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1 Introduction

Many problems in the applied sciences involve optimization, either because a variational prin-
ciple underlies the mathematical description, or because parameters in a mathematical model
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are to be chosen in an optimal fashion. Among the many examples of such problems, we men-
tion optimal design, minimal energy, optimal control, and parameter identification (inverse)
problems.

Numerical solution of optimization problems is well-developed; several decades of work by
numerical analysts have resulted in a collection of refined and effective algorithms. Many of
these have been implemented in high-quality software packages, typically written in Fortran
or sometimes C. Some of the better known examples are MINOS [17], MINPACK [15], and
LANCELOT [2].

According to anecdotal evidence collected by the authors, these software packages do not
have the impact on scientific computing that one might expect. In fact, we are aware of a
significant number of applications projects (including our own) in which the investigators felt
obliged to write their own optimization code, despite the availability of well-tested packages
of demonstrably greater sophistication and effectiveness.

The principal reason for avoiding “off-the-shelf” software is the difficulty of adapting
application-specific code (such as simulators) to the interface required by the optimization
software. This difficulty is caused by a mismatch between data structures demanded by
the simulator, on the one hand, and the optimization software, on the other. Because of
the constraints of procedural computer languages, the optimization software is invariably
coordinate-based; vectors are stored in one-dimensional arrays, inner products are written as
explicit loops, and so on. On the other hand, one-dimensional (in-core) arrays may not offer
an appropriate (or even feasible) data representation for the application.

For example, seismic data processing involves 3- or 4-dimensional data sets far too large
to be stored in one-dimensional in-core arrays. These data sets are stored on disk; when it
is necessary, for example, to compare two data sets by subtracting them, successive “slices”
of the data are read from disk, subtracted, and written to disk. This example also illustrates
another difficulty with procedural programming. The standard data structures developed for
seismic data sets include various parameters describing the data (grid parameters, details of
acquisition geometry, etc.). These parameters are not accommodated easily in a standard
one-dimensional array; there is simply no natural place to put them.

While Fortran optimization packages are tied to specific data representations, the algo-
rithms themselves are almost always intrinsically coordinate-free. Krylov space methods and
least change secant (“quasi-Newton”) algorithms use only the basic Hilbert space operations,
without explicit reference to a particular basis. Software packages for optimization, imple-
mented in procedural programming languages such as Fortran, typically do not—and cannot
easily—eapress this representation-free nature of the underlying algorithms. In our opinion this
accounts for the failure of many scientific computing projects to use packaged optimization
software.

Motivated by our own experience with seismic inverse problems, we have designed a library
of C++ classes that allow optimization and iterative linear algebra algorithms to be coded
in such a way that they can be used to solved problems of arbitrary complexity. We do this
by using the object-oriented programming paradigm; that is, the objects manipulated by our
computer codes are defined by their properties, not by their representations. Because the
natural mathematical setting for the algorithms we have in mind is Hilbert space, we have
named the collection of these classes the Hilbert Class Library (HCL).



This report is a revision of [11], updating that reference for version 1.0 of HCL.

1.1 Object-oriented programming and C++

The object-oriented programming paradigm includes two principles of software design: a
computer program should be organized around the fundamental objects it manipulates, and
these objects are defined by their properties, rather than by their implementation. Taken
together, these principles allow for a degree of abstraction that is not easily obtained in a
procedural programming style.

In optimization code, it is easy to identify the important objects; they are vectors, op-
erators, real-valued functions, and so forth. Moreover, their properties are, for the most
part, specified by the mathematical definitions. In C++, abstraction is accomplished in the
following way: a base class is defined to represent an object, such as a vector. The base
class defines the properties that are common to such objects, but it does not implement any
particular instance. Derived classes are then defined for each desired instance of the base
class; for the example of vectors, derived classes may include Euclidean vectors (implemented
using one-dimensional arrays), functions sampled on a regular grid (implemented using multi-
dimensional arrays), out-of-core vectors (implemented using disk files), and so forth.

Each derived class must implement the properties defined by the base class; for example, a
derived vector class must provide code to add two vectors. A derived class may also implement
additional properties; commonly, these include access functions. Any code that is written to
apply to objects from the base class may use the properties defined in the base class, while
only code written for the derived class can use the additional properties defined for it.

The effect of this is that optimization code does not need to know about the data structures
used by the application code, because this information is hidden in the classes. As we show
below, a minimization routine can be written that will apply equally well to vectors stored in
one-dimensional arrays and to vectors stored on disk in some standard (say seismic) format.

The ability to express abstraction allows the union of generic and application-specific code.
The generic code, such as optimization routines, is coded in a coordinate-free manner; this
enables a very high-level, easily understood style of coding (such as calling a function named
“Add” to add two vectors). The application-specific code uses derived classes designed for the
specific application; this allows the user maximum flexibility.

1.2 The use of C++ in scientific computing

Use of C++ in scientific computing, while by no means widespread, has increased over the
last several years. For example, the designers of LAPACK [1] have provided a C++ interface
(see [6]). The interface is based on a collection of vector and matrix classes; these classes have
evolved over the past few years through several related packages: Sparselib++ [4], IML++
[5], and MV++ [20] due to Pozo and his collaborators. Currently a package called Template
Numerical Toolkit (TNT) [21] is being designed as a successor to these packages.

