possible with a static camera.

The tracking process

Curve tracker

Our test task of curve tracking follows the method of Blake et al [6] and consists of a

quadratic B-spline curve curve (x(s); y(s)) stabilised by a template curve (x(s); y(s)).

Limited shape deformations of (x(s); y(s)) are allowed relative to the template and 2D

Euclidean transformations are allowed to occur over time relatively freely. These dynam-

ical constraints are used in the predictor of a Kalman �lter [15] which constitutes the

curve tracker.

The tracker is driven by a measurement process in which normal vectors to the tracked

curve are constructed. The tradational tracker, performs one dimensional edge-searches

along normals attempt to locate contrast features on the foreground object. When a

candidate feature possessing plausible contrast is found, its position is added into the

curve's estimated position and shape. It is at this juncture that background features

may accidentally achieve a match and distract the tracking curve. This paper suggests
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an approach whereby the edge-detector is replaced by a statistical test to determine if

each point on each searchline is foreground or background. The boundary between the

foreground region and the background is then used as the feature in the measurement

process.

The virtual camera

The virtual camera is a single mathematical plane �xed in the world-frame onto which a

physical image can be projected, in a manner somewhat akin to the recently developed

technique of \image mosaicing" [28]. Ideally the centre of projection of the camera should

coincide with the centre of rotation of the camera-head. In that case, for a given pan/tilt

position, image pixels are projected along rays passing through the centre of projection,

from the physical image onto the virtual one. This is illustrated in �gure 3a. Note

that a single virtual plane is su�cient where the union of all physical �elds of view is

contained within a hemisphere (otherwise several planes are required, forming a chart

for the sphere). In practice there is some small misalignment of the two centres so that

the projection process involves parallax errors, typically of a few mrad. The result is a

panoramic image on the virtual image plane in which the parallax errors appear as blur,

and this is shown in �gure 4. The crucial point is that the (mean) image is accompanied

by an overlaid probability distribution. In the simplest case this is a map of the variance

of intensity, as shown in �gure 4c.

The curve tracker now runs on the virtual rather than the physical image and this

allows tracking to continue as if on a camera with a very wide �eld of view, but with

the advantage of high resolution. Working in virtual camera coordinates means that

the tracking process is quite decoupled from the e�ects of pan and tilt. In fact the

controller for the position of the pan-tilt head can be quite slow and inaccurate, provided

it is just agile enough to retain the foreground object within the �eld of view of the

physical camera. A standard \Proportional-Integral-Derivative" (PID) controller [2] is

quite su�cient. The head itself may then have substantial tracking lag, but this has no

e�ect whatever on the curve tracker because the mapping from the physical to the virtual

plane is computed using positional feedback signals directly from encoders on the motor

shafts. Of course these encoders must be su�ciently fast and accurate but in practice

such devices are routinely available. (Note that the physical camera must be calibrated,

at least approximately, relative to the head.) This arrangement parallels the situation in

animal vision in which slow head movements can be compensated by good proprioception,

via the \vestibulo-ocular re
ex" [1].
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Background intensity variations

A number of researchers have used \image-di�erencing" to increase the robustness of

tracking [23, 4, 19]. This uses a simple model of the background in which its mean

intensity is represented as an image. O�-line estimation of this mean can be made robust

to occasional moving objects by using a suitable �lter | the median �lter for instance.

Once the mean image is obtained it is stored for repeated on-line subtraction from images

in the incoming stream. This tends to cancel out background features, leaving features

on moving foreground objects prominently exposed. A global threshold is applied to

this di�erenced image to determine whether a point is part of a foreground object, or

part of the background. Unfortunately, simple image di�erencing and thresholding has a

somewhat limited power for rejection of spurious background clutter. This limitation is

even more severe when there is additional variation introduced by viewing from a moving

camera. The limitations of a simple scheme like this are shown below in �gure 5. Murray

and Basu[24] have managed to use image di�erencing with a moving camera, by applying a

morphological opening �lter to the thresholded di�erence image. This removes the small

spurious features (such as edges) from the image|at a large computation cost. Their

system does not run in real time|a necessary requirement for accurate tracking with a

pan and tilt head|but o� stored images.

