
Heuristics for finding large independent sets,
with applications to coloring semi-random graphs

(Extended abstract)

Uriel Feige� Joe Kiliany

Abstract

We study a semi-random graph model for finding inde-
pendent sets. For� > 0, ann-vertex graph with an inde-
pendent setS of size�n is constructed by blending random
and adversarial decisions. Randomly and independently
with probability p, each pair of vertices, such that one is
in S and the other is not, is connected by an edge. An ad-
versary can then add edges arbitrarily (provided thatS re-
mains an independent set). The smallerp is, the larger the
control the adversary has over the semi-random graph. We
design heuristics that with high probability recoverS when
p > (1 + �) lnn=jSj, for any constant� > 0. We show that
whenp < (1 � �) lnn=jSj, an independent set of sizejSj
cannot be recovered, unlessNP � BPP .

We use our results to obtain greatly improved color-
ing algorithms for the model ofk-colorable semi-random
graphs introduced by Blum and Spencer.

1. Introduction

An independent set in a graph is a set of vertices no
two of which are connected by an edge. Finding a maxi-
mum size independent set (MIS) is a fundamental problem
in combinatorial optimization, and is related to many other
problems such as vertex cover (the complement of an inde-
pendent set), clique (an independent set in the complement
of the graph), and coloring (covering the vertices of a graph
by the minimum number of independent sets). As is well
known, MIS is NP-hard.

Much work was devoted to developing heuristics (we use
the termheuristicto denote algorithms that are not always
guaranteed to return the optimal solution) for finding large

�Department of Applied Math and Computer Science, the Weizmann
Institute, Rehovot 76100, Israel.feige@wisdom.weizmann.ac.il .
Incumbent of the Joseph and Celia Reskin Career Development Chair. Part
of this work done while the author was visiting the NEC Research Institute.

yNEC Research Institute, 4 Independence Way, Princeton, New Jersey,
08540.joe@research.nj.nec.com

independent sets (see [8], for example). However, it is not
easy to evaluate the performance of heuristics. The empiri-
cal approach is to run the heuristic on a collection of input
graphs (“benchmarks”), and record the sizes of independent
sets returned by the heuristic. If one heuristic consistently
outperforms another, then we have empirical evidence of
it being a better heuristic. Though running heuristics on
benchmarks is sometimes informative, we seek a more rig-
orous measure for evaluating heuristics.

One such measure is the approximation ratio. An algo-
rithm is said to approximate MIS within a ratio� > 1 if
for every input graph, the size of the maximum indepen-
dent set is a factor of at most� larger than the size of the
independent set returned by the algorithm. For NP-hard op-
timization problems in general, one can evaluate heuristics
based on their approximation ratios. However, it is known
(through work culminating in [13]) that for any constant
� > 0, MIS cannot be approximated within ratio ofn1��

(wheren is the number of vertices in the input graph) unless
NP has randomized polynomial time algorithms. Hence, if
we were to evaluate heuristics for MIS based on their ap-
proximation ratios, all heuristics would perform badly. The
best approximation ratio known to be achievable for MIS is
O(n=(logn)2) [7].

As very little can be done with the MIS problem on worst
case instances (unless P=NP), one would like to compare
the performance of heuristics on average instances, or those
that typically occur in practice. But how does one model
such instances? One possible model is that of a random
graph (see the survey in [10]). The question then arises of
how well random graphs model inputs that interest us in
“real life” applications. But even regardless of this ques-
tion, the random graph model does not seem to provide a
good way of distinguishing between good and bad heuris-
tics in the case of MIS. For example, if each edge is chosen
independently at random with probability 1/2, then the size
of the maximum independent set is almost surely roughly
2 logn. An elementary greedy heuristic almost surely finds
an independent set of sizelogn. No heuristic, not even the

most sophisticated one, is known to find independent sets
significantly larger thanlogn. Hence, most heuristics have
roughly the same performance in this random graph model,
making it an inadequate framework for comparing between
them. Another random model that was suggested is simi-
lar to the random graph model, but with an independent set
of sizeK planted in the graph. The largerK is, the eas-
ier it is to find the independent set. IfK > c

p
n logn for

sufficiently largec, the vertices of the independent set are
easily recognized to be theK vertices of lowest degree in
G. Hence a trivial heuristic will solve MIS in this case.
But even the most sophisticated heuristics guarantee only a
marginal improvement in the size ofK. The lowest value of
K that can be provably handled by known heuristics (spec-
tral techniques, in this case) is
(

p
n) [4]. Hence also the

planted independent set model does not provide sharp dis-
tinctions between good and bad heuristics.

In this paper we study a semi-random model for MIS,
which has some similarities with semi-random models stud-
ied for the coloring problem in [5]. In our model there is an
independent setS of size�n planted in a graph, for some
� > 0. Edges connectingS to the rest of the graph are
placed at random, with probabilityp = O(log nn), creating a
random graphGmin. An adversary can then add (but not re-
move) arbitrary edges toGmin (as long asS remains an in-
dependent set), thus obtaining the input graphG. The goal
of the heuristic is to recover an independent set of size�n.
The semirandom model has a random componentGmin,
and whenp is large enough, hardness results for worst case
instances no longer apply. It also has an adversarial (worst
case) component, which can be used to makeG more simi-
lar to inputs that may occur in practice – with the restriction
thatGmin must remain a subgraph. Technically, the adver-
sarial component can be used to alter degrees of vertices
(and foil heuristics based on vertex degrees), to create in-
dependent sets that are “local maxima” (and foil heuristics
based on local search), and to modify the spectrum of the
graph. We are not aware of any previously published algo-
rithm that can handle our semirandom model.