The work culminating in TNT is very closely related to ours in motivation. Quoting from

[4]:



... code involving sparse matrices tends to be very complicated, and not eas-
ily portable, because the details of the underlying data formats are invariably
entangled within the application code.

To address these difficulties, it is essential to develop codes which are as “data
format free” as possible ...

We are trying to address the same concerns, but at a higher level of abstraction. For example,
rather than a matrix, our corresponding fundamental object is a linear operator.

Several groups of researchers have undertaken to provide a mathematical framework, each
similar in limited respects to that proposed here. Our effort was motivated directly by the work
of the Stanford Exploration Project in geophysical software design; see [18]. The initial design
of HCL was worked out in discussions with this group of researchers and with Dr. Lester Dye.
The CWP Object-Oriented Optimization Library (COOOL) due to Deng et al. [3] consists of
classes similar to some found in HCL, along with a variety of optimization algorithms for linear
and nonlinear problems. A similar package is OPT++, designed by Meza [14]; this provides
classes useful for defining unconstrained and constrained optimization problems and related
algorithms. The Numerical Analysis Objects (NAQO) project [7] includes a set of abstract
base classes defining the objects involved in simulations and the solution of partial differential
equations—geometric regions, functions, operators, and so forth.

HCL differs from all of these efforts in that its base classes specify only those objects
essential to optimization in Hilbert space, reserving all access and other functions not necessary
for this purpose to the derived classes. Also, we attempt to define classes at the highest level
of mathematical abstraction—as much as possible, the interfaces to our classes reflect the
mathematical definitions and do not refer to any implementation details. We believe that
a direct linkage between the Hilbert space environment and the computer code is highly
advantageous for managing large and complex real-world applications. This environment is
flexible enough to allow a wide variety of applications to be treated, and is still simple enough
to allow a manageable design.

2 The Hilbert Class Library

For the purposes of describing the design of HCL and the style of programming it supports,
we will use the following application. Consider a linearly elastic, isotropic, inhomogeneous
membrane, which, when at rest, occupies a set Q in the plane. The membrane is fixed
around the boundary and a small pressure f is applied in the transverse direction, causing
the membrane to be displaced vertically. Under these assumptions, the vertical displacement
u of the membrane satisfies the following Dirichlet problem:

-V - (aVu) = finQ (1)
u = 0on Of. (2)
Here the field a(z), z € Q, describes the elastic properties of the membrane. We consider the

inverse problem of identifying a from a measurement of the displacement u. This problem has
been studied by several authors; see, for example, Falk [8], Ito and Kunisch [12].



We pose the problem as an Output Least-Squares (OLS) problem:

: 1 m
min  Sllufa] - u™|Zs(q) (3)
st.  a>e>0, (4)

where u™ is the observed data and ufa] is the simulated displacement for the estimated a;
that is, ula] and a satisfy (1)-(2).

Of course, this formulation requires the choice of a discretization and a simulation; we
discretize the domain ) using triangular elements and represent both u and a by contin-
uous piecewise linear functions. The simulated displacement u[a] will be computed by the
finite element method. (For simplicity, we use the same symbol for the function « and an
approximation to it from the appropriate finite element space, and similarly for a and f.)

We now list the mathematical objects that appear in this formulation of the problem:

o The discretized functions v and @ are vectors in appropriate vector spaces.

o The finite element simulation involves forming the stiffness matrix E for each choice
of the parameter a and solving the equation E[a]u = f. The matrix E[a] defines an
invertible linear operator.

e The objective function,

J(a) = 5 lula] — u" [Eaqa) 5

is a real-valued function defined on a vector space, that is, a functional.

e The ill-posed nature of the problem leads to the use of Tikhonov regularization [24].
The objective function becomes

1 m P
J(a) = 5””[&] — u™|72(q) + §||Va||%2(n) (6)
(where p is the regularization weight). This new objective function is a linear combi-
nation of functionals.

The design of HCL is intended to allow the various component parts of the project to be put
together to form an objective function, which can then be minimized by a generic optimization
algorithm (i.e. an algorithm written without knowledge of this or any specific application).

Below we describe the organization of HCL and some of the important classes in detail,
using the above example as an illustration. For a complete description of the software, we
refer the reader to the documentation (see Section 4 for details on obtaining the software and
documentation).

Before proceeding, we mention a few technicalities concerning the design of HCL. At
the time of this writing, many compilers do not support ANSI/ISO C+4. Because of our
concern for portability, we attempt to use only features of C++ likely to be supported by
any reasonable compiler. In particular, we provide single and double precision versions of the
classes, rather than a single templated version; this explains the significance of the _s and _d
suffixes in the code fragments below. For example, HCL_Vector_d is the double precision class.
We use C-style (unprotected) casts and primitive error-handling code. These comments refer
to HCL 1.0. Later versions will incorporate templates, dynamic casts, exception handling,
and other advanced C++ features.



