
Introduction to Control Theory
And Its Application to Computing Systems

Tarek Abdelzaher1, Yixin Diao2, Joseph L. Hellerstein3,
Chenyang Lu4, and Xiaoyun Zhu5

Abstract Feedback control is central to managing computing systems and data
networks. Unfortunately, computing practitioners typically approach the design of
feedback control in an ad hoc manner. Control theory provides a systematic ap-
proach to designing feedback loops that are stable in that they avoid wild oscil-
lations, accurate in that they achieve objectives such as target response times for
service level management, and settle quickly to their steady state values. This pa-
per provides an introduction to control theory for computing practitioners with an
emphasis on applications in the areas of database systems, real-time systems, virtu-
alized servers, and power management.

1 Introduction

Feedback control is central to managing computing systems and networks. For ex-
ample, feedback (or closed loop systems) is employed to achieve response time ob-
jectives by taking resource actions such as adjusting scheduling priorities, memory
allocations, and network bandwidth allocations. Unfortunately, computing practi-
tioners typically employ an ad hoc approach to the design of feedback control, often
with undesirable results such as large oscillations or slowadaptation to changes in
workloads.

In other mechanical, electrical, aeronautical and other engineering disciplines,
control theory is used to analyze and design feedback loops.Control theory provides
a systematic approach to designing closed loop systems thatare stable in that they
avoid wild oscillations, are accurate in that they achieve the desired outputs (e.g.,

1. Dept. of Comp. Sci., University of Illinois, Urbana-Champaign, IL, zaher@cs.uiuc.edu.
2. IBM T. J. Watson Research Center, Hawthorne, NY, diao@us.ibm.com.
3. Developer Division, Microsoft Corp, Redmond, WA, joehe@microsoft.com.
4. Dept. of Comp. Sci. and Eng., Washington University, St. Louis, MO, lu@cse.wustl.edu.
5. Hewlett Packard Laboratories, Hewlett Packard Corp., Palo Alto, CA, xiaoyun.zhu@hp.com.

1

2 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

response time objectives), and settle quickly to steady state values (e.g., to adjust to
workload dynamics). Recently, control theory has been usedin the design of many
aspects of computing. For example, in data networks controltheory has been applied
to flow control [18] and to the design of new versions of TCP/IP[17].

This paper provides an introduction to control theory for computer scientists with
an emphasis on applications. Section 2 discusses key concepts and fundamental
results in control theory. Section 3 describes how control theory has been applied to
self-tuning memory management in IBM’s DB2 Universal Data Base Management
System. Section 4 addresses the use of model-predictive control in distributed real-
time systems. Section 5 discusses automated workload management in virtualized
data centers. Section 6 details the use of control theory formanaging power and
performance in data centers. Our conclusions and research challenges are presented
in Section 7.

2 Control Theory Fundamentals

This section provides a brief overview of control theory forcomputer scientists with
little background in the area. The focus is on key concepts and fundamental results.

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Transduced
Output

Transducer

Disturbance

Input

+

−

Control

Error

Noise

Input

Fig. 1 Block diagram of a feedback control system.

Karl Astrom, one of the most prolific contributors to controltheory, states that
the “magic of feedback” is that it can create a system that performs well from com-
ponents that perform poorly [2]. This is achieved by adding anew element, the con-
troller, that dynamically adjusts the behavior of one or more other elements based
on the measured outputs of the system. We use the term target system to refer to the
elements that are manipulated by one or more controllers to achieve desired outputs.

The elements of a closed loop system are depicted in Figure 1.Below, we de-
scribe these elements and the information, or signals, thatflow between elements.
Throughout, time is discrete and is denoted byk. Signals are a functional of time.

• The reference inputr(k) is the desired value of the measured output (or trans-
formations of them), such as CPU utilization. For example,r(k) might be 66%.
Sometimes, the reference input is referred to as the desiredoutput or the set point.

Introduction to Control Theory And Its Application to Computing Systems 3

• The control errore(k) is the difference between the reference input and the mea-
sured output.

• The control inputu(k) is the setting of one or more parameters that manipulate
the behavior of the target system(s) and can be adjusted dynamically.

• The controller determines the setting of the control input needed to achieve the
reference input. The controller computes values of the control input based on
current and past values of control error.

• The disturbance inputd(k) is any change that affects the way in which the control
input influences the measured output (e.g., running a virus scan or a backup).

• The measured outputy(k) is a measurable characteristic of the target system such
as CPU utilization and response time.

• The noise inputn(k) changes the measured output produced by the target system.
This is also called sensor noise or measurement noise.

• The transducer transforms the measured output so that it canbe compared with
the reference input (e.g., smoothing stochastics of the output).

In general, there may be multiple instances of any of the above elements. For ex-
ample, in clustered systems, there may be multiple load balancers (controllers) that
regulate the loads on multiple servers (target systems).

To illustrate the foregoing, consider a cluster of three Apache Web Servers. The
Administrator may want these systems to run at no greater than 66% utilization so
that if any one of them fails, the other two can absorb the loadof the failed server.
Here, the measured output is CPU utilization. The control input is the maximum
number of connections that the server permits as specified bythe MaxClients
parameter. This parameter can be manipulated to adjust CPU utilization. Examples
of disturbances are changes in arrival rates and shifts in the type of requests (e.g.,
from static to dynamic pages). Control theory provides design techniques for deter-
mining the values of parameters such asMaxClients so that the resulting system
is stable and settles quickly in response to disturbances.

Controllers are designed for some intended purpose or control objective. The
most common objectives are:

• regulatory control: Ensure that the measured output is equal to (or near) the
reference input. For example, in a cluster of three web servers, the reference
input might be that the utilization of a web server should be maintained at 66%
to handle fail-over. If we add a fourth web server to the cluster, then we may want
to change the reference input from 66% to 75%.

• disturbance rejection: Ensure that disturbances acting on the system do not
significantly affect the measured output. For example, whena backup or virus
scan is run on a web server, the overall utilization of the system is maintained
at 66%. This differs from regulator control in that we focus on changes to the
disturbance input, not to the reference input.

• optimization: Obtain the “best” value of the measured output, such as optimiz-
ing the setting ofMaxClients in the Apache HTTP Server so as to minimize
response times. Here, there is no reference input.

4 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

There are several properties of feedback control systems that should be consid-
ered when comparing controllers for computing systems. Ourchoice of metrics is
drawn from experience with commercial information technology systems. Other
properties may be of interest in different settings. For example, [21] discusses prop-
erties of interest for control of real-time systems.

Below, we motivate and present the main ideas of the properties considered.

• A system is said to bestableif for any bounded input, the output is also bounded.
Stability is typically the first property considered in designing control systems
since unstable systems cannot be used for mission critical work.

• The control system isaccurateif the measured output converges (or becomes
sufficiently close) to the reference input in the case of regulatory control and
disturbance rejection, or the measured output converges tothe optimal value in
the case of an optimization objective. Accurate systems areessential to ensuring
that control objectives are met, such as differentiating between gold and silver
classes of service and ensuring that throughput is maximized without exceeding
response time constraints. Typically, we do not quantify accuracy. Rather, we
measure inaccuracy. For a system in steady state, its inaccuracy, orsteady state
error is the steady state value of the control errore(k).

• The system hasshort settling timesif it converges quickly to its steady state
value. Short settling times are particularly important fordisturbance rejection in
the presence of time-varying workloads so that convergenceis obtained before
the workload changes.

• The system should achieve its objectives in a manner thatdoes not overshoot.
The motivation here is that overshoot typically leads to undershoot and hence to
increased variability in the measured output.

Much of our application of control theory is based on the properties of stability,
accuracy, settling time, and overshoot. We refer to these astheSASO properties.

To elaborate on the SASO properties, we consider what constitutes a stable sys-
tem. For computing systems, we want the output of feedback control to converge,
although it may not be constant due to the stochastic nature of the system. To re-
fine this further, computing systems have operating regions(i.e., combinations of
workloads and configuration settings) in which they performacceptably and other
operating regions in which they do not. Thus, in general, we refer to the stability of
a system within an operating region. Clearly, if a system is not stable, its utility is
severely limited. In particular, the system’s response times will be large and highly
variable, a situation that can make the system unusable.

If the feedback system is stable, then it makes sense to consider the remaining
SASO properties—accuracy, settling time, and overshoot. The vertical lines in Fig-
ure 2 plot the measured output of a stable feedback system. Initially, the (normal-
ized) reference input is 0. At time 0, the reference input is changed torss= 2. The
system responds and its measured output eventually converges toyss = 3, as indi-
cated by the heavy dashed line. The steady state erroress is−1, whereess= rss−yss.
The settling time of the systemks is the time from the change in input to when the
measured output is sufficiently close to its new steady statevalue (as indicated by the

Introduction to Control Theory And Its Application to Computing Systems 5

0 2 4 6 8 10 12 14
0

1

2

3

4
yssMP

yss

Time (k)
ks

ess

rss

M
ea

su
re

d
O

ut
pu

t

Fig. 2 Response of a stable system to a step change in the reference input. At time0, the reference
input changes from0 to 2. The system reaches steady state when its output always liesbetween the
light weight dashed lines. Depicted are the steady state error (ess), settling time (ks), and maximum
overshoot (MP).

light dashed lines). In the figure,ks = 9. The maximum overshootMP is the (normal-
ized) maximum amount by which the measured output exceeds its steady state value.
In the figure, the maximum value of the output is 3.95 and so(1+MP)yss= 3.95, or
MP = 32%.

