I ntroduction to Control Theory
And Its Application to Computing Systems

Tarek Abdelzahér Yixin Diao?, Joseph L. Hellerstefn
Chenyang L6, and Xiaoyun Zhg

Abstract Feedback control is central to managing computing systamsdata
networks. Unfortunately, computing practitioners tyflicapproach the design of
feedback control in an ad hoc manner. Control theory pravaleystematic ap-
proach to designing feedback loops that are stable in tlegt @lroid wild oscil-
lations, accurate in that they achieve objectives suchrgettaesponse times for
service level management, and settle quickly to their ststate values. This pa-
per provides an introduction to control theory for compgtpractitioners with an
emphasis on applications in the areas of database systegih$ime systems, virtu-
alized servers, and power management.

1 Introduction

Feedback control is central to managing computing systemsatworks. For ex-
ample, feedback (or closed loop systems) is employed t@eehesponse time ob-
jectives by taking resource actions such as adjusting stdingdoriorities, memory
allocations, and network bandwidth allocations. Unfoat@ty, computing practi-
tioners typically employ an ad hoc approach to the desigeediback control, often
with undesirable results such as large oscillations or sideptation to changes in
workloads.

In other mechanical, electrical, aeronautical and othegirerering disciplines,
control theory is used to analyze and design feedback l@pgrol theory provides
a systematic approach to designing closed loop systemarthatable in that they
avoid wild oscillations, are accurate in that they achidvedesired outputs (e.g.,

1. Dept. of Comp. Sci., University of Illinois, Urbana-Chpaign, IL, zaher@cs.uiuc.edu.

2. IBM T. J. Watson Research Center, Hawthorne, NY, diao@uscom.

3. Developer Division, Microsoft Corp, Redmond, WA, joehe@rosoft.com.

4. Dept. of Comp. Sci. and Eng., Washington University, 8uik, MO, lu@cse.wustl.edu.

5. Hewlett Packard Laboratories, Hewlett Packard Corgg Rio, CA, xiaoyun.zhu@hp.com.

2 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

response time objectives), and settle quickly to steadg stdues (e.g., to adjust to
workload dynamics). Recently, control theory has been uséte design of many
aspects of computing. For example, in data networks cothieoly has been applied
to flow control [18] and to the design of new versions of TCHAP].

This paper provides an introduction to control theory fanpaiter scientists with
an emphasis on applications. Section 2 discusses key dsnaeg fundamental
results in control theory. Section 3 describes how contr@bty has been applied to
self-tuning memory management in IBM’s DB2 Universal Dats8 Management
System. Section 4 addresses the use of model-predictitentondistributed real-
time systems. Section 5 discusses automated workload reareayg in virtualized
data centers. Section 6 details the use of control theorynfomaging power and
performance in data centers. Our conclusions and reselatleinges are presented
in Section 7.

2 Control Theory Fundamentals

This section provides a brief overview of control theorydomputer scientists with
little background in the area. The focus is on key concepdsamdamental results.

Disturbance Noise
Input Input

Reference Control Control l Measured

Input Error Input Output
> @9 > Target
Controller System

T

Fig. 1 Block diagram of a feedback control system.

Transducer |-

Transduced
Output

Karl Astrom, one of the most prolific contributors to conttb&ory, states that
the “magic of feedback” is that it can create a system thdbpais well from com-
ponents that perform poorly [2]. This is achieved by addimga element, the con-
troller, that dynamically adjusts the behavior of one or enother elements based
on the measured outputs of the system. We use the term tgsgetrsto refer to the
elements that are manipulated by one or more controllersti@ee desired outputs.

The elements of a closed loop system are depicted in FiguBelbw, we de-
scribe these elements and the information, or signals fithatbetween elements.
Throughout, time is discrete and is denotedkb$ignals are a functional of time.

e The reference input(k) is the desired value of the measured output (or trans-
formations of them), such as CPU utilization. For examp(k) might be 66%.
Sometimes, the reference inputis referred to as the desitpdt or the set point.

Introduction to Control Theory And Its Application to Contmg Systems 3

The control erroe(k) is the difference between the reference input and the mea-
sured output.

The control inputu(k) is the setting of one or more parameters that manipulate
the behavior of the target system(s) and can be adjustedrdgaby.

The controller determines the setting of the control inpeetaed to achieve the
reference input. The controller computes values of therobimput based on
current and past values of control error.

The disturbance input(k) is any change that affects the way in which the control
input influences the measured output (e.g., running a voas er a backup).

The measured outpytk) is a measurable characteristic of the target system such
as CPU utilization and response time.

The noise inpui(k) changes the measured output produced by the target system.
This is also called sensor noise or measurement noise.

The transducer transforms the measured output so that heaompared with

the reference input (e.g., smoothing stochastics of theuput

In general, there may be multiple instances of any of the aledements. For ex-
ample, in clustered systems, there may be multiple loachbala (controllers) that
regulate the loads on multiple servers (target systems).

To illustrate the foregoing, consider a cluster of three &maWeb Servers. The

Administrator may want these systems to run at no greater@b&o utilization so
that if any one of them fails, the other two can absorb the fatie failed server.
Here, the measured output is CPU utilization. The contrpuiris the maximum
number of connections that the server permits as specifigtidoybxCl i ent s
parameter. This parameter can be manipulated to adjust @Riation. Examples
of disturbances are changes in arrival rates and shiftseityie of requests (e.g.,
from static to dynamic pages). Control theory providesgtesechniques for deter-
mining the values of parameters suchvax Cl i ent s so that the resulting system
is stable and settles quickly in response to disturbances.

Controllers are designed for some intended purpose or aooitjective. The

most common objectives are:

regulatory control: Ensure that the measured output is equal to (or near) the
reference input. For example, in a cluster of three web sgnike reference
input might be that the utilization of a web server should tmEntained at 66%

to handle fail-over. If we add a fourth web server to the duyghen we may want

to change the reference input from 66% to 75%.

disturbance rejection: Ensure that disturbances acting on the system do not
significantly affect the measured output. For example, wadackup or virus
scan is run on a web server, the overall utilization of theesysis maintained

at 66%. This differs from regulator control in that we focus @hanges to the
disturbance input, not to the reference input.

optimization: Obtain the “best” value of the measured output, such asnipti

ing the setting oMaxCl i ent s in the Apache HTTP Server so as to minimize
response times. Here, there is no reference input.

4 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

There are several properties of feedback control systeatshould be consid-
ered when comparing controllers for computing systems. dboice of metrics is
drawn from experience with commercial information teclogyl systems. Other
properties may be of interest in different settings. Fomepie, [21] discusses prop-
erties of interest for control of real-time systems.

Below, we motivate and present the main ideas of the pragsecinsidered.

e A system is said to bstableif for any bounded input, the outputis also bounded.
Stability is typically the first property considered in d@gsing control systems
since unstable systems cannot be used for mission critimdd.w

e The control system isccurateif the measured output converges (or becomes
sufficiently close) to the reference input in the case of l&guy control and
disturbance rejection, or the measured output convergéeetoptimal value in
the case of an optimization objective. Accurate systemgssential to ensuring
that control objectives are met, such as differentiatinigvben gold and silver
classes of service and ensuring that throughput is maxdawizout exceeding
response time constraints. Typically, we do not quantifyuaacy. Rather, we
measure inaccuracy. For a system in steady state, its irencuwrsteady state
error is the steady state value of the control ew(k).

e The system hashort settling timesf it converges quickly to its steady state
value. Short settling times are particularly importantd@turbance rejection in
the presence of time-varying workloads so that convergenobtained before
the workload changes.

e The system should achieve its objectives in a mannerdbas not overshoot
The motivation here is that overshoot typically leads toarsdoot and hence to
increased variability in the measured output.

Much of our application of control theory is based on the irtips of stability,
accuracy, settling time, and overshoot. We refer to theslee5ASO properties.

To elaborate on the SASO properties, we consider what dotestia stable sys-
tem. For computing systems, we want the output of feedbackalato converge,
although it may not be constant due to the stochastic nafuteecsystem. To re-
fine this further, computing systems have operating regfpes combinations of
workloads and configuration settings) in which they perfacoeptably and other
operating regions in which they do not. Thus, in general,&ferrto the stability of
a system within an operating region. Clearly, if a systemoisstable, its utility is
severely limited. In particular, the system'’s responsesiwill be large and highly
variable, a situation that can make the system unusable.