2.1

Organization -

The Hilbert Class Library consists of four categories of classes:

2.2

Core classes: These classes define the properties (interfaces) for vector spaces, vectors,
linear operators, bilinear operators, functionals, and (nonlinear) operators. There are
also “evaluation” classes, which do not correspond directly to mathematical constructs,
but are used with functionals and operators for efficient evaluation of derivatives.

Tool classes: These classes define common mathematical constructs that can be built
up, in a canonical fashion, from the simpler core classes. An example is the class
representing a linear combination of functionals. Assuming that one has already defined
several functionals, this class makes it trivial to define a linear combination of them.

Algorithm classes: These classes define interfaces for common types of algorithms,
such as those for solving linear equations and unconstrained minimization problems.

Concrete classes: These classes are derived from the core classes and represent specific
implementations of various objects. For instance, two types of vectors are defined: a sim-

ple in-core Euclidean vector and an out-of-core vector designed to represent discretized
distributed parameters.

HCL Core Classes

We begin by listing the core classes and the mathematical objects they represent:

HCL_VectorSpace: A vector space

HCL Vector: A vector

HCL Functional: A real-valued function defined on a vector space
HCL LinearOp: A linear operator mapping one vector space to another
HCL BiLinearOp: A bilinear operator

HCL Op: A (nonlinear) operator from one vector space to another

In addition to the classes listed here, the core classes include “evaluation” classes, which we
describe below. These classes form the core of HCL because any attempt to formulate an
optimization problem will necessarily involve these mathematical objects.

2.2.1 HCL_VectorSpace

This is an abstract base class, and therefore serves to define the properties that all derived
classes must share.

In HCL, vector spaces are explicitly defined so that two operations can be performed:

test for equality of two vectors spaces (usually for purposes of error checking);



e create a vector from a given vector space.

These are properties shared by all vector spaces; that is, they are properties of the base class
HCL VectorSpace. A particular vector space may have additional properties; for example, a
description of an underlying grid.

The class HCL VectorSpace has the following member functions: operator==,operator!=
and Member. The operator!= member enables one to write

if (U 1=V)
// Error condition

assuming that U and V are objects of type HCL_VectorSpace.

The member function Member is useful for allocating temporary vectors used to store
intermediate stages of a computation. It returns a pointer to a dynamically allocated vector.
Such a function is called a wvirtual constructor; it allows construction of an object when the
exact type of the object is not known at compilation but only at execution.

A virtual constructor is required because the standard mechanism for dynamically allocat-
ing objects in C4++, the new operator, requires knowledge of the exact type at compilation.
Our primary reason for developing HCL is to allow the creation of optimization programs that
are not tied to specific data representations; this implies that exact types are only known at
execution.

2.2.2 HCL_ Vector

A Hilbert space associates several operations with its vectors: vector addition, scalar multi-
plication, and inner product. In HCL, these are properties of the class HCL Vector; that is,
every vector can be added to another vector (from the same space!), multiplied by a scalar,
and paired with another vector in an inner product. One vector can also be copied to another.
Also, a vector can identify the vector space to which it belongs. Table 1 lists these member
functions. If a method produces a scalar, it is the return value of the method (for example, a
= x.Inner(y)), while if the method modifies a vector, then the vector invoking the method
is the one modified (for example, x.Add(y)).

Add x.Add(y); z+—2+y

Mul x.Mul(a); T ¢ ax

Inner | a = x.Inner(y); | a « (z,y)

Copy | x.Copy(y); Ty

Space | x.Space(); Reference to vector space

Table 1: HCL Vector member functions (name, syntax, and effect)

Beyond these basic properties, the class HCL Vector includes methods that combine two
or more operations into a single function call. These are provided for convenience in coding
and for efficiency, and are listed in Table 2.

Those familiar with the C++ language may wonder why these operations are not provided
through overloaded operators. Any straightforward implementation of overloaded operators



involves an unacceptable overhead in time and memory. This overhead arises in the creation
of temporary objects to hold the results of intermediate computations.

Beyond these basic operations, the class HCL_Vector also defines a large number of “component-
wise” operations. For example, the method DiagScale computes the component-wise product
of two vectors. Other such methods include DiagRecipScale (component-wise division), sev-
eral versions of Max and Min (e.g. to compute the maximum component of a vector, or to
compute a component-wise maximum of two vectors), Abs (component-wise absolute value),
and Sign (component-wise sign). For a complete list of HCL Vector methods, we refer the
reader to the HCL1.0 documentation (see Section 4).

The HCL Vector class provides a Component method, which allows access to an arbitrary
component of a vector. However, its use is discouraged for two reasons. First, when the vector
components are stored in-core, the overhead of a virtual function is significant compared to a
simple data access. Second, when the vector components are stored out-of-core, accessing a
single component involves prohibitive overhead due to I/O. For this reason, component-wise
operations should be performed using the methods described in the previous paragraph, which
can be implemented efficiently for each derived vector class.

