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Abstract independent sets (see [8], for example). However, it is not
easy to evaluate the performance of heuristics. The empiri-
We study a semi-random graph model for finding inde- cal approach is to run the heuristic on a collection of input
pendent sets. For > 0, ann-vertex graph with an inde-  graphs (“benchmarks”), and record the sizes of independent
pendent sef of sizean is constructed by blending random  sets returned by the heuristic. If one heuristic consistently
and adversarial decisions. Randomly and independentlyoutperforms another, then we have empirical evidence of
with probability p, each pair of vertices, such that one is it being a better heuristic. Though running heuristics on
in S and the other is not, is connected by an edge. An ad-benchmarks is sometimes informative, we seek a more rig-
versary can then add edges arbitrarily (provided tl5arte- orous measure for evaluating heuristics.
mains an independent set). The smaliés, the larger the
control the adversary has over the semi-random graph. We
design heuristics that with high probability recovgmwhen
p > (1+¢€)Inn/|S|, for any constant > 0. We show that
whenp < (1 — €)Inn/|S|, an independent set of siZg|
cannot be recovered, unled3sP C BPP.
We use our results to obtain greatly improved color-
ing algorithms for the model d#-colorable semi-random
graphs introduced by Blum and Spencer.

One such measure is the approximation ratio. An algo-
rithm is said to approximate MIS within a ratjp > 1 if
for every input graph, the size of the maximum indepen-
dent set is a factor of at mogtlarger than the size of the
independent set returned by the algorithm. For NP-hard op-
timization problems in general, one can evaluate heuristics
based on their approximation ratios. However, it is known
(through work culminating in [13]) that for any constant
e > 0, MIS cannot be approximated within ratio af —
(wheren is the number of vertices in the input graph) unless
. NP has randomized polynomial time algorithms. Hence, if
1. Introduction we were to evaluate heuristics for MIS based on their ap-

proximation ratios, all heuristics would perform badly. The

An independent set in a graph is a set of vertices no best approximation ratio known to be achievable for MIS is

two of which are connected by an edge. Finding a maxi- O(n/(logn)?) [7].

mum si;e ind(_apend.en.t se.t (MIS) i; a fundamental problem As very little can be done with the MIS problem on worst
n ctcj)lmblnator;]al optimization, anﬂ IS relattled to mapy OFhSr case instances (unless P=NP), one would like to compare
problems such as vertex_ cover (the comp_ement ofan InG€+,q performance of heuristics on average instances, or those
pendent set), clique (an mdepen(_jent setin t_he Complemenfhat typically occur in practice. But how does one model
of the graph), and coloring (covering the vertices of a graph such instances? One possible model is that of a random

by the minimum number of independent sets). As is well graph (see the survey in [10]). The question then arises of

knc')wwn,hMIS 'lf NP—Eard. d to developing heuristi how well random graphs model inputs that interest us in
uch work was devoted to developing heuristics (we use “real life” applications. But even regardless of this ques-

the termheuristicto denote algorithms that are not always tion, the random graph model does not seem to provide a

guaranteed to return the optimal solution) for finding large good way of distinguishing between good and bad heuris-
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most sophisticated one, is known to find independent setscolor classes. (Several variations on this model are pre-
significantly larger thatogn. Hence, most heuristics have sented in [5], and the results discussed here apply to all of
roughly the same performance in this random graph model,them. This model was further studied in [17].) Algorithms
making it an inadequate framework for comparing between designed for the random graph model often do not work in
them. Another random model that was suggested is simi-the semi-random model. For the semirandom model, when
lar to the random graph model, but with an independent setcolor classes are of the same size {taéancedcase), Blum
of size K planted in the graph. The largéf is, the eas-  and Spencer [5] design algorithms that handle valugs of
ier it is to find the independent set. K > cv/nlogn for aboven® /n, for somes > 0 that depends ok. No bet-
sufficiently largec, the vertices of the independent set are ter results were known, and the algorithm of [2] does not
easily recognized to be th€ vertices of lowest degree in  seem to apply to this model. Our new algorithm for find-
G. Hence a trivial heuristic will solve MIS in this case. ing independent sets can be used alsokf@oloring (in
But even the most sophisticated heuristics guarantee only ahe balanced case), by extracting the color classes one by
marginal improvementin the size &f. The lowestvalue of  one. It offers major improvement over the results of [5]
K that can be provably handled by known heuristics (spec-on semirandom graphs, as it handles valuep af low
tral techniques, in this case) ¥+/n) [4]. Hence also the as(1 + €¢)kInn/n. This answers an open question of [5]
planted independent set model does not provide sharp disand [10]. Moreover, the value gfis almost best possible,
tinctions between good and bad heuristics. as coloring semirandort-colorable graphs with values of