The properties of feedback systems are used in two ways. The first is for analysis
to assess the SASO properties of a system. The second is as design objectives. For
the latter, we construct the feedback system to have acceptable values of steady
state error, settling time, and maximum overshoot. More details on applying control
theory to computing systems can be found in [16].

R(z) Y(z)zKI
z −1

Notes

+
−

Server
Notes

Sensor

0.47
z −0.43

0.17z-0.11
z −0.64

Target System

Controller

Fig. 3 Block diagram of a feedback system to control RPCs in System for the IBM Lotus Notes
Domino Server.

We describe the essentials of control design using the IBM Lotus Domino Server
in [26]. The feedback loop is depicted in Figure 3. It consists of the Controller, the
Notes Server, and the Notes Sensor. The control objective isregulation, which is
motivated by administrators who manage the reliability of Notes Servers by regulat-
ing the number of remote procedure calls (RPCs) in the server. This quantity, which
we denote byRIS, roughly corresponds to the number ofactive users(those with
requests outstanding at the server). Administrators choose a setting forRISthat bal-
ances the competing goals of maximizing throughput by having high concurrency
levels with maximizing server reliability by reducing server loads.

RISis measured by periodically reading a server log file, which we call the Notes
Sensor. Regulation is accomplished by using theMaxUsers tuning parameter that
controls the number ofconnected users. The correspondence betweenMaxUsers

6 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

andRISchanges over time, which means thatMaxUsers must be updated almost
continuously to achieve the control objective. The controller automatically deter-
mines the value ofMaxUsers based on the objective forRISand the measured
value ofRISobtained from the Notes Sensor.

Our starting point is to model howMaxUsers affectsRISas output by the Notes
Server. We useu(k) to denote thek-th of MaxUsers, andy(k) to denote thek-th
value of RIS. (Actually,u(k) andy(k) are offsets from a desired operating point.)
We construct an empirical model that relatesy(k) to u(k) by applying least squares
regression to data obtained from off-line experiments. (Empirical models can also
be constructed in real time using on-line data.) The resulting model is

y(k) = 0.43y(k−1)+0.47u(k−1) (1)

To better facilitate control analysis, Equation (1) is put into the form of a transfer
function, which is a Z-transform representation of howMaxUsers affectsRIS. Z-
transforms provide a compact representation for time varying functions, wherez
represents a time shift operation. The transfer function ofEquation (1) is

G(z) =
0.47

z−0.43

Note that the equation forG(z) appears in the box in Figure 3 that corresponds to
the Notes Server sinceG(z) describes the essential control properties of the server.
The poles of a transfer function are the values ofz for which the denominator is 0.
It turns out that the poles determine the stability of the system, and poles largely
determine settling times as well.G(z) has one pole, which is 0.43. The effect of
this pole on settling time is clear if we solve the recurrencein Equation (1). The
resulting expression fory(k) has terms with 0.43k,0.43k−1, · · · . Thus, if the absolute
value of the pole is greater than one, the system is unstable.And the closer the pole
is to 0, the shorter the settling time. A pole that is negative(or imaginary) indicates
an oscillatory response.

The transfer function of a system provides another quantityof interest–steady
state gain. Steady state gain quantifies how a change in the input affects the out-
put, a critical consideration in assessing control accuracy. This can be calculated by
evaluatingG(z) at z= 1. A steady state gain of 1 means that the output is equal to
the input at steady state.

With this background, we outline how to do control design. Wewant to construct
a controller for the system in Figure 3 that results in a closed loop system that is
stable, accurate, and has short settling times. First, observe that the closed loop
system itself has a transfer function that relates the reference input to the measured
output. We denote this transfer function byF(z). Translating the design objectives
into properties ofF(z), we want the poles ofF(z) to be close to 0 (which achieves
both stability and short settling times), and we wantF(z)’s steady state gain to be
1 (which ensures accuracy since the measured output will be equal to the reference
input). These objectives are achieved by choosing the rightController.

Introduction to Control Theory And Its Application to Computing Systems 7

We proceed as follows. First, we construct a transfer functionS(z) for the Notes
Sensor in the same way as was done with the Notes Server. Next,we choose a
parameterized controller. We use an integral controller, which provides incremental
adjustments inMaxUsers. Specifically,u(k+ 1) = u(k)+ KI e(k), and its transfer
function isK(z) = zKI

z−1. With these two transfer functions, it is straight forward to
constructF(z) [16]. It turns out that an integral controller guarantees that F(z) has
a steady state gain of 1. Thus, the control design reduces to choosingKI such that
the poles ofF(z) are close to 0.

The theory discussed so far addresses linear, time-invariant, deterministic (LTI)
systems with a single input (e.g.,MaxUsers) and a single output (e.g., RIS). There
are many extensions to LTI theory. Adaptive control (e.g., [4]) provides a way to au-
tomatically adapt the controller in response to changes in the target system and/or
workloads. Stochastic control (e.g., [3]) is a framework for going beyond determin-
istic systems. State space and hybrid systems (e.g., [24]) provide a way to address
multiple inputs and multiple outputs as well as complex phase changes. Non-linear
control provides a way to address complex relationships between inputs and out-
puts [29].

3 Application to Self-Tuning Memory Management of A
Database System

This section describes a feedback control approach that achieves the optimization
objective. We study such an approach in the context of memorymanagement in
IBM’s DB2 Universal Database Management System. The feedback controller man-
ages memory allocation in real time to respond to workload variation and minimize
system response time.

Figure 4 shows the architecture and system operations of a database server that
works with multiple memory pools. The database clients interact with the database
server through the database agents which are computing elements that coordinate
access to the data stored in the database. Since disk accesses are much slower rel-
ative to main memory accesses, database systems use memory pools to cache disk
pages so as to reduce the number and time of disk input/outputoperations needed.
The in-memory data are organized in several pools, which arededicated for differ-
ent purposes and can be of different types and characteristics (e.g., buffer pools,
package cache, sort memory, lock list).

The management of these pools, especially in terms of determining their opti-
mal sizes, is a key factor in tuning and determining databasesystem performance.
However, several challenges are associated with self-tuning memory management.

• Interconnection: In the database memory management problem, the total size of
all memory pools is fixed. Increasing the size of one pool necessarily means de-
creasing the size of another. Although memory pool size increase can drastically
reduce its response time to access disk data (since there is ahigher probability

8 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

Agents

Memory
Tuner

Sensor

Disks

Memory Pools

Database
Server

Database Clients
Memory

Allocations

Response Time Benefit

Fig. 4 Architecture of database memory management.

that a copy of the data is cached in memory), its impact to other memory pools
need to be considered as well.

• Heterogeneity: Buffer pools that store data pages or index pages exhibit different
data access patterns. Furthermore, besides saving the I/O time, a larger size of
memory pool can also lower the CPU time. For example, a largersort memory
increases the width of a merge tournament tree and reduces the number of merge
passes so that the time spent in performing tournament mergecan be reduced.
These dissimilar usage characteristics make memory pool trade offs difficult.

• Adaptation and robustness: Each customer has its unique database configuration,
a self-tuning memory controller is required to work out of the box without on-site
adjustment. The controller is also required to automatically adjust itself in real
time in response to database workload variation. On the other hand, robustness is
of great concern to database administrators. Furthermore,for a database server,
oscillations in the size of buffer pools is highly undesirable because it reduces
throughput as a result of increased I/O rates to write dirty pages and to read new
data.

• Cost of control: Care must be taken not to change memory poolstoo frequently
since excessive adjustments introduce substantial resizing overheads that can de-
crease throughput and increase response time.

We start controller design from identifying the three key signals in a feedback
control system: control input, measured output, and reference input (as depicted
in Figure 1). The control input,ui(k), i = 1,2, . . . ,N, consists of the sizes of allN
memory pools subject to self-tuning.

Although we could use system throughput or response time as measured out-
put, they are not proper choices, because they can be affected not only by memory
allocation but by many other factors (e.g., indexes and query plans) and their cor-
responding controllers (e.g., index advisor, query optimizer). Since the direct effect
of having memory pools is to reduce the disk access time (and CPU computation
time), we only focus on the saved response time in this sense.Specifically, we de-
fine measured output,yi(k), as the response time reduction caused by memory size
increase. We refer to this as theresponse time benefit(or simplybenefit), which is
also known as the marginal gain. We measure benefit in units ofseconds per page.

Introduction to Control Theory And Its Application to Computing Systems 9

The response time benefit is measured dynamically by a special sensor. This
sensor uses a “ghost buffer” that estimates the reduction indisk I/Os for a buffer
pool if the the size of that buffer pool had been larger. The response time benefit is
calculated as the saved disk access time divided by the size of the ghost buffer.

