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Abstract  In this paper, we design a robust lead compensator for a real Electromechanical Actuator (EMA) 
harmonic drive by introducing an approach based on H∞ control theory. Here, we address three main topics; 
experimental identification, uncertainty modelling, and robust control design for a real EMA harmonic drive system. 
This method verifies good tradeoff between the powerful H∞ controller and the unique features of compensators, 
such as: simplicity, low cost and easy implementation. The H∞ controller and the extracted compensator are almost 
identical within the EMA bandwidth range. Simulation and test results prove the effectiveness of the proposed 
approach and the superiority of the performance of the designed robust EMA with lead compensator based on H∞ 
controller over the original EMA; this preference is pertaining to its robustness to parametric uncertainties and high 
performance. 
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1. Introduction 
Electromechanical actuators (EMA) are finding 

increasing use in the robotic and aerospace applications, 
since they have attractive characteristics such as: 
simplicity, reliability, low cost, good dynamic 
characteristics, and easy control [1,2].  

Modelling and identification of the plant properly is the 
most effective step in control system design procedure. A 
good model is the simplest model that best explains the 
dynamics and successfully simulates or predicts the output 
for different inputs [3]. However, EMA modeling is 
subjected to uncertainty due to several reasons including 
operating point changes, perpetual parametric variations 
because of temperature changes, aging, unmodelled 
dynamics, and asymmetric behaviour. Consequently, the 
desired EMA's performance will be unachievable and, in 
some cases, its stability may be lost. Usually, based on 
experience, this problem will not be solved by using the 
conventional controllers; instead robust controllers with 
regard to the uncertainties in the model are needed to 
obtain the desired performance and stabilization demands 
in dealing with dynamic uncertainties [4]. 

Much effort is devoted to design robust controllers for 
uncertain systems based on different robust design 
methods known in literature such as Kharitonov's theorem, 
small gain theorem, H∞, and Quantitative Feedback 
Theory (QFT) [5,6,7]. Computational methods for 

determining the set of all stabilizing controllers, of a given 
order and structure, for linear time-invariant delay free 
systems are reported in [8,9]. A graphical design method 
of tuning the PI and PD controllers achieving gain and 
phase margins is developed in [10,11]. Besides, in [12], 
the Kharitonov theorem is exploited for characterizing all 
PID controllers that stabilize an uncertain plant, also PID 
controllers design for systems without time delay were 
presented in [13,14]. H∞ theory based controller was 
designed to get faster and more accurate EMA system in 
[15,16] and to improve the tracking and resolution of a 
servo positioning system in [17]. But, a well-known 
drawback of the H∞ controller, it is high order controllers 
and high computational cost. 

In this paper, the EMA harmonic drive system is 
modelled as linear system with parametric uncertainty. In 
addition, the multiplicative uncertainty describing the 
deviation of the nominal model from the real EMA system 
due to the ignored nonlinearities is extracted. A method 
based on H∞ theorem and Bode diagram is proposed to 
design a lead compensator for the EMA system. This 
controller verifies good tradeoff between the powerful H∞ 
controller and the unique features of compensators. 

After presenting this brief introduction, the reader will 
be informed about more details which have been 
organized as following: The EMA experimental set-up is 
described in section 2. In section 3, identification and 
uncertainty modelling are presented. The method of 
deriving the compensator from the H∞ robust controller 
will be explained, and the designed EMA system 
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validation is carried out in section 4. Finally, conclusion is 
stated. 

2. Experimental Set-up 
Our EMA consists of a DC motor with integrated 

harmonic drive gearing with 300:1 reduction ratio, driven 
by PWM power driver, and a potentiometer as position 
sensor fixed on the output shaft with coefficient of 0.5 
Volt/deg, as shown in Figure 1. In this figure, r is the set 
point voltage, v is the PWM output, δ is the output angle, 
and δv is the angle measured by the potentiometer in volts. 
Here, r, v, and δv are acquired from experimental tests by a 
sampling time of 1 msec. 

 

Figure 1. EMA harmonic drive scheme 

3. System Identification and Uncertainty 
Modelling 

The objective of system identification is to find the 
approximate models of dynamic system based on 
knowledge of the observed input and output data to be 
used in uncertain modelling. 

In this section, the linear model of the harmonic drive 
system is identified based on the test data. The captured 
data, related to several test sets at different conditions, 
were used for model estimation and validation purposes. 
The data of every set were divided into two portions: first 
one was used in the model estimation process 
(identification data), and the second was utilized in the 
validation process (validation data). The data captured 
from the real plant were used in the iterative prediction-
error estimation method (PEM) [18]. The discrete time 
model is then transformed to continuous time model to be 
used in the uncertainty modelling. 