Add x.Add(y,z); T y+z
Mul x.Mul(a,y); T  ay
Neg x.Neg(); T & —Z
Zero x.Zero(); z+ 0
Norm a = x.Norm(); a « ||z|
Norm?2 a = x.Norm2(); a + ||z|?
Sub x.Sub(y); T T -y
Sub x.Sub(y,z); TY—2
ScaleAdd | x.ScaleAdd(a,y); T ar+y
ScaleAdd | x.ScaleAdd(a,y,z); | ¢ < ay+ =
AddScale | x.AddScale(a,y); T T+ ay

Table 2: Additional member functions of HCL _Vector (name, syntax, and effect)

The simplest derived vector class would represent vectors in real n-space by storing their
components in a one-dimensional array. HCL defines such a class, HCL RnVector, and a
corresponding vector space, HCL_RnSpace. These are concrete classes.

A more instructive example is a class we have defined for use with seismic data processing
problems. Standard seismic data formats have long been used to store field data and the
relevant physical fields (density, acoustic velocity, and so forth). We have defined a vector
class called SGFVector (for Sampled Grid Function) that provides an interface to a disk file
in one of the standard formats. The constructor for this class automatically reads data from
a disk file, and the class allows access to the grid description as well as to the data samples
themselves. Nonetheless, HCL optimization code can operate on an SGFVector just as easily
as on an HCL_RnVector. The ability of HCL to hide these implementation details from generic
algorithms is a valuable simplifying mechanism (and our original motivation for developing
this software).



2.2.3 HCL Functional ~

There are two fundamental meeting points between a generic algorithm and application-
specific software: vectors and functionals. Just as the standard Fortran representation of
a vector as a one-dimensional array is too restrictive, so is the use of subroutine calls to
implement functionals.

A typical objective function is defined by various parameters and usually built up from
simpler objects, such as operators and data. These objects should be packaged with the
functional when it is passed to the optimization algorithm. The usual Fortran “work-arounds”
to this problem are reverse communication and the use of parameter arrays. In our opinion,
the first is inelegant and leads to code that is difficult to understand and maintain. The second
requires the packing and unpacking of data to and from a primitive data structure, which, in
our experience, is tedious and error-prone.

The C++ class mechanism provides a solution to the problem, because a class can contain
both data and code. The HCL Functional class is an abstract base class representing a real-
valued function defined on a vector space. This class can identify the domain of the functional
it represents and can evaluate the functional, as well (perhaps) its gradient and Hessian, at a
point.

The fundamental methods of HCL _Functional are Domain, Value, Gradient, and Hessian;
these are described in Table 3.

Domain f.Domain(); Reference to vector space
Value fx = f.Value(x); fz « f(z)

Gradient | f.Gradient(x,g); g+ Vf(zx)

Hessian | H = f.Hessian(x); H « V*f(z)

Evaluate | eval = f.Evaluate(x); | Creates evaluation object

Table 3: Some HCL Functional member functions (name, syntax, and effect). Note that the
Hessian method returns a pointer to the (newly created) object.

In addition to these methods, HCL _Functional also has a method called Evaluate. This
method takes as input a vector x in the domain of the functional f, and returns an “evaluation
object”-—an instance of HCL_EvaluateFunctional—that represents the triple

(f(z), Vf(x), V2 f(z)).

The reason for the evaluation object is efficiency. In many applications, the calculations of
f(x), Vf(z), and V2f(z) involve the computation of intermediate quantities that contribute
to each of f(z), Vf(z), and V2f(z). For example, computing J(a) (see (6)) requires the
formation of the finite element matrix E[a], the computation of u[a] by solving Ela]u = f,
and the calculation of the residual ula] — u™. If VJ(a) is computed by the adjoint state
method, then the first step is the computation of E[a]™!(u[a] — u™) (the “adjoint state”). A
natural implementation, and the one we chose, is to represent the vectors using HCL_RnVector
and form E[a] as a sparse matrix. The equation E[aju = f is solved using a sparse LU
factorization of Ela]. One then wishes to save the LU factors and the residual vector for
computing the gradient in case it is later requested. Without the evaluation object, this is

10



not possible, because there is no place to save these values; we need an object representing
the realization of f at a specific point = as well as the object representing f itself.

The methods of HCL_EvaluateFunctional parallel those of HCL_Functional. The methods
Domain, Value, Gradient, and Hessian have the same effect as the corresponding methods
of the functional class, except that in the case of the latter three methods, the vector = need
not be input—it is intrinsic to the evaluation object itself.

In addition, HCL _EvaluateFunctional has methods called ValueRef, GradientRef, and
HessianRef; the purpose of these methods is to ensure that the value, gradient, and Hessian
are computed only once at a given point, and also to manage the allocation and de-allocation of
storage for the gradient vector. These methods are a convenience; they allow the programmer
to use the evaluation object as a data structure as well as a mechanism for generating the
needed quantities. Instead of allocating a vector g, calling eval->Gradient( g ) to put the
value of the gradient in g (eval is a pointer to the evaluation object), and later de-allocating g,
the programmer can just use eval->GradientRef (), which returns a reference to the gradient
vector. Table 4 summarize the methods in the class HCL_EvaluateFunctional

Both the functional class and the corresponding evaluation class allow access to f(z),
Vf(z), and V*f(z). The methods in the functional class work as follows: they create an
evaluation object, extract the needed value, and delete the evaluation object. They may be
used for simplicity when there is no need to save any intermediate computations.