In this paper we study a semi-random model for MIS, P below(1—e¢)Inn/nis NP-hard. (Note thatin the random
which has some similarities with semi-random models stud- model values op = O(1/n) can be handled [2].)
ied for the coloring problem in [5]. In our model there is an
independent se$ of sizean planted in a graph, for some 1.1. The semi-random graph model
a > 0. Edges connecting to the rest of the graph are

placed at random, with probabiliy= O(*%2), creating a The graphG hasn vertices. Its edge séf is generated
random grapldr,,;,. An adversary can then add (but notre- partly at random and partly by an adversary.
move) arbitrary edges tG,,,;,, (as long ass remains an in- Let0 < a < 1 be a constant, angd= (clnn)/n, where

dependent set), thus obtaining the input gréphThe goal c is a large enough constant that dependson

of the heuristic is to recover an independent set of size

The semirandom model has a random compoidgpt,, 1. Anindependent se&f of sizean is chosen at random.
and wherp is large enough, hardness results for worst case Let S denote the vertices @f not belonging taS.
instances no longer apply. It also has an adversarial (worst

case) component, which can be used to nG@keore simi- 2. Random component: for any pair of vertiee such
lar to inputs that may occur in practice — with the restriction thatu € S andv € 5, the edggu, v) is placed inE
thatG,n;,, Must remain a subgraph. Technically, the adver- with probability p, independently of all other events.

sarial component can be used to alter degrees of vertices 1 his gives the random graghi,, ..
(and foil heuristics based on vertex degrees), to create in-
dependent sets that are “local maxima” (and foil heuristics
based on local search), and to modify the spectrum of the
graph. We are not aware of any previously published algo-
rithm that can handle our semirandom model.

We design an algorithm that recovers an independentset | et (3,,... be the graph obtained by planting the inde-
of sizean in the semirandom graph model. Our algorithm pendent sef of sizean in an otherwise complete graph
requires a value qf slightly abovelnn/an. We also show  ony, vertices. TherG is an arbitrary graph “sandwiched”
that this value op is best possible up to low order terms, petween®,,;, andG 4. This fixesS as an independent
unless NP has randomized polynomial time algorithms.  set, allows the adversary complete control for placing edges

Our algorithm for finding independent sets can also be both of whose endpoints are § and partial control over
used for coloring. In the randocolorable graph model, those edges with one endpoint$nand the other ir§ (the
a graph is partitioned int@& color classes, and edges are adversary controls a fraction ¢ — p) of these edges).
placed at random with probabilifybetween color classes. The lowerp is, the more control the adversary has over the
In this model Alon and Kahale [2] show that whenr= ¢/n graph.
andc > 0 is large enough, &-coloring can be recovered. Our algorithm is required to recover an independent set
Blum and Spencer [5] introduced the framework of semi- of size at leasten. We wish the algorithm to succeed with
randomk-colorable graphs, where in addition to the ran- high probability, where probability is computed over the
dom edges, an adversary can add arbitrary edges betweechoice of G,,;,, and over the random coin tosses of the

3. Adversarial component: having complete knowledge
of G in, an adversary may add 6 any number of
edges, provided thaf remains an independent set.
This gives the graply.



algorithm, regardless of the adversarial component of thegraphs in which the sizes of the color classes are balanced,

graph.

We note thatz may contain several independent sets of
sizean. In this case the algorithm is required to output just
one of them, not necessarily the origiral

whenevep > n’/n, for§ > (k* —k—2)/(k* +k—2). We
significantly lower the values qf for which a coloring can
be found. Our bounds gmare best possible up to constant
multiplicative factors (via an argument similar to the proof

Observe that the algorithm is in essence required to out-of Theorem 2).

putG,,.... The random graply,,;, differs fromG,, .. in
that it misses some of the edges containedjp,.. The
only changes that the adversary makesg;, is to put

back some of these missing edges. Hence, it may appea
that the adversary only makes the problem easier. Neverfandom graph model of [5], whenevgr>
theless, many algorithms that would recover a large inde-

pendent set in the random graph,,;, would fail on G.
A major motivation for the semi-random graph model is to
identify those algorithms that work on random graphs, and
are also robust enough to withstand adversarial “help”.
Notation: throughout,x, p andc¢ will be used only as
above. That is|S| = an, and the edge probability of the
random componentig = clnn/n. For a sefl’ of vertices,
N(T') denotes the set of their neighbors in gragh We
denote set subtraction by \ X (that is, those elements in
A that are not inX).

1.2. Our results

The properties of our main algorithm are summarized in
the next theorem.

Theorem 1 For ¢ = (1 + €)/a, wheree > 0, there is a
random polynomial time algorithm that with overwhelming
probability recovers an independent set of size in the
semi-random graph model.

“Overwhelming probability” means with probability—
o(1) for n sufficiently large. Using the adversarial compo-
nent of the graph, it can be shown that the value: @i
Theorem 1 is best possible, up to low order terms.

Theorem 2 In the semi-random model,df= (1 —¢)/a for
somee > 0, then unlessVP C BPP, every random poly-
nomial time algorithm will with overwhelming probability
fail to find an independent set of siae in G (against an
optimal adversary).

The proof of Theorem 2 is sketched in the appendix.