For the database memory problem, the control objective is optimization. Specifi-
cally, this is a constrained optimization problem where theobjective is to maximize
the total saved response time subject to the constraint of the total available memory
[9] [11].

We introduce some notation. The scalar performance function is:

J = f (u1,u2, . . . ,uN) (2)

The scalar equality constraint on total memory is:

g(u1,u2, . . . ,uN) =
N

∑
i=1

ui −U = 0 (3)

Further, there may beN scalar inequality constraints imposed on the memory pools:

hi(ui) = ui −ui ≥ 0 (4)

whereui is the minimum size for memory pooli.
Note that for each memory pool, saved response time is increasing in memory

size, and saved response time becomes saturated when the pool memory is large
enough to hold the entire data block (so that there is no further I/O involved and
no additional time can be saved). We assume the relationshipbetween the pool size
ui and saved response timexi is approximated byxi = ai(1−e−biui). We further as-
sume that the interactions between memory pools are negligible so that the objective
function is separable and convex. This givesf = ∑N

i=1xi = ∑N
i=1ai(1−e−biui) and

its partial derivative (i.e., measured output) isyi = ∂ f
∂ui

= dxi
dui

= aibie−biui .
According to the first order Karush-Kuhn-Tucker (KKT) necessary conditions,

we define the Lagrange function asL = f (u1,u2, . . . ,uN) + λg(u1,u2, . . . ,uN) +

∑N
i=1 µ>

i hi(ui), which adjoins the original performance function and the constraints
using the Lagrange multipliersλ andµi . The KKT necessary conditions for a so-
lution u = [u1,u2, . . . ,uN] to be locally optimal are that the constraints are satisfied,
i.e.,g(u) = 0 andh(u) = [h1(u1),h2(u2), . . . ,hN(uN)] ≥ 0, and there exist Lagrange
multipliers λ and µi such that the gradient of the Lagrangian vanishes. That is,
∂L
∂ui

= ∂ f
∂ui

+λ ∂g
∂ui

+∑N
j=1 µ j

∂h j
∂ui

= yi +λ + µi = 0. Furthermore,µi satisfies the com-
plementarity condition ofµihi = 0 with µi ≥ 0. This implies that when the memory
allocation is optimal and pool sizes are not at the boundaries, the measured outputs
of memory pool are equal (yi = −λ , andµi = 0 sincehi > 0). In the case that the
memory allocation is optimal when some pool sizes are at the boundaries, the mea-
sured output from these memory pool may be smaller (yi = −λ − µi , andµi ≥ 0
sincehi = 0). Sincef is a convex function, the optimal solution is unique in that the
local optimum is also the global optimum.

10 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

We design a multiple-input multiple-output (MIMO) feedback controller to
equalize the measured output. Such an approach allows us to exploit well estab-
lished techniques for handling dynamics and disturbances (from changes in work-
loads) and to incorporate the cost of control (throughput reductions due to load
imbalance and resource resizing) into the design. The feedback control system is
defined as follows (where matrices are denoted by boldface uppercase letters and
vectors by boldface lowercase):

y(k+1) = Ay(k)+ B
(

u(k)+ dI(k)
)

(5)

e(k) =

(

1
N

1N,N − I
)

(

y(k)+ dO(k)
)

(6)

eI(k+1) = eI(k)+ e(k) (7)

u(k) = KPe(k)+ KIeI(k) (8)

The first equation represents a state space model [14], whichis a local linear ap-
proximation of the concave memory-benefit relationship. Although most computing
systems are inherently non linear, from the local point of view, a linear approxima-
tion can be effective and rational, especially when considering the existence of sys-
tem noise and the ability of on line model adaptation. TheN×1 vectory(k) denotes
the measured output (i.e., response time benefit), theN×1 vectoru(k) represents
the control input (i.e., memory pool size), and theN×1 vectordI(k) indicates possi-
ble disturbances applied on the control inputs (e.g., adjustments made to enforce the
equality and inequality resource constraints). TheN×N matricesA andB contain
state space model parameters that can be obtained from measured data and system
identification [20].

Equation (6) specifies theN×1 control error vectore(k), whereI =







1 · · · 0
...

...
0 · · · 1







and1N,N =







1 · · · 1
...

...
1 · · · 1






areN×N matrices. TheN×1 vectordO(k) indicates pos-

sible disturbances applied on the measured outputs (e.g., measurement noises that
are not characterized by the deterministic model). Impliedfrom this equation is that
we define the average measured output ¯y(k) = 1

N ∑N
i=1yi(k) as the control reference

for all measured outputs, and thei-th control errorei(k) = ȳ(k)−yi(k). Note that in
contrast to having a static value or external signal as the reference input, we specify
the reference as a linear transformation of the measured outputs. The control objec-
tive is to makeei(k) = 0, that is, equalizing the measured outputs (i.e.,yi(k) = y j(k)
for anyi and j) so as to maximize the total saved response time.

The dynamic state feedback control law is defined in Equation(8), and the inte-
gral control erroreI(k) is theN×1 vector representing the sum of the control errors
as defined in Equation (7). TheN×N matricesKP andKI are controller parameters

Introduction to Control Theory And Its Application to Computing Systems 11

to be chosen (through controller design) in order to stabilize the closed loop sys-
tem and achieve the SASO performance criteria regarding convergence and settling
time.

We design the controller and choose the control parameters in a way that con-
siders the cost of control–both the cost of transient memoryimbalances and the
cost of changes in memory allocations [10]. Reducing memoryimbalance gener-
ally indicates an aggressive control strategy with short settling time of moving the
memory from imbalance to balance. However, too aggressive control can also lead
to overreacting to random fluctuations and thus incurs additional cost of allocation
changes.

We handle this trade-off by exploiting optimal linear quadratic regulator (LQR)
control [15]. LQR chooses control parameters that minimizethe quadratic cost func-
tion

J =
∞

∑
k=1

[

e>(k) eI
>(k)

]

Q
[

e(k)
eI(k)

]

+ u(k)>Ru(k) (9)

over an infinite time horizon as well as satisfy the dynamics defined in Equation
(5)-(8). The cost function includes the control errore(k) andeI(k), and the control
input u(k). The former is related to the cost of transient resource imbalances, and
the latter the cost of changing resource allocations. The matricesQ andR determine
the trade-off. Intuitively, ifQ is large compared toR, the controller will make big
changes in resource allocations and hence can react quicklyto disturbances. On the
other hand, ifR is large compared toQ, the controller is much more conservative
since there is a high cost for changing resource allocations.

With Q andR defined, the control parametersKP andKI can be computed in the
usual way by solving the Riccati equation [4]. Hence, the controller design problem
is to select the proper weighting matricesQ andR which quantify the cost of control.
We achieve this by developing a cost model, regarding to the performance impact
of control, and constructingQ andR in a systematic way [10].

Although the cost model and LQR framework provides a systematic way to study
the cost of control, it is more appropriate to be used off-line for analyzing the tar-
get system and designing the controller prior to operation.Further simplification is
needed to facilitate real time adaptation when the workloadis unknown in advance
and can change overtime. This also helps to manage a large setof memory pools
where the number of pools is varying.

This simplification is achieved using a distributed controlarchitecture and adap-
tive pole placement techniques. The model is built and the controller is designed
locally for each individual memory pool; the only connection between different
pools is the control reference signal–the average measuredoutput. Specifically, a
single-input single-output (SISO) model

yi(k+1) = bi(k)ui(k) (10)

is built on line for thei-th memory pool. This is equivalent to havingA = 0 and
B = diag([b1, . . . ,bN]) in Equation (5), while the disturbance termdI(k) is enlarged
to include the modeling uncertainty. Having a set of SISO models simplifies the

12 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

model structure and parameter, so that on line modeling techniques such as recursive
least squares can be effectively applied with less computational complexity [20].

The controller is also built individually

ui(k+1) = ui(k)−
1− p
bi(k)

(

yi(k)−
1
N

N

∑
j=1

y j(k)

)

(11)

The controller takes the format of integral control, a simplification from Equation
(8) by settingKP = 0 andKI = diag([1−p

b1(k)
, . . . , 1−p

bN(k)]). The control parameter1−p
bi(k)

is designed through adaptive pole placement so that it will be adapted when different
model parameterbi(k) is estimated on line.

With reasonable simplifications, a distributed architecture makes the controller
agile to workload and resource variations, and increase itsrobustness regarding to
measurement uncertainties and maybe uneven control intervals. For example, al-
though in general for a database server the system dynamics may not be negligible
(i.e., an increase of buffer pool size may not immediately result in response time
benefit decrease, as time is needed to fill up the added buffer space) and the cross
memory pool impact does exist (i.e., an increase of sort memory will not only bring
down the benefit for sort memory but also that for the buffer pool that stores tempo-
rary sort spill pages), our experimental results confirm thecontrol performance of
this distributed controller.