3.1. System Identification 
The input is the voltage to motor and the output is the 

potentiometer output. In this case, the PRBS signal cannot 
be used for identification since the test takes place in the 
open loop form and PRBS signal transfers the position 
sensor to saturation condition. Hence, the input signal for 
identification process is chosen to be a symmetric square 
wave and the output angle is measured from the 
potentiometer. But, to satisfy the persistent excitation (PE) 

property, we prepare numbers of square waves with 
different frequencies and amplitudes for identification. 
Frequencies of square waves are chosen between 0 to 20 
Hz and their amplitudes are chosen between 0.1 to 27 
volts. These values are chosen based on the desirable 
bandwidth and operational conditions of motor, 
respectively. Seven imported data sets corresponding to 
different amplitudes were used for model identification. 
For instance, one test set results of the EMA harmonic 
drive system and its identified model are depicted in 
Figure 2. 

The average error produced by a model is encapsulated 
in the mean squared error (MSE), which measures the 
precision of the estimated model. It is calculated as: 
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Figure 2. Measured data and identified model for the EMA harmonic 
drive system 
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where y is the actual (measured) output, ym is the output of 
the model, and n is the number of data samples. 
Furthermore, the model should attain best fitting to the 
measured data. The percentage of the output variation that 
is explained by the model is: 
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where ( )y mean y
−
= . 

The identified models are tabulated with their MSEs 
and fitting percentages in Table 1. 

3.2. Model Uncertainty Estimation 
Considering the transfer functions for the identified 

models tabulated in Table 1, the parametric uncertain 
model was built to be used in H∞ robust controller design. 

 ( )
( )MHD

KG s
s s q

=
+

 (3) 

The uncertain parameters of the model and their 
intervals are: 
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The nominal model can be written as follows: 

 ( ) 961
( 61.4)nomG s

s s
=

+
 (4) 

Table 1. Identification Results for the EMA HarmonicDrive System 
Test set No. Model MSE Fitting (%) 

1 
1310

s(s 72.55)+
 0.0079 96.8 

2 
1187.4

s(s 63.86)+
 0.0034 95.7 

3 
636

s(s 64.85)+
 0.0079 82.2 

4 
582.6

s(s 56.5)+
 0.0072 86.2 

5 
1236

s(s 79)+
 0.0033 94.4 

6 
1308

s(s 76.91)+
 0.0032 96 

7 
655

s(s 57.45)+
 0.049 72 

4. Robust Controller Design 
In this section, a novel approach to design a robust lead 

compensator based on H∞ robust controller theory will be 
detailed. The overall philosophy in the design procedure 
presented here is to design a robust H∞ controller, then 
reduce its order maintaining its characteristics in the 
working frequency range, next it will be re-arranged to get 
the final compensator form. 

4.1. System requirements 
The required performance of the EMA system to be 

designed is a deadbeat response as shown in Table 2. 

Table 2. Time DomainSystemPerformanceRequirements 
Parameter Value 
Rise time tr< 20 msec 

Settling time ts< 35 msec 
Steady-state position error 0 

Overshoot < 1% 
Consequently, the frequency domain system 

requirements may be derived from Table 2 as follows: The 
settling time constraint leads to minimum bandwidth 10 
Hz. The overshoot constraint (< 1%) assigns the minimum 
damping ratio to 0.826, and the minimum phase margin 
should be 40 deg. 

4.2. H∞ Robust Controller Design 
H∞ theory presents powerful frequency-domain 

framework for capturing control design requirements such 
as bandwidth, response speed, robust stability, and 
disturbance rejection [19]. The EMA system in H∞ 
framework is illustrated in Figure 3. 

 

Figure 3. EMA system in H∞ framework 

K is the robust controller, G: Motor and harmonic drive 
system, r: command reference signal, u: control signal, e: 
tracking error, and y: plant output. Define the error 
sensitivity function 1(1 )S GK −= + , the control signal 

sensitivity function 1(1 )U K GK −= + , and the 

complementary sensitivity function 1(1 )T GK GK −= + . 
Robust performance constraint: 1eW S ∞ ≤  

Robust Stability constraint:  1WT ∞ ≤  

Control signal (saturation) constraint:  1uW U ∞ ≤  
W, Wu and We are frequency dependent weighting 

functions. 
The objective is to find controller K that stabilizes Gnom 

and satisfies H∞ norm of a transfer matrix consisting of 
weighting functions is smaller than one, i.e.: 