We design an algorithm that recovers an independent set
of size�n in the semirandom graph model. Our algorithm
requires a value ofp slightly abovelnn=�n. We also show
that this value ofp is best possible up to low order terms,
unless NP has randomized polynomial time algorithms.

Our algorithm for finding independent sets can also be
used for coloring. In the randomk-colorable graph model,
a graph is partitioned intok color classes, and edges are
placed at random with probabilityp between color classes.
In this model Alon and Kahale [2] show that whenp = c=n
andc > 0 is large enough, ak-coloring can be recovered.
Blum and Spencer [5] introduced the framework of semi-
randomk-colorable graphs, where in addition to the ran-
dom edges, an adversary can add arbitrary edges between

color classes. (Several variations on this model are pre-
sented in [5], and the results discussed here apply to all of
them. This model was further studied in [17].) Algorithms
designed for the random graph model often do not work in
the semi-random model. For the semirandom model, when
color classes are of the same size (thebalancedcase), Blum
and Spencer [5] design algorithms that handle values ofp
aboven�=n, for some� > 0 that depends onk. No bet-
ter results were known, and the algorithm of [2] does not
seem to apply to this model. Our new algorithm for find-
ing independent sets can be used also fork-coloring (in
the balanced case), by extracting the color classes one by
one. It offers major improvement over the results of [5]
on semirandom graphs, as it handles values ofp as low
as(1 + �)k lnn=n. This answers an open question of [5]
and [10]. Moreover, the value ofp is almost best possible,
as coloring semirandomk-colorable graphs with values of
p below(1��) lnn=n is NP-hard. (Note that in the random
model values ofp = O(1=n) can be handled [2].)

1.1. The semi-random graph model

The graphG hasn vertices. Its edge setE is generated
partly at random and partly by an adversary.

Let 0 < � < 1 be a constant, andp = (c lnn)=n, where
c is a large enough constant that depends on�.

1. An independent setS of size�n is chosen at random.
Let �S denote the vertices ofG not belonging toS.

2. Random component: for any pair of verticesu; v such
thatu 2 S andv 2 �S, the edge(u; v) is placed inE
with probabilityp, independently of all other events.
This gives the random graphGmin.

3. Adversarial component: having complete knowledge
of Gmin, an adversary may add toE any number of
edges, provided thatS remains an independent set.
This gives the graphG.

Let Gmax be the graph obtained by planting the inde-
pendent setS of size�n in an otherwise complete graph
on n vertices. ThenG is an arbitrary graph “sandwiched”
betweenGmin andGmax. This fixesS as an independent
set, allows the adversary complete control for placing edges
both of whose endpoints are in�S, and partial control over
those edges with one endpoint inS and the other in�S (the
adversary controls a fraction of(1 � p) of these edges).
The lowerp is, the more control the adversary has over the
graph.

Our algorithm is required to recover an independent set
of size at least�n. We wish the algorithm to succeed with
high probability, where probability is computed over the
choice ofGmin, and over the random coin tosses of the

algorithm, regardless of the adversarial component of the
graph.

We note thatG may contain several independent sets of
size�n. In this case the algorithm is required to output just
one of them, not necessarily the originalS.

Observe that the algorithm is in essence required to out-
putGmax. The random graphGmin differs fromGmax in
that it misses some of the edges contained inGmax. The
only changes that the adversary makes toGmin is to put
back some of these missing edges. Hence, it may appear
that the adversary only makes the problem easier. Never-
theless, many algorithms that would recover a large inde-
pendent set in the random graphGmin would fail onG.
A major motivation for the semi-random graph model is to
identify those algorithms that work on random graphs, and
are also robust enough to withstand adversarial “help”.

Notation: throughout,�, p andc will be used only as
above. That is,jSj = �n, and the edge probability of the
random component isp = c lnn=n. For a setT of vertices,
N(T) denotes the set of their neighbors in graphG. We
denote set subtraction byA n X (that is, those elements in
A that are not inX).

1.2. Our results

The properties of our main algorithm are summarized in
the next theorem.

Theorem 1 For c = (1 + �)=�, where� > 0, there is a
random polynomial time algorithm that with overwhelming
probability recovers an independent set of size�n in the
semi-random graph model.

“Overwhelming probability” means with probability1�
o(1) for n sufficiently large. Using the adversarial compo-
nent of the graph, it can be shown that the value ofc in
Theorem 1 is best possible, up to low order terms.

Theorem 2 In the semi-random model, ifc = (1��)=� for
some� > 0, then unlessNP � BPP , every random poly-
nomial time algorithm will with overwhelming probability
fail to find an independent set of size�n in G (against an
optimal adversary).

The proof of Theorem 2 is sketched in the appendix.
Theorem 1 implies new results about coloringk-

colorable graphs in the semi-random model of Blum and
Spencer [5]. In this model, a graph is partitioned intok
color classes. Each edgeei between different color classes
is included with probabilitypi, wherepi is controlled by an
adversary, subject topi � p, for somep < 1. Clearly, the
smallerp, the stronger the adversary. Blum and Spencer
give algorithms to color semi-random 3-colorable graphs
whenp > n2=3=n, and to colork-colorable semi-random

graphs in which the sizes of the color classes are balanced,
wheneverp > n�=n, for � > (k2�k�2)=(k2+k�2). We
significantly lower the values ofp for which a coloring can
be found. Our bounds onp are best possible up to constant
multiplicative factors (via an argument similar to the proof
of Theorem 2).

Theorem 3 For any constantk, there is a polynomial time
algorithm that with overwhelming probability recovers the
largest independent set ink-colorable graphs in the semi-
random graph model of [5], wheneverp > (1+�)k lnn

n .