Figure 5 evaluates the performance of the feedback controller under an on line
transaction processing (OLTP) workload. The OLTP workloadconsists of a large
number of concurrent requests, each of which has very modestresource demands;
we use 20 buffer pools to contain data and index for the database tables and 50
database clients to generate the load. Figure 5(a) shows thethroughput (measured
in transactions per unit time) that indicates the performance impact of buffer pool
re-sizings. Figure 5(b) and (c) display the memory allocations and response time
benefits for the controlled buffer pools (as indicated by the20 solid lines in the
plot). Initially, the database memory is not properly allocated: most of the memory
has been allocated to one buffer pool, while the other bufferpools are set at the
minimum size. The controller adjusts the size of buffer pools so as to equalize the
response time benefits of the pools. We see that even for a large number of memory
pools the controller converges in approximately 80 intervals. Further, our studies in
[10] show that the controller’s actions increases throughput by a factor of three.

4 Application to CPU Utilization Control in Distributed
Real-Time Embedded Systems

Distributed real-time embedded (DRE) systems must controlthe CPU utilization
of multiple processors to prevent overload and meet deadlines in face of fluctuat-
ing workload. We present theEnd-to-end Utilization CONtrol (EUCON)algorithm
that controls the CPU utilization of all processors in a DRE system by dynamically

Introduction to Control Theory And Its Application to Computing Systems 13

0 50 100 150 200
0

50

100

150

200

250

300

Control interval (in 60 sec.)
T

hr
ou

gh
pu

t (
in

 tr
an

s.
 p

er
 u

ni
t t

im
e)

0 50 100 150 200
0

0.5

1

1.5

2x 10
4 03−21

Control interval (in 60 sec.)

P
oo

l s
iz

e
(in

 4
K

 p
ag

es
)

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05
03−21

Control interval (in 60 sec.)

R
es

po
ns

e
tim

e
be

ne
fit

 (
in

 s
ec

. p
er

 4
K

 p
ag

es
)

(a) OLTP throughput (b) Memory pool sizes (c) Response time benefit

Fig. 5 Control performance under an OLTP workload.

adjusting the invocation rates of periodic tasks. A DRE system is comprised ofm
end-to-end periodic tasks{Ti |1≤ i ≤ m} executing onn processors{Pi|1≤ i ≤ n}.
TaskTi is composed of a chain of subtasks{Ti j |1 ≤ j ≤ ni} running on multiple
processors. The execution of a subtaskTi j is triggered by the completion of its pre-
decessorTi, j−1. Hence all the subtasks of a task are invoked at a same rate. For
example, on a Real-Time CORBA middleware a task may be implemented as a
sequence of remote operation requests to distributed objects, where each remote
operation request corresponds to a subtask. Each subtaskTi j has anestimatedexe-
cution timeci j known at deployment time. However, theactualexecution time of a
subtask may differ fromci j and vary at run time. The rate ofTi can be dynamically
adjusted within a range[Rmin,i ,Rmax,i]. A task running at a higher rate contributes
higher utility at the cost of higher CPU utilization. For example, both video stream-
ing and digital control applications usually deliver better performance when running
at higher rates.

1 min,1 max,1

min, max,

,

n m m

B R R

B R R

              
� � �













)(

)(1

ku

ku

n

�













∆

∆

)(

)(1

kr

kr

m

�

Distributed System
(m tasks, n processors)

Utilization
Monitor

Rate
Modulator RM

UM UM

RM

Feedback Loop

Precedence Constraints

Subtask

Control
Input

Measured
Output

Model
Predictive
Controller

Fig. 6 The feedback control loop of EUCON.

As shown in Figure 6, EUCON is composed of a centralizedcontroller, and a
utilization monitorand arate modulatoron each processor. A separate TCP connec-
tion connects the controller with the pair of utilization monitor and rate modulator

14 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

on each processor. The user inputs to the controller includethe utilization set points,
B = [B1 . . .Bn]

T , which specify the desired CPU utilization of each processor, and
the rate constraints of each task. Themeasured outputis the CPU utilization of all
processors,u(k) = [u1(k) . . .un(k)]T . Thecontrol input is the change to task rates
4r(k) = [4r1(k) . . .4rm(k)]T , where4r i(k) = r i(k)− r i(k−1) (1≤ i ≤ m). The
goal of EUCON is to regulate the CPU utilizations of all processors so that they re-
main close to their respective set points by adjusting the task rates, despite variations
in task execution times at run time.

DRE systems pose several challenges to utilization control. First, the utilization
control problem ismulti-input-multi-output (MIMO)in that the system needs to reg-
ulate the CPU utilization of multiple processors by adjusting the rates of multiple
tasks. More importantly, the CPU utilization of different processors iscoupledto
each other due to the correlation among subtasks belonging to a same task,i.e.,
changing the rate of a task will affect the utilization of allthe processors hosting its
subtasks because they must execute at the same rates. Therefore the CPU utilization
of different processors cannot be controlled independently from each other. Finally,
the control is subject toactuator constraintsas the rate of a task must remain with
an application-specific range.

To deal with inter-processor coupling and rate constraints, EUCON adoptsModel
Predictive Control (MPC)[23], an advanced control technique used extensively in
industrial process control. Its major advantage is that it can deal with coupled MIMO
control problems with constraints on the actuators. The basic idea of MPC is to
optimize an appropriate cost function defined over a time interval in the future. The
controller employs a model of the system which is used to predict the behavior
overP sampling periods called theprediction horizon. The control objective is to
select aninput trajectoryto minimize the cost subject to the actuator constraints.
An input trajectory includes the control inputs in the following M sampling periods,
4r(k),4r(k+1|k), . . .4r(k+M−1|k), whereM is called thecontrol horizon. The
notation4r(k+ 1|k) means that4r(k+ 1) depends on the conditions at timek.
Once the input trajectory is computed, only the first element(4r(k)) is applied as
the control input to the system. In the next step, the prediction horizon slides one
sampling period and the input trajectory is computed again based on the measured
output(u(k)).

Before designing the controller for EUCON, we derive a dynamic model that
characterizes the relationship between the control input4r(k) and the measured
outputu(k). First, we model the utilizationui(k) of one processorPi. Let 4r j(k)
denote the change to the task rate,4r j(k) = r j(k)− r j (k−1). We define theesti-
mated change to utilization, 4bi(k), as:

4bi(k) = ∑
Tjl ∈Si

c jl4r j(k) (12)

whereSi represents the set of subtasks located at processorPi. Note4bi(k) is based
on theestimatedexecution time. Since theactualexecution times may differ from
their estimation, we model the utilizationui(k) as:

Introduction to Control Theory And Its Application to Computing Systems 15

ui(k) = ui(k−1)+gi4bi(k−1) (13)

where theutilization gain gi represents the ratio between the change to theactual
utilization and the estimated change4bi(k−1). For example,gi = 2 means that the
actual change to utilization is twice of the estimated change. Note that the value of
gi is unknown a prioridue to the uncertainty of subtasks’ execution times. A system
with m processors is described by the following MIMO model:

u(k) = u(k−1)+ G4b(k−1) (14)

where4b(k−1) is a vector including the estimated change to the utilization of each
processor, andG is a diagonal matrix wheregii = gi(1≤ i ≤ n) andgi j = 0(i 6= j).
The relationship between the changes to the utilizations and the changes to the task
rates is characterized as follows:

4b(k) = F4r(k) (15)

where thesubtask allocation matrix, F, is ann×m-order matrix. fi j = c jl if sub-
taskTjl (the l th subtask of taskTj) is allocated to processori, and fi j = 0 if no sub-
task of taskTj is allocated to processori. Note thatF captures the inter-processor
coupling caused by end-to-end tasks. Equations (14-15) give the dynamic model of
a distributed system withm tasks andn processors.

Based on the system model, we now design the controller. In the end of every
sampling period, the controller computes the control input4r(k) that minimizes
the following cost function under the rate constraints:

V(k) =
P

∑
i=1

‖ u(k+ i|k)− ref(k+ i|k) ‖2 +
M−1

∑
i=0

‖ 4r(k+ i|k)−4r(k+ i −1|k) ‖2

(16)
whereP is theprediction horizon, andM is thecontrol horizon. The first term in the
cost function represents thetracking error, i.e., the difference between the utilization
vectoru(k+ i|k) and areference trajectoryref(k+ i|k). The reference trajectory de-
fines an ideal trajectory along which the utilization vectoru(k+ i|k) should change
from the current utilizationu(k) to the utilization set pointsB. Our controller is de-
signed to track the following exponential reference trajectory so that the closed-loop
system behaves like a linear system:

ref(k+ i|k) = B−e
− Ts

Tre f
i
(B−u(k)) (17)

whereTre f is the time constant that specifies the speed of system response. A smaller
Tre f causes the system to converge faster to the set point. By minimizing the tracking
error, the closed loop system will converge to the utilization set point if the system
is stable. The second term in the cost function (16) represents thecontrol penalty,
which causes the controller to reduce the changes to the control input.

The controller minimizes the cost function (16) under the rate constraints based
on an approximate system model. This constrained optimization problem can be

16 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

transformed to a standard constrainedleast-squaresproblem. The controller can
then use a standardleast-squaressolver to solve this problem on-line [22].

Note that the system model described in (14) and (15) cannot be used directly
by the controller because the system gainsG are unknown. The controller assumes
G = I in (14), i.e., the actual utilization is the same as the estimation. Although this
approximate model may behave differently from the real system, as proven in [22],
the closed loop system can maintain stability and track the utilization set points as
long as the actualG remains within a certain range. Furthermore, this range canbe
established using stability analysis of the closed-loop system.