1.
e

u

W S
W U
WT ∞

≤  This problem is called mixed sensitivity 

problem [19]. 
Here, we consider the multiplicative uncertainty to 

describe the deviation of the nominal model from the real 
system due to the ignored nonlinearities in real system. 
Assume GMHD is the models of the motor and harmonic 
drive, identified from the test sets tabulated in Table 1, 
and Gnom is the nominal model. Using the multiplicative 
uncertainty definition: 

 ( ) ( ) ( )( )1 ( )MHD nomG s s W s G s= + ∆  (5) 

where W(s) is the uncertainty weighting function, and Δ is 
an operator with infinity-norm less than unity [20], i.e. 

( ) 1s ∞∆ < , so 

 ( ) ( )
( ) ( ) ,MHD nom

nom

G j G j
W j

G j
ω ω

ω ω
ω

−
≤ ∀  (6) 

By plotting the frequency response of 
( ) ( )

( )
MHD nom

nom

G j G j
G j
ω ω

ω
−

, the multiplicative uncertainty 

weighting function can be extracted from the upper bound 
of different uncertainty frequency plots of the identified 
uncertain system; they are shown in Figure 4. The 
multiplicative uncertainty weighting function is 
approximated by: 

 ( ) 110
275

sW s +
=  

which illustrates that robustness boundary provides 8 dB 
of gain below 30 rad/sec and suppress to more than -10 dB 
above 600 rad/sec. See Figure 5. 
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Figure 4. Uncertainty and weighting function frequency responses; 
simulation 

It may be concluded from Figure 4 that the uncertainty 
at low frequencies is small (about -7.5 dB), which allow 
robust control of the EMA system within this bandwidth.  
W is the robustness weighting function to be used in H∞ 
robust controller design. Use of this identified uncertainty 
model in the robust control design procedure decreases the 
deviations between designed model performance and 
experimental results [21]. 

The sensitivity weighting function is assigned to: 

 ( ) 3
0.1 501.2

50 10
e

sW s
s −

+
= ×

+ ×
 

which indicates sensitivity reduction of 100:1 (- 40 dB) 
for frequencies up to 1 rad/sec (i.e. at low freq. the closed 
loop should reject disturbance at the output by a factor of 
100 to 1 or the steady state tracking errors due to step 
input should be less than 1%), as depicted in Figure 5. 
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Figure 5. Closed loop sensitivity, complementary sensitivity, robustness 
and performance functions with H∞ controller; simulation 

The control signal sensitivity weighting function Wu 
(the actuator saturation weighting function) is chosen 
considering the physical limitation of the EMA. Thus, it 
can be considered to be a constant, so that the maximum 
expected input r (2 volt in this case) never saturates the 
actuator (saturation voltage 27 volt). Its value is estimated 
to be: Wu = 0.02. 

The H∞ controller, designed by Matlab and verifying 
H∞ cost γ = 0.721, is: 

 163938.5s(s 61.4)
( 4603)( 342.4)(s 0.05)

K
s s

+
=

+ + +
 (7) 

Since the H∞-norm of the closed-loop system is less 
than one, the condition: 1WT ∞ ≤  is satisfied in the 
given case. This may be checked by computing the 
sensitivity function of the closed-loop system and 
comparing it with the inverse of the performance 
weighting function. The result of the comparison is shown 
in Figure 5. It is seen that the sensitivity function lies 
below 1/We. 

Similarly, the condition 1WT ∞ ≤  may be checked by 
computing the complementary sensitivity function of the 
closed-loop system and comparing it with the inverse of 
therobustness weighting function. The result of the 
comparison is shown in Figure 5, where the 
complementary sensitivity function lies beneath 1/W. 

4.3. Compensator Derivation 

16

18

20

22

24

26

28

30

M
ag

ni
tu

de
 (d

B)

 

 

10
-1

10
0

10
1

10
2

0
5

10
15
20
25
30
35
40
45

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (Hz)

Lead Compensator

Hinf Controller

 

Figure 6. H∞ controller and the reduced one; simulation 

Low order controllers are normally preferred over high 
order controllers in control system since they are 
computationally less demanding; easier to implement and 
they have higher reliability due to fewer things to go 
wrong in the hardware [22]. The dc-gain of EMA system 
plays an important role in assessing its performance, for 
this reason it should be maintained. The 3rd order designed 
H∞ controller will be reduced in a manner to keep its 
characteristics in the working frequency range using 
balanced residualisation (singular perturbation 
approximation) method which gives best approximation at 
low frequencies [23]. 

