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Abstract— Recent developments in computer and commu-
nication technologies have led to a new type of large-scale
resource-constrained wireless embedded control systems. It is
desirable in these systems to limit the sensor and control
computation and/or communication to instances when the sys-
tem needs attention. However, classical sampled-data control is
based on performing sensing and actuation periodically rather
than when the system needs attention. This paper provides
an introduction to event- and self-triggered control systems
where sensing and actuation is performed when needed. Event-
triggered control is reactive and generates sensor sampling and
control actuation when, for instance, the plant state deviates
more than a certain threshold from a desired value. Self-
triggered control, on the other hand, is proactive and computes
the next sampling or actuation instance ahead of time. The
basics of these control strategies are introduced together with
a discussion on the differences between state feedback and
output feedback for event-triggered control. It is also shown
how event- and self-triggered control can be implemented using
existing wireless communication technology. Some applications
to wireless control in process industry are discussed as well.

I. INTRODUCTION

In today’s standard control textbooks, e.g. [1], [2], periodic
control is presented as the only choice for implement-
ing feedback control laws on digital platforms. However,
questions related to periodic vs aperiodic implementations
have gone in and out of fashion since feedback control
loops started being implemented on computers. Some early
examples include the following references [3], [4], [5], [6],
[7], [8].

This paper is concerned with the latest wave of the
periodic vs aperiodic control debate or, as we prefer to call it,
periodic vs event-based control. There are two fundamental
reasons for the resurgence of this debate in the last 5 or
6 years. The first, is the increasing popularity of (shared)
wired and wireless networked control systems that raise the
importance of explicitly addressing energy, computation, and
communication constraints when designing feedback control
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loops. Event-based control offers some clear advantages with
respect to periodic control when handling these constraints
but it also introduces some new theoretical and practical
problems. The second reason is the appearance of two
papers [9], [10] that highlighted some of the advantages of
event-based control and motivated the development of the
first systematic designs of event-based implementations of
stabilizing feedback control laws, e.g.,[11], [12], [13], [14].
Since then, several researchers have improved and general-
ized these results and alternative approaches have appeared.
In the meantime, also so-called self-triggered control [15]
emerged. Event-triggered and self-triggered control systems
consists of two elements, namely, a feedback controller that
computes the control input, and a triggering mechanism that
determines when the control input has to be updated again.
The difference between event-triggered control and self-
triggered control is that the former is reactive, while the latter
is proactive. Indeed, in event-triggered control a triggering
condition based on current measurements is continuously
monitored and when violated, an event is triggered. In self-
triggered control the next update time is precomputed at a
control update time based on predictions using previously
received data and knowledge on the plant dynamics.

Most of the existing event-triggered control approaches
employ the assumption that the full state information is avail-
able, even though in most practical situations this assumption
is violated. As the separation principle does not hold in
general for event-triggered control systems [16], output-
based schemes are indeed hard to design and optimize.
Recently, some work on output-based event-triggered control
emerged and in this paper we will discuss a few of these
solutions. We distinguish these solutions based on their time
sets and the adopted control laws.

The nature of the time sets will differentiate existing
event-triggered control strategies based on the use of either
continuous-time or discrete-time controllers/event-triggering
mechanisms. This differentiation does not require much ex-
planation, although one comment is relevant. In many works
studying discrete-time event-triggered control schemes, the
plant is also considered to be of a discrete-time nature.
Clearly, this allows to obtain direct parallels between some of
the continuous-time event-triggered control approaches and
the discrete-time counterparts. However, it is more interesting
to take a more “sampled-data”-like approach on discrete-time
event-triggered control schemes in the sense that the behavior
is studied when this controller interacts with a continuous-
time plant. Also stability and performance properties have
to be considered then in a continuous-time setting. In this
setup the closed loop consists of a continuous-time plant



and an event-triggered control strategy, which is a discrete-
time controller operating in a periodic time-triggered manner.
In this context, sometimes the term periodic event-triggered
control is used, see [17], [18].

Regarding the differentiation on the nature of the output-
based control law, we distinguish the approaches based on
whether there is an observer or not. In the former cases we
will talk about an observer-based control law, and in the
latter about a direct output-based law. Based on an observer,
different strategies can be implemented. In most cases the
observer reconstructs the plant state using solely event-based
information in the sense that it only applies innovation
steps exploiting received measurements at the event times,
although some schemes also exploit the information present
at synchronous (time-triggered) instants of time at which
no events occur. The latter is, for instance, the case in
[19], [20], [21]. In fact, [19] states literally “absence of
an event is however information that can be used by the
observer,” see also [22]. The observer-based schemes can still
be categorized further based on the fact if the corresponding
event-triggering conditions use information of the observer
such as the estimated state, as, e.g., in [20], [23], [24] or not
[21], [25]. The former schemes typically run the observer at
the sensor side using essentially all measurements available,
while at the controller side a predictor-like structure also pro-
duces a state estimate, which is based on only sporadically
received information from the sensor system (including the
observer) based on the event-triggering mechanisms. Often
the event-triggering mechanisms provide new information to
the predictor when the difference between the state estimate
of the predictor deviates too much from the state estimate
available in the observer.

Next to providing an introductory overview on some of
the works in the area, the main objective of this paper is
to emphasize the key ideas in three different aspects of
aperiodic control: the basics on and differences between
event-triggered and self-triggered control, the use of output-
based event-triggered control, and event-based control over
wireless communication networks. The outline of the paper
is as follows. The basic ideas of event-triggered control
are introduced in Section II. Self-triggered control is dis-
cussed in Section III. Output-based event-triggered control
is surveyed in Section IV followed by exemplary approaches
for continuous-time direct output-based control (Section V)
and discrete-time observer-based control (Section VI). Event-
triggered transmission in wireless control systems is dis-
cussed in Section VII. Finally, concluding remarks are given
in SectionVIII.

II. EVENT-TRIGGERED CONTROL

In this section we introduce the main ideas of event-
triggered control following [12]. In order to simplify the
presentation we consider the linear case only even though
the results in [12] were originally developed for nonlinear
systems.

We start with a linear plant

d

dt
xp = Apxp +Bpu, xp ∈ Rnp , u ∈ Rnu (1)

and assume that a linear feedback control law

u = Kxp (2)

has been designed rendering the ideal closed-loop system

d

dt
xp = Apxp +BpKxp (3)

asymptotically stable, i.e., rendering the real part of the
eigenvalues of Ap + BpK negative. The question that now
arises is how to implement the feedback control law (2)
on a digital platform. One possibility is to periodically
recompute (2) and keep the actuator values constant in
between the periodic updates. Rather than using time (the
period) to determine when (2) should be recomputed, we
are interested in recomputing (2) only when performance is
not satisfactory. One way to define performance is to use a
Lyapunov function for the ideal closed-loop system (3). Such
a Lyapunov function, that we denote by V (xp) = xTp Pxp for
some symmetric and positive-definite matrix P , satisfies

d

dt
V (xp(t)) =

∂V

∂xp
(Ap +BpK)xp = −xTpQxp, (4)

where Q is guaranteed to be positive-definite. Since the time
derivative of V along the solution of the closed-loop system
is negative, V decreases. Moreover, the rate at which V
decreases is specified by the matrix Q. If we are willing
to tolerate a slower rate of decrease, we would require the
solution of an event-triggered implementation to satisfy the
weaker inequality

d

dt
V (xp(t)) ≤ −σxTpQxp (5)

for some σ ∈ [0, 1[. Note that by choosing σ = 1 (5)
becomes (4), while for σ < 1 (5) prescribes a slower rate of
decrease for V .

The requirement (5) suggests that we only need to recom-
pute (2) and update the actuator signals when (5) is about to
be violated, i.e., when (5) becomes an equality. In order to
write such an equality in a convenient manner, we assume
the inputs to be held constant in between the successive re-
computations of (2). This is often referred to in the literature
as sample-and-hold and can be formalized as

u(t) = u(tk) ∀t ∈ [tk, tk+1[, k ∈ N, (6)

where the sequence {tk}k∈N represents the instants at
which (2) is re-computed and the actuator signals are up-
dated. We refer to these instants as the triggering times or
execution times. For simplicity, we assume that the process
of collecting sensor measurements, re-computing (2) and
updating the actuators can be done in zero1 time. We now

1This idealized assumption describes the fact that in many implementa-
tions this time is much smaller than the time elapsed between the instants
tk and tk+1. This assumption is not essential and the interested reader can
consult [12] for a specific extension of the results when this assumption
does not hold.



introduce the error e defined by

e(t) = xp(tk)− xp(t) ∀t ∈ [tk, tk+1[, k ∈ N.