EUCON has been implemented in FC-ORB [31], a distributed middleware for
DRE systems. We now summarize the representative experimental results presented
in [31]. All tasks run on a Linux cluster composed of four Pentium-IV machines.
The EUCON controller is located on another Pentium-IV machine. The workload
comprises 12 tasks with a total of 25 subtasks. In the first experiment shown in Fig-
ure 7(a), the average execution times of all subtasks changesimultaneously. The
execution times of all subtasks increase by 50% at 600 seconds, EUCON responds
to the overload by reducing task rates, which causes the utilization of every proces-
sor to converge to its set point within 100 seconds (25 sampling periods). At 1000
seconds, the utilization of every processor drops sharply due to 56% decrease in the
execution times of all subtasks. EUCON increases task ratesuntil the utilizations
re-converge to their set points. In the second experiment shown in Figure 7(b), only
the average execution times of the subtasks on one of the processors experience the
same variations as in the first run, while all the other subtasks maintain the same
average execution times. As shown in Figure 7(b) the utilization of every processor
converges to its set point after the variation of execution times at 600 seconds and
1000 seconds, respectively. These results demonstrate that EUCON can effectively
control the utilization of multiple processors under varying execution times, while
handling inter-processor coupling and rate constraints.

5 Application to Automated Workload Management in
Virtualized Data Centers

5.1 Introduction

Data centers today play a major role in providing on-demand computing to en-
terprise applications supporting key business processes including supply chain, e-
commerce, payroll, customer relationship management, etc. These applications typ-
ically employ a multi-tier architecture where distinct components of a single appli-
cation, e.g., the web tier, the application tier, and the database tier, spread across
multiple servers. In recent years, there has been wide adoption of server virtualiza-
tion in data centers due to its potential to reduce both infrastructure and operational
costs. Figure 8 shows an example scenario where multiple multi-tier applications

Introduction to Control Theory And Its Application to Computing Systems 17

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

C
P

U
 u

til
iz

at
io

n

ron harry
norbert hermione

Fig. 7 The CPU utilization of all the processors in a Linux cluster when subtask execution times
change on all four processors (top figure) and only one processor (bottom figure)

share a common pool of physical servers. Each physical server contains multiple vir-
tual containers, and each virtual container hosts a specificcomponent of a multi-tier
application. Here a “virtual container” can be a hypervisor-based virtual machine
(e.g., VMware, Xen), an operating system level container (e.g., OpenVZ, Linux
VServer), or a workload group (e.g., HP Global Workload Manager, IBM Enterprise
Workload Manager). Although the grouping of application tiers can be arbitrary in
general, we specifically consider the case where the same tiers from different ap-
plications are hosted on the same physical server. This is a common scenario for
shared hosting environments for potential savings in software licensing costs.

When multiple enterprise applications share a common infrastructure, meeting
application-level QoS goals becomes a challenge for data center operators due to the
time-varying nature of typical enterprise workloads, and the complex interactions
among individual tiers of the hosted applications. Existing workload management
tools for UNIX systems or mainframes typically allow individual virtual containers
to be dynamically sized in order to maintain a specified levelof resource utilization.
However, these tools can neither manage other types of containers such as virtual
machines, nor provide direct guarantees for application-level QoS. In the past few
years, there has been work in applying control theory to the design of automated
workload management solutions that fill these gaps [34, 32, 19]. In [34], QoS-driven
workload management was presented using a nested feedback controller, where the
inner loop regulates the CPU utilization of a virtual container and the outer loop
maintains the application-level response time at its target. In [32], a predictive con-

18 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

S

A

QoS Sensor 1

A

S

A

S

S

A

A

S

A

A

AA

S

S

SS

Virtualized

QoS Sensor M

Server 1

QoS Sensor 2

Client 1

Client 2

Client M
 Tier 1

App M

 Tier 1

App 2

 Tier 1
App 1

Virtualized
Server 2

 Tier 2
App 1

 Tier 2

App 2

App M

 Tier 2 Tier 3
App M

 Tier 3

App 2

 Tier 3
App 1

Server 3
Virtualized

Fig. 8 A virtualized server pool hosting multiple multi-tier applications

troller was developed to allocate CPU resource to a virtual container proactively by
exploiting repeatable patterns in an application’s resource demands. This controller
has been tested for managing Xen virtual machines, and a variation of it has been
integrated into the latest release of the HP Global WorkloadManager [8].

The work in [19] deals with the scenario where some virtualized servers are
overloaded. This means, the aggregate demand from all the application components
sharing a server exceeds its total capacity. In this case, the performance of all the ap-
plications may suffer. This is undesirable because failingto meet the QoS goals may
have different consequences for different applications, depending on their respective
service level agreements (SLAs). Therefore, it is desirable for a workload manage-
ment solution to also provide service differentiation among co-hosted applications
in order to maximize the overall business value generated bythese applications.

5.2 Problem statement

Consider the system in Figure 8, whereN (N = 3) virtualized servers are used to host
M 3-tier applications. When one or more of the virtualized servers become over-
loaded, the workload management tool needs to dynamically allocate the shared
server resources to individual tiers of theM applications in a coordinated fashion
such that a specified level of QoS differentiation can be maintained. Next, we de-
scribe how this problem can be cast into a feedback control problem. For simplicity,
we assume that only a single resource on a server (e.g., CPU) may become a bottle-
neck. The approach described here can be generalized to handle multiple resource
bottlenecks.

Each virtual container has an actuator (box “A” in Figure 8) associated with it,
which can allocate a certain percentage of the shared serverresource to the appli-
cation component running in the container. This is referredto as “resource entitle-

Introduction to Control Theory And Its Application to Computing Systems 19

ment.” At the beginning of each control intervalk, thecontrol inputu(k) is fed into
the actuators, whereui, j(k) denotes the resource entitlement for tierj of application
i during intervalk. Since∑M

i=1ui, j = 1, 1≤ j ≤ N, there are a total of(M−1)×N
such independent variables. Hence,u(k) is an(M−1)×N-dimensional vector.

Each application has a QoS sensor (see Figure 8) that measures some end-to-
end performance (e.g., mean response time, throughput) at the end of each control
interval. Letqi(k) denote the QoS measurement for applicationi during interval
k−1. We then define themeasured output, y(k), to be the normalized QoS ratios for

individual applications, whereyi(k) = qi(k)

∑M
m=1qm(k)

. Since∑M
i=1yi(k) = 1, onlyM−1

of suchyi(k)’s are independent. As a result, the system outputy(k) is an(M −1)-
dimensional vector.

The goal of the feedback controller is to automatically determine the appropriate
value for eachui, j(k), such that eachyi(k) can track itsreference input, r i(k), the
desired QoS ratio for applicationi when the system is overloaded.

5.3 Adaptive optimal controller design

We now describe the adaptive optimal controller we presented in [19] for the service
differentiation problem. A block diagram of the closed-loop control system is shown
in Figure 9. The controller consists of two key modules: amodel estimatorthat
learns and periodically updates a linear model between the resource entitlements
for individual application tiers and the measured QoS ratios, and anoptimal con-
troller that computes the optimal resource entitlements based on estimated model
parameters and a quadratic cost function.

−

Target

System

Measured

QoS ratios

u(k)
Optimal Controller

Min_u J(u, A, B)

y(k)

Model parameers

(A, B)

Reference
r(k)

Estimator

Model

Resource entitlements

Fig. 9 A self-tuning optimal resource control system

We use the following linear, auto-regressive MIMO model to represent the input-
output relationship in the controlled system:

y(k+1) =
n

∑
l=1

Al y(k+1− l)+
n−1

∑
m=0

Bmu(k−m). (18)

Note thatAl ∈ ℜO×O andBm ∈ ℜO×V , whereV = (M −1)×N is the input di-
mension, andO= M−1 is the output dimension. The use of a MIMO model allows

20 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

us to capture complex interactions and dependencies among resource entitlements
for different application tiers, which cannot be captured by individual SISO mod-
els. The order of the model,n, captures the amount of memory in the system. Its
value can be estimated in offline system identification experiments [20]. Typically,
a low-order model is sufficient for computing systems [16]. Since the linear model
is a local approximation of the real system dynamics that is typically nonlinear, we
estimate and adapt the values of the coefficient matrices,Al andBm, online using
the recursive least squares (RLS) estimator [4], whenever anew measurement of
y(k) becomes available.

We use optimal control that minimizes the following quadratic cost function:

J = ‖W(y(k+1)− r(k+1))‖2+‖Q(u(k)−u(k−1))‖2. (19)

The controller aims to steer the system into a state of optimum reference tracking,
while penalizing large changes in the control variables.W ∈ ℜO×O andQ ∈ ℜV×V

are weighting matrices on the tracking errors and the changes in the control actions,
respectively. They are commonly chosen as diagonal matrices. Their relative magni-
tude provides a trade off between theresponsivenessand thestabilityof the control
system.