Indeed, from the point of view on the person implementing a specific functional, the
entire mechanism involving the evaluation object can be ignored if desired. The imple-
mentor has the option of creating a single class, derived from HCL Functional, to repre-
sent a functional f. In this case, the corresponding evaluation object will be an instance of
HCL FunctionalDefaultEval (a default class already implemented), the implementor need
only code the computation of f(z), Vf(z), and V?f(z), and there will be no re-use of inter-
mediate results in these computations. On the other hand, if it is important for reasons of
efficiency to store intermediate quantities, the implementor can create two classes, one derived
from HCL Functional and the other from HCL EvaluateFunctional, and have complete free-
dom to re-use intermediate results. The mechanisms for choosing one option or the other are
described in detail in [9]; this report implements the OLS functional J discussed above as a
concrete example.

The following code fragment, taken from a line search algorithm, illustrates the use of the
functional and evaluation classes. In this code, the function value is used to test the “sufficient
decrease” condition common in line searches; then, if the condition holds, the gradient is used
to check the slope condition. By the use of evaluation objects, we neither require that both
the function and gradient be evaluated at the same time (when it is possible that the gradient
will not be used), nor require that the gradient be computed “from scratch” (i.e. without
access to the intermediate quantities already computed).

xnext .AddScale( mu,xcur,pdir ); // Compute x4 = x 4 up

if( !'First ) // Delete old eval. object
HCL delete( eval );

eval = f.Evaluate( xnext ); // Compute new eval. object

First = 0;

f xnext = eval->ValueRef(); // Get new value

11



NumFcnSampled++;

if( f xnext <= f x + alpha*mu*initslope )

{
// Sufficient decrease in function value;
// check for sufficient decrease in slope
newslope = eval->GradientRef().Inner( pdir );
if( newslope < beta*initslope )

Domain f.Domain(); Reference to vector space
Value fx = eval->Value(); fz « f(z)

Gradient eval->Gradient(g); g+ Vf(z)

Hessian eval->Hessian(); H « V?f(z)

ValueRef fx = eval->ValueRef(); | fz « f(z)

GradientRef | eval->GradientRef(); Reference to V f(z)
HessianRef | eval->HessianRef(); Reference to V2 f(z)

Table 4: Some HCL EvaluateFunctional member functions (name, syntax, and effect)

It would be well at this point to explain a significant aspect of the design of HCL: class
interfaces include methods that may not be useful or even defined for certain objects. For
example, HCL_Functional has methods to implement f(z), V f(z), and V?f(z), even though
the class may be used to represent a functional that is not differentiable, or that is only once
differentiable. Similarly, HCL LinearOp has methods implementing Lz, L*y, L™ 'y, and L™*z,
even though it may be used to represent an operator which is not invertible. Methods that
are not appropriate for a particular derived class should be implemented as errors.

We originally designed a hierarchy of base classes to carefully reflect the available meth-
ods for a given object. For instance, the class HCL Functional had (in pre-version 1.0
HCL) only the Value method. The Gradient method was present in the derived class
HCL_FunctionalGrad, while the Hessian method appeared in HCL FunctionalHess. How-
ever, this approach resulted in an excessive number of classes, particularly among “tool”
classes, an important part of HCL. (A tool class is used to combine fundamental objects
to represent more complicated objects. For example, there is a tool class combining sev-
eral linear operators in a linear combination. Under the old, hierarchical design, there were
two such classes, depending on whether the underlying linear operators were of the type
HCL LinearOpAdj (adjoint implemented) or HCL LinearOp (adjoint not implemented).) The
current design implies that some error checking has been deferred to run time, but it results
in a much cleaner collection of classes.

2.2.4 Other core classes

The other core classes are the operator classes, representing linear, bilinear, and nonlinear
operators. For example, HCL Linear0Op is the base class for linear operators. It has methods

e Domain, Range,

12



¢ Image, AdjImage, InvImage, InvAdjImage.
The Image method computes the action of the operator on a vector:

L.Image(x,y); // y « Lz

Similarly, AdjImage computes the action of L*, InvImage computes the action of L™!, and
InvAdjImage computes the action of L7™*. Note that these latter two operations may not be
meaningful (or may not be needed) for a particular operator; in that case, the corresponding
methods can be implemented as errors.

Using the linear operator and vector classes, one can define a variety of algorithms for the
iterative solution of linear equations. Below is most of the Solve method found in the HCL_PCG
class, which implements the preconditioned conjugate gradient algorithm. It is worth empha-
sizing the truly generic nature of this code. There is no assumption about the representation
of the vectors—they can be stored in core or on disk, in any desirable data structure. There
is no assumption about the nature of the operator or the preconditioner—the operator could
be a sparse matrix or a finite difference simulation, and the preconditioner could be a fast
Poisson solver or an incomplete factorization.

int HCL_PCG: :Solve( const HCL_LinearOp & A,const HCL_Vector & b,
HCL_Vector & x ) const

{
if( A.Domain() != MInv->Range() )
{
cerr << "Error in HCL_PCG::Solve: domains of A and M "
"do not agree" << endl;
exit(1);
}