Using this error we express the evolution of the closed-loop
system during the interval [tk, tk+1[ by

d

dt
xp(t) = Apxp(t) +BpKxp(tk)

= Apxp(t) +BpKxp(tk) +BpK(xp(t)− xp(t))
= Apxp(t) +BpKxp(t) +BpKe(t).

We can now use this expression to rewrite the time derivative
of V (xp(t)) as

d

dt
V (xp(t)) =

∂V

∂xp
(Ap +BpK)xp(t) +

∂V

∂xp
BpKe(t)

= −xTp (t)Qxp(t) + 2xTp (t)PBpKe(t) (7)

Substituting (7) in inequality (5) we arrive at[
xTp (t) eT (t)

] [(σ − 1)Q PBpK
KTBTp P 0

] [
xp(t)
e(t)

]
≤ 0. (8)

The triggering times tk can now be defined as the times at
which the following equality holds

zT (tk)Ψz(tk) = 0 (9)

with

Ψ =

[
(σ − 1)Q PBpK
KTBTp P 0

]
, z(tk) =

[
xp(tk)
e(tk)

]
.

The event-triggered implementation of the feedback control
law (2) thus consists in keeping the actuator values constant
as long as the triggering condition (9) is not satisfied and re-
computing (2) and updating the actuators when the triggering
condition (9) is satisfied (assuming z(0)TΨz(0) < 0). By
changing the matrix Ψ we obtain other quadratic triggering
conditions. For instance, in [12] the triggering condition
‖e‖2 ≤ σ‖x‖2 is used that corresponds to the choice

Ψ =

[
−σI 0

0 I

]
where I denotes the identity matrix.

All of these quadratic triggering conditions are designed
so as to guarantee a desired rate of decay for the Lyapunov
function V through an inequality of the form (5). Hence,
asymptotical stability and performance, as measured by the
rate of decay of V , are guaranteed by the different choices of
Ψ in the triggering condition (9). Furthermore, the triggering
times implicitly defined by (9) will not be equidistant, in
general, and thus event-triggered implementations result in
aperiodic control. In fact, the set of triggering times {tk}k∈N
can be formally defined by

t0 = 0, tk+1 = inf{t ∈ R | t > tk ∧ zT (t)Ψz(t) = 0}.

Since these instants are only known at execution time,
the scheduling of energy, computation, and communication
resources for event-triggering control becomes a very chal-
lenging problem. Moreover, the implicit definition of the
times raises the question of the existence of a lower bound

τ∗ > 0 for tk+1− tk, k ∈ N. The largest value τ∗ for which
tk+1 − tk ≥ τ∗ holds for all k ∈ N along all trajectories
of interest, is called the minimal inter-event time. If the
minimal inter-event time is zero, then an event-triggered
implementation will require faster and faster updates and thus
cannot be implemented on a digital platform. It was shown
in [12] that such minimal inter-event time is guaranteed to
exist even in the nonlinear case under suitable assumptions.
For linear plants and linear state-feedback controllers, the
minimum inter-event time is always guaranteed to exist.

Theorem 1 ([12]): Consider the linear plant (1) and linear
feedback control law (2) rendering the closed-loop system (3)
asymptotically stable. For any triggering condition (9) with
σ ∈ [0, 1[ there exists τ∗ ∈ R+ such that tk+1− tk ≥ τ∗ for
every k ∈ N.

However, in case output-feedback controllers are used in
a similar setup, the minimal inter-event time might be zero
and accumulations of event-times occur (Zeno behaviour).
This was pointed out in [26], see also Section V below.

III. SELF-TRIGGERED CONTROL

Event-triggered implementations require the constant
monitoring of a triggering condition. For some applications
this is a reasonable assumption, e.g., when we can use
dedicated hardware for this purpose. Unfortunately, this is
not always the case and the related concept of self-triggered
control is an alternative that can be used in such cases. The
term self-triggered control was coined by [15] in the context
of real-time systems. A self-triggered implementation of the
feedback control law (2) has for objective the computation
of the actuator values as well as the computation of the
next instant of time at which the control law should be
recomputed. When dealing with linear plants and linear
controllers we can leverage the closed-form expression of
the trajectories to develop self-triggered implementations as
we discuss next.

A. ISS self-triggered implementations

The results in this section are based on [27], [28], [29].
We start by extending the linear model (1) with disturbances

d

dt
xp = Apxp +Bpu+Bww, (10)

where w ∈ Rnw is the disturbance. It is well know that
if the control law (2) renders the closed-loop system (3)
asymptotically stable then, in the presence of disturbances,
the closed-loop system

d

dt
xp = (Ap +BpK)x+Bww (11)

is so-called exponentially input-to-state stable.
Definition 1 (EISS and GES): The system (11) is said to

be exponentially input-to-state stable (EISS) if there exist
λ ∈ R+, κ ∈ R+, and γ ∈ R+ such that for any w ∈ L∞
and any x(0) = x0 ∈ Rnx it holds for the corresponding
trajectory that

‖x(t)‖ ≤ κ‖x0‖e−λt + γ‖w‖ (12)



for all t ∈ R+
0 . When this inequality holds for w = 0, the

system (3) is said to be globally exponentially stable (GES).
We now describe a self-triggered implementation of (2)

that results in an EISS closed-loop system. A self-triggered
implementation of the linear stabilizing controller (2) for the
plant (10) is given by a map Γ : Rnx → R+ determining the
triggering time tk+1 as a function of the state x(tk) at the
time tk, i.e., tk+1 = tk + Γ(x(tk)). If we denote by τk the
inter-execution time τk = tk+1−tk, we have τk = Γ(x(tk)).

Once the map Γ is defined, the expression self-triggered
closed-loop system refers to the system (10) and con-
trol law (2) implemented in a sample-and-hold man-
ner (6) with triggering times tk+1 given by t0 = 0 and
tk+1 = tk + Γ(x(tk)).

In Section II we formalized the notion of performance
based on the time derivative of a Lyapunov function. In this
section we directly consider the time evolution of a Lyapunov
function of the form V (x) = (xTPx)

1
2 . If, for the ideal

closed-loop system (3) we have

V (x(t)) ≤ V (x0)e−λot, ∀t ∈ R+
0 ∀x0 ∈ Rnx , (13)

then we would like to enforce the weaker inequality

V (x(t)) ≤ V (x(tk))e−λτ , ∀τ ∈ [0, tk+1 − tk[ ∀x0 ∈ Rnx

(14)
for the self-triggered implementation in the absence of
disturbances (w = 0) where λ ∈ [0, λo[. If we denote by
hc : Rnx × R+

0 → R the map

hc(x(tk), t) = V (x(t))− V (x(tk))e−λτ ,

then the inequality in (14) can be expressed as
hc(x(tk), τ) ≤ 0. Since no digital implementation can
check hc(x(tk), τ) ≤ 0 for all τ ∈ [0, tk+1 − tk[, we
consider instead the following discrete-time version of hc
based on a sampling time ∆ ∈ R+

hd(x(tk), n) := hc(x(tk), n∆) ≤ 0,

for all n ∈
[
0,
⌈
tk+1−tk

∆

⌉[
and for all k ∈ N. This condition

results in the following self-triggered implementation where
we use Nmin := bτmin/∆c, Nmax := bτmax/∆c, and τmin

and τmax are design parameters.
Definition 2: The map Γd : Rn → R+ is defined by

Γd(x) := max{τmin, n(x)∆} with
n(x) := max

n∈N
{n ≤ Nmax|hd(x, s) ≤ 0, s = 0, . . . , n}

for x ∈ Rn.
Using this definition of Γd, a self-triggered implementation

of the linear stabilizing controller (2) for plant (10) is
prescribed.