In order to develop a system to discriminate foreground from background by using a

model of the background, it is useful to think about the sources of variability in intensities

of the background points. These sources include: variation of illumination over time,

shadows and inter-re
ection generated by moving foreground objects, parallax errors in

mapping between physical and virtual image planes, mapping errors arising from any

residual uncalibrated projective distortion of the physical camera's rectangular array as it

appears on the virtual camera's rectangular array, mapping error due to the sub-sampling

of the virtual plane needed to reduce physical memory requirements and sensor noise and

spatial inhomogeneity of the camera array.

In some cases, illumination variation for example, partial compensation for error is

possible, leaving only a residual uncompensated error to be modelled statistically. In other

cases such as parallax error, the entire error is accounted for by the statistical model. It is

not assumed that the errors in intensity are small|consider shadow-casting for instance,

(see �gure 1). Given that the system must in any case tolerate these gross errors, the

pressure is removed for accurate camera calibration of the head/camera. Approximate

calibration is su�cient since any residual error is relatively small and is comfortably

absorbed into the statistical model.

In our system, the pan-o�set is < 0:02m and the tilt-o�set is < 0:1m. This means
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that the maximum error due to parallax is within �2 pixels in the X axis, and within �5

pixels in the Y axis1.

Fitting to a normal distribution

The simplest reasonable model of the intensity variation at a single pixel is a univariate

normal distribution. Given a training set consisting of a set of N readings z = [z1; z2:::zN ].

The mean � and variances �2 are given by � = 1
N

P
N

i=1 zi and �
2 = 1

N � 1
P

N

i=1(zi� �)2.

In many areas of the image the univariate normal is adequate but the data is con-

taminated by foreground objects moving during data-collection, as in �gure 6a, and this

calls for a �tting method that is robust to outliers. The centre of the Gaussian � can

be located as the mode of the data distribution and an initial estimate of its standard

deviation obtained as the width at half the modal frequency. With that initial estimate

of �, the relative proportions �; 1 � � of contaminant lying respectively to the left and

right of the Gaussian peak can be estimated:

Nlower = jfx jx 2 z ^ x < (�� 3�)gj (1)

Nhigher = jfx jx 2 z ^ x > (�+ 3�)gj (2)

� =
Nlower

Nlower +Nhigher

(3)

A variable proportion � of the data can be then be trimmed, �� from the left tail and (1�

�)� from the right tail. As the trim-level varies, a �2 test detects when the remaining data

cannot be distinguished from an uncontaminated Gaussian (The �2 test is a statistical

test which tests the goodness of �t of a set of data).

Unfortunately, the trimming removes not only the contaminating dataset, but also the

tails of the Gaussian. This will mean that equations given previously underestimate the

Gaussian's variance. A solution to this problem is to use an Expectation-Maximisation

(EM) algorithm which corrects the tendency to underestimate iteratively.

Using an EM Method

Expectation-Maximisation [13] is a technique for obtaining a maximum likelihood estimate

(MLE) of a family of model parameters given some observed data. It is essentially an

iterative two stage technique. In stage one, the Expectation step, su�cient statistics

are estimated based on the observed data. In stage two, the Maximisation step, takes

this estimate of the su�cient statistics and estimates the model parameters by maximum

likelihood as though complete data were observed. A more complete explanation of the

general EM algorithm is given by Dempster et al [13].

1A more detailed analysis of parallax error is presented in [21].
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The derivation of an EM estimation scheme for �tting a single Gaussian is not pre-

sented here, instead it can be thought of as a special case of the two Gaussian EM

algorithm described in the appendix, where the probability of one of the Gaussian's is 0.

Using this assumption leads to the update equations:

�i+1 =
1

N(1 + q)

 
NX
n=1

xn +Nq�i

!
(4)

�2i+1 =
1

N(1 + q)

 
NX
n=1

(xn � �i+1)
2 +Nq(�2i + �2i+1)

!
(5)

where �i is the i'th estimate for the mean of the distribution, and �
2
i for its variance. The

dataset consists of N measurements of intensity x1:::xN , and q is a scale factor de�ned in

the appendix.