If the feedback system is stable, then it makes sense todmmbie remaining
SASO properties—accuracy, settling time, and overshdw.veertical lines in Fig-
ure 2 plot the measured output of a stable feedback systétmallin the (normal-
ized) reference input is 0. At time 0, the reference inpuhianged tass= 2. The
system responds and its measured output eventually cas/&gss = 3, as indi-
cated by the heavy dashed line. The steady state@gisr—1, whereess= rss— Yss.
The settling time of the systeks is the time from the change in input to when the
measured outputis sufficiently close to its new steady stdte (as indicated by the

Introduction to Control Theory And Its Application to Contmg Systems 5

w
I
I
I
I
I
I
1
|
I
I
I
I
I
ol
.
J
T
Ll
J
T
d
(U]
4
<l
:
=<
b
4

i
Measured Output

0 2 4 6 8 10 12 14 Time (k)

< ks >

Fig. 2 Response of a stable system to a step change in the refergnaeAt time0, the reference
input changes frord to 2. The system reaches steady state when its output alwaymetesen the
light weight dashed lines. Depicted are the steady stata €esg), settling time (k), and maximum
overshoot (M).

light dashed lines). In the figurks = 9. The maximum overshoM; is the (normal-
ized) maximum amount by which the measured output exceesteidy state value.
In the figure, the maximum value of the output i98and sq1+ M,)yss= 3.95, or
M, = 32%.

The properties of feedback systems are used in two ways. fBhésffor analysis
to assess the SASO properties of a system. The second isigs dbgctives. For
the latter, we construct the feedback system to have adileptalues of steady
state error, settling time, and maximum overshoot. Moraitiedn applying control
theory to computing systems can be found in [16].

Target System
| Notes Notes
Controller Server Sensor
R Yi
@ [] 0.47 0172011 [I"@

z-1[| |z-043 z-0.64 |

Fig. 3 Block diagram of a feedback system to control RPCs in Sysiethé IBM Lotus Notes
Domino Server.

We describe the essentials of control design using the IBMd.Domino Server
in [26]. The feedback loop is depicted in Figure 3. It corssidtthe Controller, the
Notes Server, and the Notes Sensor. The control objectikegiglation, which is
motivated by administrators who manage the reliability oféé Servers by regulat-
ing the number of remote procedure calls (RPCs) in the sefts quantity, which
we denote byRIS roughly corresponds to the numberaaftive usergthose with
requests outstanding at the server). Administrators aéhasetting foRISthat bal-
ances the competing goals of maximizing throughput by hphigh concurrency
levels with maximizing server reliability by reducing senloads.

RISis measured by periodically reading a server log file, whielcadl the Notes
Sensor. Regulation is accomplished by usinghhgUser s tuning parameter that
controls the number afonnected userd he correspondence betweldax User s

6 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

andRISchanges over time, which means thatx User s must be updated almost
continuously to achieve the control objective. The cogrchutomatically deter-

mines the value oMaxUser s based on the objective f&®lISand the measured
value ofRISobtained from the Notes Sensor.

Our starting pointis to model holwaxUser s affectsRISas output by the Notes
Server. We use(k) to denote thé-th of MaxUser s, andy(k) to denote the-th
value of RIS. (Actuallyu(k) andy(k) are offsets from a desired operating point.)
We construct an empirical model that relaygk) to u(k) by applying least squares
regression to data obtained from off-line experiments. §ical models can also
be constructed in real time using on-line data.) The resyltiodel is

y(k) = 0.43y(k— 1) + 0.47u(k— 1) (1)

To better facilitate control analysis, Equation (1) is pubithe form of a transfer
function, which is a Z-transform representation of higlax User s affectsRIS Z-
transforms provide a compact representation for time wgryunctions, where
represents a time shift operation. The transfer functidagpfation (1) is

0.47
@=7"0a3

Note that the equation fdB(z) appears in the box in Figure 3 that corresponds to
the Notes Server sind8(z) describes the essential control properties of the server.
The poles of a transfer function are the valueg fifr which the denominator is 0.

It turns out that the poles determine the stability of thetesys and poles largely
determine settling times as welk(z) has one pole, which is.83. The effect of
this pole on settling time is clear if we solve the recurremc&quation (1). The
resulting expression fark) has terms with @3¢,0.43<"1 ... Thus, if the absolute
value of the pole is greater than one, the system is unstabtethe closer the pole

is to 0, the shorter the settling time. A pole that is negatremaginary) indicates

an oscillatory response.

The transfer function of a system provides another quanfitynterest—steady
state gain. Steady state gain quantifies how a change in pl &ffects the out-
put, a critical consideration in assessing control acgurHuais can be calculated by
evaluatingG(z) atz= 1. A steady state gain of 1 means that the output is equal to
the input at steady state.

With this background, we outline how to do control design.Wet to construct
a controller for the system in Figure 3 that results in a addsep system that is
stable, accurate, and has short settling times. First,rebgbat the closed loop
system itself has a transfer function that relates the eefs input to the measured
output. We denote this transfer function Byz). Translating the design objectives
into properties of(z), we want the poles df (z) to be close to 0 (which achieves
both stability and short settling times), and we waitz)’s steady state gain to be
1 (which ensures accuracy since the measured output willjbal ¢o the reference
input). These objectives are achieved by choosing the Gghntroller.

Introduction to Control Theory And Its Application to Contmg Systems 7

We proceed as follows. First, we construct a transfer fom{z) for the Notes
Sensor in the same way as was done with the Notes Server. Mexthoose a
parameterized controller. We use an integral controllaictvprovides incremental
adjustments ilMaxUser s. Specifically,u(k+ 1) = u(k) + K, e(k), and its transfer
function isK(z) = ZZTK‘l With these two transfer functions, it is straight forwaod t
construct(z) [16]. It turns out that an integral controller guarantees F(z) has
a steady state gain of 1. Thus, the control design reducdsomsigK; such that
the poles of-(z) are close to 0.

The theory discussed so far addresses linear, time-imtadaterministic (LTI)
systems with a single input (e.¢/axUser s) and a single output (e.g., RIS). There
are many extensions to LTI theory. Adaptive control (e 4]), provides a way to au-
tomatically adapt the controller in response to changebkertarget system and/or
workloads. Stochastic control (e.g., [3]) is a framewonkdgoing beyond determin-
istic systems. State space and hybrid systems (e.g., [P&])de a way to address
multiple inputs and multiple outputs as well as complex phasanges. Non-linear
control provides a way to address complex relationshipsdsen inputs and out-
puts [29].

3 Application to Self-Tuning Memory Management of A
Database System

This section describes a feedback control approach tha\ashthe optimization
objective. We study such an approach in the context of menmagagement in
IBM’s DB2 Universal Database Management System. The fegdbantroller man-
ages memory allocation in real time to respond to workloaghtian and minimize
system response time.

Figure 4 shows the architecture and system operations ofabakse server that
works with multiple memory pools. The database clientsradewith the database
server through the database agents which are computingeeterthat coordinate
access to the data stored in the database. Since disk exeessauch slower rel-
ative to main memory accesses, database systems use memtsy@cache disk
pages so as to reduce the number and time of disk input/ocofeuations needed.
The in-memory data are organized in several pools, whicliledécated for differ-
ent purposes and can be of different types and charaatsrigig., buffer pools,
package cache, sort memory, lock list).

The management of these pools, especially in terms of detemgntheir opti-
mal sizes, is a key factor in tuning and determining datalgseem performance.
However, several challenges are associated with selfigumiemory management.

e Interconnection: In the database memory management pnotie total size of
all memory pools is fixed. Increasing the size of one pool sgzely means de-
creasing the size of another. Although memory pool sizesimse can drastically
reduce its response time to access disk data (since thereigher probability

8 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

Database =~ = @ - e e e e m - -
Server

Memory Pools t

Memory
>
Tuner | memory H:I:I:I:I:I]

Allocations

i i
Response Time Benefit

Fig. 4 Architecture of database memory management.

— XXX

Database Clients

oL

Fmmmm e

that a copy of the data is cached in memory), its impact toratie@mory pools
need to be considered as well.

e Heterogeneity: Buffer pools that store data pages or indgep exhibit different
data access patterns. Furthermore, besides saving theméOa larger size of
memory pool can also lower the CPU time. For example, a lssggrmemory
increases the width of a merge tournament tree and redueesithber of merge
passes so that the time spent in performing tournament noargée reduced.
These dissimilar usage characteristics make memory paxe wffs difficult.

e Adaptation and robustness: Each customer has its uniqabatsd configuration,
a self-tuning memory controller is required to work out ¢ tiox without on-site
adjustment. The controller is also required to automdicdjust itself in real
time in response to database workload variation. On the btoed, robustness is
of great concern to database administrators. Furtherrfmra,database server,
oscillations in the size of buffer pools is highly undesleabecause it reduces
throughput as a result of increased I/O rates to write digtygs and to read new
data.

e Cost of control: Care must be taken not to change memory poolsequently
since excessive adjustments introduce substantial ngsizierheads that can de-
crease throughput and increase response time.

We start controller design from identifying the three kegrsils in a feedback
control system: control input, measured output, and refsgénput (as depicted
in Figure 1). The control inputyi(k),i = 1,2,...,N, consists of the sizes of all
memory pools subject to self-tuning.

Although we could use system throughput or response timeessuned out-
put, they are not proper choices, because they can be affecteonly by memory
allocation but by many other factors (e.g., indexes andygpkms) and their cor-
responding controllers (e.g., index advisor, query og@ni. Since the direct effect
of having memory pools is to reduce the disk access time (dfd Eomputation
time), we only focus on the saved response time in this s&eifically, we de-
fine measured outpuy;(k), as the response time reduction caused by memory size
increase. We refer to this as thresponse time bene(isr simply benefif, which is
also known as the marginal gain. We measure benefit in unsainds per page.