Note that the role of τmin and τmax is to enforce explicit
lower and upper bounds, respectively, for the inter-execution
times of the controller. The upper bound enforces robustness
of the implementation and limits the computational complex-
ity.

Remark 1: Linearity of (10) and (2) enables us to compute
h2
d as a quadratic function of x(tk). Moreover, through a

Veronese embedding we can implement the self-triggered
policy described in Definition 2 so that its computa-
tion has space complexity q nx(nx+1)

2 and time complexity
q + (2q + 1)nx(nx+1)

2 where q := Nmax −Nmin. For rea-
sons of space we omit these details. They can be found
in [27].

The following result establishes EISS of the proposed self-
triggered implementation.

Theorem 2: Let τ∗ ∈ R+ be defined by

τ∗ = inf{τ ∈ R+ : detM(τ) = 0}

where

M(τ) := C(eF
T τCTPCeFτ − CTPCe−λτ )CT ,

F :=

[
Ap +BpK BpK
−Ap −BpK −BpK

]
, C := [I 0].

If τmin ≤ τ∗, the self-triggered implementation in Defini-
tion 2 renders the self-triggered closed-loop system EISS.

Remark 2: When implementing self-triggered policies on
digital platforms several issues related to real-time schedul-
ing need to be addressed. For a discussion of some of these
issues we refer the readers to [30]. Here, we describe the
minimal computational requirements for the proposed self-
triggered implementation under the absence of other tasks.
Let us assume that the computation delays dominate the
measurement and actuation delays, as is the case sometimes
in practice. The computation of Γ is divided in two steps:
a preprocessing step performed once per execution, and a
running step performed n times when computing hd(x, n).
The preprocessing step computes a matrix used to evaluate
hd and has time complexity (n2

x + nx)/2. The running step
consists of testing the inequality hd(x, n) ≤ 0 has time
complexity n2

x + nx. If we denote by τc the time it takes to
execute an instruction in a given digital platform, the self-
triggered implementation can be executed if:

3

2
(n2
x + nx)τc ≤ τmin, (n2

x + nx)τc ≤ ∆.

The first inequality imposes a minimum processing speed for
the digital platform while the second equality establishes a
lower bound for the choice of ∆.

Remark 3: Theorem 2 only guarantees EISS of the self-
triggered implementation. In [29] the readers can find more
detailed results explaining how the constants κ and γ ap-
pearing in the definition of EISS depend on the continuous
dynamics (1), the control law (2), and the design parameters
τmin and τmax.

We refer the interested reader to [27] and [28] for nu-
merical examples illustrating the proposed technique and the
guarantees it provides. An example comparing this imple-
mentation with the implementation described in the next
section appears in Section III-C.

B. Minimum attention implementations

In Section III-A we started with a linear controller and
constructed a self-triggered implementation. Although the
self-triggered implementation was based on the controller



and the system dynamics, the controller was designed in
oblivion of the implementation details. In this section we
take a step towards the co-design of the control laws and its
implementations. We consider a different formulation of the
minimum attention control problem introduced in [31]:

Given the state of the system, compute a set of inputs that
guarantee a certain level of performance while maximizing
the next time at which the input needs to be updated.

In this formulation of the minimum attention control
problem we interpret attention as the inverse of the time
elapsed between consecutive input updates.

The approach we will follow is based on the ideas in
[32] and consists in computing all the inputs u ∈ Rnu

satisfying inequality (13), which we reproduce here in a
version suitable for our needs:

V

(
eAtx0 +

∫ t

0

eA(t−τ)Bu dτ

)
≤ e−λtV (x0). (15)

We now make the important observation that by using ∞-
norm based Lyapunov functions, the computation of all the
inputs satisfying (15) reduces to a feasibility problem with
linear constraints and thus can be efficiently done online.
Specifically, we take V to be a control Lyapunov function
of the form

V (x) = ‖Px‖∞
with P ∈ Rm×nx having rank nx and where ‖ · ‖∞
denotes the infinity norm, i.e., ‖x‖∞ = maxi∈{1,2,...,nx} |xi|.
Similarly to Section III-A we define the map hc by

hc(x(tk), u, τ) =
∥∥PeAτx(tk)

+

∫ tk+τ

tk

PeA(τ−s)Bu ds

∥∥∥∥
∞

−eλτ‖Px(tk)‖∞. (16)

We can now observe that the constraint hc(x(tk), u, τ) ≤ 0,
which appears in (16), is equivalent to∣∣∣∣[PeAτx(tk) +

∫ tk+τ

tk

PeA(τ−s)Bu ds

]
i

∣∣∣∣
−e−λτ‖Px(tk)‖∞ ≤ 0,

for all i ∈ {1, . . . ,m}, which is equivalent to
hc(x(tk), u, τ) ≤ 0, where

hc(x(tk), u, τ) =

[
PeAτx(tk) + P

∫ tk+τ
tk

eA(τ−s)dsBu

−PeAτx(tk)− P
∫ tk+τ
tk

eA(τ−s)dτBu

]

−e−λτ‖Px(tk)‖∞


1
...

1

 (17)

and the inequality is assumed to be taken element-wise,
which results in 2nx linear scalar constraints for u.

Since the inequality hc(x(tk), u, τ) ≤ 0 cannot be checked
for all τ ∈ R+

0 we work, similarly as in Section III-A, with
its discrete analogue

hd(x(tk), u, n) := hc(x(tk), u, n∆) ≤ 0.

We note that while a self-triggered implementation of a
linear control law is specified by the map Γ : Rnx →
R+ determining the next execution time (as the control
law is already given), a minimum attention implementation
addressing the co-design problem requires the map Γ as well
as the map

Ω : Rnx → 2R
nu

specifying any input u ∈ Ω(x) that can be used during the
next Γ(x) units of time, i.e.,

u(t) = u(tk) ∈ Ω(x(tk)), t ∈ [tk, tk+1[ (18a)
tk+1 = tk + Γ(x(tk)) (18b)

with t0 := 0. In a concrete implementation one uses
additional criteria, e.g., minimum energy, to select a single
input among all the possible inputs given by the set Ω(x(tk)).

Algorithm 1 computes both Ω and Γ.

Input: P ∈ Rm×nx defining an ∞-based control
Lyapunov function and x(tk)

Output: Γ(x(tk)) and Ω(x(tk))
n := 0;
Ω0 := Rnu ;
while Ωn 6= ∅ and n < Nmax do

n := n+ 1;
Ωn := Ωn−1 ∩ {u ∈ Rnu |hd(x(tk), u, n) ≤ 0};

end
if Ωn = ∅ then

Ω(x(tk)) := Ωn−1;
Γ(x(tk)) := (n− 1)∆;

else
Ω(x(tk)) := Ωn;
Γ(x(tk)) := n∆;

end
Algorithm 1: Algorithm providing Ω and Γ for a mini-
mum attention implementation.

The correctness of Algorithm 1 is guaranteed by the
following result whose proof can be found in [32].

Theorem 3 ([32]): The minimum attention implementa-
tion defined by Γ and Ω computed by Algorithm 1 renders
the minimum attention closed-loop system consisting of (1)
and (18) GES.

Remark 4: Since verifying that Ωn 6= ∅ as specified
in Algorithm 1 is a feasibility test for linear constraints,
the algorithm can be efficiently implemented online using
existing solvers for linear programs.

Remark 5: Theorem 3 only states GES of the minimum
attention implementation. In [32] the readers can also find
more detailed results explaining how the constants κ and
λ appearing in the definition of GES (i.e., (12) for w = 0)
depend on the continuous dynamics (1) and the choice of ∆.
Reference [32] also discusses how ∞-norm based Lyapunov
functions can be constructed. A study of the robustness
properties of this implementation, e.g. EISS, has not yet
appeared in the literature.