The iterative application of these equations will converge [13] onto an unbiased, MLE

of � and � for the gray level distribution for a point. In order to have fast convergence to

the correct answer in the presence of clutter, it is essential to have a good initial estimate

of both � and �. Such an estimate could be obtained by using the repetitive trimming

technique described in section . The improvement obtainable using this EM algorithm

over the standard estimation technique when �tting a single Gaussian distribution in the

presence of clutter is shown in �gure 6.

Kalman Filtering

It has been proposed [19] that a Kalman Filter be used to track the intensity of a point

over time, to derive a �ltered estimate of mean intensity. An attraction of this approach is

that it can be applied iteratively, online, giving a natural means of continuously updating

the background distribution. Unfortunately it does not extend naturally to the statistical

framework proposed here, in which not only mean but also variance of intensity is required.

Of course, the Kalman �lter does generate a time-varying estimate of variance, but

this is the variance of the estimated mean not the variance of the raw intensity process

itself. Indeed, to underline this distinction, note that the steady state variance of the

mean Pss is given [15] by:

Pss =
1

2

�
�Q +

q
Q2 + 4QR

�
(6)

where the model noise has assumed covariance Q, and the measurement noise covariance

is assumed to be R. (The dynamical model here speci�es constant intensity.) This means

that Pss converges to a �xed value, depending only on prior assumptions (Q;R) and quite

independent of the data. Thus Pss cannot possibly be informative as to the nature of the

underlying intensity distribution.
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Limitations of the single Gaussian model

The greater part of the area of the image is adequately modelled by the single (con-

taminated) Gaussian. Unfortunately that minority of pixels near clutter edges needing

modelling by a Gaussian mixture, are exactly the pixels that cause false tracking. Mod-

elling these pixels accurately is crucial to good tracking performance. Although the single

Gaussian model fails to do justice to the underlying distribution near high-contrast edges,

as �gure 7 shows, a two-Gaussian mixture would appear to be adequate. Either the

trimming technique or the single Gaussian EM algorithm might be expected, at best, to

converge to one of the Gaussian's. The remaining unmodelled Gaussian will generate false

foreground features and cause the tracker to stick on the background clutter.

The single Gaussian model is also inadequate when the foreground and background

interact with each other | when the target casts a shadow on the background for instance

(as in �gure 1). In this case points in the background can be expected to have two intensity

distributions associated with them { one for direct illumination and one from the ambient

illumination. This means that the PDF for the point will again comprise two separate

Gaussian's.

Fitting a two-Gaussian mixture

The problem is to �t a two Gaussian mixture to data which is possibly contaminated

by outliers. Both approaches mentioned in the previous section can be applied to this

problem with only slight modi�cation, the trim and �t method by applying it recursively,

and the EM algorithm by re-formulating it for a two Gaussian mixture.

Unfortunately applying the Trim and Fit algorithm recursively would still su�er from

the same problem as it does when applied to the single Gaussian case|it will produce an

underestimate of the variance of the distributions. It also su�ers from additional problems

when two Gaussian's overlap, since it takes no account of their interactions. Both these

problems can be eliminated by using an properly formulated EM algorithm. The appendix

derives one such algorithm.

The use of a two Gaussian mixture model

It can be shown that using a single Gaussian model instead of a Gaussian mixture, leads

to a tracker less sensitive than one based on the correct underlying model. This means

that in situations where a large proportion of the image requires a two Gaussian mixture,

a tracker which utilises the correct model will track signi�cantly better than one using

the one Gaussian model. This is shown below in �gure 9, where the image has been
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heavily sub-sampled (by a factor of 4� 4). The insensitivity caused by using the wrong

model means that a tracker based around �tting a single Gaussian to each points intensity

distribution loses track of the target when it is subject to high accelerations. The tracker

based on the two Gaussian model however manages to continue tracking the target even

in these situations. Figure 8 is a key to this sequence.