Introduction to Control Theory And Its Application to Contmg Systems 9

The response time benefit is measured dynamically by a dsssiaor. This
sensor uses a “ghost buffer” that estimates the reductialisik 1/Os for a buffer
pool if the the size of that buffer pool had been larger. Tlpoase time benefit is
calculated as the saved disk access time divided by the &ibe ghost buffer.

For the database memory problem, the control objectivetisnigation. Specifi-
cally, this is a constrained optimization problem wheredhgctive is to maximize
the total saved response time subject to the constrainedbthal available memory
(9] [11].

We introduce some notation. The scalar performance fumtio

J=f(ug,Up,...,un) (2

The scalar equality constraint on total memory is:

N
g(ug,Up,...,un) = Y ui—U =0 A3)
5"

Further, there may bid scalar inequality constraints imposed on the memory pools:
hi(u)=ui—u >0 4)

wherey; is the minimum size for memory poaol

Note that for each memory pool, saved response time is isicrgén memory
size, and saved response time becomes saturated when thexgroory is large
enough to hold the entire data block (so that there is no éurtf® involved and
no additional time can be saved). We assume the relatiobgitvpeen the pool size
u; and saved response timgis approximated by; = a;(1— e PU). We further as-
sume that the interactions between memory pools are nla@igb that the objective
function is separable and convex. This givies: Z. 1xI N, a&(1-ePl) and

its partial derivative (i.e., measured outputy.& au = dq = agjbje i,

According to the first order Karush-Kuhn- Tucker (KKT) nesay conditions,
we define the Lagrange function &s= f(uy,Up,...,un) + Ag(u, Uy, ..., UN) +
sN ., " hi(u), which adjoins the original performance function and thestaints
using the Lagrange multipliets and ;. The KKT necessary conditions for a so-
lution u= [ug, Uy, ...,un] to be locally optimal are that the constraints are satisfied,
i.e.,g(u) =0 andh(u) = [hy(u1),hz(up),...,hn(un)] > O, and there exist Lagrange
multipliers)\ and Li such that the gradient of the Lagrangian vanishes. That is,

gﬁl = au. +A a +2, 1HJ gu =YVYi+A + i = 0. Furthermoreyy; satisfies the com-

plementarity condition oﬂ.h. 0 with 1 > 0. This implies that when the memory
allocation is optimal and pool sizes are not at the boundattie measured outputs
of memory pool are equal(= —A, andy; = 0 sinceh; > 0). In the case that the
memory allocation is optimal when some pool sizes are atthmbaries, the mea-
sured output from these memory pool may be smalfee=(—A — 1, andp; > 0
sinceh; = 0). Sincef is a convex function, the optimal solution is unique in thes t
local optimum is also the global optimum.

10 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

We design a multiple-input multiple-output (MIMO) feedlkacontroller to
equalize the measured output. Such an approach allows ugploitevell estab-
lished techniques for handling dynamics and disturbantesi(changes in work-
loads) and to incorporate the cost of control (throughpdtictions due to load
imbalance and resource resizing) into the design. The fegdbontrol system is
defined as follows (where matrices are denoted by boldfapergpse letters and
vectors by boldface lowercase):

y(k+1) = Ay(k) + B (u(k) +d' (k) (5)
e(k) = (1NN—|> y()+d°(K)) (6)
a(k+1) = e(k) (7)
u(k) = er()+K|e1(k) (8)

The first equation represents a state space model [14], whixlocal linear ap-
proximation of the concave memory-benefit relationshiphéligh most computing
systems are inherently non linear, from the local point efwia linear approxima-
tion can be effective and rational, especially when comgidehe existence of sys-
tem noise and the ability of on line model adaptation. Whel vectory(k) denotes
the measured output (i.e., response time benefit)Ntiel vectoru(k) represents
the control input (i.e., memory pool size), and e 1 vectord' (k) indicates possi-
ble disturbances applied on the control inputs (e.g., adjests made to enforce the
equality and inequality resource constraints). The N matricesA andB contain
state space model parameters that can be obtained from reéatata and system
identification [20].

1.---0
Equation (6) specifies thé x 1 control error vectoe(k), wherel = | :
0---1
1.--1
andlyn = | : : | areN x N matrices. TheN x 1 vectordo(k) indicates pos-
1.--1

sible disturbances applied on the measured outputs (eeg.sumement noises that
are not characterized by the deterministic model). Imgdiiech this equation is that
we define the average measured ougli} = ﬁ s N, vi(k) as the control reference
for all measured outputs, and théh control error (k) = y(K) — yi (k). Note that in
contrast to having a static value or external signal as teeerce input, we specify
the reference as a linear transformation of the measureuitsufThe control objec-
tive is to makeg (k) = 0, that is, equalizing the measured outputs ({i¢k) = y; (k)
for anyi andj) so as to maximize the total saved response time.

The dynamic state feedback control law is defined in EqugBdrand the inte-
gral control erro (k) is theN x 1 vector representing the sum of the control errors
as defined in Equation (7). Tix N matricesK p andK, are controller parameters

Introduction to Control Theory And Its Application to Contmg Systems 11

to be chosen (through controller design) in order to stabithe closed loop sys-
tem and achieve the SASO performance criteria regardingscgance and settling
time.

We design the controller and choose the control parameteasanay that con-
siders the cost of control-both the cost of transient meniotyalances and the
cost of changes in memory allocations [10]. Reducing menmtyalance gener-
ally indicates an aggressive control strategy with shdttiisg time of moving the
memory from imbalance to balance. However, too aggressinga can also lead
to overreacting to random fluctuations and thus incurs efdit cost of allocation
changes.

We handle this trade-off by exploiting optimal linear quatilr requlator (LQR)
control [15]. LQR chooses control parameters that minirthesquadratic cost func-
tion . n

_ T T e T
1= 3 [00a709]0| o | +uty Rutk ©

over an infinite time horizon as well as satisfy the dynamiengd in Equation
(5)-(8). The cost function includes the control eregk) ande (k), and the control
inputu(k). The former is related to the cost of transient resource lamoes, and
the latter the cost of changing resource allocations. TheiceaQ andR determine
the trade-off. Intuitively, ifQ is large compared t&, the controller will make big
changes in resource allocations and hence can react gtacttigturbances. On the
other hand, iR is large compared tQ, the controller is much more conservative
since there is a high cost for changing resource allocations

With Q andR defined, the control parametéds andK,; can be computed in the
usual way by solving the Riccati equation [4]. Hence, thetialer design problem
is to select the proper weighting matric@ andR which quantify the cost of control.
We achieve this by developing a cost model, regarding to gréopnance impact
of control, and constructin@ andR in a systematic way [10].

Although the cost model and LQR framework provides a systiemey to study
the cost of control, it is more appropriate to be used of-fior analyzing the tar-
get system and designing the controller prior to operatamther simplification is
needed to facilitate real time adaptation when the worklsashknown in advance
and can change overtime. This also helps to manage a lar@gé setmory pools
where the number of pools is varying.

This simplification is achieved using a distributed con&nadhitecture and adap-
tive pole placement techniques. The model is built and therobtier is designed
locally for each individual memory pool; the only connectibetween different
pools is the control reference signal-the average measwipdit. Specifically, a
single-input single-output (SISO) model

yi(k+1) = bi(k)ui(k) (10)

is built on line for thei-th memory pool. This is equivalent to havidg= 0 and
B = diag([by, ..., bn]) in Equation (5), while the disturbance tedt(k) is enlarged
to include the modeling uncertainty. Having a set of SISO e®dimplifies the

12 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

model structure and parameter, so that on line modelingntgulks such as recursive
least squares can be effectively applied with less comipai@tcomplexity [20].
The controller is also built individually

- N
Ui(k+1) = ui(k) — b|(- P (% Z) (11)

The controller takes the format of integral control, a siifiqdtion from Equation
(8) by settingk p = 0 andK | = diag([bll;(lg, o Bk >]) The control paramet i)
is designed through adaptive pole placement so that it eidldapted when dn‘ferent
model parametds; (k) is estimated on line.

With reasonable simplifications, a distributed architeztinakes the controller
agile to workload and resource variations, and increaseliigstness regarding to
measurement uncertainties and maybe uneven control &gerivor example, al-
though in general for a database server the system dynamigsat be negligible
(i.e., an increase of buffer pool size may not immediatebuitein response time
benefit decrease, as time is needed to fill up the added bpffee} and the cross
memory pool impact does exist (i.e., an increase of sort mgmitl not only bring
down the benefit for sort memory but also that for the buffeylploat stores tempo-
rary sort spill pages), our experimental results confirmatetrol performance of
this distributed controller.