Theorem 1 implies new results about colorirkg
colorable graphs in the semi-random model of Blum and
Spencer [5]. In this model, a graph is partitioned i&to
color classes. Each edgebetween different color classes
is included with probability;, wherep; is controlled by an
adversary, subject to; > p, for somep < 1. Clearly, the

Theorem 3 For any constank, there is a polynomial time
algorithm that with overwhelming probability recovers the
largest independent set #+colorable gra|(ohs)in the semi-
1+e)klnn

It is not hard to show that in semirandokacolorable
graphs withp as in Theorem 3, the largest independent set
corresponds to a color class. Hence after the largest inde-
pendent set is recovered, it can be removed from the graph,
which then remaingk — 1)-colorable. Wherk = 3, the
remaining graph is bipartite and can be two-colored in poly-
nomial time. Fork > 3, the other color classes can be re-
covered by repeatedly applying Theorem 3, but only if the
color classes are large enough. If they are too small, then
the number of verticea’ remaining in the graph may be
too low, causingy < ﬁ%ln"’ and Theorem 3 may not
apply. In fact, in [5] it is shown that coloring semi-random
4-colorable graphs is NP-hard even for much larger values
of p, when the color classes are highly unbalanced.

We remark that our algorithm for finding independent
sets works also in models that have less randomness (and
hence, are more adversarial) than our semirandom graph
model. One such model is theneighbors model, where
in Gnin, €ach vertex ofS hasd random neighbors ii.

The graplG is then an arbitrary graph sandwiched between
G min @NdG 4. 1t can be shown that a simple modification
of our algorithm recovers in this model independent sets of
size an, whend is a large enough constant that depends
only ona. Observe that in this modél,,,.;,, has onlyO(n)
edges, whereas in our original semirandom maégdg),, has
Q(nlogn) edges.

1.3. Techniques and related work

Lovasz introduced thehetafunction as an upper bound
on the size of the maximum independent set [15]. The theta
function can be approximated within arbitrary precision in
polynomial time, using semidefinite programming. Goe-
mans and Williamson [12] showed how semidefinite pro-
gramming can be used in order to approximate problems
such as max-cut. Inspired by their work, Karger, Motwani
and Sudan [14] used semidefinite programming to obtain
improved coloring algorithms. Alon and Kahale [3] used
the work of [14] to show that the theta function can be used

smallerp, the stronger the adversary. Blum and Spencerto find medium sizer® vertex) independent sets in graphs

give algorithms to color semi-random 3-colorable graphs
whenp > n?/3/n, and to colork-colorable semi-random

that have linear size independent sets (improving the values
of ¢ previously obtained in [7]).



In terms of approximation ratio, the theta function (and on semidefinite programming. More details are sketched in
similar semidefinite programs) appear to have little to offer. the appendix.
In [9] it is shown that for every > 0 there are graphs with

multiplicative gaps of' ~¢ between the size of the maxi- 1.4, Useful properties of semi-random graphs
mum independent set and the value of the theta function.

Indeed, Histad's result [13] implies that, unleds is easy, Finding independent sets is NP-hard. Hence our algo-
no eas!ly cqmputable function will give better tham & ¢ rithm will have to use some special property@f inher-
approximation in the worst case. ited fromG,,.;,,. The property we use isxpansionas for-

However, our current work singles out semidefinite pro- mulated in the following lemmata. Recall that overwhelm-
gramming as an approach that can cope with the semiraning probability means with probability — o(1) for n suffi-
dom graph model, unlike other heuristics for MIS. In more ciently large.
detail, our algorithm has two phases. In the first phase (Sec-
tions 2.1 and 2.2} is partitioned into a small number of Lemma4 Letc > 0, and lett = n(logn)~°, for somes,
parts, such that some of these parts are composed mostly df < § < 1. Then whem is large enough, with overwhelm-
vertices ofS. This first phase uses semidefinite program- ing probability over the choice df,,;,, for everyl’ C S
ming. Its analysis is based only 6#,.;,., and goes through and S’ C S, each of cardinalityt, there is some edge in
regardless of what the adversary does. This illustrates the7,,;, joining T andS’.
robustness of (some) algorithms based on semidefinite pro- .
gramming. Proof: (Sketch) There are at mo(sgt)z ways of choosing

In the second phase (Sections 2.3, 2.4 and 2.5) we “clean!’ and.S’. For each such choice, the probability of the bad
up” the output of the first phase, and extrador a different ~ event that there is no edge joinifigandsS" is (1 —p)*. For
independent set of the same size). Many of the difficulties large enough, the lemma follows from the union bound
introduced by the adversary manifest themselves in the secon the probabilities of the bad eventst
ond phase. In particular, there is the problem of getting out ~ Similarly, we can show:
of local maxima. To illustrate this problem, assume that the
algorithm already found a maximal independentiseom- ~ Lemma5 Letc = (1 + €)/a, letd > 0 be an arbitrary
posed mostly of vertices & (though not containing all of ~ constant, and assume thatis large enough. Then with
S). One may then hope that local heuristics suclt-apt ~ overwhelming probability over the choice @f.y,, for ev-
(exchanging a constahtnumber of vertices of with v\ 1~ eryT C S of cardinality at mos8lan/32d, [N(T) (S| >
so as to hopefully get a new independent set that is not maxi<|T'|-
mal and hence can be expanded) would allow one to eventu-
ally extractS. However, in our semi-random model, the ad- ~ Throughout we shall assume that,.;, has the above
versary is strong enough so as to maké+exchange possi- ~ €xpansion properties. AS contains all edges of/ nin,
ble, even whei is almost as large asn (details omitted).  these properties are preserved:n
Our method of improving over local maxima is based on  In Section 2.2, we shall also use the following property
global computations (finding maximum matchings) rather Of Gmin, Namely:
than local ones, and may be of independent interest.