(More error checking)
// Get algorithmic parameters

int ItnMax;
if ( ParamTable->GetValue( "MaxItn",ItnMax ) )
ItnMax = 100;

(More parameters)
// Allocate needed objects

HCL_Vector *r
HCL_Vector *u
HCL_Vector *p
HCL_Vector

MInv->Domain() .Member();
MInv->Range() .Member () ;
MInv->Range() .Member();
MInv->Domain() .Member();

*
<
1}
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// compute initial residual

A.Image( x,*v );
r->Sub( b,*v );

// compute u = Minv*r

MInv->Image(*r, *u);
p->Copy( *u );

// Main iteration

double res0 = b.Norm();

double res = r->Norm();

double ratio = res/res0;

int itn = 0;

double rtu = r->Inner( *u );

while( ratioc > Tol && itn < ItnMax )

{
// compute v = Ap

A.Image( *p,*v );
// compute step length alpha

double ptv = p->Inner( *v );
double alpha = rtu/ptv;

// update x and r

x.AddScale( alpha,*p );
r->AddScale( -alpha,*v );

// compute u = Minv*r
MInv->Image(*r, *u);

// compute the new relative residual
res = r->Norm();

ratio = res/reso0;
itn++;

14



// compute beta and the new search direction p

double rtul = r->Inner( *u );
double beta = rtul/rtu;
p->ScaleAdd( beta,*u );

rtu = rtul;

HCL_delete( v );
HCL_delete( p );
HCL_delete( u );
HCL_delete( r );

(Display messages if desired and return)

HCL BiLinearOp is the base class for bilinear operators of the form B : X xY — Z,
where X, Y, and Z are Hilbert spaces. Bilinear operators are important in HCL because they
arise naturally as the second derivatives of nonlinear operators. This class has methods for
computing the image, B(z,y), as well as for creating the linear operators ¢ — B(z,y) and
y — B(z,y).

HCL Op is an abstract base class for representing nonlinear operators and their derivatives.
Note that if F' is a nonlinear operator, then DF(z) is a linear operator and D?*F(z) is a
bilinear operator. In order to handle the derivatives efficiently, we define evaluation objects for
operators as we did for functionals. The implementation of operators and bilinear operators is
described in detail in {10], which includes a detailed concrete example involving the application
described in Section 2.

2.3 Tool classes

In addition to the core classes, HCL defines a number of classes that combine the core
classes to represent standard mathematical constructs. For instance, here is a code frag-
ment that forms the OLS functional J (without regularization—see (5)) using the tool class
HCL_ LeastSquaresFcnl:

EllipticSolOp3_d F( "mesh" );
HCL_RnVector_d u( "data" );
HCL_LeastSquaresFcnl_d J( &F,&u );

Note that the operator mapping a to ufa], the solution of the BVP (2}, is implemented in an
operator class called E11ipticSol0p3; its constructor reads the necessary mesh information
from the file named “mesh”. The data for the OLS functional is read from a file named “data”
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and used to create an instance of HCL RnVector. Then the OLS functional itself is create as
an instance of HCL LeastSquaresFcnl, which stores the operator and the data.

The advantage of using a tool class such as HCL LeastSquaresFcnl is that it eliminates
unnecessary code. Given the operator and the data, the OLS functional and its derivatives

can be computed in a purely mechanical (and efficient) fashion. The code to do this must be
written only once (in the tool class).

At the time of this writing, HCL defines more than a half-dozen such classes; these include:
e HCL GenericProductVector: a vector from a product space,

e HCL LinCombLinear0p: a linear combination of linear operators,

HCL_CompLinearOp: a composition of linear operators,

HCL LinCombLinearFcnl: a linear combination of functionals,
¢ HCL_ BlockOp: a linear operator defined by “blocks,”

and others.

2.4 Algorithm classes

The purpose of HCL is to define an environment in which high-quality algorithms can be
written and used to solve complex problems. It is hoped that numerical analysts developing
algorithms will consider implementing them using HCL classes.

To demonstrate the feasibility of doing this, we have taken several popular algorithms for
large-scale problems and translated them into HCL. Here we discuss the general framework
for algorithms, and two specific examples: Nocedal’s limited memory BFGS algorithm for
unconstrained minimization [19] and Sorensen’s implicitly-restarted Arnoldi method for large-
scale eigenvalue problems [23].

We have defined HCL classes to represent the algorithms themselves. The reason for doing
so 1s that complicated algorithms are often built up out of simpler algorithms; if these algo-
rithms are objects, then it is easier to put the building blocks together and also to experiment
with various choices.

For instance, consider a minimization algorithm, such as limited memory BFGS, that is
based on a line search. Several popular line search algorithms might be suitable. Because we
define a line search base class, the choice of line search algorithm can be deferred to the user.

At this time our algorithm base classes are tentative and rather simple. We discuss three:

e HCL LinearSolver: Solves a linear operator equation (mainly intended for iterative
algorithms such as PCG);

e HCL LineSearch: Searches for a minimizer of a functional along a line segment;

e HCL UMin: Minimizes a nonlinear functional subject to no constraints.