Unfortunately, correctly �tting a two Gaussian model to points in the image takes a

long time | the current implementation on a Sun Sparc IPX, takes of the order of 1

second for each point. In a static image of 768 � 512 pixels, sub-sampled by a factor of

4� 4, there are still of the order of 25000 points, meaning that it will take approximately

7 hours to �t a two Gaussian model to them. Fortunately however, not all points need

a two Gaussian mixture to represent their intensity distribution, in the example in �gure

9 only about 8000 of the points appear2 to require the more complex model, meaning

that this model can be learnt in about 2.5hours. The single uncontaminated Gaussian

model can be �tted to all the points in the image in about 1 minute. There may however

be situations when this long start-up time is perfectly acceptable, such as a security

camera looking down corridor night after night. Certainly as the computational speed of

computers increases, this time will become acceptable for more and more cases.

A further problem when attempting to �t a background distribution both in direct

lighting and in shadow is that in normal situations the shadow may only be present

for a small, but highly signi�cant, proportion of the time. This can make collecting

representative background data di�cult unless it is done by deliberately casting shadows

onto the background without allowing the foreground object to appear in the image too

often. The result of this is that the background modeller is forced to model the intensity

variability due to shadows, but the foreground object appears only as a contaminant and

is not modelled.

The improvement in tracking accuracy obtainable by using a two Gaussian mixture is

shown in �gure 1 | the contour tracks the hand rather than the shadow|an improvement

that cannot be obtained by simple image-di�erencing.

Given the above arguments for sub-sampling the image, (namely that the resultant

intensity distribution can still be modelled by a Gaussian mixture), it might at �rst appear

that we could go increasing the sub-sampling factor inde�nitely. While it is indeed true

that we can model any intensity distribution by anN -Gaussian mixture3, it is not true that

2Points which appear to need a two Gaussian model are de�ned as those points which, when �tted by
a uncontaminated single Gaussian model, have an unusually large variance, typically one greater than
about 15 gray levels. It is not a problem to attempt to �t a two Gaussian model to a single Gaussian
distribution, as the EM algorithm will correctly deduce that the probability of one of the Gaussian's
which it is attempting to model is zero.

3Since the intensities returned by our frame grabber are quantised in the range 0{256, any intensity
distribution can be modelled by 256 Gaussian mixture, with each Gaussian centred on a di�erent intensity,
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this helps us to discriminate foreground from background. As the sub-sampling factor is

increased (to take in a larger area of the background), the resultant intensity distribution

will allow more of the range of possible intensities to be explained by the background

model|as there are a larger range of intensities to be explained by the background model.

This means that there is less discriminatory power left to recognise points which are not

background|we loose the ability to recognise foreground points as not belonging to the

background.

Modelling Gradient of Intensity

One obvious way to extend the intensity modelling described earlier in this paper, would

be to model higher order features of the background than raw intensity, such as the

gradient of intensity. Doing this would have advantages in terms of robustness against

lighting changes.

The model �tting theory described earlier can be applied exactly as before with �I

substitued for I. The histograms of gradient of intensity at each point in the background

have very similar shapes to those of the raw intensities, compare �gure 11 with �gure 7.

Unfortunately however since the vast majority of both the background and foreground

have very low image gradients, discriminatory information is only really available at image

edges. This means that over most of the image, the only points on the target that can

be discriminated from the background are the edges of the target. This is shown in

�gure 12((a){(f)). Although these are the points that we need to track the object, if we

only have information at these points then we will be very susceptible to noise in our

detection process. This is in sharp contrast to the situation described in the previous

section where almost the entire target was discriminated from the background, giving

very good resistance against thresholding noise. The di�erences in the two methods are

shown below in �gure 12. These images show the points in the thresholded images which

could be selected by the feature search mechanism of the active contour, when the image

has been thresholded by intensity and gradient of intensity. It can be seen that when the

target thresholded by intensity the feature map is much cleaner and more complete than

that provided by the gradient threshold. This means that a tracker based on the model

of background intensity will track correspondingly better than one based on a model of

background gradient.