It is not hard to show that in semirandomk-colorable
graphs withp as in Theorem 3, the largest independent set
corresponds to a color class. Hence after the largest inde-
pendent set is recovered, it can be removed from the graph,
which then remains(k � 1)-colorable. Whenk = 3, the
remaining graph is bipartite and can be two-colored in poly-
nomial time. Fork > 3, the other color classes can be re-
covered by repeatedly applying Theorem 3, but only if the
color classes are large enough. If they are too small, then
the number of verticesn0 remaining in the graph may be
too low, causingp < (k�1) lnn0

n0
, and Theorem 3 may not

apply. In fact, in [5] it is shown that coloring semi-random
4-colorable graphs is NP-hard even for much larger values
of p, when the color classes are highly unbalanced.

We remark that our algorithm for finding independent
sets works also in models that have less randomness (and
hence, are more adversarial) than our semirandom graph
model. One such model is thed-neighbors model, where
in Gmin, each vertex of�S hasd random neighbors inS.
The graphG is then an arbitrary graph sandwiched between
Gmin andGmax. It can be shown that a simple modification
of our algorithm recovers in this model independent sets of
size�n, whend is a large enough constant that depends
only on�. Observe that in this modelGmin has onlyO(n)
edges, whereas in our original semirandom modelGmin has

(n logn) edges.

1.3. Techniques and related work

Lovasz introduced thethetafunction as an upper bound
on the size of the maximum independent set [15]. The theta
function can be approximated within arbitrary precision in
polynomial time, using semidefinite programming. Goe-
mans and Williamson [12] showed how semidefinite pro-
gramming can be used in order to approximate problems
such as max-cut. Inspired by their work, Karger, Motwani
and Sudan [14] used semidefinite programming to obtain
improved coloring algorithms. Alon and Kahale [3] used
the work of [14] to show that the theta function can be used
to find medium size (n� vertex) independent sets in graphs
that have linear size independent sets (improving the values
of � previously obtained in [7]).

In terms of approximation ratio, the theta function (and
similar semidefinite programs) appear to have little to offer.
In [9] it is shown that for every� > 0 there are graphs with
multiplicative gaps ofn1�� between the size of the maxi-
mum independent set and the value of the theta function.
Indeed, Håstad’s result [13] implies that, unlessNP is easy,
no easily computable function will give better than an1��

approximation in the worst case.

However, our current work singles out semidefinite pro-
gramming as an approach that can cope with the semiran-
dom graph model, unlike other heuristics for MIS. In more
detail, our algorithm has two phases. In the first phase (Sec-
tions 2.1 and 2.2)G is partitioned into a small number of
parts, such that some of these parts are composed mostly of
vertices ofS. This first phase uses semidefinite program-
ming. Its analysis is based only onGmin, and goes through
regardless of what the adversary does. This illustrates the
robustness of (some) algorithms based on semidefinite pro-
gramming.

In the second phase (Sections 2.3, 2.4 and 2.5) we “clean
up” the output of the first phase, and extractS (or a different
independent set of the same size). Many of the difficulties
introduced by the adversary manifest themselves in the sec-
ond phase. In particular, there is the problem of getting out
of local maxima. To illustrate this problem, assume that the
algorithm already found a maximal independent setI com-
posed mostly of vertices ofS (though not containing all of
S). One may then hope that local heuristics such ask-opt
(exchanging a constantk number of vertices ofI with V n I
so as to hopefully get a new independent set that is not maxi-
mal and hence can be expanded) would allow one to eventu-
ally extractS. However, in our semi-random model, the ad-
versary is strong enough so as to make nok-exchange possi-
ble, even whenI is almost as large as�n (details omitted).
Our method of improving over local maxima is based on
global computations (finding maximum matchings) rather
than local ones, and may be of independent interest.

As pointed out above, our work shows that algorithms
based on semidefinite programming perform well on ran-
dom instances of MIS, and are robust enough to withstand
adversaries that add edges to the graph. We remark that
a similar phenomenon occurs for graph bisection. Bop-
pana [6] considers a model of random graphs in which the
edge probability for edges crossing the intended bisection
is slightly smaller than that of edges outside the bisection.
In this model, he shows how to find the planted bisection.
We propose an algorithm similar to that of Boppana, formu-
lated as a semidefinite program. Based on Boppana’s tech-
niques, we show that this algorithm finds the bisection in
a semirandom model in which an adversary adds arbitrary
edges within each side of the bisection, and removes arbi-
trary edges connecting the two sides of the bisection. This
gives another example of the robustness of algorithms based

on semidefinite programming. More details are sketched in
the appendix.

1.4. Useful properties of semi-random graphs

Finding independent sets is NP-hard. Hence our algo-
rithm will have to use some special property ofG, inher-
ited fromGmin. The property we use isexpansion, as for-
mulated in the following lemmata. Recall that overwhelm-
ing probability means with probability1� o(1) for n suffi-
ciently large.

Lemma 4 Let c > 0, and lett = n(logn)�� , for some�,
0 < � < 1. Then whenn is large enough, with overwhelm-
ing probability over the choice ofGmin, for everyT � �S
andS0 � S, each of cardinalityt, there is some edge in
Gmin joining T andS0.

Proof: (Sketch) There are at most
�
n
t

�2
ways of choosing

T andS0. For each such choice, the probability of the bad
event that there is no edge joiningT andS0 is (1�p)t

2

. For
large enoughn, the lemma follows from the union bound
on the probabilities of the bad events.2

Similarly, we can show:

Lemma 5 Let c = (1 + �)=�, let d > 0 be an arbitrary
constant, and assume thatn is large enough. Then with
overwhelming probability over the choice ofGmin, for ev-
eryT � �S of cardinality at most31�n=32d, jN(T)

T
Sj �

djT j.

Throughout we shall assume thatGmin has the above
expansion properties. AsG contains all edges ofGmin,
these properties are preserved inG.