16



Each of these classes contains just two methods: Parameters and Solve or Search or
Minimize, respectively. The Parameters method provides a way to access or change the
scalar parameters (such as stopping tolerances) needed by each algorithm (details are found
in the documentation).
Here is a fragment of a main program that invokes the limited memory BFGS algorithm;
note how the line search is chosen and passed to the BFGS constructor:

HCL_LineSearch * line; // Choose the line search

if( flag == 1 ) // Dennis & Schnabel line search
line = new HCL_LineSearch_DS( "lsearch.dat" );

else if( flag == 0 ) // Fletcher line search
line = new HCL_LineSearch_F1( "lsearch.dat" );

else if( flag == 2 ) // More & Thuente line search

line = new HCL_LineSearch_MT( "lsearch.dat" );
HCL_UMin_l1bfgs umin( line,"umin.dat" ); // Create the minimization
// algorithm
umin.Minimize( f,a ); // Minimize f using starting point a

In the above code, the algorithmic parameters are read from files by the constructors.

3 Performance

The use of C++ for scientific computation often raises concerns about run-time efficiency.
Because the use of pointers introduces the aliasing problem, it has traditionally been more
difficult to design optimizing compilers for C than for Fortran. C++ inherits this characteristic
from C, and, in addition, some of its most important constructs, such as virtual functions,
incur run-time overhead.

In this section we argue that HCL, if used properly, can achieve efficiency comparable to

code written entirely in Fortran. There are two basic keys to achieving high-efficiency with
CH+:

o Avoid defining virtual functions that perform very little computation. Because C++
supports in-lined functions (that is, function calls that are replaced by the compiler with
equivalent executable code), there is no reason to avoid the clarity provided by function

calls because of concerns about the function call overhead. However, virtual functions
cannot be in-lined, so care must be exercised.

e Take advantage of the fact that C++ allows mixed-language programming. Simulators
and other computationally-intensive parts of the code can be written in Fortran or some
other highly efficient language.

The second point is the key. HCL is designed to ease the high-level organization of the code,
while allowing the application scientist as much flexibility as possible. This flexibility includes
the ability to choose the most efficient programming language.

HCL was designed specifically for large-scale optimization problems in which the target
functional or simulation requires a significant amount of computation. In an application that
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is dominated by the generic optimization or linear algebra costs, HCL might be noticeably
slower than a similar Fortran code (though not by as much as one might expect). We give
examples below. We also point out that the performance gap between C++ and Fortran,
while it might never be eliminated, is decreasing (see [22], for example).

3.1 The limited memory BFGS algorithm

The limited memory BFGS algorithm, due to Nocedal [19], is a variant on the popular BFGS
algorithm for unconstrained minimization. These are both quasi-Newton methods that build
increasingly good Hessian approximations as the iteration proceeds. Since the limited memory
version defines the approximation to the inverse Hessian in terms of outer products of vectors,
it is easily implemented in HCL.

Below we give part of the main loop of the Minimize method from the class HCL_UMin_1bfgs.
Note that the inverse Hessian approximation has been implemented as a class derived from
HCL LinearOp.

// Compute the 1mBFGS search direction (the inverse Hessian
// approximation is a linear operator pointed to by H)

H->Image( feval->GradientRef () ,*dir );
dir->Neg();

// Perform line search

HCL_EvaluateFunctional *tmp_eval = feval;
feval = LineSearch->Search( f,x,*xnext,*dir,tmp_eval );
if( feval == NULL ) feval = tmp_eval;
LineSearch->Parameters() .GetValue("TermCode", 1ls_result);
LineSearch->Parameters() .GetValue("MaxTkn", MaxTkn) ;
Itnt++;
TermCode = StoppingTest(x,*feval,ls_result, MaxTkn) ;
if( TermCode )
{
if( ls_result >= 0 )
{
HCL_delete( tmp_eval );
x.Copy( *xnext );
f_x = feval->ValueRef();
}
Display( £,x );
Clean();
return TermCode;

// Update 1mBFGS inverse Hessian approximation
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if( 1s_result ) // LineSearch failed; reset to steepest descent

{ // direction
H->Reset () ;
StDescDir = 1;
¥
else
{
H->Update( x,*xnext,tmp_eval->GradientRef(),
feval->GradientRef() );
StDescDir = 0;
}

We now compare the performance of this algorithm with the Fortran version (LBFGS)
implemented by Nocedal and available from the Netlib software repository. We apply both
codes to two problems:

1. the extended Rosenbrock function [16], a simple test problem for unconstrained mini-
mization with varying dimension n;

2. the OLS functional (6).