and having a variance of around 0.25gray levels. (The �gure 0.25 gray levels was chosen here so that �2�
covers a range of 1 gray level).
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Discussion

Extensions have been proposed to improve and extend the tracking ability of active con-

tours so that they can successfully robustly track in a wider range of applications. Use of

a virtual image-plane has been proposed, enabling an active contour tracker designed for a

static camera to operate transparently with a pan/tilt head. Results have been shown for

a hard tracking sequences which demonstrate the improvements in tracking performance

possible by statistically modelling the distributions of points in the background.

Future work will address more e�cient ways to �t the background model to the in-

tensity distribution. An interesting possibility, worthy of investigation, is to extend the

statistical modelling the background beyond modelling intensity to include also the gra-

dients of the intensity �eld | both in space and in time.
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A Fitting a contaminated two Gaussian mixture us-

ing an EM algorithm

The problem we are faced with is to �t an unbiased model to a contaminated two Gaussian
mixture. One class of algorithms suitable for this problem are the EM algorithms. These
algorithms extend Maximum Likelihood Estimation (MLE) algorithms, allowing them to deal
with missing or unseen data. They work by maximising the Expectation of the likelihood4 of
some observed (or seen) data, rather than by maximising the likelihood of this data directly as is
done in MLE. It is usual to maximise the log-likelihood of the data as opposed to the likelihood,
as it simpli�es the mathematics and has maxima at the same place.

The probability distribution function (PDF) of a Gaussian with mean � and variance �2 is
de�ned:

p(x) =
1p
2��2

exp

 
�(x� �)2

2�2

!
(7)

The probability of a point x, having come from a distribution with mean �i, variance �2i ,
when the probability of distribution i is Pi is given by fi(x), where:

fi(x) = pi(x)Pi (8)

In the case of a two component Gaussian mixture, P1 and P2 are the mixing constants, and
P2 = 1� P1.

The data we observe can be thought of as coming from two datasets, X1 and X2, where
the data in X1 is within ���1 of �1 (and similarly for the data in X2). These datasets can be
treated separately, as long as we remember that data in X1 might actually be associated with
the Gaussian centred at �2. A diagrammatic explanation of the datasets used is given below in
�gure 13a.

Now, if all the data in X1 actually originated from Gaussian 1, then the likelihood L that
the dataset X1 came from the Gaussian centred at �1 is given by

L(X1j�1; �1) =
Y
x2X1

p(x) (9)

and, dropping a constant term, the log-likelihood, L(X1) is:

L(X1) = �
X
x2X1

�
log �21 +

1

�21
(x� �1)

2
�

(10)

however, since each datum is unlabelled as to which distribution it comes from, this expression
cannot be evaluated. We can however take the expectation of it:

E (L(X1)j�) = �
X
x2X1

f1(x)

f1(x) + f2(x)

�
log �21 +

1

�21
(x� �1)

2
�

(11)

where � = f�1; �21 ; �2; �22 ; P1g. We can develop a similar expression for E (L(X2)j�). The
quotient term arises because points in the distribution X1, are not independent of Gaussian 2
(since we do not have labelling information about which Gaussian a particular intensity value
is from).

We still have to deal with the missing tails of the Gaussian's. This is done by hyphosising

data in the two tails. This hypothesising data can be thought of as having come from two

4The likelihood of a set of data, given a model is de�ned to be the product of the probability that
each individual datum can be explained by the model.

12

Rowe and Blake, "Statisticalmosaics fortracking"
ImageandVisionComputing,14,549-564,1996



datasets, Y1 and Y2, where Y1 is associated with Gaussian 1, and Y2 with Gaussian 2. Note that
while Y1 and Y2 are independent of each other since they consist totally of hypothesising data,
their ranges may overlap each other, as in �gure 13c.