In Section 2.2, we shall also use the following property
of Gmin, namely:

Lemma 6 Let c = (1 + �)=�, with 0 < � < 1. Then
with overwhelming probability over the choice ofGmin, the
number of edges inGmin is at most2n lnn=�.

Of course,G may contain many more edges thanGmin.
We shall use Lemma 6 in our analysis, but shall NOT as-
sume thatG is sparse.

2. Our algorithm and its analysis

Our algorithm has five phases, described and analyzed
in the following subsections. Many of the constants in-
volved are arbitrary and are specified only for concreteness.
Throughout our analysis, we ignore divisibility issues, es-
chewing careful roundoff analyses. Such considerations do
not materially affect our argument.

2.1. A coarse partition using semidefinite program-
ming

The following lemma is implicit in [3, 14].

Lemma 7 LetG(V;E) be a graph onn vertices that con-
tains an independent set of sizeK. Then one can find in
polynomial time a setQ of K=2 vertices (not necessarily
belonging to the independent set), and a set ofK=2 unit
vectors inRn associated with these vertices, such that for
any two verticesvi; vj 2 Q, if (vi; vj) 2 E, then the inner
product of the associated vectors satisfies

hzi; zji < �K=(2n�K)

(i.e., the angle betweenvi andvj is large).

For completeness, the proof of Lemma 7 is presented in
the appendix.

Using Lemma 7, we extract a small number of large sets
V1; V2; : : : as follows. We defineG0 = G and inductively,
we letGi be the subgraph ofG induced onV n Sj�i Vj .
We generateVi+1 by applying the algorithm of Lemma 7 to
Gi, setting the value ofK to be�n=4. Hence the setVi+1

containsK=2 = �n=8 vertices, and we also have vectors
associated with these vertices (zj denotes the vector associ-
ated with vertexvj) such that whenever(vj ; vk) 2 E,

hzj ; zki < �(�n=4)=(2n� �n=4) < ��=8:
We stop producing newVi when the algorithm fails to find
such a set. In this case, the set of remaining vertices con-
tains less than�n=4 vertices ofS (or the algorithm would
succeed).

The subgraph ofG induced onVi will be denoted byQi.
LetSi = Vi

T
S.

Definition 1 A setVi is goodif jSij � �2n=32.

Proposition 8 The process described above gives a parti-
tion for which

X
fijVi is goodg

jSij � �n=2:

Proof: SinceVi = �n=8, by construction, there are at
most8=� sets. Less than�n=4 vertices ofS are not con-
tained in anyVi (i.e., those discarded at the end). The num-
ber of vertices ofS contained in setsVi that are not good is
at most�

2n
32 � 8� � �n

4 . As jSj = �n, the proof follows. 2

2.2. Refining the partition using random hyper-
planes

We further partition eachVi. The desired outcome of this
phase is summarized in Lemma 10.

Let �Si = VinSi, and letEi be the set of edges connecting
Si and �Si in Gmin. (Note,Ei does not contain the edges
added by the adversary.)

By our construction, for each vertexvj 2 Vi we can
associate a unit vectorzj 2 Rn such that for any two ver-
ticesvj ; vk 2 Vi, if (vj ; vk) 2 E (and as a special case,
if (vj ; vk) 2 Ei), then the inner product of the associated
vectors satisfieshzj ; zki < ��=8. This inequality implies
that the angle between the vectorszj andzk is at least some
constant� > �=2. (One can take� = cos�1(��=8). The
exact value of� is irrelevant to our analysis.)

We partitionQi using a technique developed by [12, 14].
We pass a random hyperplane through the origin, and sep-
arate the verticesVi into two sets, depending on the side
of the hyperplane on which they lie. As shown in [12], if
(vj ; vk) 2 E, a random hyperplane will separatezj andzk
with probability at least� = �=� > 1=2.1

Choosingh random hyperplanes partitions the vertices
Vi intom � 2h sets of vertices,Vi1; : : : ; Vim. This random-
ized partition procedure, which we denotepartition(Qi; h),
tends to shatterQi in the following sense:

Definition 2 LetE(Vi1; : : : ; Vim) denote all pairs
(vj ; vk) 2 Ei such thatvj ; vk 2 Viq for someq.

Lemma 9 For a goodVi and forEi as defined above, the
expectation ofjE(Vi1; : : : ; Vim)j is at mostjEij(1 � �)h,
where the expectation is taken over the coin tosses of
partition(Qi; h).

Proof: Each pair(vj ; vk) 2 Ei has probability(1� �)h

of not being separated by at least one of the hyperplanes.
The proof follows from the linearity of the expectation.2

Modifying an approach of [14], our algorithm computes
(Vi1; : : : ; Vim) = partition(Qi; h) for eachQi, and then
removes a maximal matching from each setVij . For each
Vi, this gives independent setsIi1; : : : ; Iim (some of which
might be empty), and some left over vertices (removed by
the matching)Mi. These independent sets and the sets of
leftover vertices form the refined partition ofG.

Definition 3 An independent setIij is usefulif jIij
T
Sij �

3jIij j=4.

Recall that� = �=� > 1=2 and leth be the least integer
satisfying(1� �)h � �2=16 lnn. The following lemma is
of central importance to our analysis. Its proof is given in
the appendix.

Lemma 10 Leth be as above and letfIijg be the indepen-
dent sets obtained by runningpartition(Qi; h) on each of
the subgraphsQi, and removing a maximal independent set

1Better partitioning techniques are also suggested in [14], but are not
needed for our results.

from eachVij . Then with probability at least1=2 (over the
random choices ofpartition(Qi; h)), at least�n=8 vertices
ofS are in useful independent setsIij .

2.3. Creating a linear size independent setI

In this section we find inG an independent set of size

(n).