Figure 5 evaluates the performance of the feedback coatnatider an on line
transaction processing (OLTP) workload. The OLTP workloadsists of a large
number of concurrent requests, each of which has very moesstirce demands;
we use 20 buffer pools to contain data and index for the datakables and 50
database clients to generate the load. Figure 5(a) shovihrineghput (measured
in transactions per unit time) that indicates the perforoeampact of buffer pool
re-sizings. Figure 5(b) and (c) display the memory allarsiand response time
benefits for the controlled buffer pools (as indicated by 20esolid lines in the
plot). Initially, the database memory is not properly adlted: most of the memory
has been allocated to one buffer pool, while the other byftais are set at the
minimum size. The controller adjusts the size of buffer gaa as to equalize the
response time benefits of the pools. We see that even foratamgber of memory
pools the controller converges in approximately 80 intlsrvaurther, our studies in
[10] show that the controller’s actions increases througly a factor of three.

4 Application to CPU Utilization Control in Distributed
Real-Time Embedded Systems

Distributed real-time embedded (DRE) systems must coiiieICPU utilization
of multiple processors to prevent overload and meet deasliim face of fluctuat-
ing workload. We present thend-to-end Utilization CONtrol (EUCONjlgorithm

that controls the CPU utilization of all processors in a DRREtem by dynamically

Introduction to Control Theory And Its Application to Contmg Systems 13

a 03-21

10 03-21

5]
S
S

=)
o

NN
Q a
S o

s

4l
Q o
@ =

iy
a
=]

R
5]
S

Pool size (in 4K pages)

I

=)
o
2]

Throughput (in trans. per unit time)

o)

=
-

esponse time benefit (in sec. per 4K page

P o o ¢ o po g o

50 100 150 200 0 50 100 150 200 50 100 150 200
Control interval (in 60 sec.) Control interval (in 60 sec.) Control interval (in 60 sec.)
(a) OLTP throughput (b) Memory pool sizes (c) Response tiereehit

Fig. 5 Control performance under an OLTP workload.

adjusting the invocation rates of periodic tasks. A DRE exysts comprised ofn
end-to-end periodic taskgli|1 < i < m} executing om processorgR|1 <i < n}.
TaskT; is composed of a chain of subtaskgj|1 < j < nj} running on multiple
processors. The execution of a subt@igks triggered by the completion of its pre-
decessoiT; j_1. Hence all the subtasks of a task are invoked at a same rate. Fo
example, on a Real-Time CORBA middleware a task may be imphted as a
sequence of remote operation requests to distributed tsbj@bere each remote
operation request corresponds to a subtask. Each subjasks arestimatecexe-
cution timegj; known at deployment time. However, thetualexecution time of a
subtask may differ frong;; and vary at run time. The rate @f can be dynamically
adjusted within a rangfRmin;i, Rmaxi]- A task running at a higher rate contributes
higher utility at the cost of higher CPU utilization. For exgle, both video stream-
ing and digital control applications usually deliver betierformance when running
at higher rates.

Measured ul(k)
Output :

’ Distributed System
u,(K) (mtasks, n processors)

Mc
s

*

T
1
Utilization
Monitor @
Rate

T
1

[uw]

Modulator m‘
T

o

Runs Ruwcs

Model
Predictive
Controller

YY)

5
8]

Ruinm Ruasm

— Feedback Loop

A, (k)

Control
Input

-------------- » Precedence Constraints
@ Subtask

Ar, (k)
Fig. 6 The feedback control loop of EUCON.
As shown in Figure 6, EUCON is composed of a centralizedtroller, and a

utilization monitorand arate modulatoion each processor. A separate TCP connec-
tion connects the controller with the pair of utilization nitor and rate modulator

14 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

on each processor. The user inputs to the controller in¢hglatilization set points,
B = [By...Bn]T, which specify the desired CPU utilization of each procesasod
the rate constraints of each task. Theasured outpus the CPU utilization of all
processorsy(k) = [uy(K)...un(K)]". Thecontrol inputis the change to task rates
Ar(K) = [Arg(K)... Arm(K)]T, whereAri(k) = ri(k) —ri(k—1) (1 <i <m). The
goal of EUCON is to regulate the CPU utilizations of all presers so that they re-
main close to their respective set points by adjusting thlertates, despite variations
in task execution times at run time.

DRE systems pose several challenges to utilization carftndt, the utilization
control problem isnulti-input-multi-output (MIMO)n that the system needs to reg-
ulate the CPU utilization of multiple processors by adjugtihe rates of multiple
tasks. More importantly, the CPU utilization of differenmbpessors igoupledto
each other due to the correlation among subtasks belongiagsame task,e.,
changing the rate of a task will affect the utilization ofthié processors hosting its
subtasks because they must execute at the same rates.oraénefCPU utilization
of different processors cannot be controlled indepengémin each other. Finally,
the control is subject tactuator constraintss the rate of a task must remain with
an application-specific range.

To deal with inter-processor coupling and rate constraieitkCON adopté/odel
Predictive Control (MPC])23], an advanced control technique used extensively in
industrial process control. Its major advantage is thatrtdeal with coupled MIMO
control problems with constraints on the actuators. Thechidsa of MPC is to
optimize an appropriate cost function defined over a timeruatl in the future. The
controller employs a model of the system which is used toiptede behavior
over P sampling periods called thgrediction horizon The control objective is to
select annput trajectoryto minimize the cost subject to the actuator constraints.
An input trajectory includes the control inputs in the feliog M sampling periods,
Ar(K), Ar(k+1]k), ... Ar(k+M—1|k), whereM is called thecontrol horizon The
notation Ar(k + 1k) means thatAr(k+ 1) depends on the conditions at tirke
Once the input trajectory is computed, only the first elenjént(k)) is applied as
the control input to the system. In the next step, the prididiorizon slides one
sampling period and the input trajectory is computed agasetl on the measured
output(u(k)).

Before designing the controller for EUCON, we derive a dyitamodel that
characterizes the relationship between the control idputk) and the measured
outputu(k). First, we model the utilizationj(k) of one processoR. Let Arj(k)
denote the change to the task rate,j(k) = rj(k) —rj(k—1). We define theesti-
mated change to utilizatiom\b; (k), as:

Abi(k) = > cjArj(k) (12)
Ti €S
where§ represents the set of subtasks located at proc@s9vote Ab; (k) is based

on theestimatedexecution time. Since thactualexecution times may differ from
their estimation, we model the utilizatien(k) as:

Introduction to Control Theory And Its Application to Contmg Systems 15

Ui (k) = ui(k—1) +giAbi(k—1) (13)

where theutilization gain g represents the ratio between the change tatiteal
utilization and the estimated changdy (k— 1). For exampleg; = 2 means that the
actual change to utilization is twice of the estimated cleamNpte that the value of
gi is unknown a prioridue to the uncertainty of subtasks’ execution times. A syste
with m processors is described by the following MIMO model:

u(k) = u(k— 1)+ GAb(k— 1) (14)

whereAb(k—1) is a vector including the estimated change to the utilizedibeach
processor, an is a diagonal matrix wherg; = gi(1 <i < n) andg; = 0(i #).
The relationship between the changes to the utilizatiodgla® changes to the task
rates is characterized as follows:

Ab(k) = FAr(K) (15)

where thesubtask allocation matrix=, is ann x m-order matrix.fj; = c; if sub-
taskT; (thel'™ subtask of tasKj) is allocated to processgrandfij = 0 if no sub-
task of taskT; is allocated to processorNote thatF captures the inter-processor
coupling caused by end-to-end tasks. Equations (14-18)tg& dynamic model of
a distributed system witm tasks andh processors.

Based on the system model, we now design the controller.dretid of every
sampling period, the controller computes the control inputk) that minimizes
the following cost function under the rate constraints:

V(k) = -_i” u(k+ilk) —ref(k+ilk) |2+,\l/lz_01| Ar(k+ilk) — Ar(k+i—1]k) ||?

(16)
whereP is theprediction horizonandM is thecontrol horizon The first term in the
cost function represents thracking error, i.e., the difference between the utilization
vectoru(k+ilk) and areference trajectoryef(k+i|k). The reference trajectory de-
fines an ideal trajectory along which the utilization veaitk+i|k) should change
from the current utilizatiomi (k) to the utilization set pointB. Our controller is de-
signed to track the following exponential reference trecso that the closed-loop
system behaves like a linear system:

Ts

ref(k+ilk) =B—e T (B—u(k)) 17)
whereTe¢ is the time constant that specifies the speed of system respaismaller
Tref causes the system to converge faster to the set point. Bymzinig the tracking
error, the closed loop system will converge to the utilizatset point if the system
is stable. The second term in the cost function (16) reptssbrecontrol penalty
which causes the controller to reduce the changes to theotamut.

The controller minimizes the cost function (16) under the @nstraints based
on an approximate system model. This constrained optifoizgiroblem can be

16 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

transformed to a standard constrainedst-squaregproblem. The controller can
then use a standalelast-squaresolver to solve this problem on-line [22].