C. Illustrative example

In this section, we illustrate the self-triggered and mini-
mum attention implementations using a well-known example
from the networked control systems literature, see, e.g., [33],
consisting of a linearized model of a batch reactor. The
linearized batch reactor is given by (1) with

[
A B

]
=

 1.380 −0.208 6.715 −5.676 0 0
−0.581 −4.290 0 0.675 5.679 0
1.067 4.273 −6.654 5.893 1.136 −3.146
0.048 4.273 1.343 −2.104 1.136 0

.
We consider the linear control law (2) with

K =
[
0.0360 −0.5373 −0.3344 −0.0147
1.6301 0.5716 0.8285 −0.2821

]
, (19)

rendering the eigenvalues of A + BK real, distinct and
smaller than or equal to −2. In order to compare the self-
triggered with the minimum attention aproach we use in both
case the ∞-norm based Lyapunov function V = ‖Px‖∞
with

P =


0.4730 0.7092 1.0979 −0.7885
−1.2568 1.7787 −2.1320 2.1234
−1.7781 −0.1852 −1.4692 0.3769
−0.5042 1.5041 −0.5112 2.4252

 .
Reference [32] offers more details on how P was computed.

To implement Algorithm 1 in MATLAB, we use the routine
polytope of the MPT-toolbox [34], to handle the sets
Ω(x(tk)).

When we the response of the plant is simulated with the
minimum attention implementation for the initial condition
x(0) = [1 0 1 0]>, we can observe that the closed-loop
system is indeed GES, see Fig. 1(a) and Fig. 1(c). The self-
triggered implementation also renders the closed-loop system
GES as can be seen from Fig. 1(b) and Fig. 1(c). Note that
the decay rates for both implementations are comparable as
expected. However, when we compare the resulting inter-
execution times as depicted in Fig. 1(d), we observe that
the minimum attention implementation yields much larger
inter-execution times than the self-triggered implementation.
This can be explained from the fact that the former solves
a co-design problem thereby optimizing current values of
the control inputs with the objective to maximize the next
execution time. The considered self-triggered approach does
not as it has a prescribed (emulation-based) control law.

D. Other approaches to self-triggered control

Other approaches to self-triggered control have appeared
in the literature. In [35], [36] the authors consider linear
stabilizing control laws for linear systems enforcing a desired
L2 gain on the closed-loop system. In a related manner to
the implementations discussed in Section III preserving EISS
and GES, the authors of [35], [36] propose self-triggered
implementations preserving L2-gain stability. The interesting
trade-off in this case is how much the L2-gain degrades as
the number of inter-executions is reduced with respect to a
periodic implementation. Self-triggered techniques for non-
linear control systems are reported in [37], [38] based on the
notion of homogeneity and isochronous manifolds. Although

Fig. 2: Configuration with shared network only in the sensor-
to-controller (s-c) channel.

the approach is based on homogeneity, it is shown how it is
possible to make any smooth control system homogeneous
by increasing the dimension of the state space by one. A
different approach based on polynomial approximations of
nonlinear systems is described in [39]. All these approaches
consider implementations where the input remains constant
in between re-computations of the control law. An alternative
approach, based on using a model of the plant at the actuator,
is reported in [40], where it is shown that non-constant
inputs further reduce the number of messages that need to
be sent from the controller to the actuator. Reference [41]
extends the results in [29] from state feedback to output
feedback. Finally [42] applies self-triggered to a coverage
control problem for robotic networks thereby reducing the
required communication between robots.

IV. OUTPUT-BASED EVENT-TRIGGERED CONTROL

The approaches on event-triggered and self-triggered con-
trol presented previously were all based on full state feed-
back, although in practice the full state is often not available
for feedback. In fact, in the introduction the importance
of developing output-based event-triggered controllers was
already indicated. Moreover, a first categorization of the
existing output-based event-triggered control schemes was
already provided based on their time sets (discrete-time vs
continuous-time) and adopted control law (observer-based or
not). In this section, we start by discussing the literature
on continuous-and discrete-time output-based event-triggered
control with and without observer in a bit more detail. After
that two exemplary approaches will be presented.

A. Continuous-time observer-based event-triggered control

In [19] one of the first observer-based event-triggered
control loops are proposed in the context of continuous-time
systems, although the analysis and examples in the end focus
on the situation where the full state information is available.
A formal analysis can be found in the more recent work [43],
which extends the work in [44] that assumed availability of
the full state. The work in [43] focuses on continuous-time
plants perturbed by a bounded disturbance and measured
outputs affected by bounded measurement noise. A signal
generator (contained in the controller system in the setup
depicted in Fig. 2) produces the control input implemented
at the actuators using a predictor that runs the unperturbed
model equations in closed loop with a state feedback control
law, in which the state variable is updated with state estimates
received from the (more accurate) observer situated at the
sensor system in Fig. 2. The sensor system has a copy of
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(a) Evolution of the states of the plant using the
minimum attention implementation.

i
i

“tempimage˙temp” — 2011/12/8 — 15:26 — page 1 — #1 i
i

i
i

i
i

0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

x4

x3

x2

x1

time t
(b) Evolution of the states of the plant using the
self-triggered implementation.

i
i

“tempimage˙temp” — 2011/12/8 — 15:26 — page 1 — #1 i
i

i
i

i
i

0 1 2 3 4
0

1

2

3

Desired Decay
Self-Triggered Control
Minimum Attention Control

time t
(c) The decay of the Lyapunov function using the
minimum attention and the self-triggered imple-
mentations.

i
i

“tempimage˙temp” — 2011/12/8 — 15:26 — page 1 — #1 i
i

i
i

i
i

0 1 2 3 4
0

0.2

0.4

0.6

Self-Triggered Control
Minimum Attention Control

time t
(d) The inter-execution times using the minimum
attention and the self-triggered implementations.

Fig. 1: Comparison between the minimum attention and the self-triggered implementations.

the predictor. Only when the difference between the state
estimate in the predictor and the observer exceeds in norm
an absolute threshold the estimated state in the observer is
sent to the controller. The analysis of this scheme shows
that a stable behavior of the event-based control loop can
still be guaranteed in the sense of ultimate boundedness of
the plant’s state. Moreover, it is shown that the maximum
communication frequency within the control loop is bounded,
i.e., the minimal inter-event time is strictly positive. The
size of the absolute threshold can be used to balance the
maximum communication frequency and the size of the
ultimate bound.

Event-based state estimation is considered in [21]. In that
paper a state estimator adopts a hybrid update scheme in
the sense that updates take place both when an event occurs
that triggers the transmission of new measurements to the
estimator (asynchronous times), as well as when a periodic
timer expires (synchronous times). In the latter case the
principle that “absence of an event is however information
that can be used by the observer” [19] is used. More specif-
ically, events are triggered only when the monitored output
variable leaves a bounded set (possibly depending on latest
transmitted measurement). Hence, receiving no information
at a synchronous time instant indicates that the output is still
in this bounded set, which is information that can be used

to guarantee bounded estimation error covariances. In fact,
in [21] this is formally shown based on a sum-of-Gaussians
approach that is used to obtain a computationally tractable
algorithm. An example of integrating this event-based state
estimator with a periodically time-triggered control algorithm
is provided in [25]. In [25] the triggering condition does
not use the estimated state as, for instance, in [43]. For
time-stamped measurements, one can also adopt a time-
varying discrete-time Kalman filter approach to obtain a good
estimate of the state. However, note that such a scheme does
not exploit potentially valuable information contained in the
absence of events.

B. Continuous-time direct event-triggered control

In contrast to the results discussed previously, next event-
triggered control is considered without any intermediate
processing of measurements by an observer or filter. One
work belonging to this category is [45], which studies linear
systems without disturbances and measurement noise and
with a finite number of control actions. The method is
based on hysteretic quantization. The transmission of output
measurements is triggered by reaching the next quantization
level. A consequence, in case of single outputs, is that only
one bit has to be transmitted in order to inform the control
system about the quantization level reached (assuming that



the previous value is stored at the controller). The paper
proposes two systematic output feedback control design
strategies. The first is an emulation-based strategy starting
from an analog controller, and the second strategy is a direct
design that drives the plant state to the origin in finite time
after a total transmission of 2n+2 bits, where n is the order
of the plant.