The number of independent sets constructed in Sec-
tion 2.2 is at most8m=� � logn (for large enoughn).
Lemma 10 describes an event that happens with probability
at least 1/2, and we assume that this event holds. (The ran-
domized algorithm can be repeated several times with inde-
pendent coin tosses so as to make the probability of failure
arbitrarily small.) Hence�n=8 vertices ofS are in useful
independent sets.

We now guess which are the useful independent sets.
The number of possible combinations here is less thann,
and we can just try out all possibilities. (More efficiently,
one may guess just one useful independent set, and deduce
the rest via matching techniques. Details are omitted from
this preliminary version.) Combine the useful independent
sets to obtain a setJ , and remove a maximal matching from
J to obtain an independent setI . At most one fourth of the
vertices ofJ do not belong toS, and for each edge removed
from J at least one of its endpoints is not inS. It follows
thatjI TSj � jJ j � 2jJ j=4 � jJ j=2 � jSj=16.

2.4. Purifying I.

Let I be a an independent set inG with jI TSj �
jSj=16. Observe that by Lemma 4, almost all vertices of
I belong toS, and only a small number of vertices fromI
might belong to�S. In this section we extract fromI a subset
I 0, all of which is contained inS.

Denote the vertices ofG by v1; : : : ; vn. Let l be the
smallest integer greater than32=�.

Based onG(V;E) andI , we describe a bipartite graph
G0(V 0; E0), whereV 0 = R

S
L. The right hand sideR of

G0 contains then � jI j verticesV n I . The left hand side
L containsl copies ofI . Namely, each vertexvi 2 I is
representedl times inL, asvi1; vi2; : : : vil. The edgesE0

are obtained fromG in a natural way:(vij ; vk) 2 E0 if
vij 2 L, vk 2 R, and(vi; vk) 2 E.

We now describe the algorithmpurify(I).

purify(I)

1. ConstructG0 as described above.

2. Find a maximum matchingM in G0.

3. ReturnI 0, whereI 0 � I contains those verticesvi 2 I
for which there is some1 � j � l for which the vertex
vij was left unmatched byM .

Clearly, the algorithm runs in polynomial time.
Lemma 11 shows that in semi-random graphs, it indeed pu-
rifies large independent sets.

Lemma 11 Let G be a semi-random graph satisfying
Lemma 5, and assume thatn is large enough so that the pa-
rameterd in Lemma 5 can be chosen to be larger thanl. Let
I be an independent set inG such thatjI TSj > jSj=16.
Thenpurify(I) returns an independent setI 0 � S, with
I 0 > jSj=32.

Proof: To see thatjI 0j > jSj=32, observe that the size of
M is at mostjRj < n. For every vertexvi 2 I n I 0, there
arel verticesvi1; : : : ; vil 2 L matched with vertices inR.
HencejI n I 0j < n=l, and jI 0j > jI j � n=l = �n=16 �
�n=32 = �n=32.

It remains to show thatI 0 � S. We first analyze the
graphG. Let A = I

T
S andB = I

T �S. By assump-
tion, jAj > jSj=16. As N(B)

T
S � �I , it follows that

jN(B)
T
Sj < 15jSj=16. By Lemma 5, it follows that

jBj < (15jSj=16)=d; it then follows that for everyB0 � B,
jN(B0)

T
(S
T

�I)j > ljB0j (note thatN(B0)
T
(S
T

�I) =
N(B0)

T
S). Observe thatN(B)

T
(S
T �I) is disjoint from

N(A)
T �I .

We now analyzeG0. Let B0 denote those vertices ofL
that originate fromB. (That is,vij 2 B0 if vi 2 B.) We
claim that there is a matchingM 0 from B0 to the vertices
of R

T
S. Since no other vertex fromL can be matched

to vertices ofR
T
S, the existence ofM 0 implies that any

maximal matching must match every vertex ofB0. Consider
an arbitraryB00 � B0. B00 must contain at leastjB00j=l
distinct representatives fromB. ThenjN(B00)j > (jB00j=l)�
l = jB00j. Hence by Hall’s theorem, all vertices ofB0 will
be matched. It follows thatB � I n I 0, implying I 0 � A �
S. 2

2.5. ExpandingI 0.

To expandI 0, ultimately recoveringS, we perform the
following procedure.

expand(I 0)

1. SetV 0 = V �N(I 0). LetG0 beG induced onV 0.

2. Compute a maximum matching onG0.

3. ReturnI 00, the set of unmatched vertices ofG0.

Lemma 12 Let I 0 � S and jSj=32 < jI 0j < jSj. If
Lemma 5 holds, thenI 00 � S andjI 00j > jI 0j.

Proof: SinceI 0 � S, V 0 will contain S; defineQ =
V 0 nS. SinceS is an independent set, the maximum size of
a matching onG0 is jQj, and this size can be achieved only if

every vertex inQ is contained in the matching. By construc-
tion,S \N(Q) (the neighborhood ofQ, restricted toS) is
contained inS� I 0. Noting thatjS� I 0j < 31jSj=32, it fol-
lows from the expansion properties ofG thatjQj < jSj=32,
or S \N(Q) would have at least31jSj=32 vertices. It then
follows from the expansion properties thatjS \ N(Q)j >
jQj, unlessQ is empty (in which caseexpand(I 0) = S),
and thatjS \ N(Q0)j > jQ0j for every nonemptyQ0 � Q.
Hence there exists a complete matching fromQ to S. This
implies that any maximum matching found will include ev-
ery vertex fromQ and that at least one vertex fromS � I 0

will be left over, sincejS � I 0j � jS \ N(Q)j > jQj.
expand(I 0) will be contained inS and properly containI .
2

Lemma 12 implies that repeated applications of
expand(I 0) (each time withI 0 being the previousI 00) will
recoverS. (In fact, the maximum matching found in the
first application ofexpand(I 0) can be reused, making re-
peated applications ofexpand(I 0) unnecessary. Details are
omitted.)