The log-likelihood of the distribution Y1 coming from Gaussian 1 is simply given by:

L(Y1) = �
X
y2Y1

log �21 +
1

�21
(y � �1)

2 (12)

and similarly for the distribution Y2 and Gaussian 2. The expectation of this is given by:

E[L(Y1)j�] = E

2
4� X

y2Y1
log �21 +

1

�21
(y � �1)

2

3
5 (13)

Now, with a slight abuse of notation let us call the expectation of both the seen data(X1;X2)
and unseen data (Y1; Y2), E[L(�)] where:

E[L(�)] = E [L(X1)j�] +E [L(X2)j�] +E [L(Y1)j�] +E [L(Y2)j�] (14)

In order to �t the data, we would like to �nd the set of parameters, �0 which maximises this
expectation of log-likelihood. This is done by setting each partial derivative of equation (14) to
zero. Let us call the values of � which are our next estimate �� = f��1; ��21 ; ��2; ��22 ; �P1g. Setting
@L(��)
@��1

= 0 gives:

0 =
@L(��)

@��1
= E

2
4 2

��2

X
x2X1

(x� ��1)

3
5+E

2
4 2

��21

X
y2Y1

(yi � ��1)

3
5 (15)

0 =
2

��21
E

2
4 X
x2X1

x

3
5� 2

��21
E

2
4 X
x2X1

��1

3
5+ 2

��21
E

2
4X
y2Y1

yi

3
5� 2

��21
E

2
4X
y2Y1

��1

3
5 (16)

0 =
X
x2X1

E [x]�E

2
4 X
x2X1

��1

3
5+E

2
4X
y2Y1

yi

3
5�E

2
4X
y2Y1

��1

3
5 (17)

Rearranging this gives

��1E

2
4 X
x2X1

1

3
5+ ��1E

2
4X
y2Y1

1

3
5 =

X
x2X1

E [x] +E

2
4X
y2Y1

yi

3
5 (18)

Noting that the probability of a point, x, in the dataset X1, actually belonging to Gaussian 1
and not to Gaussian 2 is f1(x)

f1(x)+f2(x)
, and that we, therefor, e�ectively have N1 actual points in

X1, and qN1 points in Y1, we get:

qN1��1 +N1��1 =
X
x2X1

�
f1(x)

f1(x) + f2(x)
x

�
+ qN1�1 (19)

And �nally, ��1 =
qN1�1 +

P
x2X1

�
f1(x)

f1(x)+f2(x)
x
�

(1 + q)N1
(20)

where N1 =
X
x2X1

f1(x)

f1(x) + f2(x)
(21)

q =
p

1� p

p = 2(1� erf(�)) (22)
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Note that q is related to the area of the trimmed tails of the Gaussian, relative to the untrimmed
area of the Gaussian.

Equating the other partial derivatives to zero leads to the following set of parameter update
equations:

��2 =
qN2�2 +

P
x2X2

f2(x)
f1(x)+f2(x)

x

(1 + q)N2
(23)

��21 =

P
x2X1

f1(x)
f1(x)+f2(x)

(x� ��1) + qN1(�1 � ��1)
2 + qN1�

2
1(1 + 2 �

p
p
2�
e
��

2

2 )

(1 + q)N1
(24)

��22 =

P
x2X2

f2(x)
f1(x)+f2(x)

(x� ��2) + qN2(�2 � ��2)
2 + qN2�

2
2(1 + 2 �

p
p
2�
e
��

2

2 )

(1 + q)N2
(25)

�P =
N1

N1 +N2
(26)

The best estimate of � can then be found by iteratively applying the above equations and
setting � = �� at the end of each update loop.

The di�erence that applying this EM algorithm makes compared to the straight Gaussian
�tting is shown below in �gure 14. Note that the trim and �t algorithm fails almost totally to �t
the distribution in this case as the two Gaussian's overlap very signi�cantly. The EM algorithm
however correctly identi�es and �ts the two components of the distribution.