In [26] it is studied how event-triggered control strategies
tailored to static state-feedback control laws along the lines
of Section II can be extended to output-based dynamical
controllers using both centralized and decentralized event-
triggering mechanisms. One of the problems identified in
[26] was that using the output-based extensions of the event-
triggering mechanisms adopted in [12] based on relative
thresholding can result in accumulations of event times
(Zeno behaviour) and thus a zero minimal inter-event time.
Using a mixed event-triggering mechanism, a strictly positive
minimum inter-event time could be guaranteed for output-
based event-triggered control, while still guaranteeing ul-
timate boundedness and L∞-performance. This work ex-
ploited impulsive models [46], [47] for describing the closed-
loop behavior, which resulted in less conservative stability
conditions compared to the original work [12]. See Section V
for more details.

C. Discrete-time observer-based event-triggered control

In [11] a discrete-time control problem is considered in
which the communication resources are considered to be
scarce. As such, the objective is to reduce the number of
communications by using more computations. The paper
uses an emulation-based approach in the sense that a well-
functioning output-based controller is available (assuming a
standard time-triggered periodic implementation). The main
idea of the proposed event-triggered control strategy is the
use of a state estimator framework such that all nodes have
identical estimators and thus identical estimator states. The
estimated values of the remote outputs are used in the
feedback control. Every sample time, the controller at the
ith node compares the estimate of the ith output to its true
values. If the difference is greater than a predefined threshold,
the true value is communicated to the other nodes. When
there is a communication from ith node, the estimators in all
nodes update their states to reflect the current actual value
of the system outputs or states. As a consequence, the error
between the estimated data used in the control algorithm and
the actual values is always bounded by a threshold, which
can be chosen by the control designer to balance closeness
to the original time-triggered closed-loop system responses
on the one hand and the communication usage on the other
hand. This bound on the error can be used to obtain BIBO
stability conditions. A drawback of the scheme is that it uses
a global estimator in each node, which does not scale to large
systems.

In [23], [16] the problem of output-based event-triggered
control in discrete-time is considered from an optimal con-
trol perspective in line with the classical Linear Quadratic
Gaussian (LQG) setup. It is shown in [16] that such a set-up

can lead to a stochastic control problem with a dual effect,
so that the optimal event-trigger and controller are hard
to find. In [23] an emulation-based approach is considered
in which the observer at the sensor system and the local
observer at the controller are fixed by minimizing the error
covariance conditioned on the received information. Based
on the appended LQG cost the problem addressed in [23]
is to synthesize the ETMs in the s-c and c-a channels in a
(sub)optimal manner.

In [24] an output-based event-triggered control scheme is
proposed using model-based triggering schemes in both the
sensor-to-controller and the controller-to-actuator communi-
cation channels. A predictive control technique is adopted
in the controller-to-actuator channel. By sending control
packets containing model-based predictions of future control
values and only transmitting new control packets when these
predictions deviate from the current control values computed
in the control system (according to relative bounds), sig-
nificant savings can be obtained compared to a basic zero-
order hold strategy. For the sensor-to-controller channel, the
triggering mechanism is based on the difference between the
state estimate of a Luenberger observer running in the sensor
system with the state estimate of a predictor (called “the local
observer” in [23]) running in both the sensor and controller
systems. If this difference gets too large, then the estimate
of the Luenberger observer is transmitted to the controller
system that updates the state estimate of its predictor. LMI-
based tools are provided for closed-loop stability and `2-gain
analysis. See Section VI below for more details on the setup.

Recently, in [48] also an output-based scheme exploiting
observer-like structures for discrete-time linear systems was
proposed for tracking of references signals generated by an
exosystem.

D. Discrete-time direct event-triggered control

In [10], [13] output-based PID controllers are considered
without the consideration of an observer or estimator. Both
these approaches use a timer to avoid problems with a
zero minimum inter-event time. In [10] the event detector
is truly time-triggered, while in [13] a time regularization
is adopted by requiring that after an event at least a fixed
amount of time no new event is generated. However, [10]
does not provide any analytical results, while [13] only pro-
vides them for state-based event-triggered control strategies.
Recently, such results were obtained in [18]. Interestingly,
these results apply to both centralised and decentralised
event-triggering mechanisms, and they provide stability and
L2-gain guarantees of the closed-loop system in continuous
time, even though the event-triggered control strategy is a
discrete-time controller operating in a periodic time-triggered
manner. In fact, as already mentioned in the introduction, the
term periodic event-triggered control is used in this context,
cf. [17] [18].



V. CONTINUOUS-TIME DIRECT EVENT-TRIGGERED
CONTROL

In this section, we present an exemplary event-triggered
control problem based on continuous-time output-based con-
trollers and model the event-triggered control system as an
impulsive system. This particular setup is based on [26], but
connections to related methods will be mentioned using this
exposition.

A. Problem Formulation

Let us consider a linear time-invariant (LTI) plant given
by {

d
dtxp = Apxp +Bpû+Bww,

y = Cpxp,
(20)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu the
input applied to the plant, w ∈ Rnw an unknown disturbance
and y ∈ Rny the output of the plant. The plant is controlled
using a continuous-time LTI controller given by{

d
dtxc = Acxc +Bcŷ,

u = Ccxc,
(21)

where xc ∈ Rnc denotes the state of the controller, ŷ ∈ Rny

the input of the controller, and u ∈ Rnu the output of the
controller. We assume that the controller is designed to render
(20) and (21) with y(t) = ŷ(t) and u(t) = û(t), for all
t ∈ R+, asymptotically stable.

Here, we consider the case where the controller is imple-
mented in a sampled-data fashion, which causes y(t) 6= ŷ(t)
and u(t) 6= û(t) for almost all t ∈ R+. In particular, we
study decentralised event-triggered control which means that
the outputs of the plant and controller are grouped into N
nodes and the outputs of node i ∈ {1, . . . , N} are only sent at
the transmission instants tiki , ki ∈ N. Hence, at transmission
instant tiki , node i transmits its respective entries in y and
u, and the corresponding entries in ŷ and û are updated
accordingly, while the other entries in ŷ and û remain the
same. Such constrained data exchange can be expressed as

v̂+(tiki) = Γiv(tiki) + (I − Γi)v̂(tiki), (22)

in which v = [y> u>]>, v̂ = [ŷ> û>]>, and

Γi = diag(γ1
i , . . . , γ

ny+nu

i ), (23)

for all i ∈ {1, . . . , N}. In between transmissions, we use a
zero-order hold, i.e.,

d
dt v̂(t) = 0, for all t ∈ R+\

(⋃N
i=1{tiki | ki ∈ N}

)
.
(24)

In (23), the elements γji , with i ∈ {1, . . . , N} and j ∈
{1, . . . , ny}, are equal to 1 if plant output yj is in node i and
are 0 elsewhere, the elements γj+ny

i , with i ∈ {1, . . . , N}
and j ∈ {1, . . . , nu}, are equal to 1 if controller output uj
is in node i and are 0 elsewhere. We assume that for each
j ∈ {1, . . . , ny + nu}, it holds that

∑N
i=1 γ

j
i > 0, i.e., we

assume that each sensor and actuator is at least in one node.
Furthermore, we assume that at time t = 0, it holds that

Fig. 3: Control system block diagram with indication of the
event-triggering mechanism (ETM).

v̂(0) = v(0). This can be accomplished by transmitting all
sensor and actuator data at the time the system is deployed.