Acknowledgements

Allan Frieze gave useful comments on an earlier version
of this manuscript.

References

[1] F. Alizadeh. “Interior point methods in semidefinite
programming with applications to combinatorial op-
timization”, SIAM J. Optimization, 5(1), 13–51, 1995.

[2] N. Alon and N. Kahale. “A spectral technique for col-
oring random 3-colorable graphs”.SIAM J. Comput.,
26(6), 1733–1748, 1997.

[3] N. Alon and N. Kahale. “Approximating the indepen-
dence number via the#-function”. Math. Program-
ming, to appear.

[4] N. Alon, M. Krivelevich and B. Sudakov. “Finding a
large hidden clique in a random graph”.In Proc. Ninth
SODA, 594–598, 1998.

[5] A. Blum and J. Spencer. “Coloring random and semi-
randomk-colorable graphs”.Journal of Algorithms,
19(2):204–234, September 1995.

[6] R. Boppana. “Eigenvalues and graph bisection: An
average-case analysis”. InProceedings of the 28th An-
nual Symposium on Foundations of Computer Science,
pages 280–285, Los Angeles, CA, October 1987.
IEEE Computer Society Press.

[7] R. Boppana and M. Halldorsson. “Approximating
maximum independent sets by excluding subgraphs”.
BIT, 32 (1992), 180–196.

[8] David S. Johnson and Michael A. Trick (editors).
“Cliques, Coloring, and Satisfiability: Second DI-
MACS Implementation Challenge, 1993”,DIMACS
Series in Discrete Mathematics and Theoretical Com-
puter Science, 26, American Mathematical Society,
1996.

[9] U. Feige. Randomized graph products, chromatic
numbers, and the Lovasz#-function. Combinatorica
17 (1) (1997) 79–90.

[10] A. Frieze and C. McDiarmid. “Algorithmic theory of
random graphs”.Random Structures and Algorithms
10 (1997), 5–42.

[11] Z. Furedi and J. Komlos. “The eigenvalues of random
symmetric matrices”.Combinatorica, 1(3), 233–241,
1981.

[12] Michel X. Goemans and David P. Williamson. “Im-
proved approximation algorithms for maximum cut
and satisfiability problems using semidefinite pro-
gramming”,Journal of the ACM, 42 (6) (1995), 1115–
1145.

[13] J. Håstad. Clique is hard to approximate withinn1��.
Proc. 37th Annual Symp. on Foundations of Computer
Science, pages 627–636, 1996.

[14] D. Karger, R. Motwani, and M. Sudan. “Approximate
graph coloring by semidefinite programming.”Jour-
nal of the ACM, 45(2) , 246–265, 1998.

[15] Lovász. On the Shannon capacity of a graph.IEEE
Transactions on Information Theory IT-25, pp. 1-7,
1979.

[16] S. Poljak, F. Rendl. “Nonpolyhedral relaxations of
graph-bisection problems”.SIAM J. Optimization,
5(3), 467–487, 1995.

[17] C. Subramanian. “Minimum coloring random and
semi-random graphs in polynomial expected time”.
Proc. 36th Annual Symposium on Foundations of
Computer Science, 1995, 463–472.

A. Proofs

Proof of Theorem 2: (Sketch) Recall thatp = c lnn
n and

consider the random component ofG. With overwhelming
probability, �S will have a setT of n� isolated vertices not
connected toS, where� is some constant that depends on

�. UsingT , an adversary can embed a hard instance of in-
dependent set in the semi-random graph.

Let G0 be a graph on3n�=2 vertices,V 0, in which we
seek to find an independent set of sizen�=2 (this problem is
NP-hard). LetV1 consist of�n� n�=2 vertices,V2 consist
of n��n�n� vertices. Construct the graphGwith vertices
V 0 [V1 [V2. The edges ofG consist of those ofG0 (those
connect only vertices inV 0), and all edges between every
vertex inV2 and any other vertex (hence vertices inV2 have
degreen � 1, and vertices inV1 have degreejV2j). Then,
permute the vertex labels ofG at random. It follows from
the construction thatG has an independent set of size�n iff
G0 has an independent set of sizen�=2. Observe that given
G0, the graphG is constructed in random polynomial time.

We next argue that when constructing a semirandom
graph with an independent set of size�n, the adversary can
create a graph isomorphic toG wheneverGmin hasn� iso-
lated vertices (which happens with overwhelming probabil-
ity) andG0 has an independent set of sizen�=2. Hence, if
there existed an algorithm that didn’t fail with overwhelm-
ing probability, it must succeed onG with some constant
probability, revealing thatG0 has such an independent set.
Theorem 2 would then follow. Note that the adversary need
not run in polynomial time.

Our adversary computes an independent setI of G0,
wherejI j = n�=2. GivenGmin, with a setT of n� iso-
lated vertices in�S, the adversary maps then�=2 vertices of
I arbitrarily to distinct vertices ofS and maps then� ver-
tices ofV 0 n I (distinctly) toT . Given this mapping, it then
adds the edges corresponding to those inG0. By the con-
struction, it is allowed to add these edges, and furthermore,
every nonedge inG0 corresponds to a nonedge inGmin. Fi-
nally, the adversary connects every vertex of�S n T to every
other vertex. It can be verified that this graph is isomor-
phic toG. V1 corresponds to those vertices inS that do not
correspond toI andV2 corresponds to�S n T . 2

Proof of Lemma 7: Consider the following semidefinite
program (which can be solved up to arbitrary precision in
polynomial time, using the Ellipsoid algorithm). Given the
graphG, we find an ordern matrixX = fxijg satisfying
the following constraints:

1. 8i; j; 0 � xij � 1,

2. 8(i; j) 2 E; xij = 0,

3.
P

i xii = K,

4. 8i; Pj xij = Kxii,

5. The matrixX is positive semidefinite.

As G has an independent setS of sizeK, the above
semidefinite program is feasible. Settingxij = 1 when-
evervi; vj 2 S, andxij = 0 otherwise, gives a matrixX

satisfying the above constraints. To see thatX is semidefi-
nite, letqi be1 if vi 2 S, and0 otherwise, and observe that
X = Y Y T , whereY = [q1 q2 � � � qn]T andY T denotes the
transpose ofY .