The optimal control law,u∗(k), can be derived by first explicitly expressing the
dependency of the cost functionJ onu(k), and then solving the equation∂J

∂u(k) = 0.
As a result, we get

u∗(k) = ((WB̂0)
TWB̂0 +QTQ)−1[(WB̂0)

T W(r(k+1)− X̂φ̃(k))+QTQu(k−1)],

where

φ̃ (k) = [0 uT(k−1) . . . uT(k−n+1) yT(k) · · · · · · yT(k−n+1)]T ,

X̂ = [B̂0, . . . , B̂n−1, Â1, . . . , Ân].

Note thatX̂ andB̂0 are online estimates of the model parameters.

5.4 Experimental evaluation

Our controller design has been validated on a two-node testbed hosting two in-
stances of the RUBiS application [1], an online auction benchmark. We use a two-
tier implementation consisting of an Apache web server and aMySQL database
(DB) server. Each application tier is hosted in a Xen virtualmachine. The “web
node” is used to host two web tiers, and the “DB node” is used tohost two DB
tiers. For this application, CPU is the only potential resource bottleneck. We use the
credit-based CPU scheduler in the hypervisor of Xen 3.0.3 unstable branch [7] as
the actuator in our control loop. It implements proportional fair sharing of the CPU
capacity among multiple virtual machines.

Introduction to Control Theory And Its Application to Computing Systems 21

We choose a control interval of 20 seconds, which offers a good balance be-
tween responsiveness of the controller and predictabilityof the measurements. For
each RUBiS applicationi, we use mean response time per interval (RTi(k)) as the
QoS metric, and the normalized RT ratio,y(k) = RT1(k)/(RT1(k)+RT2(k)), as the
measured output. The reference input,r(k), indicates the desired level of QoS dif-
ferentiation between the two applications. Note that bothy(k) andr(k) are scalars
in this example.

0 20 40 60 80 100 120 140 160 180
0

50

100

T
hr

ou
gh

pu
t

0 20 40 60 80 100 120 140 160 180
0

10

20

R
es

po
ns

e
T

im
e

0 20 40 60 80 100 120 140 160 180
0

0.5

1

Sample Number (Ts = 20 sec)

N
or

m
. R

T
 R

at
io

RT1 RT2

Throughput1 Throughput2

RT1/(RT1+RT2) Ref

(a) QoS metrics for the two applications

0 50 100 150
0

50

100

(a) Application 1, Web tier

0 50 100 150
0

50

100

(b) Application 2, Web tier

0 50 100 150
0

10

20

30

40

(c) Application 1, DB tier

0 50 100 150
0

10

20

30

40

(d) Application 2, DB tier

Entitlement

Consumption

(b) CPU entitlement (solid) and consumption (dashed) for individual
application tiers

Fig. 10 Experimental results with changes in reference input

22 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

In the first experiment, we varied the reference input,r(k), from 0.3 to 0.5 then
to 0.7. Each reference value was used for a period of 60 control intervals.

Figure 10(a) shows the measured per-interval throughput inrequests per second
(top) and the mean response time in seconds (middle) for the two applications, as
well as the normalized RT ratioy(k) against the reference inputr(k) (bottom) over
a period of 180 control intervals (one hour). The vertical dashed lines indicate the
two step changes in the reference input. As we can see, the measured output was
able to track the changes in the reference input fairly closely. The performance of
both applications also behaved as we expected. For example,a r(k) value of 0.3
gave preferential treatment to application 1, where application 1 achieved higher
throughput and lower average response time than application 2 did. Whenr(k) was
set at 0.5, both applications achieved comparable performance. Finally, asr(k) was
increased to 0.7, application 2 was able to achieve a higher level of performance
than application 1 did, which was consistent with our expectation.

Figure 10(b) shows the corresponding CPU entitlements and resulting CPU con-
sumptions of individual application tiers. As we can see, asr(k) went from 0.3 to 0.5
to 0.7, our controller allocated less and less CPU capacity to both tiers in application
1, and more CPU capacity to application 2.

In the second experiment, we fixed the target RT ratio atr(k) = 0.7, and varied
the intensity of the workload for application 1 from 300 to 500 concurrent users.
This effectively created varying resource demands in both tiers of application 1. Ex-
perimental results showed that, the controller was able to allocate the CPU capacity
on both nodes accordingly, and always maintained the normalized RT ratio near the
reference value, in spite of the change in the workload.

In this section, we described how control theory can be applied to the design
of automated workload management solutions for a virtualized data center. In par-
ticular, as one or more virtualized servers become overloaded, our controller can
dynamically allocate shared server resources to individual application tiers in order
to maintain a desired level of service differentiation among co-hosted applications.
The self-tuning optimal controller we presented has been validated on a lab testbed,
and has demonstrated good closed-loop properties in face ofworkload variations or
changes in the reference input.

6 Application to Power and Performance in Data Centers

The following case study is motivated by the importance of energy saving in multi-
tier Web server farms. In large server farms, it is reported that 23-50% of the revenue
is spent on energy [13, 6]. In order to handle peak load requirements, server farms
are typically over-provisioned based on offline analysis. Aconsiderable amounts
of energy can be saved by reducing resource consumption during non-peak condi-
tions. Significant research efforts have been expended on applying dynamic voltage
scaling (DVS) to computing systems in order to save power while meeting time or
performance constraints [13, 6, 12, 28, 27, 33].

Introduction to Control Theory And Its Application to Computing Systems 23

 350

 400

 450

 500

 550

 600

 650

 700

 350 400 450 500 550 600 650

E
st

im
at

ed
 T

ot
al

 P
ow

er
 [W

]
Emulated Browsers

OnOff+DVS (Independently)
OnOff

DVS
Our Approach

Fig. 11 Comparison of total system power consumption for differentadaptive policies in the Web
server case study.

In this section, we describe adaptive techniques for energymanagement in server
farms based on optimization and feedback control. We specifically illustrate the im-
portance ofjoint adaptation. We show that in large-scale systems, the existence of
several individually stable adaptive components may result in a collectively unstable
system. For example, a straightforward combination of two energy-saving policies
may result in a larger energy expenditure than that with either policy in isolation. We
illustrate this problem by exploring a combination of a DVS policy (that controls fre-
quency,f , of machines in a server farm given their delayD1) and an independently
designed machine On/Off policy (that increases the number of machinesm in the
server farm when the delay is increased and removes machineswhen the delay is
decreased). We then provide a solution to avoid the unstableinteraction between the
two policies.

Figure 11 shows experimental results from a three-tier Web server farm testbed.
Four different energy saving configurations are compared: the On/Off policy, the
DVS policy, the combination of On/Off + DVS (exhibiting adverse interaction) and
finally an optimized policy that we explain later in this section. It is clearly demon-
strated that when the workload increases, the combined On/Off + DVS policy spends
much more energy than all other policies.

The adverse interaction is because the DVS policy reduces the frequency of a
processor, increasing system utilization, which increases end-to-end delay causing
the On/Off policy to to turn more machines on.

1 Observe that changing frequency of a processor also changesthe associated core voltage. There-
fore, we interchangeably use “changing frequency (level)”and “changing DVS (level)” throughout
this paper.

24 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

6.1 Design Methodology for Integrating Adaptive Policies

In this section, we describe how to design feedback control mechanisms that are
free of adverse interactions, optimize energy and respect end-to-end resource and
timing constraints. Our solution methodology is divided into three steps:

1. Formulate the optimization problem:Optimization is performed with respect
to the available feedback control knobs subject to (i) resource constraints, and (ii)
performance specification constraints. Suppose there are atotal of n different feed-
back control policies. For each feedback control policyi, a corresponding set of
feedback control knobs is denoted asxi , wherei = 1, · · · ,n. We can formulate a
constrained optimization problem as follows:

min
x1,...,xn

f (x1, . . . ,xn)

subject to g j(x1, . . . ,xn) ≤ 0, j = 1, . . . ,m, (20)

where f is the common objective function2; g j(·), j = 1, . . . ,m are the resource and
performance constraints related to the application. Introducing Lagrange multipliers
ν1, . . . ,νm, the Lagrangian of the problem is given as:

L(x1, . . . ,xn,ν1, . . . ,νm) = f (x1, . . . ,xn)+

ν1g1(x1, . . . ,xn)+

. . . +

νmgm(x1, . . . ,xn) (21)

2. Derivation of necessary conditions:Model inaccuracies (such as those in es-
timating actual computation times, exact energy consumption, or end-to-end delay
in practical systems) are likely to render the expressions for functionsf (.) andg j(.)
above inaccurate. Hence, we would like to combine optimization with feedback
control to compensate for such inaccuracies.

Our approach is to derive onlyapproximate necessary conditionsfor optimality,
instead of exact necessary and sufficient conditions. This gives a locus of solution
points. A series of feedback loops is then used to traverse that locus in search of a
maximum utility point.

The necessary conditions of optimality are derived by relaxing the original prob-
lem (i.e., where knob settings are discrete) into a continuous problem (where knob
setting are real numbers and functionsg(.) and f (.) are differentiable), then using
the Karush-Kuhn-Tucker (KKT) optimality conditions [5],∀i : 1, . . . ,n:

∂ f (x1, . . . ,xn)

∂xi
+

m

∑
j=1

ν j
∂g j(x1, . . . ,xn)

∂xi
= 0 (22)

Let us call the left-hand-side,Γxi . Observe that, we have the necessary condition:

2 In this casef represents a notion of cost to be minimized. Alternatively,it could represent a
notion of utility to be maximized.