In a conventional sampled-data implementation, the trans-
mission times are distributed equidistantly in time and are
the same for each node, meaning that tiki+1 = tiki + h,
for all ki ∈ N and all i ∈ {1, . . . , N}, and for some
constant transmission interval h > 0, and that tik = tjk,
for all k ∈ N and all i, j ∈ {1, . . . , N}. In event-triggered
control, however, these transmissions are orchestrated by an
event-triggering mechanism, as is shown in Fig. 3, which
in this case is decentralised. We consider a decentralised
event-triggering mechanism that invokes transmissions of
node data when the difference between the current values
of outputs and their previously transmitted values becomes
too large in an appropriate sense. In particular, the event-
triggering mechanism considered in this section results in
transmitting the outputs of the plant or the controller in node
i ∈ {1, . . . , N} at times tiki , satisfying

tiki+1 = inf
{
t > tiki | ‖eJi(t)‖2 = σi‖vJi(t)‖2 + εi

}
, (25)

and ti0 = 0, for some σi, εi > 0. In these expressions, eJi

and vJi denote the subvectors formed by taking the elements
of the signals e and v, respectively, that are in the set Ji =
{j ∈ {1, . . . , ny + nu} | γji = 1}, and

e(t) = v̂(t)− v(t) (26)

denotes the error induced by the event-triggered implemen-
tation of the controller at time t ∈ R+. Note that Ji
is the set of indices of sensors/actuators corresponding to
node i. Hence, the event-triggering mechanism (25), which
is based on local information available at each node, is
such that when for some i ∈ {1, . . . , N}, it holds that
‖eJi

(t)‖2 = σi‖vJi
(t)‖2 + εi, i.e., the norm of the error

induced by the event-triggered implementation of the signals
in node i becomes large for the first time, node i transmits
its corresponding signal vJi(t) in v(t) and, the signal v̂(t)
is updated according to (22). This implies that e+(tiki) =
(I − Γi)e(t

i
ki

) and thus e+
Ji

(tiki) = 0. Using this update
law, and the aforementioned assumption that v̂(0) = v(0),
yielding e(0) = 0, we can observe that the error induced by
the event-triggered control scheme satisfies

‖eJi(t)‖2 6 σi‖vJi(t)‖2 + εi, (27)



for all t ∈ R+ and all i ∈ {1, . . . , N}.
The question that arises now is how to determine σi and

εi for all i ∈ {1, . . . , N}, such that the closed-loop event-
triggered system is stable in an appropriate sense and a
certain level of disturbance attenuation is guaranteed, while
the number of transmissions of the outputs of the plant and
the controller is small. Note that for εi = 0, i ∈ {1, . . . , N},
the event-triggering conditions in (25) can be seen as an
extension of the event-triggering mechanism of [12] for
output-based controllers, and for σi = 0, i ∈ {1, . . . , N},
it is equivalent to the event-triggering mechanism of [49],
[45], [50]. As such, the event-triggering mechanism in (25)
unifies two earlier proposals.

B. An impulsive system formulation
In this section, we reformulate the event-triggered control

system as an impulsive system, e.g., [46], [47], of the form
d
dt x̄ = Āx̄+ B̄w, when x̄ ∈ C (28a)

x̄+ = Ḡix̄, when x̄ ∈ Di, i ∈ {1, . . . , N}, (28b)

where x̄ ∈ X ⊆ Rnx denotes the state of the system
and w ∈ Rnw an external disturbance. The flow and the
jump sets are denoted by C ⊆ Rnx and Di ⊆ Rnx , i ∈
{1, . . . , N}, respectively, and X = C ∪ (

⋃N
i=1Di). Note that

the transmission times tiki , ki ∈ N, as in (25), are now related
to the event times at which the jumps of x̄, according to (28b)
for i ∈ {1, . . . , N}, take place.

To arrive at a system description of the event-triggered
control system (20), (21), (22), (24), and (25) of the
form (28), we combine (20), (21), (22), (24) and (26), and
define x̄ := [x> e>]> ∈ Rnx , where x = [x>p x

>
c ]> and

nx := np +nc +ny +nu, yielding the flow dynamics of the
system

d
dt x̄ =

[
A+BC B

−C(A+BC) −CB

]
︸ ︷︷ ︸

=:Ā

x̄+

[
E
−CE

]
︸ ︷︷ ︸

=:B̄

w, (29)

in which

A =
[
Ap 0
0 Ac

]
, B =

[
0 Bp
Bc 0

]
, C =

[
Cp 0
0 Cc

]
, E =

[
Bw
0

]
.

(30)
The system continuously flows as long as the event-triggering
conditions are not met, i.e., as long as (27) holds for all
i ∈ {1, . . . , N}, which can be reformulated as x̄ ∈ C, with

C = {x̄ ∈ Rnx | x̄>Qix̄ 6 εi ∀ i ∈ {1, . . . , N}}, (31)

and
Qi =

[
−σiC>ΓiC 0

0 Γi

]
, (32)

because x̄>Qix̄ 6 εi is equivalent to ‖Γie(t)‖2 6
σi‖Γiv(t)‖2 + εi, as in (27). As mentioned before, when
node i transmits its data, a reset according to e+ = (I−Γi)e
occurs, while x remains the same, i.e., x+ = x, see (22). This
can be expressed as

x̄+ =

[
I 0
0 I − Γi

]
︸ ︷︷ ︸

=:Ḡi

x̄, (33)

for all x̄ ∈ Di, i ∈ {1, . . . , N}, in which

Di = {x̄ ∈ Rnx | x̄>Qix̄ = εi}, (34)

according to (25). Combining (29), (31), (33) and (34) yields
an impulsive system of the form (28).

C. Analysis methods and discussion

The available analysis techniques given in [26] build upon
the impulsive system framework [47] with a focus on global
asymptotic stability of sets A containing the origin in the
interior (in absence of disturbances w) and L∞-performance
of the closed-loop system. As such, in case of absence
of disturbances a form of practical stability, or ultimate
boundedness, is obtained. The conditions guaranteeing global
asymptotic stability of sets and upperbounds on the L∞-gain
of the system from disturbance w to performance output z =
C̄x̄+D̄w are given in terms of LMIs. We refer the interested
reader to [26] for the details and the precise statements of
the results. To provide some insights in the consequence of
the results, we note that the feasibility of the LMIs is related
to the choice of the relative gains σi, i ∈ {1, . . . , N}, in the
event-triggering conditions (25), but is not affected by the
choice of the absolute thresholds εi, i ∈ {1, . . . , N}. Hence,
once the LMIs are feasible, practical stability (for w = 0)
and upper bounds on the L∞-gain are guaranteed. The ‘size’
of the set A (ultimate bound) (when w = 0), is affected by
both σi and εi. However, after having a feasible set of LMIs
guaranteeing set stability and finite L∞-gains, the parameters
εi provide full control to adjust the size of the set A. As we
can see from (27), this will affect the number of events,
enabling the designer to make trade-offs between the size of
the set A (related to the ultimate bound of x as t → ∞
for w = 0) and the number of transmissions over each
communication channel. Indeed, larger εi, i ∈ {1, . . . , N},
result in fewer events, and thus fewer transmissions, but in
a larger set A (i.e., a larger ultimate bound), when w = 0.
In fact. if εi, i ∈ {1, . . . , N}, all approach zero, we have
that A → {0}. Hence, the set A can be made arbitrary
small (at the cost of more transmissions). The naive choice
to take εi = 0, for all i ∈ {1, . . . , N}, seems appealing as
it would yield A = {0}. However, this might result in zero
minimum inter-event times (Zeno behaviour) as Example 2 in
[26] illustrates. In some cases, e.g., state-feedback controlled
system with centralised event triggering as discussed in
[12], a strictly positive minimum inter-event time can be
guaranteed even for ε1 = 0, and we have that A = {0} is
globally asymptotically stable, see also Theorem 1. In fact,
in this case also finite Lp-gains for p <∞ can be given, see
Remark III.7 in [26] and Remark IV.3 in [51].

Here, we discussed an impulsive system formulation
(28) with subsequent LMI-based stability and performance
analysis. This leads to less conservative values for εi, σi,
i ∈ {1, . . . , N} guaranteeing stability than the “perturbed
system” approach given in [12], as is formally proven in [26].
The benefit of adopting the impulsive system formulation
can be explained by the fact that the impulsive system
truly describes the behaviour of the event-triggered control



Fig. 4: Networked control configuration.

system as it includes the dynamics for the error e induced
by the event-triggered implementation. Besides the exact
modelling of the error dynamics as above, also the fact
that LMI-based formulations are used is beneficial as this
allows to use an optimisation-based procedure to find better
values for σi and εi guaranteeing stability and specific levels
of L∞-performance. Larger values of σi and εi result in
larger minimum inter-event time, see (25). More recently, the
impulsive system framework was also used for other event-
triggered and self-triggered controller setups, see, e.g., [52].

VI. DISCRETE-TIME OBSERVER-BASED
EVENT-TRIGGERED CONTROL

Just as in the previous section, we present an exemplary
event-triggered control problem in this section but now
for discrete-time observer-based controllers. This particular
setup follows [24].

