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Overheard on Google+

“a probabilistic framework isn’t
necessary,

or even always useful. . .

. . . retro-fitting our new models to some
probabilistic framework has little benefit”



Drawing model fantasies

— Insight into models

— Improve learning

— Communication



Polygonal random fields

Paskin and Thrun (2005)



Natural patch fantasies

From Osindero and Hinton (2008)



Creating training data

Microsoft Kinect (Shotton et al., 2011)

Shallow learning: random forest applied to fantasies

Future deep learning?
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Figure 1: Our unified graphical model (also known as a Bayesian network [27]), for astro-
nomical image data. It integrates in a principled framework: large-scale cosmological models
of galaxy and Milky Way formation; galaxy appearance models; spectral emission models
and detailed camera, sky and telescope models. The shaded oval nodes are observed vari-
ables (i.e., their values are known) while the unshaded ones are unobserved and hence will
be inferred from the raw astronomical data. The square nodes represent priors, typically
informed by well-understood physics models. The arrows represent dependencies between
variables in the model (and the lack thereof correspond to assumptions of independence).
The conditional probability distributions within the model (which detail how a particular
node depends on those variables which point to it) are not shown, but will be described in
the text. The rectangles refer to replications of variables, e.g. an image will contain many
stars/galaxies. The realization of this model is the ultimate goal of the project, but initial
work will focus on sub-pieces of the model. This figure is best viewed in color.

Hogg and Fergus, 2011



Roadmap

— Probabilistic models

— Simple Monte Carlo
Importance Sampling

— Markov chain Monte Carlo (MCMC)
Gibbs sampling, M–H

— Auxiliary variable methods
Swendsen–Wang, HMC



Sampling simple distributions

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains

how some of them work

http://luc.devroye.org/rnbookindex.html



Sampling from densities

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]



Rejection sampling

Sampling from π(x) using tractable q(x):

Figure credit: Ryan P. Adams



Simple Monte Carlo

∫
f(x)P (x) dx

≈ 1

S

S∑
s=1

f(x(s)),

x(s)∼ P (x)

Unbiased. Variance ∼ 1/S



Aside: Marginalization

Function of subset,

∫
f(xC)P (xC) dxC

Simulate all variables anyway:

I ≈ 1

S

S∑
s=1

f(x
(s)
C ), x(s)∼ P (x)



Importance sampling

Rewrite integral: expectation under simple distribution Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx,

≈ 1

S

S∑
s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

Simple Monte Carlo applied to any integral.

Unbiased and independent of dimension?



Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P ∗(x)/ZP∫
f(x)P (x) dx ≈ ZQ

ZP
1

S

S∑
s=1

f(x(s))
P ∗(x(s))

Q∗(x(s))︸ ︷︷ ︸
w∗(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
�
��1

S

S∑
s=1

f(x(s))
w∗(s)

�
�
�
�1
S

∑
s′w

∗(s′)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
sw
∗(s)



Rejection sampling RBMs

Product of experts:

— Draw fantasy from each expert

— If they happen to be exactly the same, accept!



Application to large problems

Approximations scale badly with dimensionality

Example: P (x) = N (0, I), Q(x) = N (0, σ2I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Var[P (x)/Q(x)] =
(

σ2

2−1/σ2

)D/2
− 1

Infinite / undefined variance if σ ≤ 1/
√
2



Unbiased positive estimators
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Roadmap

— Probabilistic models

— Simple Monte Carlo
Importance Sampling

— Markov chain Monte Carlo, MCMC
Gibbs sampling, M–H

— Auxiliary variable methods
Swendsen–Wang, HMC



Target distribution

P (x) =
1

Z
e−E(x)

e.g. x =



Local moves

↙ ↓ ↘ Q(x′;x)



Markov chain exploration

→ →

↓
Goal: a Markov chain,

xt ∼ T (xt←xt−1), such that:

P (x(t)) = e−E(x(t))/Z for large t.



Invariant/stationary condition

If x(t−1) is a sample from P ,

x(t) is also a sample from P .

∑
x

T (x′←x)P (x) = P (x′)



Ergodicity

Unique invariant distribution

if ‘forget’ starting point, x(0)



Quick review

MCMC: biased random walk exploring a target dist.

Markov steps,

x(s) ∼ T
(
x(s)←x(s−1)

)
MCMC gives approximate,

correlated samples

EP [f ] ≈
1

S

S∑
s=1

f(x(s))

T must leave target invariant

T must be able to get everywhere in K steps



Gibbs sampling

Pick variables in turn or randomly,
and resample P (xi|xj 6=i)

z1

z2
L

l ?