Note that the system model described in (14) and (15) camnmoiskd directly
by the controller because the system ga&nare unknown. The controller assumes
G =1in (14),i.e, the actual utilization is the same as the estimation. Aigothis
approximate model may behave differently from the realesystas proven in [22],
the closed loop system can maintain stability and track thigation set points as
long as the actudb remains within a certain range. Furthermore, this rangebean
established using stability analysis of the closed-locytesy.

EUCON has been implemented in FC-ORB [31], a distributeddfeidare for
DRE systems. We now summarize the representative expedhmesults presented
in [31]. All tasks run on a Linux cluster composed of four Remt-1V machines.
The EUCON controller is located on another Pentium-IV maehiThe workload
comprises 12 tasks with a total of 25 subtasks. In the firstes@nt shown in Fig-
ure 7(a), the average execution times of all subtasks chsinggdtaneously. The
execution times of all subtasks increase by 50% at 600 sec&WICON responds
to the overload by reducing task rates, which causes theatiiin of every proces-
sor to converge to its set point within 100 seconds (25 sargleriods). At 1000
seconds, the utilization of every processor drops sharnpdytd 56% decrease in the
execution times of all subtasks. EUCON increases task tatgisthe utilizations
re-converge to their set points. In the second experimeawsiin Figure 7(b), only
the average execution times of the subtasks on one of thegsors experience the
same variations as in the first run, while all the other silkstaisaintain the same
average execution times. As shown in Figure 7(b) the utibzeof every processor
converges to its set point after the variation of executiores at 600 seconds and
1000 seconds, respectively. These results demonstratett@ON can effectively
control the utilization of multiple processors under vagyexecution times, while
handling inter-processor coupling and rate constraints.

5 Application to Automated Workload M anagement in
Virtualized Data Centers

5.1 Introduction

Data centers today play a major role in providing on-demasmputing to en-
terprise applications supporting key business processdsding supply chain, e-
commerce, payroll, customer relationship management] b&se applications typ-
ically employ a multi-tier architecture where distinct cpoments of a single appli-
cation, e.g., the web tier, the application tier, and theldase tier, spread across
multiple servers. In recent years, there has been wide ahoptt server virtualiza-
tion in data centers due to its potential to reduce both stifaature and operational
costs. Figure 8 shows an example scenario where multiplé-tiarl applications

Introduction to Control Theory And Its Application to Contmg Systems 17

1
i
081 g g8

0.6 {
/)/
0.4 /“/ //’/

ron ———-harry
rrrrrr norbert hermione

CPU utilization

0.2 +—

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

0.8

et DA At " AR A TN e R T
06 7 s /J/
04 1
ron ———-harry
,,,,,, norbert hermione

CPU utilization

0.2 +—

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

Fig. 7 The CPU utilization of all the processors in a Linux clustéremw subtask execution times
change on all four processors (top figure) and only one psocdbottom figure)

share a common pool of physical servers. Each physicaliseswéains multiple vir-
tual containers, and each virtual container hosts a specifigponent of a multi-tier
application. Here a “virtual container” can be a hypervisased virtual machine
(e.g., VMware, Xen), an operating system level containgy.(€@penVZ, Linux
VServer), or a workload group (e.g., HP Global Workload MgaralBM Enterprise
Workload Manager). Although the grouping of applicaticersican be arbitrary in
general, we specifically consider the case where the samsefitten different ap-
plications are hosted on the same physical server. This rarmon scenario for
shared hosting environments for potential savings in soivicensing costs.
When multiple enterprise applications share a common strinature, meeting
application-level QoS goals becomes a challenge for dati@iceperators due to the
time-varying nature of typical enterprise workloads, anel tomplex interactions
among individual tiers of the hosted applications. Exptimorkload management
tools for UNIX systems or mainframes typically allow indivial virtual containers
to be dynamically sized in order to maintain a specified leveésource utilization.
However, these tools can neither manage other types ofioensasuch as virtual
machines, nor provide direct guarantees for applicattme!|QoS. In the past few
years, there has been work in applying control theory to #sgh of automated
workload management solutions that fill these gaps [34, 3R] [34], QoS-driven
workload management was presented using a nested feedir#ctilier, where the
inner loop regulates the CPU utilization of a virtual con&iand the outer loop
maintains the application-level response time at its tatgg32], a predictive con-

18 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

Virtualized Virtualized Virtualized
Server 1 Server 2 Server 3
Client 1 A A A
! App 1] &> || Appl L App 1
QoS Sensor|1l § Tier 1 Tier 2 S Tier 3 s

| App2 [A App2 [A
Client 2 P || App 2 PP PP
K—>: i fa—) [c—)

QoS Sensor|2 | Terl ['s Tier2 15 Ters 15

Client M
<:>1 Tier 1 — Tier 2 i
QoS Sensor ; S

Fig. 8 A virtualized server pool hosting multiple multi-tier apgtions

troller was developed to allocate CPU resource to a virtaatainer proactively by
exploiting repeatable patterns in an application’s resediemands. This controller
has been tested for managing Xen virtual machines, and atigariof it has been
integrated into the latest release of the HP Global WorkMadager [8].

The work in [19] deals with the scenario where some virtizervers are
overloadedThis means, the aggregate demand from all the applicatiomponents
sharing a server exceeds its total capacity. In this casg@etformance of all the ap-
plications may suffer. This is undesirable because fattingeet the QoS goals may
have different consequences for different applicatioapethding on their respective
service level agreements (SLAS). Therefore, it is desérédnl a workload manage-
ment solution to also provide service differentiation agpen-hosted applications
in order to maximize the overall business value generatatédse applications.

5.2 Problem statement

Consider the system in Figure 8, wh&f¢N = 3) virtualized servers are used to host
M 3-tier applications. When one or more of the virtualizedsees become over-
loaded, the workload management tool needs to dynamichdlgage the shared
server resources to individual tiers of theapplications in a coordinated fashion
such that a specified level of QoS differentiation can be taaied. Next, we de-
scribe how this problem can be cast into a feedback contotllpm. For simplicity,
we assume that only a single resource on a server (e.g., CRYbetome a bottle-
neck. The approach described here can be generalized ttehrantiple resource
bottlenecks.

Each virtual container has an actuator (box “A” in Figure 83@ciated with it,
which can allocate a certain percentage of the shared serseurce to the appli-
cation component running in the container. This is refetoeds “resource entitle-

Introduction to Control Theory And Its Application to Contmg Systems 19

ment.” At the beginning of each control intendalthecontrol inputu(k) is fed into
the actuators, wheng j (k) denotes the resource entitlement for fi@f application

i during intervalk. Sincey M uij =1, 1< j <N, there are a total ofM — 1) x N
such independent variables. Heneg) is an(M — 1) x N-dimensional vector.

Each application has a QoS sensor (see Figure 8) that measaree end-to-

end performance (e.g., mean response time, throughpung &nid of each control
interval. Letqi(k) denote the QoS measurement for applicafiaturing interval
k— 1. We then define theeasured outpuy(k), to be the normalized QoS ratios for

individual applications, wherg (k) = W%' Sincez{\"zlyi(k) =1,onlyM-1
m=14m

of suchy;(k)’s are independent. As a result, the system ouylar is an(M — 1)-
dimensional vector.

The goal of the feedback controller is to automatically deiee the appropriate
value for eachy; j(k), such that eacl(k) can track itsreference inputr;(k), the
desired QoS ratio for applicatiarwhen the system is overloaded.

5.3 Adaptive optimal controller design

We now describe the adaptive optimal controller we preskintgl 9] for the service
differentiation problem. A block diagram of the closedamntrol system is shown
in Figure 9. The controller consists of two key modulesnadel estimatothat
learns and periodically updates a linear model betweendbeurce entitlements
for individual application tiers and the measured QoS satémd aroptimal con-
troller that computes the optimal resource entitlements basedtimnagsd model
parameters and a quadratic cost function.

Model parameets Model

Estimator
(A B)
Resource entitlements
u(k)
Reference |Optimal Controller Target Measured y(k)
" Min_u J(u, A, B) System QoS ratios
i

Fig. 9 A self-tuning optimal resource control system

We use the following linear, auto-regressive MIMO modeldpresent the input-
output relationship in the controlled system:

n n—1
y(k+1) =35 Aly(k+1-1)+ 5 Bmu(k—m). (18)
=1 m=0

Note thatA; € 0°%C andBy, € 0°*V, whereV = (M — 1) x N is the input di-
mension, an® = M — 1 is the output dimension. The use of a MIMO model allows

20 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

us to capture complex interactions and dependencies anesogrnce entitlements
for different application tiers, which cannot be capturgdrmdividual SISO mod-
els. The order of the modah, captures the amount of memory in the system. Its
value can be estimated in offline system identification expants [20]. Typically,
a low-order model is sufficient for computing systems [16hc® the linear model
is a local approximation of the real system dynamics thatpgglly nonlinear, we
estimate and adapt the values of the coefficient matrisgand By, online using
the recursive least squares (RLS) estimator [4], whenevevwameasurement of
y(k) becomes available.