A. Problem Formulation

In [24], the networked control configuration shown in
Fig. 4 is studied, in which the plant is given by a discrete-
time linear time-invariant model of the form

P :

{
xk+1 = Axk +Buk + Ewk

yk = Cxk,
(35)

where xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnw and yk ∈ Rny

denote the state, control input, disturbance and measured
output, respectively, at discrete time instant k ∈ N. The
sensors of the plant transmit their measurements to the
controller, and the controller transmits the control data to
the actuators over a shared, possibly wireless, network, for
which communication and energy resources are limited. For
this reason, it is desirable to reduce the transmissions over
the sensor-to-controller and controller-to-actuator channels as
much as possible, while still guaranteeing desirable closed-
loop behavior. Hence, the problem is now to design smart
sensor, controller and actuator systems for the setup in Fig. 4
such that this objective is realized.

B. An observer-based strategy

In this section, we present a possible solution as given
in [24] for the problem formulated in Section VI-A in the
context of Fig. 2 in which the controller-to-actuator channel
is removed.

The smart sensor system in Fig. 2 consists of a Luen-
berger observer O, a predictor Pr and an event-triggering
mechanism ETMs that determines when information should

Fig. 5: Observer-based PETC strategy with only s-c ETM.

be transmitted to the controller system, see Fig. 5. The
Luenberger observer is given by

O : xsk+1 = Axsk +Buk + L(yk − Cxsk) (36)

in which xsk denotes the estimated state at the sensor system
at time k ∈ N, and the matrix L is a suitable observer gain.
The predictor Pr is given by

Pr : xck+1 =

{
Axck +Buk, when xsk is not sent
Axsk +Buk, when xsk is sent.

(37)

Finally, the event-triggering mechanism is given at time k ∈
N by the condition

ETMs : xsk is sent ⇔ ‖xsk − xck‖ > σs‖xsk‖, (38)

where σs ≥ 0 is a design parameter. Before explaining the
functioning of Pr and ETMs in more detail, it is convenient
to introduce also the controller system. The controller system
consists of a copy of the predictor Pr, and a controller gain
K, see Fig. 5. In fact, the control signal is given by

uk =

{
Kxck, when xsk is not sent
Kxsk, when xsk is sent.

(39)

As the sensor system also runs a copy of the predictor
Pr (both initialized at the same initial estimate), the sensor
system is aware of the estimate xck the controller system has,
and, consequently, can determine uk to compute the next
state estimate xsk+1 according to (36). Clearly, the estimate
xsk of the observer is typically better than the estimate xck of
the predictor, as the observer has access to all measurements,
while the predictor only receives sporadic updates.

The rationale now is that if the sensors detects at k ∈ N
that the estimate xsk of the Luenberger observer (36) deviates
significantly from the estimate xck, i.e., ‖xsk−xck‖ > σs‖xsk‖
as in (38), the estimate xsk is transmitted to the controller,
and corresponding updates of the estimate xck+1 (cf. the
second case in (37)) and the control signal uk as in (39)
are made. Hence, as long as ‖xsk −xck‖ is sufficiently small,
no transmissions between the sensor and controller systems
are needed.

This observer-based strategy can provide similar stability
and `2-gain properties, while requiring significantly less
transmissions compared to both a standard periodic time-
triggered implementation and a baseline event-triggered im-
plementation as in [53], [12], [26], [17], [18]. See the
example presented below.



In [24] extensions are provided for the network con-
figuration in Fig. 4 with communication savings both for
the sensor-to-controller and the controller-to-actuator com-
munications. In particular, predictive control techniques are
adopted computing model-based predictions of future control
values, which are sent in one (or more) control packets to the
actuator system. Only when these predicted future control
values (known in the controller system) deviate from the
current control values computed in the controller system,
new control packets with future values are transmitted to
the actuator system. In this manner, significant savings can
be obtained compared to a basic zero-order hold strategy. In
[24] also decentralised observer-based controllers and event-
triggering mechanisms are presented for large-scale weakly-
coupled plants.

Remark 6: Extensions of the observer (36) including dis-
turbance estimators (assuming a suitable linear disturbance
model) are possible following the same rationale as in [24].
This extension can enhance further communication savings
in the sensor-to-controller channel.

C. Analysis methods and discussion

The analysis of the above mentioned model-based strate-
gies are presented in [24] based on perturbed linear
and piecewise linear systems. Based on these modeling
paradigms, LMI-based conditions for global exponential sta-
bility and guaranteed `2-gains can be derived. The usage of
model-based predictions are quite powerful for the reduction
of network resource utilization, as will also be illustrated in
the numerical example below. These observations are in line
with the results in the networked control literature in which
model-based approaches indeed often perform better [54]. It
is also worthwhile to mention the connection of the usage
of model-based predictions to the work in [19], where the
relevance of generalized holds was mentioned, and the work
in [44], [43] in which the term signal generator was used
based on model-based predictions (although in absence of a
resource-constrained controller-to-actuator channel).

D. Illustrative example

In this section, the model-based event-triggered control
strategies discussed previously will be illustrated using a
time-discretization of the batch reactor example discussed
in Section III-C. Proper values for the observer and state
feedback gains K and L as in (36) and (39), respectively,
are chosen corresponding to the sampling period h = 0.15.
See [24] for the exact setup.

We compare the model-based event-triggered control
scheme with a corresponding periodic time-triggered con-
troller and with the following baseline event-triggered
scheme: The baseline implementation uses ideas presented
in [53], [12], [26], [17], [18] and leads to a strategy given
by the dynamic controller

xck+1 = Axck +Buk + L(ŷk − Cxck), (40a)

a certainty-equivalence control law

uk = Kxck, (40b)

and a sensor-to-controller event-triggering mechanism

ŷk =

{
yk, when ‖ŷk−1 − yk‖ > σs‖yk‖

ŷk−1, when ‖ŷk−1 − yk‖ ≤ σs‖yk‖.
(41)

Hence, in this baseline setup a sensor reading is transmitted
to the controller only when the difference between the latest
transmitted value and the current sensor reading is large
compared to the value of the reading. In addition, the hold
strategy ŷk = ŷk−1 is used when no new output measurement
is transmitted.

To make a fair comparison between the model-based and
the baseline strategies, we select σs for both cases such
that the guaranteed upper bound γ on the `2-gain of the
resulting closed-loop system satisfies γ = 100 and use the
piecewise linear system approach of [24] to construct the
corresponding values for σs. This results in σs = 0.135
for the model-based strategy. Using similar techniques for
the baseline strategy gives σs = 0.0343. The corresponding
periodic time-triggered control strategy results in an (exact)
`2-gain of γ∗ = 12.75.

The response of the performance output z to the initial
condition x0 = 0 and the disturbance satisfying wk =
sin 3π·k

25

[
1
1

]
for 0 6 k 6 30 and wk = 0 for k > 30, for

the three strategies is shown in Fig. 6a. We can conclude
that all three control strategies show almost indistinguishable
responses. However, the number of transmissions that are
needed is 200 for periodic time-triggered control, 148 for the
baseline strategy and only 41 for the model-based strategy.
This demonstrates that the newly proposed model-based
event-triggered control strategy needs significantly fewer
transmissions than the other two approaches to realize similar
responses, at the price of more computations. This is also
further illustrated in Fig. 6b showing the inter-transmission
times.

We will study now more closely the influence of the
parameter σs in (38) on the upper bound γ on the `2-gain
of the model-based event-triggered control strategy and the
number of transmissions that are generated for the afore-
mentioned initial condition and disturbance, see Fig. 6c and
Fig. 6d, respectively. Fig. 6c shows that the upper bound on
the `2-gain increases as σs increases, indicating that closed-
loop performances degrades as σs increases. This figure
also shows that the guaranteed upperbounds on the `2-gain
provided by the piecewise linear (PWL) approach are less
conservative than the perturbed linear (PL) approach. From
Fig. 6d, it can be seen that the increase of the guaranteed `2-
gain, through an increased σs, leads to fewer transmissions,
which demonstrates the tradeoff that can be made between
the closed-loop performance and the number of transmis-
sions. Note that for σs approaching zero, the upper bound of
the `2 gain for the model-based PETC strategy approaches
γ∗ = 12.75, which is the `2-gain of the corresponding
periodic time-triggered control strategy. This demonstrates,
as formally proven in [24], that the `2-gain of the model-
based event-triggered control strategy can approach the `2-
gain of the periodic time-triggered implementation arbitrarily
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Fig. 6: Comparison of discrete-time observer-based event-triggered control strategies.

close. Interestingly, even for a small σs, which only leads to a
minor degradation of the closed-loop performance in terms of
the `2-gain, the amount of data transmitted over the network,
is already significantly reduced. For instance, starting from
a periodic time-triggered observer-based controller, we can
set σs = 0.01, which leads to an upper bound on the `2-gain
of the corresponding model-based event-triggered control
strategy of 13.77 as guaranteed by the PWL approach, see
Fig. 6c, indicating an 8% performance degradation, while the
number of transmissions reduce from 200 to 80, see Fig. 6d,
which is a reduction of 60%. Of course, it should be noted
that the actual savings depend heavily on the considered dis-
turbance (classes). Using disturbance estimators as pointed
out in Remark 6 might be beneficial for further reduction of
the number of transmissions.