As pointed out above, our work shows that algorithms
based on semidefinite programming perform well on ran-
dom instances of MIS, and are robust enough to withstand

adversaries that add edges to the graph. We remark that Of course & may contain many more edges than,;
wm:

a similar phendomenon (()jc?urfs fordgraph bise(_:tionr.]_ EOE' We shall use Lemma 6 in our analysis, but shall NOT as-
pana [6] considers a model of random graphs in which the g\ -~ e sparse.

edge probability for edges crossing the intended bisection

is slightly smaller than that of edges outside the bisection. . . .

In this model, he shows how to find the planted bisection. 2. Our algorithm and its analysis

We propose an algorithm similar to that of Boppana, formu-

lated as a semidefinite program. Based on Boppana’s tech- Our algorithm has five phases, described and analyzed
nigues, we show that this algorithm finds the bisection in in the following subsections. Many of the constants in-
a semirandom model in which an adversary adds arbitraryvolved are arbitrary and are specified only for concreteness.
edges within each side of the bisection, and removes arbi-Throughout our analysis, we ignore divisibility issues, es-
trary edges connecting the two sides of the bisection. Thischewing careful roundoff analyses. Such considerations do
gives another example of the robustness of algorithms basecdot materially affect our argument.

Lemma6 Letc = (1 +¢€)/a, with0 < € < 1. Then
with overwhelming probability over the choice®@f,;,,, the
number of edges i, is at mosn lnn/a.



2.1. A coarse partition using semidefinite program- LetS; = V;\S;, and letE; be the set of edges connecting

ming S; and S; in G- (Note, E; does not contain the edges
added by the adversary.)
The following lemma is implicit in [3, 14]. By our construction, for each vertex € V; we can

i associate a unit vecta; € R" such that for any two ver-
Lemma 7 LetG(V, E) be a graph om vertices that con- ticesv;,vx € Vi, if (vj,v:) € E (and as a special case,

tains an independent set of si’& Then one can find in i (. %) ¢ E;), then the inner product of the associated
polynomial time a se@) of K'/2 vertices (not necessarily  yectors satisfiegz;, z;) < —/8. This inequality implies

belonging to the independent set), and a sefg® unit  that the angle between the vectoysandzy, is at least some
vectors inR™ associated with these vertices, such that for onstan® > /2. (One can tak® = cos~!(—a/8). The

any two vertices;, v; € Q, if (vi,v;) € E, thenthe inner  eyact value o is irrelevant to our analysis.)

product of the associated vectors satisfies We partition; using a technique developed by [12, 14].
L _ _ We pass a random hyperplane through the origin, and sep-

(zi,25) < —K/(2n - K) arate the vertice®; into two sets, depending on the side

(i.e., the angle between andv; is large). of the hyperplane on which they lie. As shown in [12], if

(vj,vx) € E, arandom hyperplane will separateandz;,
For completeness, the proof of Lemma 7 is presented inwith probability at leasp = 0/r>1/2.!

the appendix. Choosingh random hyperplanes partitions the vertices
Using Lemma 7, we extract a small number of large sets v; inton < 2" sets of vertices\;1 , . . ., Vi,. This random-

Vi,V3,. .. as follows. We definé/, = G and inductively, ized partition procedure, which we deneptetition(Q;, ),

we let&; be the subgraph off induced onV" \ U, ; V;. tends to shattef); in the following sense:

We generat; ., by applying the algorithm of Lemma 7 to

G;, setting the value of{ to bean/4. Hence the set;;, Definition 2 LetE(V;,..., Vi) denote all pairs
containskK /2 = an/8 vertices, and we also have vectors (vj,v;) € E; such thaw;, v, € V;, for somey.
associated with these verticeg flenotes the vector associ-

ated with vertex;) such that whenevép;, vi,) € E, Lemma 9 For a goodV; and for E; as defined above, the
expectation of E(V;y, ..., Vin)| is at most|E;|(1 — p)",
(2j,2k) < —(an/4)/(2n — an/4) < —a/8. where the expectation is taken over the coin tosses of

We stop producing new; when the algorithm fails to find partition(Q;, h).

such a set. In this case, the set of remaining vertices con-
tains less thamn /4 vertices ofS (or the algorithm would
succeed).

The subgraph off induced onV/; will be denoted by, .