Ti(x
′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)



Gibbs sampling correctness

P (x) = P (xi |x\i)P (x\i)

Simulate by drawing x\i, then xi |x\i

Draw x\i: sample x, throw initial xi away



Reverse operators

If T leaves P (x) stationary, define a reverse operator

R(x←x′) =
T (x′←x)P (x)∑
x T (x

′←x)P (x)
=
T (x′←x)P (x)

P (x′)
.

A necessary condition: there exists R such that:

T (x′←x)P (x) = R(x←x′)P (x′), ∀x, x′.

If R = T , known as detailed balance (not necessary)



Balance condition

T (x′← x)P (x) = R(x← x′)P (x′)

Implies that P (x) is left invariant:∑
x

T (x′←x)P (x) = P (x′)

��
�
��
�
��
�
��

�
��

�
��
�*1∑

x

R(x←x′)



Metropolis–Hastings

Arbitrary proposals ∼ Q:

Q(x′;x)P (x) 6= Q(x;x′)P (x′)

0 0.5 1 1.5 2 2.5 3
0

0.5

1
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2

2.5

3

PRML, Bishop (2006)

Satisfies detailed balance by rejecting moves:

T (x′←x) =


Q(x′;x)min

(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
x′ 6= x

. . . x′=x



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen so chain is ergodic

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x)min

(
1,

P (x′)Q(x; x′)

P (x)Q(x′; x)

)
= min

(
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
)

= P (x
′
) ·Q(x; x

′
)min

(
1,

P (x)Q(x′; x)

P (x′)Q(x; x′)

)
= P (x

′
) · T (x←x

′
)



Matlab/Octave code for demo
function samples = dumb metropolis(init, log ptilde, iters, sigma)

D = numel(init);

samples = zeros(D, iters);

state = init;

Lp state = log ptilde(state);

for ss = 1:iters

% Propose

prop = state + sigma*randn(size(state));

Lp prop = log ptilde(prop);

if log(rand) < (Lp prop - Lp state)

% Accept

state = prop;

Lp state = Lp prop;

end

samples(:, ss) = state(:);

end



Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x)-0.5*x*x, 1e3, s));

sigma(0.1)
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Diffusion time

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Adapted from MacKay (2003)



An MCMC strategy

Come up with good proposals Q(x′;x)

Combine transition operators:

x1 ∼ TA(·←x0)

x2 ∼ TB(·←x1)

x3 ∼ TC(·←x2)

x4 ∼ TA(·←x3)

x5 ∼ TB(·←x4)

. . .



Roadmap

— Probabilistic models

— Simple Monte Carlo
Importance Sampling

— Markov chain Monte Carlo (MCMC)
Gibbs sampling, M–H

— Auxiliary variable methods
Swendsen–Wang, HMC



Auxiliary variables

The point of MCMC is to sum out variables, yet:∫
f(x)P (x) dx =

∫
f(x)P (x, v) dx dv

≈ 1

S

S∑
s=1

f(x(s)), x, v ∼ P (x, v)

We might want to introduce v if:

• P (x | v) and P (v |x) are simple (Cf RBMs, Martens and Sutskever 2010)

• P (x, v) is otherwise easier to navigate



Swendsen–Wang (1987)

Seminal algorithm using auxiliary variables



Swendsen–Wang

Edwards and Sokal (1988) identified and generalized the

“Fortuin-Kasteleyn-Swendsen-Wang” auxiliary variable joint

distribution that underlies the algorithm.



Hamiltonian Monte Carlo (1987)

Define a joint distribution:

P (x, v) ∝ e−E(x)e−v
>v/2 = e−H(x,v)

Markov chain operators

• Gibbs sample velocity

• Simulate Hamiltonian dynamics

– Conservation of energy means P (x, v) = P (x′, v′)

– Metropolis acceptance probability is 1



Example / warning

|—|—————————|
0 1 10

Proposal:

{
xt+1 = 9xt + 1, 0 < xt < 1

xt+1 = (xt − 1)/9, 1 < xt < 10

Accept move with probability:

min

(
1,
P (x′)Q(x;x′)

P (x)Q(x′;x)

)
= min

(
1,
P (x′)

P (x)

)
(Wrong!)