VII. WIRELESS EVENT-TRIGGERED CONTROL SYSTEMS

In a networked control system, the communication
medium is often shared between multiple control loops as
indicated in Fig. 7. In Fig. 7 a wireless network connects
the sensors with the controllers. For such as system, as
already mentioned, it is often desirable to limit the amount of
communication, due to that either the transmission is battery
powered or the network might get congested. An important
approach to efficiently utilize the communication network is
to let sensors transmit only when their measurements exceed
a certain value, i.e., to apply an event-triggered sampling
rule. Other alternatives include having a network manager
deciding when each sensor can communicate. That decision
can be based on information available in the scheduler. A
challenge in general is to limit not only the communication
of sensor data, but also limit the need of communication
between nodes in order to take communication decisions.
Hence, an architecture in which the decision-making is
distributed can be desirable, but it is then hard to provide
guarantees of no collision or congestion in the network.
In practice, it is often reasonable to have a more ‘hybrid’

Fig. 7: Wireless control systems.

approach where some decisions are made centrally by the
network manager and some by the individual sensors and
controllers.

A. Optimal event-triggered control

It is natural to pose the question if it is possible to design
an optimal event-triggering condition for a networked control
system as the one depicted in Fig. 7. Unfortunately, the
separation principle does not hold for the optimal controller
and the optimal scheduler, as the closed-loop system yields
a dual effect in general [16]. However, by a suitable filter on
the sensor side, it is possible to obtain a control architecture
for which certainty equivalence holds. Such an architecture
suggests an observer-based controller, but with sacrificed
optimality.



In certain situations, it is possible to find the optimal event-
based controller. In the work [9] on Lebesgue sampling, a
first-order system with an optimal event-based sampling for
an impulse controller was considered. For zero-order hold
actuation, it was shown in [55] that the optimal threshold
in the event-triggering mechanism is time varying. The
influence of limited control actions or sensing for optimal
event-based control was considered in [56].

An important issue not touched upon previously, but
important in a wireless large-scale control system, is the
possible occurrence of data drops. For event-triggered sensor
communication such data loss might seem to be critical,
as fewer transmissions are generated in event-based control
systems. In [57], the influence of independent and identically
distributed packet drops was considered. It was shown how
the control performance deteriorated as the probability of
packet drops tends to one. It was also shown that if the
(sensor) transmitter receives a (negative) acknowledgement
for each packet the (controller) receiver does not receive, then
the event-triggering condition can be improved. In particular,
the threshold should be lowered each time a packet has been
lost, so that the chance of a new transmission is increased.
The influence of such acknowledgements on the closed-loop
performance can in some cases be explicitly computed.

B. Event-triggered control over wireless networks

It is important to have accurate and efficient communi-
cation models of the wireless networks for the design of
event-triggered wireless control systems. Here we will briefly
discuss how self- and event-triggered control can be adapted
to a common wireless network protocol. There is obviously a
vast literature on wireless communication, but fewer studies
have focused on models suitable for control purposes. Some
exceptions include the Markov model developed by Bianchi
to study the performance of the communication protocol
IEEE 802.11 [58]. Similar Markov models have been devel-
oped also for IEEE 802.15.4, which is one of the dominating
protocol standard for wireless sensor networks, see, e.g., [59].

The superframe time organization of the slotted
IEEE 802.15.4 is shown in Fig. 8. Each superframe
Γi starts with a beacon. The rest of the superframe is
divided into an active and an inactive period. During the
inactive period, no device is supposed to transmit so they can
save power by being in a so-called sleep mode. The active
period is split into a contention access period (CAP) and a
collision free period (CFP). During the CAP, the medium
access control (MAC) scheme is carrier sense multiple
access/collision avoidance (CSMA/CA), where the nodes in
the network sense if the channel is busy before transmitting
a message. The CAP is used by nodes to send best effort
messages, as packet drops can happen due to collision
or channel congestion. The CFP is intended to provide
real-time guaranteed service, by allocating guaranteed time
slots to the nodes in a time division multiple access (TDMA)
scheme. Since during the CFP there are no packet losses
due to collisions or channel congestion, this mechanism is
an attractive period for control tasks.

Fig. 8: Superframe time organization of the slotted IEEE
802.15.4 protocol.

It was recently shown that event-triggered and self-
triggered control can be implemented over IEEE 802.15.4,
see [60]. By allocating a guaranteed time slot within the
CFP of a future superframe, it is possible to approximately
sample the system according to the time computed by the
self-triggered algorithm. In this way, the sensor does not have
to transmit until it is suggested by the controller. As distur-
bances might act on the plant, an event-triggered sampler,
which reacts if the sensor measurement starts deviating from
its predicted value, needs to be added as well.

For large-scale systems with many sensors within the same
wireless range, the guaranteed time slots of the CFP are not
enough, and, as a consequence, also the CAP needs to be
used. Even if there is contention, event-triggered and self-
triggered control can be utilized. Analyzing these schemes
under a CSMA/CA MAC is however challenging, as the state
of the protocol in general will be correlated with plant state.
Various ways to tackle this problem have only recently been
considered in the literature, for example, [61].

VIII. CONCLUDING REMARKS

In this paper the aim was to provide an introductory
overview of the fields of event-triggered and self-triggered
control. The literature on these classes of aperiodic control
is rapidly expanding. In the paper we did not try to cover all
of the most recent results in order to be comprehensive, but
instead focused on some of the main developments in the
latest wave of the periodic versus aperiodic debate. Next to
introducing the basics on event-triggered and self-triggered
control, the emphasis was on the use of output-based con-
trol and implementation issues of event-based control over
wireless communication networks. This paper can form a
good starting to become acquainted with the research areas of
event-triggered and self-triggered control, and in fact several
references are provided as suggestions for further reading.

After the enormous growth of the literature on this topic
in the past 5 to 6 years, it seems time to take the next
steps. Even though many results are currently available, it
is fair to say that the system theory for event-triggered and
self-triggered control is far from being mature, certainly
compared to the vast literature on time-triggered periodic
sampled-data control. One possible next step, that is certainly
needed, is to develop the necessary system theoretic results
underlying complete and efficient (co-)design methodologies
for event-triggered and self-triggered control. This should
enhance the usage of these control strategies in practical
applications. In fact, their validation in practice is an impor-
tant next step (which will undoubtedly raise new theoretical



questions). Indeed, even though many simulation and exper-
imental results show that event-triggered and self-triggered
control strategies are capable of reducing the number of
control task executions, while retaining a satisfactory closed-
loop performance, see, e.g., [62], [63], [64], [9], [10], [65],
[66], [67], [68], [69], the actual deployment of these novel
control paradigms in relevant applications is still rather
marginal. A possible stimulus for changing this situation,
being a third important step, is to demonstrate quantitatively
how and when event-triggered and self-triggered control
outperform the classical periodic sampled-data control ap-
proach. The quantitative evaluation of all these strategies
should reflect both control costs such as quadratic costs as in
LQR control or relevant Lp-gains, and communication costs
such as average sampling rates, minimal inter-event times,
or transmission power. Fair assessments and comparisons are
needed helping the practitioners to identify the situations in
which these aperiodic control strategies offer benefits that can
not be guaranteed by the conventional periodic paradigm.
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