Proof: Each pair(v;,v;) € E; has probabilitf1 — p)"

of not being separated by at least one of the hyperplanes.
The proof follows from the linearity of the expectation
Modifying an approach of [14], our algorithm computes

LetS; =ViNOS. (Vit, ..., Vim) = partition(Q;, h) for each@;, and then
Definition 1 A setV; is goodif |S;| > a2n/32. removes a maximal matching from each &gt For each
- Vi, this gives independent seftg, . . ., I;,,, (Some of which

Proposition 8 The process described above gives a parti- might be empty), and some left over vertices (removed by

tion for which the matching)M/;. These independent sets and the sets of
leftover vertices form the refined partition 6f

Z |S;i| > an/2.
{i|v; is good Definition 3 Anindependent sét; is usefulif |I;; () S;| >
3[1i;] /4.
Proof: SinceV; = an/8, by construction, there are at
most8/«a sets. Less thann/4 vertices ofS are not con- Recall thatp = ©/7 > 1/2 and leth be the least integer

tained in anyV; (i.e., those discarded at the end). The num- satisfying(1 — p)* < a?/16Inn. The following lemma is

ber of vertices of5 contained in set¥; that are not goodis  of central importance to our analysis. Its proof is given in
atmosti -8 < an As|§| = an, the prooffollows. O  the appendix.

2.2. Refining the partition using random hyper- ~ Lemma 10 Leth be as above and Igt/;; } be the indepen-
planes dent sets obtained by runningrtition(Q;, h) on each of

the subgraphg);, and removing a maximal independent set

We f_urther part_ition _eacm. The desired outcome of this LBetter partitioning techniques are also suggested in [14], but are not
phase is summarized in Lemma 10. needed for our results.



from eachV;;. Then with probability at least/2 (over the
random choices dfartition((;, h)), at leastan /8 vertices
of S are in useful independent sdftg.

Clearly, the algorithm runs in polynomial time.
Lemma 11 shows that in semi-random graphs, it indeed pu-
rifies large independent sets.

Lemma ll Let G be a semi-random graph satisfying
Lemma 5, and assume thats large enough so that the pa-
In this section we find irG an independent set of size ameterdin Lemma 5 can be chosen to be larger thiabet

Q(n). I be an independent set @ such thatI (S| > |S|/16.

The number of independent sets constructed in Sec-Thenpurify(I) returns an independent sét C S, with

tion 2.2 is at mos8m/a < logn (for large enough). I' > |5]/32.

Lemma 10 describes an event that happens with probability _

at least 1/2, and we assume that this event holds. (The ran- FProof: Toseethatl’| > |S|/32, observe that the size of
domized algorithm can be repeated several times with inde-} 1S at mostR| < n. For every vertew; € I'\ I', there
pendent coin tosses so as to make the probability of failure@'€! Verticesvii, ..., vy € L matched with vertices it.
arbitrarily small.) Hencewn/8 vertices ofS are in useful ~ Hencell \ I'l < n/l, and|I'| > |I| = n/l = an/16 —
independent sets. an/32 = an/32. _

We now guess which are the useful independent sets. It rémains to show thal” C 5. We first analyze the
The number of possible combinations here is less than 9raphG. Let A = IS andB = I[]5. By assump-
and we can just try out all possibilities. (More efficiently, tion. [A| > |S[/16. As N(B)(1S C [, it follows that
one may guess just one useful independent set, and dedudé’ (B) 1 S| < 15|5]/16. By Lemma 5, it follows that
the rest via matching techniques. Details are omitted from [B| < (15]5]/16)/d; it then follows that for every8’ C B,
this preliminary version.) Combine the useful independent |V (B') (1(S(11)| > 1|B'| (note that\'(B') (S (1) =
sets to obtain a set, and remove a maximal matching from V(B') [15). Observe thalv(B) (1(S (1) is disjoint from

2.3. Creating a linear size independent set

J to obtain an independent setAt most one fourth of the
vertices ofJ do not belong t&5, and for each edge removed
from J at least one of its endpoints is not$h It follows
that|1 (1 S| > || - 2|J|/4 > |J/2 > |S|/16.

2.4. Purifying I.

Let I be a an independent set @& with |1 S| >
|S]/16. Observe that by Lemma 4, almost all vertices of
I belong toS, and only a small number of vertices fraim
might belong tcS. In this section we extract frotha subset
I’, all of which is contained ir$.

Denote the vertices off by vy, ...
smallest integer greater than/«.

Based onZ(V, E) andI, we describe a bipartite graph
G'(V',E'"), whereV' = R|J L. The right hand sidé? of
G’ contains the: — |I| verticesV \ I. The left hand side
L containsl copies ofI. Namely, each vertex; € I is
represented times in L, asv;1, v;2,...vy. The edges’
are obtained fronGG in a natural way:(v;j,vy) € E' if
Vij € L,v, € R, and(vi,vk) € E.

We now describe the algorithpurify(I).

purify(I)
1. Constructi’ as described above.

Let ! be the

» Un-

2. Find a maximum matching/ in G'.

3. ReturnI’, wherel’ C I contains those vertices € I
for which there is som& < j <[ for which the vertex
v;; was left unmatched by/.

NA)YNI.

We now analyzés’'. Let B’ denote those vertices @f
that originate fromB. (That is,v;; € B' if v; € B.) We
claim that there is a matchinyy’ from B’ to the vertices
of R(S. Since no other vertex from can be matched
to vertices ofR( S, the existence of/’ implies that any
maximal matching must match every vertex#f Consider
an arbitraryB"” C B'. B" must contain at leagtB"|/I
distinct representatives frol. Then|N(B")| > (|B"|/l)-
[ = |B"|. Hence by Hall's theorem, all vertices &f will
be matched. It follows thaB C I\ I', implyingI' C A C
S. O

2.5. Expanding!’.

To expand!’, ultimately recoverings, we perform the
following procedure.
expand(I")
1. SetV' =V — N(I'). LetG beG induced orV".