Convergence of the EM algorithm

The EM algorithm appears to be fairly robust at �tting a two Gaussian mixture, provided that
it is given an intelligent starting point. We have tested the EM algorithm with a wide variaty
of input data and initial estimates. In all cases the algorithm converges quickly to very close
to the right distribution, provided that it is given an intelligent �rst guess at the distributions.
Adding 30% noise into the dataset a�ects the convergence very little|this is due to the EM
algorithm only accepting data-values within ��� of the estimated mean of the distributions (a
value of � = 1:8 was used in these experiments). If the algorithm is given a poor initial estimate
of the distributions, unsurprisingly it fails to �t the distributions properly. Typically this fails
when the initial guess totally misses one of the peaks in the distribution.
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Gradient based tracker Image di�erencing Statistical Background model

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 1: In the sequence shown in the left column ((a)-(d)), a hand is being tracked by a
static camera. Since the edge of the shadow created by the hand has a stronger gradient
than the edge of the hand, a gradient-based tracker tracks the shadow rather than the
hand { eventually losing track of the hand (d). The middle column ((e)-(h)) shows a
the same sequence but using image di�erencing to locate the target. The hand's shadow
again distracts the tracker. The right-hand column ((i) - (l)), shows contour tracking with
background modelling on the sequence. This allows the tracker to ignore both desk and
shadow and to correctly track the hand. Tracking fails slightly on the left hand side of
the hand due to this being a very low contrast image, and the shadow on the hand being
almost exactly the same as the shadow on the desk.
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Gradient based tracker Image di�erencing Statistical Background model

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 2: In the left-hand sequence ((a) - (d)), a gradient-based feature detector is used
to track a target as it moves across a room. The camera is mounted on a pan-tilt head.
Because the foreground is �xated it appears stationary, but note how the background
moves relative to the target. As the target passes some strong clutter the contour is
distracted ((c) and (d)) and loses track of the target. The middle column((e)-(h)) shows
a similar tracking sequence, but using image di�erencing. The contour is still distracted
by the edges of objects in the background and loses track of the target (h). Finally, in the
right hand column, the background has been modelled statistically on the virtual image
plane. Edges in the background are ignored (k) enabling tracking to continue past the
clutter (l).
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head

Pan and tilt

Camera

Physical

Active contour

on virtual camera

Virtual Camera’s
Physical camera’s view -- used

as viewport onto virtual camera

Image of target

image plane

Target in world

Image of target

Figure 3: A target is viewed in the world using a real camera mounted on a pan and tilt
head. The view from the physical camera is projected onto a static virtual camera plane
where an active contour tracks a target.
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Figure 4: The virtual image plane. The image in (a) was obtained from a physical camera
mounted on a pan and tilt head, mapping its image onto the virtual image plane as the
it is swept round the room. The instantaneous �eld of view of the physical camera is
shown as the black rectangle in the image. Calibration errors in the system mean that
the image is slightly blurred. (b) shows the gray levels across the edge of the chimney
on both the virtual image plane (which is the average of several views), and the physical
image plane. It can be seen that the edge on the virtual image is more blurred (spread
out) than the corresponding edge on the physical image. This blur is within the range
that the mounting of the camera can be expected to produce (�2:2mrad). Although the
apparent e�ect of blur is small, it is signi�cant for background modelling because of the
consequent variability of intensity I. The variance (c) of intensity over the virtual image
is particularly great where rI is large (i.e. at edges).
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(a) Scene (b) Low threshold (10 gray levels)