Introduction to Control Theory And Its Application to Computing Systems 25

Γx1 = ... = Γxn (23)

We then use a feedback control approach to find the maximum utility point on
the locus that satisfies Equation (23). Our feedback controlapproach is described
next. We find it useful for the discussion below to also define the averageΓx =
(Γx1 + ... + Γxn)/n. This average at timek will serve as the set pointr(k) for each
individualΓxn.

3. Feedback control:The purpose of feedback control is to find knob valuesxi

such that the condition in Equation (23) is satisfied. Conceptually, when some val-
ues ofΓxi are not equal, two directions are possible for fixing the deviation in the
condition. One is for modules with smaller values ofΓxi to change their knobsxi to
catch up with larger ones. The other is for those with larger values ofΓxi to change
their knobs to catch up with smaller ones. Moreover, more than one knob may be
adjusted together. In the spirit of hill climbing, we take the combination that maxi-
mizes the increase in utility (i.e., optimizes the objective function). Hence, we define
the control error,e(k), at timek, asΓx−Γxi (we omit indexk for notational simplic-
ity) and find the set of neighboring points to the currentxi vector that reduces the
error in the direction that involves a maximum increase in utility. The algorithm will
dynamically guide the system toward a better configuration.

We will next briefly show how this general solution methodology can be applied
to the multi-tier Web server farm case study.

1. Formulating the optimization problem:The decision variables in the opti-
mization problem are the tuning knobs for each individual feedback control policy,
namely the frequency levels of each machine (for the DVS policy) and the number
of active machines at each tier (for the On/Off policy). Theyare optimized subject to
resource and delay constraints. For simplicity, let us use aqueuing-theoretic M/M/1
model for each server machine to predict delay. In this model, the system utilization,
U , is expressed asλ/µ , given the arrival rateλ of the traffic and the service rate
µ of the server. Assuming a load-balanced tieri of mi machines and of total arrival
rateλi , the arrival rate per machine isλi/mi and the service rate is proportional to
frequencyfi . Expressingλi in clock cycles, the utilization of a machine at tieri,
denotedUi , becomesUi = λi

mi fi
, We further approximate power consumptionPi by a

function of CPU frequencyfi for each machine at tieri, namelyPi(fi) = Ai · f p
i +Bi ,

whereAi andBi are positive constants. In realistic systemsp varies between 2.5
and 3 [12].Ai , Bi , and p can be obtained by curve fitting against empirical mea-
surements when profiling the system off-line. Merging the above two equations,

we getPi(Ui ,mi) = Ai ·
(

λi
Ui mi

)p
+ Bi =

Aiλ
p
i

U p
i mp

i
+ Bi . The total power consumption

can be obtained by summing overN tiers asPtot(Ui ,mi) = ∑N
i=1mi ·Pi(Ui ,mi). We

want to minimize the total server power consumptions subject to two functional
constraints. The first constraint is that the total end-to-end delay should be less than
some end-to-end delay bound,L. In the M/M/1 queuing model, this translates to
∑N

i=1
mi
λi
· Ui

1−Ui
≤ K, whereK is some constant. The second constraint is on the total

number of machinesM in the farm,∑N
i=1mi ≤ M. For a 3-tier server farm (N = 3)

26 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

and usingp = 3, the constrained minimization problem can now be formulated as:

min
Ui≥0, mi≥0

Ptot(Ui ,mi) =
3

∑
i=1

mi

(

Aiλ 3
1

U3
i m3

i

+Bi

)

subject to

3

∑
i=1

mi

λi
·

Ui

1−Ui
≤ K,

3

∑
i=1

mi ≤ M

.

(24)

2. Derivation of necessary conditions:To derive necessary conditions, letx =
[

U1 U2 U3 m1 m2 m3
]T

be the vector of decision variables. Observe that we could
have alternatively chosen frequencyfi instead of utilizationUi for the decision vari-
ables, since utilization cannot be set directly. Since we assume an algebraic relation
between utilization and frequency, the two choices are mathematically equivalent.
Expressing control knobs in terms of utilization could be more intuitive in that it
directly quantifies a measure of server load. Introducing the Lagrange multipliers
ν1,ν2 ≥ 0, we can write the Lagrangian function as:

L(x,ν1,ν2) =
3

∑
i=1

mi

(

Aiλ 3
i

U3
i m3

i

+Bi

)

+

+ν1 ·

(

3

∑
i=1

(
mi

λi
·

Ui

1−Ui
)−K

)

+ν2 ·

(

3

∑
i=1

(mi)−M

)

.

(25)

The Karush-Kuhn-Tucker (KKT) conditions [5] associated with the optimization
problem are:

∂L
∂Ui

= −
nAiλ 3

i

m2
i U

4
i

+
ν1mi

λi(1−Ui)2 = 0 ∀i,

∂L
∂mi

= −
2Aiλ 3

i

m3
i U

3
i

+Bi +
ν1

λi
·

Ui

1−Ui
+ν2 = 0 ∀i,

ν1 ·

(

3

∑
i=1

(
mi

λi
·

Ui

1−Ui
)−K

)

= 0,

ν2 ·

(

3

∑
i=1

(mi)−M

)

= 0.

(26)

Solving forν1 andν2 then substituting in the first two sets of equations above, we
get after some rearranging:

λ 4
1 (1−U1)

2

m3
1U

4
1

=
λ 4

2 (1−U2)
2

m3
2U

4
2

=
λ 4

3 (1−U3)
2

m3
3U

4
3

. (27)

To simplify the notations, we will useΓ (mi ,Ui) to denoteλ 4
i (1−Ui)

2

m3
i U4

i
in the following

discussions. Then the necessary condition for optimality is expressed as

Γ (m1,U1) = Γ (m2,U2) = Γ (m3,U3). (28)

Introduction to Control Theory And Its Application to Computing Systems 27

3. Feedback control:It can be easily seen from the necessary condition that,
assuming stable changes inλi and mi , the value ofΓ (mi ,Ui) will increase asUi

decreases. On the other hand,Γ (mi ,Ui) will decrease ifUi increases. From this,
we can deduce that a smaller value forΓ (mi ,Ui) indicates that tieri is overloaded
and, similarly, a larger value forΓ (mi ,Ui) indicates that tieri is underloaded. Based
on this observation, we can design a feedback loop in which the utilization and
the number of machines are adjusted (using traditional control-theoretic analysis
techniques described earlier in this tutorial) in the direction that reduces error (i.e.,
enforces Equation (28)) while minimizing the energy objective function.

6.2 Evaluation

Next, we evaluate five different energy saving approaches: abaseline (no power
management), the Linux On-demand governor [25], and the three control algo-
rithms mentioned above (the Feedback DVS, the Feedback On/Off, and the Feed-
back On/Off & DVS). For the baseline, we set the CPU frequencyto the maximum
on all machines. For each test run, 2500 seconds of TPC-W workload are applied,
with a 300-second ramp-up period, a 2000-second measurement interval, and fi-
nally a 200-second ramp-down period. The TPC-W benchmark generates requests
by starting a number of emulated browsers (EB). We used the shopping mix work-
load consisting of 80% browsing and 20% ordering, which is considered the primary
performance metric by the Transactional Processing Council [30]. The user think
time was set to 1.0 seconds. We used 450 ms as the delay set-point for all experi-
ments. The delay set-point is computed such that if the average delay is kept around
or below it, the miss ratio of the latency constraint is maintained at or below 0.1,
assuming that the end-to-end delay follows an exponential distribution. Figure 11
shows that our approach improves energy consumption (baseline and Linux gover-
nor are not shown). Figure 12(a) depicts the average delay ofthe five algorithms.
Figure 12(b) depicts throughput.

7 Conclusions And Research Challenges

Current trends in computing systems are challenging our ability to engineer systems
that adapt quickly to changes in workloads and resources. Examples addressed in
this paper include: self-tuning memory management in database systems that adapts
to changes in queries and disk contention, dynamic control of resources in real-time
embedded systems that control variations in task resource demands to meet real
time objectives, adapting CPU allocations of virtualized servers in data centers in
response to variations in the user requests, and addressinginteractions between con-
trol loops for power management in response to workload variations. Such adapta-
tion is usually addressed by building a closed loop system that dynamically adjusts

28 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

 0

 100

 200

 300

 400

 500

 600

 350 400 450 500 550 600 650

D
el

ay

Emulated Browsers

Baseline
Ondemand

Feedback DVS
Feedback OnOff

Feedback OnOff DVS

(a) Average Delay

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 350 400 450 500 550 600 650

T
hr

ou
gh

pu
t

Emulated Browsers

Baseline
Ondemand

Feedback DVS
Feedback OnOff

Feedback OnOff DVS

(b) Throughput

Fig. 12 Other Metrics: Average Delay, Deadline Miss Ratio, and Throughput

resource allocations and other factors based on measured outputs. Control theory
provides a formal approach to designing closed loop systemsthat is used in many
other fields such as mechanical engineering, electrical engineering, and economics.