2. Compute a maximum matching @#.

3. ReturnI”, the set of unmatched vertices@f.

Lemmal2letl’” C S and|S|/32 < |I'| < |S]. If
Lemma 5 holds, thefi’ C S and|I"| > |I'|.

Proof: Sincel’ C S, V' will contain S; define@ =
V'\ S. SinceS is an independent set, the maximum size of
amatching o’ is|@|, and this size can be achieved only if



every vertex iny) is contained in the matching. By construc-
tion, S N N(Q) (the neighborhood of), restricted taS) is
contained inS — I'. Noting that|S — I'| < 31|S]/32, it fol-
lows from the expansion properties@fthat|Q| < |S]/32,
or S N N(Q) would have at leasi1|S|/32 vertices. It then
follows from the expansion properties tHatn N (Q)| >
|Q|, unlessQ is empty (in which casexpand(I’) = S),
and thafS N N(Q')| > |Q'| for every nonempty)’ C Q.
Hence there exists a complete matching frQnto S. This
implies that any maximum matching found will include ev-
ery vertex from@) and that at least one vertex fragh— I’
will be left over, since|S — I'| > |S N N(Q)| > Q|
expand(I") will be contained inS and properly contaid.
m|

Lemma 12 implies that repeated applications of
expand(I') (each time with!’ being the previoug’) will
recoverS. (In fact, the maximum matching found in the
first application ofexpand(I') can be reused, making re-
peated applications @kpand(I’) unnecessary. Details are
omitted.)
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Proof of Theorem 2: (Sketch) Recall thagi = "’1% and

nual Symposium on Foundations of Computer Scignce consider the random component@f With overwhelming
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probability, S will have a setl’ of n° isolated vertices not

connected t&5, whereé is some constant that depends on



e. UsingT', an adversary can embed a hard instance of in- satisfying the above constraints. To see tkias semidefi-

dependent set in the semi-random graph.

Let G’ be a graph o8’ /2 vertices,V', in which we
seek to find an independent set of siZg'2 (this problem is
NP-hard). Lefl; consist ofan — n5/2 vertices,Vs consist
of n —an —n?’ vertices. Construct the graghwith vertices
VUV, UV,. The edges off consist of those off’ (those
connect only vertices ifV'’), and all edges between every
vertex inV; and any other vertex (hence verticed/inhave
degreen — 1, and vertices irl; have degreélz|). Then,
permute the vertex labels 6f at random. It follows from
the construction tha¥ has an independent set of size iff
G' has an independent set of siz&/2. Observe that given
G', the graplG is constructed in random polynomial time.

nite, letg; bel if v; € S, and0 otherwise, and observe that
X =YY", whereY = [q; ¢2---q,]* andY? denotes the
transpose of".

A positive semidefinite matriX can be decomposed in
polynomial time intoX = YYT, whereY is a matrix with
n rows, andY 7 is its transpose. We denote the row vec-
tors of Y by y1,...,yn. The entryz;; is the inner product
(vi,y;). Letyo = > ,y:;/K. From constraints 3 and 4
it follows that (yo,y0) = K?/K? = 1. Hencey, is a
unit vector. Moreover, constraint 4 implies that for every
i, {(yi,y:) = {yo,yi). (Geometrically, this means that the
pointsy;, 1 < i < n, all lie on ann-dimensional sphere of
radiusl/2, and the point® andy, are antipodal.)

We next argue that when constructing a semirandom Assume w.l.0.g. that the vectogs are sorted by their

graph with an independent set of size, the adversary can
create a graph isomorphic @whenevels,,;,, hasn® iso-

lated vertices (which happens with overwhelming probabil- constraints 1 and 3).

ity) and G’ has an independent set of siz&/2. Hence, if

lengths, and consider now only the vectgis. .., yx /.-
For every such vectorK/2n < (y;,y;) < 1 (from
Associate now with the vertices
-, 2K /2, Where vector; is

v1,. ..,V /2 UNit vectorszy, ..

there existed an algorithm that didn't fail with overwhelm- in directiony; — (yo, y:)yo (i.€., we project out direction

ing probability, it must succeed o with some constant

probability, revealing that’’ has such an independent set.
Theorem 2 would then follow. Note that the adversary nee

not run in polynomial time.