 ( ) 35.6(s 61.4) (1 )
( 342.3) (1 )red

TsK s A
s Ts

α+ +
= =

+ +
 (8) 

which is a lead compensator with A = 35.6, α = 5.58, and 
T = 2.92 x 10-3. Figure 6 shows that the H∞ and the 
reduced order controllers are almost identical in the range 
below 100 Hz which is sufficiently wider than our 
application's range (10 Hz). This controller can be easily 
realized using passive and active components consisting 
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of resistors, capacitors, transistors, diodes and op-amps 
[24].  

4.4. Compensator Realization 
The lead compensator is realized by active components 

circuit shown in Figure 7.  

 

Figure 7. Designed compensator circuit 

The compensator transfer function is: 

 ( ) 35.6(s 61.4)
( 342.3)redK s
s

+
=

+
 (9) 

From the circuit diagram shown in Figure 7, R1, R2 and 
C form the compensator network where as Rf and R0 form 
the compensator gain (A). The transfer function from the 
input voltage to the controller V1 to the output voltage V2 
is: 

 2 1

1 21

1 2

1s
V R C

R RV s
R R C

+
=

+
+

 (10) 

Op-Amp: TL074, R1 = 162 KΩ, C = 0.1 μF and R2= 36 
KΩ.The constant gain A = 35.6 is verified by the used 
compensator circuit in Figure 7; this is given by: 

 0
0

1 35.6; 34.6 Ω; 1 Ωf
f

R
A R K R K

R
= + = = =  

4.5. Performance Validation of the Robust 
EMA with H∞ derived Compensator 

Table 3 illustrates the time response values for the H∞ 
controller and the derived lead compensator, which clarify 
that there is no considerable performance retreat.  

Table 3. Characteristics of Robust EMAs with H∞Controller and 
Derived Compensator 

Model tr(msec) ts(msec) Over-
shoot(%) 

S. S. 
Error 

Robust EMA with H∞ 
controller 15.7 26 0.08 0 

Robust EMA with 
reduced order H∞ (lead 

compensator) 
16.2 26.9 0.05 0 

The step responses and bode plots of the uncertain 
closed loop EMA syetem with the derived lead 
compensator are depicted in Figure 8 and Figure 9, 
respectively. 
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Figure 8. Step responses of nominal and uncertain closed loop EMA 
with the derived lead compensator; simulation 
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Figure 9. Closed loop frequency response for nominal and uncertain 
EMA with the lead compensator; simulation 

The new designed EMA system with lead compensator 
derived from the H∞ controller, in addition to its 
robustness to parametric uncertainties, has almost the 
same dynamics of the H∞ controller and the simplicity 
advantages of compensators. 

In order to verify that other system requirements in 
Table 2 are met with the derived compensator, the margins 
and bandwidths were tabulated in Table 4. 
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Figure 10. Control signals with H∞ controller and the derived lead 
compensator; simulation 
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Table 4. Margins of Uncertain Plants with the Compensator 
TF Gain margin (dB) Phase margin (deg) Bandwidth (Hz) 

Gnom 33.9 73.1 21 
G1 31.5 72.7 26.9 
G2 32.1 70.8 25 
G3 37.6 80.4 14.2 
G4 38.1 76.6 13.5 
G5 32.2 76.6 25.1 
G6 31.6 74.5 26.5 
G7 37.1 76 15 
It is noted that system requirements are verified. 
The control signal may be checked so that the actuator 

will not be saturated during operation. The control signals 
to the actuator corresponding to maximum input command 
(2 volts) with the designed robust controllers were plotted 
(as illustrated in Figure 10). 

Finally, the performance of the robust EMA with H∞ 
derived compensator was compared with the original 
classic controller EMA performance. It proves, in addition 
to its robustness to parametric uncertainties, better 
dynamic performance, as shown in Figure 11. 
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Figure 11. Measured step for original and robust EMA systems; 
experiment 

5. Conclusion 
An approach to design robust compensator, based on 

H∞ theory, was applied on an EMA harmonic drive system. 
It leaded to a robust EMA system which is, in addition to 
its robustness, simple and easily implementable. 

The robust controller design and validation procedure is 
studied by simulation and experiments, and its 
effectiveness is proven by comparing the performance of 
compensator with the robust H∞ controller and the original 
EMA system with classic controller. The comparison has 
demonstrated the effectiveness of the proposed robust 
EMA system with lead compensator. 

The proposed approach applied on the EMA system, 
may be applied on other control systems operating over a 
relatively low range of frequencies. 
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