Leap-frog dynamics

a discrete approximation to Hamiltonian dynamics:

vi(t+
ε
2) = vi(t)−

ε

2

∂E(x(t))

∂xi
xi(t+ ε) = xi(t) + εvi(t+

ε
2)

pi(t+ ε) = vi(t+
ε
2)−

ε

2

∂E(x(t+ ε))

∂xi

• H is not conserved

• Transformation has unit Jacobian

• Acceptance probability becomes

min[1, exp(H(v, x)−H(v′, x′))]



Hamiltonian Monte Carlo

The algorithm:

• Gibbs sample velocity ∼ N (0, I)

• Simulate L leapfrog steps

• Accept with probability

min[1, exp(H(v, x)−H(v′, x′))]

The original name is Hybrid Monte Carlo, with reference

to the “hybrid” dynamical simulation method.



Hamiltonian dynamics

Recommended reading:

MCMC using Hamiltonian dynamics, Radford M. Neal, 2011.

Handbook of Markov Chain Monte Carlo

http://www.cs.toronto.edu/~radford/ftp/ham-mcmc.pdf

Recent developments include:

NUTS: No U-Turn Sampler

http://arxiv.org/abs/1111.4246

Riemann manifold Hamiltonian Monte Carlo

http://www.dcs.gla.ac.uk/inference/rmhmc/



Summary of auxiliary variables

— Swendsen–Wang

— Hamiltonian (Hybrid) Monte Carlo

— Slice sampling

Some of my auxiliary representation work:

Doubly-intractable distributions

Population methods for better mixing (on parallel hardware)

Being robust to bad random number generators

Slice-sampling hierarchical latent Gaussian models



Overview

— Probabilistic models

— Simple Monte Carlo
Importance Sampling

— Markov chain Monte Carlo (MCMC)
Gibbs sampling, M–H

— Auxiliary variable methods
Swendsen–Wang, HMC



Appendix slides



Finding P (xi=1)

Method 1: fraction of time xi=1

P (xi=1) =
∑
xi

I(xi=1)P (xi) ≈
1

S

S∑
s=1

I(x(s)i ), x
(s)
i ∼ P (xi)

Method 2: average of P (xi=1|x\i)

P (xi=1) =
∑
x\i

P (xi=1|x\i)P (x\i)

≈ 1

S

S∑
s=1

P (xi = 1|x(s)
\i ), x

(s)
\i ∼ P (x\i)

Example of “Rao-Blackwellization”.



More generally

This is easy

I =
∑
x

f(xi)P (x) ≈
1

S

S∑
s=1

f(x
(s)
i ), x(s) ∼ P (x)

But this might be better

I =
∑
x

f(xi)P (xi|x\i)P (x\i) =
∑
x\i

(∑
xi

f(xi)P (xi|x\i)
)
P (x\i)

≈ 1

S

S∑
s=1

(∑
xi

f(xi)P (xi|x(s)
\i )

)
, x

(s)
\i ∼ P (x\i)



How should we run MCMC?

• The samples aren’t independent. Should we thin,

only keep every Kth sample?

• Arbitrary initialization means starting iterations are

bad. Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



Forming estimates

Can thin samples so approximately independent.

But, can use all samples.

The simple Monte Carlo estimator is still:

— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin:
if computing f(x(s)) is expensive

In some special circumstances strategic thinning can help.

Steven N. MacEachern and Mario Peruggia, Statistics & Probability Letters, 47(1):91–98, 2000.
http://dx.doi.org/10.1016/S0167-7152(99)00142-X — Thanks to Simon Lacoste-Julien for the reference.



Empirical diagnostics

Rasmussen (2000)
Recommendations

Diagnostic software: R-CODA

For opinion on thinning, multiple runs, burn in, etc.
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094



Slice sampling idea

Sample point uniformly under curve P̃ (x) ∝ P (x)

x

u

(x, u)

P̃ (x)

p(u|x) = Uniform[0, P̃ (x)]

p(x|u) ∝

{
1 P̃ (x) ≥ u
0 otherwise

= “Uniform on the slice”



Slice sampling

Unimodal conditionals

x

u

(x, u)

x

u

(x, u)

x

u

(x, u)

• bracket slice

• sample uniformly within bracket

• shrink bracket if P̃ (x) < u (off slice)

• accept first point on the slice



Slice sampling

Multimodal conditionals

x

u

(x, u)

P̃ (x)

• place bracket randomly around point

• linearly step out until bracket ends are off slice

• sample on bracket, shrinking as before

Satisfies detailed balance, leaves p(x|u) invariant



Slice sampling

Advantages of slice-sampling:

• Easy — only require P̃ (x) ∝ P (x)
• No rejections

• Tweak params not too important

There are more advanced versions.