This paper provides a brief introduction to key concepts andtechniques in control
theory that we have found valuable in the design of closed loops for computing
systems. There has been considerable success to date with applying control theory
to computing systems, including impact on commercial products from IBM, Hewlett
Packard, and Microsoft. However, many research challengesremain. Among these
are the following.

• Benchmarks for assessing closed designs. While there are well established bench-
marks for steady state workloads of web servers, database systems, and other
widely used applications, assessing the ability of closed loop systems to adapt to
changes in workloads and resources requires the characterizations of transients.
Examples of such characterizations include the magnitude of changes in arrival
rates and/or service times, how quickly changes occur, and how long they persist.
Further, we need efficient ways to generate such workload dynamics that permit
the construction of low cost, low noise benchmarks. Good insights into workload
characteristics will allow us to incorporate more sophisticated techniques, such
as model based predictive control that is discussed in Section 4.

• Control patterns for software engineering. To make controldesign accessible to
software practitioners, we need a set of “control patterns”’ that provide a con-
venient way to engineer resource management solutions thathave good con-
trol properties. By good control properties, we mean considerations such as the
SASO properties (stability, accuracy, settling time, and overshoot) discussed in
Section 2. Two starting points for such patterns are contained in this paper: self-
tuning memory in Section 3, which shows how to use control theory to do load
balancing, and the optimal design of interacting control loops in Section 6.

• Scalable control design for distributed systems. Traditionally, control engineer-
ing deals with complex systems by building a single MultipleInput, Multiple
Output closed loop. This approach scales poorly for enterprise software systems

Introduction to Control Theory And Its Application to Computing Systems 29

because of the complexity and interactions of components. Helpful here are de-
composition techniques such as those in Section 5 that address virtualized servers
for enterprise computing.

• Analysis tools to address interactions between control loops. Feedback control
introduces a degree of adaptive behavior into the system that complicates the con-
struction of component based systems. Analysis tools are needed to understand
and quantify the side-effects of interactions between individually well-optimized
components, as well as any emergent behavior that results from component com-
positions.

• Dynamic verification of design assumptions. Feedback loopsmake assumptions
about causal relations between systems variables, such as an admission controller
assuming that request rate and utilization change in the same direction. There is
considerable value in dynamically verifying design assumptions. For example,
one could have a “performance assert” statement that tests that system variables
change in the expected direction in relation to one another.When violations of
these assumptions are detected, appropriate actions must be taken.

• Control of multiple types of resources. Most of the existingapplications of con-
trol theory deal with one resource type, for instance, memory in Section 3, and
CPU in Sections 4 and 5. In practice, the performance of applications running in
computing systems depends on multiple resources, such as CPU, memory, net-
work bandwidth and disk I/O. From a control perspective thiscreates challenges
with interactions between multiple controllers and targetsystems with different
time constants, delay characteristics, and software interfaces.

• Extending the application of control theory beyond performance management.
While control theory provides a systematic approach to designing feedback sys-
tems for performance management, computing solutions alsoinvolve consider-
ations such as user interface design, security, installation, and power. To what
extent can feedback control be applied to these areas? Also,to what extent can
other technologies, such as machine learning, be applied toperformance man-
agement?

References

1. C. Amza, A. Ch, A. Cox, S. Elnikety, R. Gil, K. Rajamani, E. Cecchet, and J. Marguerite.
Specification and implementation of dynamic Web site benchmarks. InProceedings of WWC-
5: IEEE 5th Annual Workshop on Workload Characterization, Oct. 2002.

2. K. Astrom. Challenges in Control Education.Advances in Control Education, 2006.
3. K. J. Astrom.Introduction to Stochastic Control Theory. Academic Press, 1970.
4. K. J. Astrom and B. Wittenmark.Adaptive Control. Addison-Wesley, second edition, Jan.

1995.
5. D. P. Bertsekas.Nonlinear Programming. Athena Scientific, 1995.
6. R. Bianchini and R. Rajamony. Power and energy managementfor server systems.Computer,

37(11):68–74, 2004.
7. C. Corp. XenServer.
8. H. P. Corporation. HP Integrity Essentials Global Workload Manager.

30 T Abdelzaher, Y Diao, JL Hellerstein, C Lu, X Zhu

9. Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lightstone, S. Parekh, and C. Garcia-
Arellano. Using MIMO linear control for load balancing in computing systems. InProceed-
ings of the American Control Conference, pages 2045–2050, June 2004.

10. Y. Diao, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone, S. Parekh, and C. Garcia-
Arellano. Incorporating cost of control into the design of aload balancing controller. InPro-
ceedings of the Real-Time and Embedded Technology and Application Systems Symposium,
Toronto, Canada, pages 376–387, 2004.

11. Y. Diao, C. W. Wu, J. L. Hellerstein, A. J. Storm, M. Surendra, S. Lightstone, S. Parekh,
C. Garcia-Arellano, M. Carroll, L. Chu, and J. Colaco. Comparative studies of load balancing
with control and optimization techniques. InProceedings of the American Control Conference,
Portland, OR, pages 1484–1490, 2005.

12. E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters. InPower Aware
Computing Systems, pages 179–196, 2002.

13. E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for web servers.
In USENIX Symposium on Internet Technologies and Systems, 2003.

14. G. F. Franklin, J. D. Powell, and A. Emani-Naeini.Feedback Control of Dynamic Systems.
Addison-Wesley, Reading, Massachusetts, third edition, 1994.

15. G. F. Franklin, J. D. Powell, and M. L. Workman.Digital Control of Dynamic Systems.
Addison-Wesley, Reading, Massachusetts, third edition, 1998.

16. J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.Feedback Control of Computing
Systems. John Wiley & Sons, 2004.

17. C. V. Hollot, V. Misra, D. Towsley, and W. B. Gong. A control theoretic analysis of RED. In
Proceedings of IEEE INFOCOM, pages 1510–1519, Anchorage, Alaska, Apr. 2001.

18. S. Keshav. A control-theoretic approach to flow control.In Proceedings of ACM SIGCOMM,
pages 3–15, Sept. 1991.

19. X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Optimalmultivariate control for differ-
entiated services on a shared hosting platform. InProceedings of the IEEE Conference on
Decision and Control, Dec. 2007.

20. L. Ljung. System Identification: Theory for the User. Prentice Hall, Upper Saddle River, NJ,
second edition, 1999.

21. C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,and M. Markley. Performance
specifications and metrics for adaptive real-time systems.In Proceedings of the IEEE Real
Time Systems Symposium, Orlando, 2000.

22. C. Lu, X. Wang, and X. Koutsoukos. Feedback utilization control in distributed real-time
systems with end-to-end tasks.IEEE Transactions on Parallel and Distributed Systems,
16(6):550–561, 2005.

23. J. Maciejowski.Predictive Control with Constraints. Prentice Hall, 1 edition, 2002.
24. K. Ogata.Modern Control Engineering. Prentice Hall, 3rd edition, 1997.
25. V. Pallipadi and A. Starikovskiy. The ondemand governor. In Proceedings of the Linux Sym-

posium, volume 2, 2006.
26. S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, J. Bigus, and T. S. Jayram. Using control

theory to acheive service level objectives in performance management.Real-time Systems
Journal, 23:127–141, 2002.

27. P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded oper-
ating systems. InSOSP ’01: Proceedings of the 18th ACM Symposium on OperatingSstems
Principles, pages 89–102, New York, NY, USA, 2001. ACM Press.

28. V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware QoS management
in Web servers. InRTSS ’03: Proceedings of the 24th IEEE International Real-Time Systems
Symposium, page 63, Washington, DC, USA, 2003. IEEE Computer Society.

29. J.-J. E. Slotine and W. Li.Applied Nonlinear Control. Prentice-Hall, 1991.
30. Transaction Processing Performance Council. TPC Benchmark W (Web Commerce).
31. X. Wang, Y. Chen, C. Lu, and X. Koutsoukos. FC-ORB: A robust distributed real-time em-

bedded middleware with end-to-end utilization control.Journal of Systems and Software,
80(7):938–950, 2007.

Introduction to Control Theory And Its Application to Computing Systems 31

32. W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive controlfor dynamic resource allocation in
enterprise data centers. InProceedings of the IEEE/IFIP Network Operations & Management
Symposium, Apr. 2006.

33. W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu scheduling for mobile multi-
media systems. InSOSP ’03: Proceedings of the 19th ACM Symposium on OperatingSystems
Principles, pages 149–163, New York, NY, USA, 2003. ACM Press.

34. X. Zhu, Z. Wang, and S. Singhal. Utility driven workload management using nested control
design. InProceedings of the American Control Conference, June 2006.

Index

closed loop systems, 1
controllers, 3

distributed real-time embedded systems, 12
dynamic voltage scaling, 22

energy management, 23

linear quadratic regulator, 11

model predictive control, 14
multi-tier applications, 16
multiple-input multiple-output, 10

SASO properties, 4
signals, 2

workload management, 17

33