Our adversary computes an independent/sef G',
where|I| = n®/2. GivenGyy,, with a setT’ of n’ iso-
lated vertices irf, the adversary maps the /2 vertices of
I arbitrarily to distinct vertices of and maps the?’ ver-
tices of V' \ I (distinctly) toT'. Given this mapping, it then
adds the edges corresponding to thosé&'in By the con-

Yo)-

gPropositon13 For 1 < i < j < K/2, if (vi,v;) € E,

then(zi,zj> < —K/(Qn - K)

Proof: Letw; = y; — (yo,i)yo- If (vi,v;) € E then
(yi,y;) = 0. This gives

(wi,wj) = 0 —2(yo,yi){yo,y;) + (Yo, Y0) (Yo, vi) (Yo, y;)
= _<y0vyi><y0vyj>'

struction, it is allowed to add these edges, and furthermore,

every nonedge i’ corresponds to a nonedge@,i, . Fi-
nally, the adversary connects every vertexof " to every

other vertex. It can be verified that this graph is isomor-

phic toG. V; corresponds to those verticesSrthat do not
correspond td andV; correspondsté \ 7. O
Proof of Lemma 7: Consider the following semidefinite

program (which can be solved up to arbitrary precision in
polynomial time, using the Ellipsoid algorithm). Given the

graphG, we find an orden matrix X = {xz;;} satisfying
the following constraints:

1. Vi,j, 0 <@y <1,

2.VY(i,j) € E, x;; =0,

3. Y, ru=K,

4.Vi, 3wy = Kag,

5. The matrixX is positive semidefinite.

As G has an independent sgt of size K, the above
semidefinite program is feasible. Setting = 1 when-
everv;,v; € S, andz;; = 0 otherwise, gives a matriX

This implies that(z;, z;) < 0, but does not bound its
magnitude, since the; are not unit vectors. By using the
interpretation of the; as lying on a sphere of radiig2 we
obtain that their lengths satisfjw; )2+ (1/2— (yo, yi))* =
1/4, implying thatz; = wi//(yo,y:) — ((vo,:))?- It fol-
lows that

—~

2i5 2j) =
<y0v Z/z) . <y0v y]> .
Vo, vy — (o, ui))® v/ Wo, u5) — (o, y;))?

By elementary calculus it can be shown that the function
f(z) = x/vx —a? is positive and monotone increas-
ing over(0,1); hence(z;, z;) is minimized wher(yo, y;)
and (yo,y;) are minimized. As these minimums are in
both cases more thai/2n, it follows that (z;, z;) <
—(K/2n)?/(K/2n — (K/2n)?) = -K/(2n — K). O

This completes the proof of Lemma 7.0

Proof of Lemma 10: Consider an arbitrary séf; that
is the outcome opartition(Q;, k). We define thesurplus
of Vi; assur(Vi;) = [SO\Vij| — ISNVijl. FromVy,
an arbitrary maximal matching is removed so as to ob-
tain an independent séf; (that may possibly be empty).




Clearly,sur(V;;) < |I;; () S|. Recall thatl;; is useful if
[I;; S| > 3|1;;]/4. From Lemma 4 it can easily be de-
duced that if I;; S| > n/(logn)° for somed < § < 1,
then|I;; N S| = o(|L;;|). Hencel;; is useful. From the
above it follows that ifsur(Vi;) > n/(logn)® then neces-
sarily 1;; will be useful. We now show that many séts
have a large surplus, which then implies Lemma 10.

By Proposition 8, at leasin /2 vertices fromS belong to
goodV;. A goodV; is partitioned byh random hyperplanes
into m parts{V;;}. From Lemma 9, the expectation of
|E(Vi1,- - -, Vim)| is at mos{ E;|(1— p)*. Hence the expec-
tation of Y, |E(Vi1, ..., Vim)| is at mosty_, | E;| (1 — p)h.
From Lemma 6 it follows tha} _, |E;| < 2nlnn/«. Hence
with probability at least /2 we have that

S IEVit, .., Vim)| < 4nlnn(l - p)*/a.
By our choice ofh, (1 — p)* < a?/161nn, implying

[

Recall that our algorithm removes a maximal matching

vertices). This problem is NP-hard. Boppana [6] develops
a heuristic for this problem, and analyses its performance
on random graphs with planted bisections. Specifically, he
considers random graphs whose vertex set is partitioned into
two equal size setS§ andS, and two vertices are connected
by an edge with probability if they belong to the same set,
and with probabilityg if they belong to different sets. If

is sufficiently smaller thap, then w.h.p.S, S is a unique
minimum bisection. Boppana shows that when

logn
p—q>10 (P+Q)T

then with high probability (over the choice of input graph)
his heuristic recovers the minimum bisection.

We consider a semirandom model for graph bisection.
In this model, a graplir,5nqis chosen at random as above.
Then an adversary removes edges of his choice from the cut
S, S, and adds edges of his choice outside the cut (i.e., con-
necting pairs of vertices ifi, or pairs of vertices ii¥). This
gives the semirandom gragh Clearly, if S, S is the min-
imum bisection inGygnqg then it is @ minimum bisection
also inG.

We show that w.h.p. over the choice G54 an al-

from eachV;;. For the sake of analysis, we as a thought gqrithm similar to that of Boppana outptiig). To also
experiment remove a maximal matching containing only 4,1nt the bisection itself, determine which pairs of vertices

edges fromE;, giving a setU;;. (The algorithm itself
does not have the luxury of knowing which edgesif
belong to E;). Then over all good/;, the total number
of edges removed is at moat:/4, meaning that at least
an/2 — an/4 = an/4 vertices fromS remain in the sets
{Ui;}. Call a set;; largeif |U;; (S| > a?n/128m. As
there are at mostm /« setsU;;, those that are not large can
contain in total at mostr/16 vertices fromS. Hence at
leastan/4 — an/16 = 3an/16 vertices fromS are con-
tained in largdJ;;.