Neal (2003) contains many ideas.
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Further reading (1/2)
General references:
Probabilistic inference using Markov chain Monte Carlo methods, Radford M. Neal, Technical report: CRG-TR-93-1,
Department of Computer Science, University of Toronto, 1993. http://www.cs.toronto.edu/~radford/review.abstract.html

Various figures and more came from (see also references therein):

Advances in Markov chain Monte Carlo methods. Iain Murray. 2007. http://www.cs.toronto.edu/~murray/pub/07thesis/

Information theory, inference, and learning algorithms. David MacKay, 2003. http://www.inference.phy.cam.ac.uk/mackay/itila/

Pattern recognition and machine learning. Christopher M. Bishop. 2006. http://research.microsoft.com/~cmbishop/PRML/

Specific points:
If you do Gibbs sampling with continuous distributions this method, which I omitted for material-overload reasons, may help:
Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation, Radford M. Neal, Learning in graphical models,
M. I. Jordan (editor), 205–228, Kluwer Academic Publishers, 1998. http://www.cs.toronto.edu/~radford/overk.abstract.html

An example of picking estimators carefully:
Speed-up of Monte Carlo simulations by sampling of rejected states, Frenkel, D, Proceedings of the National Academy of Sciences,
101(51):17571–17575, The National Academy of Sciences, 2004. http://www.pnas.org/cgi/content/abstract/101/51/17571

A key reference for auxiliary variable methods is:
Generalizations of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Robert G. Edwards and A. D. Sokal,
Physical Review, 38:2009–2012, 1988.

Slice sampling, Radford M. Neal, Annals of Statistics, 31(3):705–767, 2003. http://www.cs.toronto.edu/~radford/slice-aos.abstract.html

Bayesian training of backpropagation networks by the hybrid Monte Carlo method, Radford M. Neal,
Technical report: CRG-TR-92-1, Connectionist Research Group, University of Toronto, 1992.
http://www.cs.toronto.edu/~radford/bbp.abstract.html

An early reference for parallel tempering:
Markov chain Monte Carlo maximum likelihood, Geyer, C. J, Computing Science and Statistics: Proceedings of the 23rd Symposium on the
Interface, 156–163, 1991.

Sampling from multimodal distributions using tempered transitions, Radford M. Neal, Statistics and Computing, 6(4):353–366, 1996.



Further reading (2/2)
Software:
Gibbs sampling for graphical models: http://mathstat.helsinki.fi/openbugs/ http://www-ice.iarc.fr/~martyn/software/jags/

Neural networks and other flexible models: http://www.cs.utoronto.ca/~radford/fbm.software.html

CODA: http://www-fis.iarc.fr/coda/

Other Monte Carlo methods:
Nested sampling is a new Monte Carlo method with some interesting properties:
Nested sampling for general Bayesian computation, John Skilling, Bayesian Analysis, 2006.
(to appear, posted online June 5). http://ba.stat.cmu.edu/journal/forthcoming/skilling.pdf

Approaches based on the “multi-canonicle ensemble” also solve some of the problems with traditional tempterature-based methods:
Multicanonical ensemble: a new approach to simulate first-order phase transitions, Bernd A. Berg and Thomas Neuhaus, Phys. Rev. Lett,
68(1):9–12, 1992. http://prola.aps.org/abstract/PRL/v68/i1/p9 1

A good review paper:
Extended Ensemble Monte Carlo. Y Iba. Int J Mod Phys C [Computational Physics and Physical Computation] 12(5):623-656. 2001.

Particle filters / Sequential Monte Carlo are famously successful in time series modeling, but are more generally applicable.
This may be a good place to start: http://www.cs.ubc.ca/~arnaud/journals.html

Exact or perfect sampling uses Markov chain simulation but suffers no initialization bias. An amazing feat when it can be performed:
Annotated bibliography of perfectly random sampling with Markov chains, David B. Wilson
http://dbwilson.com/exact/

MCMC does not apply to doubly-intractable distributions. For what that even means and possible solutions see:
An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants, J. Møller, A. N. Pettitt, R. Reeves and
K. K. Berthelsen, Biometrika, 93(2):451–458, 2006.
MCMC for doubly-intractable distributions, Iain Murray, Zoubin Ghahramani and David J. C. MacKay, Proceedings of the 22nd Annual
Conference on Uncertainty in Artificial Intelligence (UAI-06), Rina Dechter and Thomas S. Richardson (editors), 359–366, AUAI Press, 2006.
http://www.gatsby.ucl.ac.uk/~iam23/pub/06doubly intractable/doubly intractable.pdf