Both algorithms call the same code to compute the function value and gradient. Results are
presented in Tables 5 and 6, where “f calls” is the number of function and gradient evaluations
and the times are in seconds on a Sun SPARC 10 workstation. (There are slight differences
between Nocedal’s and our implementation, so the numbers of iterations and function eval-
uations are slightly different.) The results suggest that there is no significant difference in
performance between the two algorithms.

n f calls (LBFGS) | f calls (HCL) | time (LBFGS) | time (HCL)
1,000 49 58 0.13 0.12
10,000 33 58 1.59 1.59

100,000 92 o8 33.04 34.29

Table 5: Comparison of Nocedal’s LBFGS code with HCL_UMin_lbfgs on the extended Rosen-

brock function.

n | fcalls (LBFGS) | f calls (HCL) | time (LBFGS) | time (HCL)
121 69 77 5.51 5.51
441 75 78 29.67 31.93
1681 77 75 181.96 183.21

Table 6: Comparison of Nocedal’s LBI'GS code with HCL_UMindbfgs on the elliptic inverse

problem (6).
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3.2 Implicitly—restafted Arnoldi

The implicitly-restarted, k-step Arnoldi algorithm (see [23]) is an algorithm for computing
a few eigenvalues and eigenvectors of a linear operator. It has been implemented in a For-
tran package called ARPACK [13]. We implemented ARPACK within the HCL framework,
creating an algorithm class called HCL_IRArnoldi, and present here a comparison of the per-
formance of the two codes.

The comparison is a little more complicated than it was for the limited memory BFGS
algorithm. In the latter case, the linear algebra performed by the optimization code consists
of level-1 operations; since both LBFGS and HCL use explicit loops when the vectors are in-
core, the two codes cannot differ greatly in performance. The most significant linear algebra
performed in the Arnoldi method is the Gram-Schmidt algorithm; ARPACK uses the classical
Gram-Schmidt algorithm instead of the more stable modified Gram-Schmidt technique in
order to allow the use of level-2 BLAS (the use of re-orthogonalization alleviates concerns
about stability in this context).

As currently structured, HCL does not allow the use of level-2 BLAS in the same context—
the fundamental object is a basis for a subspace, conveniently represented as a “matrix” of
column vectors, which does not admit the use of the BLAS when the vectors are abstract (the
vectors are not stored as columns in an in-core array). Therefore, when the computational
cost is dominated by the generic linear algebra calculations, ARPACK can be significantly
faster than HCL_IRArnoldi on a platform with optimized level-2 BLAS. (Countering this is
HCL’s ability to deal with essentially any vector storage scheme, and its avoidance of reverse
communication.) On the other hand, when calculation of the action of the operator on a
vector is expensive, the two codes show similar performance.

Moreover, if the performance penalty described above were considered a serious drawback,
it could be eliminated in the following manner. Define methods to create and manipulate
bases for subspaces in the vector space base class, and require them to be implemented for
each concrete vector space. Then the implementor of the vector class would have the option
of using level-2 BLAS or similarly efficient algorithms appropriate for the storage type. The
resulting gain in efficiency would have to be balanced against the added burden imposed on
those programmers who need to implement their own vector classes.

To 1llustrate the above discussion, we compared ARPACK and HCL_IRArnoldi on the
following two problems:

L. a finite-difference operator representing the convection-diffusion operator

on the unit square, subject to Dirichlet boundary conditions. This is a test problem
shipped with ARPACK.

2. The Hessian of the OLS functional (6).

Note that in the first problem, the action of the operator is quite inexpensive, while in the
second it is relatively expensive.

20



The results are presented in Tables 7 and 8, in which we report the problem size and the
time to perform 10 iterations of the Arnoldi method. The results are as expected: ARPACK
is noticeably faster on the first problem, and the two codes show the same performance on
the second.

These results are obtained using the optimized BLAS provided on the SGI Power Chal-
lenge, using one processor. For the first problem, on which ARPACK is significantly faster,
the performance gap depends on the size of the problem (HCL takes anywhere from 31%
longer to 106% longer). This is presumably due to the dependence of the efficiency of the
optimized BLAS on the size of the fast cache memory on the SGI machine. Also, although
we don’t report the results here, ARPACK was no faster than HCL if the generic BLAS were
used.

For the convection-diffusion problem, we used an N x N grid, a Krylov subspace of length
25, and p = 20. We asked for 4 eigenvalues and the corresponding eigenvectors. For the OLS
problem, the same parameters were used, except the length of the Krylov subspace was 20.

N | time per 10 iterations (s) (ARPACK) | time per 10 iterations (s) (HCL)
20 0.49 0.71
40 0.95 1.70
60 1.75 3.44
80 2.92 5.87
100 4.44 9.04
120 6.32 13.00
140 9.57 18.27
160 15.84 25.64
180 25.30 35.12
200 35.39 46.45

Table 7: Comparison of ARPACK with HCL_IRArnoldi on the convection-diffusion example.

N | time per 10 iterations (s) (ARPACK) | time per 10 iterations (s) (HCL)
10 0.51 0.55
20 1.85 1.94
30 4.37 4.69
40 8.50 8.99
50 14.66 15.24
60 23.79 24.98
70 40.05 40.90

Table 8: Comparison of ARPACK with HCL_IRArnoldi on the OLS example.
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4

Availability of HCL software

The Hilbert Class Library is available under the GNU Library Public License. Source code,
together with makefiles and scripts for installation, can be downloaded from the following

URL:

www.trip.caam.rice.edu/txt/hcldoc/html/index.html

Queries can also be made by electronic mail to hcl@caam.rice.edu.
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