We use optimal control that minimizes the following quagtrabst function:

J=|[W(y(k+1) = r(k+1))||*+[|Q(u(k) — u(k— 1))} (19)

The controller aims to steer the system into a state of optimaierence tracking,
while penalizing large changes in the control variablésc 0°*© andQ e OV*V
are weighting matrices on the tracking errors and the chaimg@e control actions,
respectively. They are commonly chosen as diagonal matrideir relative magni-
tude provides a trade off between tlesponsivenesand thestability of the control
system.

The optimal control lawu*(k), can be derived by first explicitly expressing the
dependency of the cost functidronu(k), and then solving the equati% =0.

As a result, we get

u* (k) = (WBo)"WBo+QTQ) [(WBo) "W(r (k+1) — X@(k)) + Q" Qu(k— 1)],
where

ek) =[0u"(k—=1) ... uT(k=n+2)y"(k)--- --- y (k—n+1)]" ,
X =[Bo, ..., Bn1, A1, ..., Ayl

Note thatX andBy are online estimates of the model parameters.

5.4 Experimental evaluation

Our controller design has been validated on a two-nodeeddstiosting two in-
stances of the RUBIS application [1], an online auction hemark. We use a two-
tier implementation consisting of an Apache web server aily&QL database
(DB) server. Each application tier is hosted in a Xen virtoglchine. The “web
node” is used to host two web tiers, and the “DB node” is usedast two DB
tiers. For this application, CPU is the only potential resetbottleneck. We use the
credit-based CPU scheduler in the hypervisor of Xen 3.0s3alnte branch [7] as
the actuator in our control loop. It implements proportida& sharing of the CPU
capacity among multiple virtual machines.

Introduction to Control Theory And Its Application to Contmg Systems 21

We choose a control interval of 20 seconds, which offers addmance be-
tween responsiveness of the controller and predictatufithe measurements. For
each RUBIS application we use mean response time per inter®if (k)) as the
QoS metric, and the normalized RT ratjgok) = RTy (k) /(RTi(k) + RTx(k)), as the
measured output. The reference inpyk), indicates the desired level of QoS dif-
ferentiation between the two applications. Note that ydk) andr (k) are scalars
in this example.

=100 Throughputl — — — Throughput2 ‘ B
-% - Jy Iy~ Y

[=) I Ak A 0D (AL
3 50 SNV N vy]
= ~

(= 0 L L L L

0 20 40 60 80 100 120 140 160 180

20f | |

RTl———RT2‘ ‘ ‘ B

Iy
L 1 \ ' a
0r) ;\\'\l/le\,’\’\x"\ \'J
NuV Ve AN~
L

0 n L R n n h L
0 20 40 60 80 100 120 140 160 180

Response Time
[

RT1/(RT1+RT2) - — — Ref

Norm. RT Ratio
o
(8]

0 n n h n n h n n
0 20 40 60 80 100 120 140 160 180

Sample Number (Ts = 20 sec)

(a) QoS metrics for the two applications

100 - 100
Entitlement
— — — Consumption
lﬁ“'I \!
50 o 50 v
L
I
0 0
0 50 100 150 0 50 100 150
(a) Application 1, Web tier (b) Application 2, Web tier
40 40
30 30
[N /]\
2047 20} | 1o i o)
IR T leu-"#"l LA
10 Mty e 10" r
I I
0 0
0 50 100 150 0 50 100 150
(c) Application 1, DB tier (d) Application 2, DB tier

(b) CPU entitlement (solid) and consumption (dashed) fdividual
application tiers

Fig. 10 Experimental results with changes in reference input

22 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

In the first experiment, we varied the reference inp(k), from 0.3 to 0.5 then
to 0.7. Each reference value was used for a period of 60 contiehals.

Figure 10(a) shows the measured per-interval throughpéigoests per second
(top) and the mean response time in seconds (middle) fomtbepplications, as
well as the normalized RT ratig(k) against the reference input) (bottom) over
a period of 180 control intervals (one hour). The verticadtod lines indicate the
two step changes in the reference input. As we can see, theuneeboutput was
able to track the changes in the reference input fairly ¢yo3de performance of
both applications also behaved as we expected. For examp(&) value of 03
gave preferential treatment to application 1, where appita 1 achieved higher
throughput and lower average response time than applicatd. Wherr (k) was
set at 05, both applications achieved comparable performancalliimsr (k) was
increased to @, application 2 was able to achieve a higher level of peréorce
than application 1 did, which was consistent with our exatah.

Figure 10(b) shows the corresponding CPU entitlementseswdting CPU con-
sumptions of individual application tiers. As we can see &swent from 0.3t0 0.5
to 0.7, our controller allocated less and less CPU capazhypth tiers in application
1, and more CPU capacity to application 2.

In the second experiment, we fixed the target RT ratiqldt= 0.7, and varied
the intensity of the workload for application 1 from 300 toO5€ncurrent users.
This effectively created varying resource demands in beth bf application 1. Ex-
perimental results showed that, the controller was abl#doate the CPU capacity
on both nodes accordingly, and always maintained the nawethRT ratio near the
reference value, in spite of the change in the workload.

In this section, we described how control theory can be egpid the design
of automated workload management solutions for a virtedlidata center. In par-
ticular, as one or more virtualized servers become oveddadur controller can
dynamically allocate shared server resources to indiVigjpalication tiers in order
to maintain a desired level of service differentiation agon-hosted applications.
The self-tuning optimal controller we presented has beédatad on a lab testbed,
and has demonstrated good closed-loop properties in fagerfoad variations or
changes in the reference input.

6 Application to Power and Performance in Data Centers

The following case study is motivated by the importance @&rgy saving in multi-
tier Web server farms. In large server farms, it is repottet 23-50% of the revenue
is spent on energy [13, 6]. In order to handle peak load requents, server farms
are typically over-provisioned based on offline analysiscohsiderable amounts
of energy can be saved by reducing resource consumptionginoin-peak condi-
tions. Significant research efforts have been expendedpgiag dynamic voltage
scaling (DVS) to computing systems in order to save powetenhieeting time or
performance constraints [13, 6, 12, 28, 27, 33].

Introduction to Control Theory And Its Application to Contmg Systems 23

700

Onoff+DVS ‘(Independ‘ently) —
OnOff

L————>< ,,,,,
650 DVS 3k
Our Approach &1

600

550

500 K- S

450 r

Estimated Total Power [W]

400 F

350 & . ! . . .
350 400 450 500 550 600 650
Emulated Browsers

Fig. 11 Comparison of total system power consumption for diffeesdptive policies in the Web
server case study.

In this section, we describe adaptive techniques for enaayyagementin server
farms based on optimization and feedback control. We spadifiillustrate the im-
portance ofoint adaptation. We show that in large-scale systems, the exestef
several individually stable adaptive components may t&salcollectively unstable
system. For example, a straightforward combination of tmergy-saving policies
may resultin a larger energy expenditure than that witreeipiolicy in isolation. We
illustrate this problem by exploring a combination of a DM8ipy (that controls fre-
quency,f, of machines in a server farm given their de@¥) and an independently
designed machine On/Off policy (that increases the numberazhinesm in the
server farm when the delay is increased and removes machimes the delay is
decreased). We then provide a solution to avoid the unsitatiglection between the
two policies.

Figure 11 shows experimental results from a three-tier Véebes farm testbed.
Four different energy saving configurations are compartsel:Qn/Off policy, the
DVS policy, the combination of On/Off + DVS (exhibiting adge interaction) and
finally an optimized policy that we explain later in this gent It is clearly demon-
strated that when the workload increases, the combinedi®nIQYS policy spends
much more energy than all other policies.

The adverse interaction is because the DVS policy redueefdiguency of a
processor, increasing system utilization, which increasel-to-end delay causing
the On/Off policy to to turn more machines on.

1 Observe that changing frequency of a processor also chémgessociated core voltage. There-
fore, we interchangeably use “changing frequency (levaad “changing DVS (level)” throughout
this paper.

24 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

6.1 Design Methodology for I ntegrating Adaptive Policies

In this section, we describe how to design feedback contesthranisms that are
free of adverse interactions, optimize energy and respett@end resource and
timing constraints. Our solution methodology is dividetbithree steps:

1. Formulate the optimization probler@ptimization is performed with respect
to the available feedback control knobs subject to (i) res®eonstraints, and (ii)
performance specification constraints. Suppose theretatalaf n different feed-
back control policies. For each feedback control policg corresponding set of
feedback control knobs is denotedaswherei = 1,---,n. We can formulate a
constrained optimization problem as follows:

min - f(Xg,...,%n)
X1,--:Xn

subjectto gj(X1,..., %) <0, j=1,....m, (20)

wheref is the common objective functiéngj(-), j = 1,...,mare the resource and
performance constraints related to the application. thtoing Lagrange multipliers
Vi,...,Vm, the Lagrangian of the problem is given as:

L(X1,... X, V1, o3 Vm) = F(X1,..., %) +
V101(X1, .-, Xn) +
o F
VmOm(X1, - - -, Xn) (21)

2. Derivation of necessary conditiongtodel inaccuracies (such as those in es-
timating actual computation times, exact energy conswnptr end-to-end delay
in practical systems) are likely to render the expressionuhctionsf(.) andg;(.)
above inaccurate. Hence, we would like to combine optinopawith feedback
control to compensate for such inaccuracies.