A positive semidefinite matrixX can be decomposed in
polynomial time intoX = Y Y T , whereY is a matrix with
n rows, andY T is its transpose. We denote the row vec-
tors ofY by y1; : : : ; yn. The entryxij is the inner product
hyi; yji. Let y0 =

P
i yi=K. From constraints 3 and 4

it follows that hy0; y0i = K2=K2 = 1. Hencey0 is a
unit vector. Moreover, constraint 4 implies that for every
i, hyi; yii = hy0; yii. (Geometrically, this means that the
pointsyi, 1 � i � n, all lie on ann-dimensional sphere of
radius1=2, and the points0 andy0 are antipodal.)

Assume w.l.o.g. that the vectorsyi are sorted by their
lengths, and consider now only the vectorsy1; : : : ; yK=2.
For every such vector,K=2n < hyi; yii � 1 (from
constraints 1 and 3). Associate now with the vertices
v1; : : : ; vK=2 unit vectorsz1; : : : ; zK=2, where vectorzi is
in directionyi � hy0; yiiy0 (i.e., we project out direction
y0).

Proposition 13 For 1 � i < j � K=2, if (vi; vj) 2 E,
thenhzi; zji < �K=(2n�K).

Proof: Let wi = yi � hy0; yiiy0. If (vi; vj) 2 E then
hyi; yji = 0. This gives

hwi; wji = 0� 2hy0; yiihy0; yji+ hy0; y0ihy0; yiihy0; yji
= �hy0; yiihy0; yji:

This implies thathzi; zji < 0, but does not bound its
magnitude, since thewi are not unit vectors. By using the
interpretation of theyi as lying on a sphere of radius1=2we
obtain that their lengths satisfy(jwij)2+(1=2�hy0; yii)2 =
1=4, implying thatzi = wi=

phy0; yii � (hy0; yii)2. It fol-
lows that

hzi; zji =
� hy0; yiiphy0; yii � (hy0; yii)2

� hy0; yjiphy0; yji � (hy0; yji)2
:

By elementary calculus it can be shown that the function
f(x) = x=

p
x� x2 is positive and monotone increas-

ing over(0; 1); hencehzi; zji is minimized whenhy0; yii
and hy0; yji are minimized. As these minimums are in
both cases more thanK=2n, it follows that hzi; zji <
�(K=2n)2=(K=2n� (K=2n)2) = �K=(2n�K). 2

This completes the proof of Lemma 7.2
Proof of Lemma 10: Consider an arbitrary setVij that

is the outcome ofpartition(Qi; h). We define thesurplus
of Vij as sur(Vij) = jSTVij j � j �STVij j. From Vij ,
an arbitrary maximal matching is removed so as to ob-
tain an independent setIij (that may possibly be empty).

Clearly, sur(Vij) � jIij
T
Sj. Recall thatIij is useful if

jIij
T
Sj � 3jIij j=4. From Lemma 4 it can easily be de-

duced that ifjIij
T
Sj > n=(logn)� for some0 < � < 1,

then jIij
T �Sj = o(jIij j). HenceIij is useful. From the

above it follows that ifsur(Vij) > n=(logn)� then neces-
sarily Iij will be useful. We now show that many setsVij
have a large surplus, which then implies Lemma 10.

By Proposition 8, at least�n=2 vertices fromS belong to
goodVi. A goodVi is partitioned byh random hyperplanes
into m partsfVijg. From Lemma 9, the expectation of
jE(Vi1; : : : ; Vim)j is at mostjEij(1��)h. Hence the expec-
tation of

P
i jE(Vi1; : : : ; Vim)j is at most

P
i jEij(1� �)h.

From Lemma 6 it follows that
P

i jEij � 2n lnn=�. Hence
with probability at least1=2 we have that

X
i

jE(Vi1; : : : ; Vim)j � 4n lnn(1� �)h=�:

By our choice ofh, (1� �)h � �2=16 lnn, implying

X
i

jE(Vi1; : : : ; Vim)j � �n=4:

Recall that our algorithm removes a maximal matching
from eachVij . For the sake of analysis, we as a thought
experiment remove a maximal matching containing only
edges fromEi, giving a setUij . (The algorithm itself
does not have the luxury of knowing which edges ofQi

belong toEi). Then over all goodVi, the total number
of edges removed is at most�n=4, meaning that at least
�n=2 � �n=4 = �n=4 vertices fromS remain in the sets
fUijg. Call a setUij large if jUij

T
Sj � �2n=128m. As

there are at most8m=� setsUij , those that are not large can
contain in total at most�n=16 vertices fromS. Hence at
least�n=4 � �n=16 = 3�n=16 vertices fromS are con-
tained in largeUij .

By our choice ofh and the fact that� > 1=2, largeUij
contain
(n=(logn)�) vertices ofS for some� < 1. As
they contain no edges fromGmin, Lemma 4 implies that
for largeUij , jUij

T �Sj � o(jUij j). To obtainUij fromVij ,
exactly(jVij j � jUij j)=2 vertices ofS

T
Vij were removed.