By our choice ofh, and the fact thap > 1/2, largeU;;
containQ(n/(logn)°®) vertices ofS for somes < 1. As
they contain no edges frod,,;,, Lemma 4 implies that
for largeU;;, |U;; N S| < o(|U;;]). To obtainU;; from V;;,
exactly(|Vy;| —|Ui;1)/2 vertices ofS () V;; were removed.
Hence the surplus of;; must be(1 — o(1))|U;;]. So if
we consider only thosg;; that had largdJ;; in the above
experiment, they give rise to usefl containing a total of
at least

(1-o(1) Y |Uyjl=(1-0(1)3an/16 > an/s
largeu;;

vertices fromS. O

B. Graph bisection

The bisection sizé(G) of a graphG is the minimum
number of edges in a balanced cut (each side contgias

belong to the same side of the bisection by adding/removing
an edge between them to obtain a graphand checking
whetherb(G') = b(G). (We use here the fact thét' is
sufficiently random for Boppana'’s algorithm to work.)

Let h(G) be an arbitrary function on graphs which has
the following properties:

1. Lower boundFor every grapl@z, h(G) < b(G).

2. Bounded monotonicityLet G* be the graphG with
one additional edge. ThenG) < h(GT) < h(G) +
1.

3. Probably good.With high probability over the choice
of Grang
hGrand = ®(Grand-

For any functionh satisfying the above properties, we
have that with high probability over the choice Gf54
h(G) = b(G) also in the semirandom model. This fol-
lows from the fact that wheneveén(G,gngd = b(Grand:
then necessarily.(G) = h(Gygng — r» Wherer is the
number of edges removed from the cut by the adversary.
(Whenh(Gygnd = b(Grand- €ach edge removed from
the cut decreasdg() by one andh(G) by at most one
(bounded monotonicity), and henég€G) by exactly one
(lower bound). Each edge added outside the cut does not
increaseh((), and hence can neither incredgé) (lower
bound), nor decreasd G) (monotonicity).)



Boppana [6] describes a polynomial time computable —O(,/pr) lower bounds hold for the smallest eigenvalue
function h and shows that it satisfies properties 1 and 3 of the first graph and for the second smallest eigenvalue
above. It is not easy (for us) to verify that Boppana’s func- of the second graph. These bounds can be combined with
tion satisfies property 2. Instead, we propose the follow- (p — q)n/2 — O(v/pnlogn) lower bounds on the entries of
ing semidefinite relaxation of bisection, for which prov- the matrix(—Y), that hold with high probability, showing
ing properties 1 and 2 is straightforward, and property 3 that M is almost surely positive semidefinite when- ¢ is
is proved using the techniques of [6]. For a gr&ptV, E) large enough. Details omitted.

find an ordem matrix X = {z;;} satisfying: Remark: Possibly, for every grapli/, our functionh
. and Boppana'’s function give the same value. See also [16]
1.Vi, oy =1, for other semidefinite formulation for graph bisection.
2. Zij Tij = 0,

3. The matrixX is positive semidefinite,

and leth(G) be given by

. 1—
MO =min 3
(i,j) € B
i<j

whereX ranges over all matrices satisfying the above con-
straints. Using semidefinite programming,G) can be
computed in polynomial time within arbitrary precision
limits. To see thak(G) < b(G), consider the indicator vec-
tors € {+1, —1}™ having entry+1 for vertices inS and—1

for vertices inS, and letX = ss”. To see thab is bounded
monotone use the fact thiat;;| < 1 and0 < 1‘% <1.To
see thath is probably good, consider the dual of the above
semidefinite minimization problem (see [1] for rules how to
obtain the dual).

Maximize m/2 + (3", yi)/4 s.t.

—A—yoJ —Yisp.s.d.

Herem is the number of edges in the graph|s its adja-
cency matrix,J is the all 1 matrixy, is an auxiliary variable
which affects feasibility but not the objective function, and
Y is a diagonal matrix withy,, . .., y,, along its diagonal.

For everyl < i < n, lety; be the difference between the
number of neighbors that vertéxhas on the other side of
the bisection and the number of neighbors that veirtexs
on the same side of the bisection. The value of the maxi-
mization semidefinite program is then exadqy) (though
we have not yet shown that the solution is feasible). Further-
more, regardless of the value gf, the vectors described
above is an eigenvector of the matik = — A — yoJ — Y
with eigenvalue 0. It remains to show that w.h.p. (over the
choice ofGygpg). it is possible to choosg, such thats
is the eigenvector of smallest eigenvalue. For this, choose
Yo = —1, giving —A + J = A° + I, where A¢ is the
adjacency matrix of the complement of the gra@f,ng
and [ is the identity matrix. The complement graph can
be viewed as a sum of two random graphs — one with
edge probabilityl — p, and the other a bipartite graph with
edge probabilityp — ¢q. From [11], with high probability,