Our approach is to derive ongpproximate necessary conditiofus optimality,
instead of exact necessary and sufficient conditions. Tiliesa locus of solution
points. A series of feedback loops is then used to traveesddhus in search of a
maximum utility point.

The necessary conditions of optimality are derived by liagihe original prob-
lem (i.e., where knob settings are discrete) into a contisywoblem (where knob
setting are real numbers and functiags) and f(.) are differentiable), then using
the Karush-Kuhn-Tucker (KKT) optimality conditions [5{i : 1,...,n:

0f(X1,.... %) | « 09j(X1,..., %)
% + J; Vj X =0 (22)

Let us call the left-hand-sidéy,. Observe that, we have the necessary condition:

2 |n this casef represents a notion of cost to be minimized. Alternativitlgould represent a
notion of utility to be maximized.

Introduction to Control Theory And Its Application to Contmg Systems 25
I_)(l:...:rxn (23)

We then use a feedback control approach to find the maximulity yibint on
the locus that satisfies Equation (23). Our feedback coapptoach is described
next. We find it useful for the discussion below to also defime averagdy =
(M + ...+ Tx,)/n. This average at timk will serve as the set point(k) for each
individual Iy,.

3. Feedback controlThe purpose of feedback control is to find knob valdes
such that the condition in Equation (23) is satisfied. Cotealy, when some val-
ues offy, are not equal, two directions are possible for fixing the algwn in the
condition. One is for modules with smaller valuesgfto change their knobs to
catch up with larger ones. The other is for those with largdues ofl, to change
their knobs to catch up with smaller ones. Moreover, more thrae knob may be
adjusted together. In the spirit of hill climbing, we take tombination that maxi-
mizes the increase in utility (i.e., optimizes the objeefunction). Hence, we define
the control erroreg(k), at timek, asly — Iy, (we omit indexk for notational simplic-
ity) and find the set of neighboring points to the curmanmtector that reduces the
error in the direction that involves a maximum increase ilitytThe algorithm will
dynamically guide the system toward a better configuration.

We will next briefly show how this general solution methodpl@an be applied
to the multi-tier Web server farm case study.

1. Formulating the optimization problenThe decision variables in the opti-
mization problem are the tuning knobs for each individuebifeack control policy,
namely the frequency levels of each machine (for the DVScpphnd the number
of active machines at each tier (for the On/Off policy). Tlaeg optimized subject to
resource and delay constraints. For simplicity, let us upeealing-theoretic M/M/1
model for each server machine to predict delay. In this maklelsystem utilization,
U, is expressed a&/u, given the arrival raté of the traffic and the service rate
u of the server. Assuming a load-balanced tief m; machines and of total arrival
rate A, the arrival rate per machine s/m; and the service rate is proportional to
frequencyf;. Expressing); in clock cycles, the utilization of a machine at tier
denotedJ;, becomed); = % We further approximate power consumpti@ry a
function of CPU frequency; for each machine at tiernamelyR, (f;) = A; - fip+ Bi,
whereA; andB; are positive constants. In realistic systemsaries between 2.5
and 3 [12].A;, B;j, and p can be obtained by curve fitting against empirical mea-

surements when profiling the system off-line. Merging thewvabtwo equations,
S\ P AP .
we getR(Ui,m) = A - (Uf\—r'n) +Bi = Ué_;%p + Bj. The total power consumption
can be obtained by summing ovdrtiers asRot (Ui, m) = Xf‘zlm -R(Ui,m). We
want to minimize the total server power consumptions sulmdwo functional
constraints. The first constraint is that the total endrtd-@elay should be less than
some end-to-end delay bourld, In the M/M/1 queuing model, this translates to
N)\ﬂ. . lE—IU. < K, whereK is some constant. The second constraint is on the total
number of machines! in the farm,sN.; m < M. For a 3-tier server farm\ = 3)

26 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

and usingp = 3, the constrained minimization problem can now be fornadats:

Uizrg]irgzo Rot (Ui, m; Zm <U3”§+BI)

ZmSM
i=

2. Derivation of necessary condition§o derive necessary conditions, bet=

(U1 Uz Uz my my rr13]T be the vector of decision variables. Observe that we could
have alternatively chosen frequenigynstead of utilizatiorJ; for the decision vari-
ables, since utilization cannot be set directly. Since veeiiae an algebraic relation
between utilization and frequency, the two choices are emttically equivalent.
Expressing control knobs in terms of utilization could berenmtuitive in that it
directly quantifies a measure of server load. Introducirglthgrange multipliers
v1, Vo > 0, we can write the Lagrangian function as:

AAS B
L(x,v1,V2) Zm U3rrg3+

) 3
+Vr<§¥2'1—ﬁ)K>+V”<§¥m)M>'

The Karush-Kuhn-Tucker (KKT) conditions [5] associatedhathe optimization
problem are:

subject to

(25)

aL nAAS vim

o~ ot Taa-ue 0T
aL 2878 Ui .
— B ———-v=ow
am = |ﬁu3+ + Uf%z ,
3 (26)
m U -
V1<IZL()\|1UI)K>_O>

(0 w) -

Solving forvy andv, then substituting in the first two sets of equations above, we
get after some rearranging:

M(1-U? AJ(1-Uz)? AZ(1-Ug)?
MUy mu; mU3

To simplify the notations, we will use (m,U;) to denoteg in the following

discussions. Then the necessary condition for optlmailt;xpressed as

(27)

I (mg,U1) =T (mp,Uz) =T (mg,U3). (28)

Introduction to Control Theory And Its Application to Contmg Systems 27

3. Feedback controlit can be easily seen from the necessary condition that,
assuming stable changesApand m, the value ofl (m;,U;) will increase adJ;
decreases. On the other hamdm,U;) will decrease ifU; increases. From this,
we can deduce that a smaller value fam;,U;) indicates that tier is overloaded
and, similarly, a larger value fdr (m;,U;) indicates that tieris underloadedBased
on this observation, we can design a feedback loop in whiehutization and
the number of machines are adjusted (using traditionalrobttieoretic analysis
techniques described earlier in this tutorial) in the dimetthat reduces error (i.e.,
enforces Equation (28)) while minimizing the energy olijectunction.

6.2 Evaluation

Next, we evaluate five different energy saving approachésmseline (no power
management), the Linux On-demand governor [25], and theetloontrol algo-
rithms mentioned above (the Feedback DVS, the Feedbackfaf@ the Feed-
back On/Off & DVS). For the baseline, we set the CPU frequaadite maximum
on all machines. For each test run, 2500 seconds of TPC-Wleadlare applied,
with a 300-second ramp-up period, a 2000-second measutenterval, and fi-
nally a 200-second ramp-down period. The TPC-W benchmankrgees requests
by starting a number of emulated browsers (EB). We used thephg mix work-
load consisting of 80% browsing and 20% ordering, which rssidered the primary
performance metric by the Transactional Processing Co[8@}i. The user think
time was set to 1.0 seconds. We used 450 ms as the delay aefgycall experi-
ments. The delay set-point is computed such that if the gesdalay is kept around
or below it, the miss ratio of the latency constraint is maiim¢d at or below 0.1,
assuming that the end-to-end delay follows an exponenséiilsution. Figure 11
shows that our approach improves energy consumption {baseid Linux gover-
nor are not shown). Figure 12(a) depicts the average delétyedfive algorithms.
Figure 12(b) depicts throughput.

7 Conclusions And Research Challenges

Current trends in computing systems are challenging olityatn engineer systems
that adapt quickly to changes in workloads and resourcesmiples addressed in
this paper include: self-tuning memory management in detalystems that adapts
to changes in queries and disk contention, dynamic contralsmurces in real-time
embedded systems that control variations in task resowgngadds to meet real
time objectives, adapting CPU allocations of virtualizedvers in data centers in
response to variations in the user requests, and addréstnactions between con-
trol loops for power management in response to workloadatiaris. Such adapta-
tion is usually addressed by building a closed loop systeahdiinamically adjusts

28 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

600 500

Baseline —+— Baseline —+—

Ondemand - 450 Ondemand -
500 |- Feedback DVS I Feedback DVS %
Feedback OnOff «-& 400 - Feedback OnOff &
Feedback OnOff DVS ---®---

Feedback OnOff DVS ---B---
Y 350 2

300 |
250

400

300 -

Delay
Throughput

200 | /ﬁ,@é
200 150 |
100 - KT T i 100 -
- 50 -
0 L L L L 0 L L L L L
350 400 450 500 550 600 650 350 400 450 500 550 600 650
Emulated Browsers # Emulated Browsers
(a) Average Delay (b) Throughput

Fig. 12 Other Metrics: Average Delay, Deadline Miss Ratio, and Tigtgout

resource allocations and other factors based on measutpdt®uControl theory
provides a formal approach to designing closed loop systhaids used in many
other fields such as mechanical engineering, electricahergng, and economics.