(c) High threshold (27 gray levels) (d) Statistical background removal

Figure 5: Statistical background removal outperforms simple thresholding. Us-
ing a constant threshold to compare a scene containing a target (a) to the same scene
without the target. The intensities from (a) have been used to show areas which di�er by
more than the threshold from the reference image. (b) shows the result of using image
di�erencing with a low threshold, representing the intensity noise typical of the walls|
note how clutter edges are segmented along with the target. (c) shows the result when a
higher threshold is used so that most of the edges in the image are no longer segmented.
Unfortunately this threshold results in a high level of drop out of the target, while still
segmenting some edges along with the target. Setting the threshold even higher to remove
these edges would mean that even more of the target is lost. Finally, (d) shows the result
of segmenting using independent pixel based thresholds. These thresholds were set at
�2� of the Gaussian �tted to the pixel's intensity during the learning phase. The target
is better segmented with this approach than with the image di�erencing approach.
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Figure 6: Figure (a) shows the �tting of a Gaussian to the intensity distribution at a point,
with contamination by clutter. The trimming/�tting of the dataset allows a Gaussian to
be �tted to the background data; however note that the variance of the Gaussian has
been underestimated. (b) shows an expanded view of a section of (a), with the �tted
Gaussian obtained by the EM algorithm overlaid. Note that the Gaussian �tted by EM
is a better approximation to the real data than the simply �tted one. Simple �tting gave
a standard deviation of 1.175 for the main peak, whereas the EM algorithm gave 1.523 {
a 30% increase.

20

Rowe and Blake, "Statistical mosaics for tracking"
ImageandVisionComputing,14,549-564,1996



0

50

100

150

200

0 50 100 150 200 250 300

Frequency

Intensity

0

50

100

150

200

0 50 100 150 200 250 300

Frequency

Intensity

0

50

100

150

200

0 50 100 150 200 250 300

Frequency

Intensity

0

50

100

150

200

0 50 100 150 200 250 300

Frequency

Intensity

Figure 7: Intensity histograms for points on the image plane. The graphs show the
frequency of occurrence for a particular gray level for a particular pixel over 500 frames.
The image has been sub-sampled by mapping each 2� 2 pixel block onto a single point.
Near an edge a two Gaussian mixture will be necessary to model the intensity as can
clearly be seen from the upper left graph. Note also how the widths of the distributions
are di�erent in di�erent parts of the image.
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Figure 8: Key for �gure 9. The gray oval is a target to be tracked, by an active contour
(the white line) against a complex cluttered black and white background. The intensity
pro�les of points (a) and (b) are shown in �gure 10
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Single Gaussian Model Two Gaussian Mixture Model

(a) (d)

(b) (e)

(c) (f)

Figure 9: Tracking a fast moving target against clutter in a 4�4 sub-sampled image when
the background is modelled by a single Gaussian (a){(c), and a two Gaussian mixture
(d){(f). Note how the tracker using the single Gaussian model is more insensitive to the
edge of the target, and looses track of it at the high acceleration between images (b) and
(c). The improved discrimination of the two Gaussian model allows tracking to continue
past this point (e){(f).
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Figure 10: Intensity pro�les for points (a) and (b) in �gure 8. Note that a two Gaus-
sian mixture is necessary to model the pro�le of point (a), which lies on an edge in the
background.
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Figure 11: Background gradients for various parts of the room. Note that the widths of
the gradients vary considerably, and that a two Gaussian model is necessary to �t one of
the gradients.
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Average Gradient Variance of Gradient

Scene containing a target

Intensity Based Model Gradient Based Model

(a) � = 2 (d) � = 2

(b) � = 3 (e)� = 3

(c) � = 4 (f)� = 4

Figure 12: An statistical intensity based background model provides a cleaner

feature-map than a gradient based one. The upper two �gures show the average and
variance of the gradient of intensity of a view of the room. Note how it is only edges in the
background which are highlighted in either the average or variance maps. A target is then
introduced into the scene. The lower �gures ((a){(f)) show a zoomed in view of the edges
of the regions around the target which have failed the �� �� test for inclusion into the
background|the feature-map on which the tracker is searching. Note that the outlines of
the target (the correct feature) given by the statistical intensity models are much cleaner
and more complete than the corresponding ones produced from the statistical gradient
based model. The tracker will track much better based on the intensity based model as
it is operating in a much less cluttered space.
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Figure 13: Datasets used in EM �tting of two Gaussian mixture
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Figure 14: Use of EM for �tting a two Gaussian mixture. Note how the distribution �tted
by the algorithm is much closer to the underlying distribution that that obtained by using
the trim and �t algorithm (indeed the trim and �t algorithm was only able to �nd one
correct Gaussian in this case, the other one displayed is the closest approximation to a
Gaussian that it could �nd).
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