Hence the surplus ofVij must be(1 � o(1))jUij j. So if
we consider only thoseVij that had largeUij in the above
experiment, they give rise to usefulIij containing a total of
at least

(1� o(1))
X

largeUij

jUij j � (1� o(1))3�n=16 > �n=8

vertices fromS. 2

B. Graph bisection

The bisection sizeb(G) of a graphG is the minimum
number of edges in a balanced cut (each side containsn=2

vertices). This problem is NP-hard. Boppana [6] develops
a heuristic for this problem, and analyses its performance
on random graphs with planted bisections. Specifically, he
considers random graphs whose vertex set is partitioned into
two equal size setsS and �S, and two vertices are connected
by an edge with probabilityp if they belong to the same set,
and with probabilityq if they belong to different sets. Ifq
is sufficiently smaller thanp, then w.h.p.S; �S is a unique
minimum bisection. Boppana shows that when

p� q � 10

r
(p+ q)

logn

n

then with high probability (over the choice of input graph)
his heuristic recovers the minimum bisection.

We consider a semirandom model for graph bisection.
In this model, a graphGrandis chosen at random as above.
Then an adversary removes edges of his choice from the cut
S; �S, and adds edges of his choice outside the cut (i.e., con-
necting pairs of vertices inS, or pairs of vertices in�S). This
gives the semirandom graphG. Clearly, ifS; �S is the min-
imum bisection inGrand, then it is a minimum bisection
also inG.

We show that w.h.p. over the choice ofGrand, an al-
gorithm similar to that of Boppana outputsb(G). To also
output the bisection itself, determine which pairs of vertices
belong to the same side of the bisection by adding/removing
an edge between them to obtain a graphG0, and checking
whetherb(G0) = b(G). (We use here the fact thatG0 is
sufficiently random for Boppana’s algorithm to work.)

Let h(G) be an arbitrary function on graphs which has
the following properties:

1. Lower bound.For every graphG, h(G) � b(G).

2. Bounded monotonicity.Let G+ be the graphG with
one additional edge. Thenh(G) � h(G+) � h(G) +
1.

3. Probably good.With high probability over the choice
of Grand,

h(Grand) = b(Grand):

For any functionh satisfying the above properties, we
have that with high probability over the choice ofGrand,
h(G) = b(G) also in the semirandom model. This fol-
lows from the fact that wheneverh(Grand) = b(Grand),
then necessarilyh(G) = h(Grand) � r, wherer is the
number of edges removed from the cut by the adversary.
(Whenh(Grand) = b(Grand), each edge removed from
the cut decreasesb(G) by one andh(G) by at most one
(bounded monotonicity), and henceh(G) by exactly one
(lower bound). Each edge added outside the cut does not
increaseb(G), and hence can neither increaseh(G) (lower
bound), nor decreaseh(G) (monotonicity).)

Boppana [6] describes a polynomial time computable
function h and shows that it satisfies properties 1 and 3
above. It is not easy (for us) to verify that Boppana’s func-
tion satisfies property 2. Instead, we propose the follow-
ing semidefinite relaxation of bisection, for which prov-
ing properties 1 and 2 is straightforward, and property 3
is proved using the techniques of [6]. For a graphG(V;E)
find an ordern matrixX = fxijg satisfying:

1. 8i, xii = 1,

2.
P

ij xij = 0,

3. The matrixX is positive semidefinite,

and leth(G) be given by

h(G) = min
X

X
(i; j) 2 E

i < j

1� xij
2

;

whereX ranges over all matrices satisfying the above con-
straints. Using semidefinite programming,h(G) can be
computed in polynomial time within arbitrary precision
limits. To see thath(G) � b(G), consider the indicator vec-
tors 2 f+1;�1gn having entry+1 for vertices inS and�1
for vertices in�S, and letX = ssT . To see thath is bounded
monotone use the fact thatjxij j � 1 and0 � 1�xij

2 � 1. To
see thath is probably good, consider the dual of the above
semidefinite minimization problem (see [1] for rules how to
obtain the dual).

Maximize m=2 + (
Pn

i=1 yi)=4 s.t.
�A� y0J � Y is p.s.d.

Herem is the number of edges in the graph,A is its adja-
cency matrix,J is the all 1 matrix,y0 is an auxiliary variable
which affects feasibility but not the objective function, and
Y is a diagonal matrix withy1; : : : ; yn along its diagonal.

For every1 � i � n, letyi be the difference between the
number of neighbors that vertexi has on the other side of
the bisection and the number of neighbors that vertexi has
on the same side of the bisection. The value of the maxi-
mization semidefinite program is then exactlyb(G) (though
we have not yet shown that the solution is feasible). Further-
more, regardless of the value ofy0, the vectors described
above is an eigenvector of the matrixM = �A� y0J � Y
with eigenvalue 0. It remains to show that w.h.p. (over the
choice ofGrand), it is possible to choosey0 such thats
is the eigenvector of smallest eigenvalue. For this, choose
y0 = �1, giving �A + J = Ac + I , whereAc is the
adjacency matrix of the complement of the graphGrand,
and I is the identity matrix. The complement graph can
be viewed as a sum of two random graphs – one with
edge probability1� p, and the other a bipartite graph with
edge probabilityp � q. From [11], with high probability,

�O(
p
pn) lower bounds hold for the smallest eigenvalue

of the first graph and for the second smallest eigenvalue
of the second graph. These bounds can be combined with
(p� q)n=2�O(

p
pn logn) lower bounds on the entries of

the matrix(�Y), that hold with high probability, showing
thatM is almost surely positive semidefinite whenp� q is
large enough. Details omitted.

Remark: Possibly, for every graphG, our functionh
and Boppana’s function give the same value. See also [16]
for other semidefinite formulation for graph bisection.