This paper provides a brief introduction to key conceptstantniques in control
theory that we have found valuable in the design of closegddor computing
systems. There has been considerable success to date plyinggontrol theory
to computing systems, including impact on commercial potsifrom IBM, Hewlett
Packard, and Microsoft. However, many research challeregaain. Among these
are the following.

e Benchmarks for assessing closed designs. While there #restablished bench-
marks for steady state workloads of web servers, databatensy, and other
widely used applications, assessing the ability of closeg systems to adapt to
changes in workloads and resources requires the chaeatienis of transients.
Examples of such characterizations include the magnitideanges in arrival
rates and/or service times, how quickly changes occur, anddng they persist.
Further, we need efficient ways to generate such workloadrmyes that permit
the construction of low cost, low noise benchmarks. Gooigjrts into workload
characteristics will allow us to incorporate more sophated techniques, such
as model based predictive control that is discussed in @eéti

e Control patterns for software engineering. To make corteslign accessible to
software practitioners, we need a set of “control pattértigit provide a con-
venient way to engineer resource management solutionshevet good con-
trol properties. By good control properties, we mean carsitions such as the
SASO properties (stability, accuracy, settling time, amdrehoot) discussed in
Section 2. Two starting points for such patterns are coathin this paper: self-
tuning memory in Section 3, which shows how to use contradty¢o do load
balancing, and the optimal design of interacting controp®in Section 6.

e Scalable control design for distributed systems. Tradily, control engineer-
ing deals with complex systems by building a single Multiptput, Multiple
Output closed loop. This approach scales poorly for ensmoftware systems

Int

roduction to Control Theory And Its Application to Contmg Systems 29

because of the complexity and interactions of componerdkpfhl here are de-
composition techniques such as those in Section 5 that seldirtualized servers
for enterprise computing.

Analysis tools to address interactions between contrggoéeedback control
introduces a degree of adaptive behavior into the systetadinaplicates the con-
struction of component based systems. Analysis tools adetketo understand
and quantify the side-effects of interactions betweenviddially well-optimized
components, as well as any emergent behavior that resottsdomponent com-
positions.

Dynamic verification of design assumptions. Feedback looglse assumptions
about causal relations between systems variables, sucreasrassion controller
assuming that request rate and utilization change in the straction. There is
considerable value in dynamically verifying design asstioms. For example,
one could have a “performance assert” statement that testsystem variables
change in the expected direction in relation to one anoth&en violations of
these assumptions are detected, appropriate actions mtedtdnm.

Control of multiple types of resources. Most of the existapplications of con-
trol theory deal with one resource type, for instance, mgmoSection 3, and
CPU in Sections 4 and 5. In practice, the performance of eajdins running in
computing systems depends on multiple resources, such @sr@&mory, net-
work bandwidth and disk 1/0. From a control perspective tinéates challenges
with interactions between multiple controllers and tagettems with different
time constants, delay characteristics, and softwarefates.

Extending the application of control theory beyond perfante management.
While control theory provides a systematic approach togieisg feedback sys-
tems for performance management, computing solutionsiasive consider-
ations such as user interface design, security, instafiatind power. To what
extent can feedback control be applied to these areas? talsdyat extent can
other technologies, such as machine learning, be applipéfiormance man-
agement?

References

1

2
3.
4.

o g

© ~

. C. Amza, A. Ch, A. Cox, S. Elnikety, R. Gil, K. Rajamani, Eechet, and J. Marguerite.
Specification and implementation of dynamic Web site berasks InProceedings of WWC-
5: IEEE 5th Annual Workshop on Workload Characterizatioet. 2002.

. K. Astrom. Challenges in Control Educatioidvances in Control Educatio2006.

K. J. Astrom.Introduction to Stochastic Control Theorjcademic Press, 1970.

K. J. Astrom and B. WittenmarkAdaptive Contral Addison-Wesley, second edition, Jan.

1995.

D. P. BertsekasNonlinear ProgrammingAthena Scientific, 1995.

R. Bianchini and R. Rajamony. Power and energy manageioresgrver systemsComputey

37(11):68-74, 2004.

. C. Corp. XenServer.

H. P. Corporation. HP Integrity Essentials Global Woaddvianager.

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

26.

27.

28.

29.
30.
31.

T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lgibne, S. Parekh, and C. Garcia-
Arellano. Using MIMO linear control for load balancing inroputing systems. IRroceed-
ings of the American Control Conferengeages 2045-2050, June 2004.

Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, SHtstone, S. Parekh, and C. Garcia-
Arellano. Incorporating cost of control into the design dbad balancing controller. IRro-
ceedings of the Real-Time and Embedded Technology andcAppfi Systems Symposium,
Toronto, Canadapages 376-387, 2004.

Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. SuremdS. Lightstone, S. Parekh,
C. Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco. Conapiae studies of load balancing
with control and optimization techniques.Pnoceedings of the American Control Conference,
Portland, OR pages 1484-1490, 2005.

E. N. EInozahy, M. Kistler, and R. Rajamony. Energy-&dfit server clusters. IRower Aware
Computing Systempages 179-196, 2002.

E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy covetéon policies for web servers.
In USENIX Symposium on Internet Technologies and Sysg&963.

G. F. Franklin, J. D. Powell, and A. Emani-Naeifieedback Control of Dynamic Systems
Addison-Wesley, Reading, Massachusetts, third editi®@41

G. F. Franklin, J. D. Powell, and M. L. WorkmarDigital Control of Dynamic Systems
Addison-Wesley, Reading, Massachusetts, third editi®agl

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilburifeedback Control of Computing
SystemsJohn Wiley & Sons, 2004.

C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. A corittbeoretic analysis of RED. In
Proceedings of IEEE INFOCOMbages 1510-1519, Anchorage, Alaska, Apr. 2001.

S. Keshav. A control-theoretic approach to flow contimlProceedings of ACM SIGCOMM
pages 3-15, Sept. 1991.

X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Optimaltivariate control for differ-
entiated services on a shared hosting platformPioceedings of the IEEE Conference on
Decision and ContrglDec. 2007.

L. Ljung. System Identification: Theory for the Usétrentice Hall, Upper Saddle River, NJ,
second edition, 1999.

C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Sord M. Markley. Performance
specifications and metrics for adaptive real-time systemsProceedings of the IEEE Real
Time Systems Symposiudrlando, 2000.

C. Lu, X. Wang, and X. Koutsoukos. Feedback utilizationtool in distributed real-time
systems with end-to-end taskslEEE Transactions on Parallel and Distributed Systems
16(6):550-561, 2005.

J. MaciejowskiPredictive Control with ConstraintsPrentice Hall, 1 edition, 2002.

K. Ogata.Modern Control EngineeringPrentice Hall, 3rd edition, 1997.

V. Pallipadi and A. Starikovskiy. The ondemand govertinProceedings of the Linux Sym-
posium volume 2, 2006.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigand T. S. Jayram. Using control
theory to acheive service level objectives in performan@magement.Real-time Systems
Journal 23:127-141, 2002.

P. Pillai and K. G. Shin. Real-time dynamic voltage swafior low-power embedded oper-
ating systems. II8OSP '01: Proceedings of the 18th ACM Symposium on Oper8stegms
Principles pages 89-102, New York, NY, USA, 2001. ACM Press.

V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and ZHawer-aware QoS management
in Web servers. IIRTSS '03: Proceedings of the 24th IEEE International RéaleTSystems
Symposiugpage 63, Washington, DC, USA, 2003. IEEE Computer Society.

J.-J. E. Slotine and W. LApplied Nonlinear Control Prentice-Hall, 1991.

Transaction Processing Performance Council. TPC BeadhW (Web Commerce).

X. Wang, Y. Chen, C. Lu, and X. Koutsoukos. FC-ORB: A rdhiistributed real-time em-
bedded middleware with end-to-end utilization contrdlournal of Systems and Software
80(7):938-950, 2007.

Introduction to Control Theory And Its Application to Contmg Systems 31

32. W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive confimoldynamic resource allocation in
enterprise data centers. Roceedings of the IEEE/IFIP Network Operations & Manageime
SymposiumApr. 2006.

33. W. Yuan and K. Nahrstedt. Energy-efficient soft realetiopu scheduling for mobile multi-
media systems. IBOSP '03: Proceedings of the 19th ACM Symposium on Operatisgms
Principles pages 149-163, New York, NY, USA, 2003. ACM Press.

34. X. Zhu, Z. Wang, and S. Singhal. Utility driven workloacganagement using nested control
design. InProceedings of the American Control Conferendene 2006.

| ndex

closed loop systems, 1
controllers, 3

distributed real-time embedded systems, 12
dynamic voltage scaling, 22

energy management, 23

linear quadratic regulator, 11

model predictive control, 14
multi-tier applications, 16
multiple-input multiple-output, 10

SASO properties, 4
signals, 2

workload management, 17

33

