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Abstract—Localization based on time differences of ar-
rival (TDOA) has turned out to be a promising approach when
neither receiver positions nor the positions of signal origins
are known a priori. In this paper, we consider calibration-free
tracking of a mobile beacon using TDOA, i.e., the positions of the
receivers are not given. We propose a probabilistic formulation
using a particle filter to simultaneously localize the signal beacon
and the receivers. Our method is robust against measurement
outliers and incorrect initialization. This is achieved through
a probabilistic sensor model for TDOA data which explicitly
considers the measurement uncertainty and takes into account
disproportional errors caused by measurement outliers. For the
reliable initialization of the particle filter, we apply an iterative
optimization approach to multiple subsets of TDOA data, where
the best solution is implicitly selected by appropriate weighing
of the sensor model. We verify the robustness of our approach in
extensive experiments in a spacious indoor environment by an ul-
trasound beacon moving on various trajectories. We demonstrate
that our approach ensures a proper initialization of the particle
filter and provides accurate position estimates for the signal
beacon and the receivers even in case of measurement outliers.
Compared to position references of an optical motion capture
system we achieve mean position errors below 5 centimeters.

I. INTRODUCTION

The continuous rise and the ubiquitous availability of tech-
nology in every-day life and in industry has led to an in-
creasing demand for location awareness in indoor and outdoor
environments. While the GPS system has become a reliable
assistant in the open field and in outdoor navigation, the
disposition of localization systems begins to shift towards
indoor scenarios.

Localization based on the runtime of acoustic signals is a
promising technology, as the propagation velocity of sound
or ultrasound signals is almost constant. Localization systems
based on time differences of arrival (TDOA) have the sub-
stantial benefit that the target to be tracked only has to emit
a signal and requires no cooperation with the receivers. The
construction of the target is simple and inexpensive as no
communication and computational power is required. Only the
stationary receivers require a communication network, e.g.,
WiFi, to exchange TDOA information.

In this paper, we consider the problem of estimating the tra-
jectory of a moving signal beacon and the position of multiple
stationary receivers distributed in the environment. We require
no interaction between the beacon and the receivers, except
that the short signal bursts emitted by the beacon are detected
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Fig. 1. A visual representation of the state estimate of the particle filter. The
receivers are shown in blue and the signal beacon in red. The ground truth
positions are depicted as blue and red circles, respectively.

and distinguished by the receivers. The receiver measurements
of the arrival times of the individual bursts are used as the only
input to the estimation process.

We present a robust approach for the localization of a
moving signal beacon with simultaneous calibration of the
receiver positions using probabilistic state estimation in a
particle filter. Our algorithm takes into account the continuous
trajectory of the signal beacon and can therefore reliably
estimate its trajectory and recover its position even in case
of temporary signal loss. Furthermore, our probabilistic sen-
sor model for TDOA data explicitly considers the measure-
ment uncertainty and takes into account disproportional errors
caused by measurement outliers. In contrast to most TDOA
localization systems, which assume a Gaussian distribution of
the measurement errors, our approach is robust to effects like
multipath signal propagation (echoes) which often occur in
indoor environments. We initialize the particle filter estimate
through multiple iterative optimization attempts on randomly
chosen subsets of the available measurement data. Hence, our
algorithm is robust to measurement outliers also in the initial-
ization phase. Due to the weighting of the particles according
to our TDOA sensor model, the particle filter implicitly selects
the correct initialization hypothesis and reliably converges
to the true configuration. Additionally, we detect the proper



initialization of the filter and ensure the termination of the
initialization phase by monitoring the internal TDOA error.

We experimentally evaluated the robustness and the ac-
curacy of our approach with an ultrasound TDOA system
in a wide indoor environment. For that, we constructed
an ultrasound signal beacon and several integrated receiver
units with WiFi communication capabilities and low power-
consumption. In extensive experiments we randomly navigated
the signal beacon mounted on a R/C model car through the
environment. Compared to a high-precision optical motion
capture system our TDOA position estimates had an average
localization error below 5 cm, which slightly outperforms a
state-of-the-art iterative optimization approach. Furthermore,
we demonstrate the robustness of our filter in model car
trajectories, where the beacon temporarily left the range of
the receivers, and with a pedestrian carrying the beacon and
partially occluding the line of sight between the beacon and the
receivers. With additional randomly sampled disproportional
measurement errors we demonstrate that our approach is
robust to measurement outliers and outperforms a standard
iterative optimization approach.

By not only estimating the position of a signal beacon, but
extending the state estimation to the position of receivers, our
localization system can operate without any prior positional
information. With that self-calibration, the localization system
is easy to set up, where the receivers are just distributed
in a room and any target can be tracked immediately with
high precision. Applications of our approach using the ultra-
sound system include localization in industrial logistics, e.g.,
autonomous transporters, or recreational activities where the
relatively low-cost system could be quickly installed for a
positional reference. Our approach might also be used for
localization of mobile phones in large indoor environments,
such as airports, trade fair halls, or supermarkets. The smart
phones may, for example, emit a high-pitched sound, which
is inaudible by human ears, and which is received by specific
microphones to locate and guide the user.

This paper is organized as follows. After discussing related
work in the following section, we state the problem definition
in Section III and describe our approach to particle filter
localization in Section IV. In Section V, we demonstrate
the accuracy and robustness of our filter and compare it to
alternative approaches.

II. RELATED WORK

Many popular approaches for indoor localization are based
on the received strength of radio signals. They evaluate the
Received Signal Strengh Indication (RSSI) of stationary satel-
lites, e.g., WiFi access points, to estimate distances [1], [2] or
they use fingerprinting [3] of the signal characteristics. While
robust, these approaches often impose considerable effort in
the installation and calibration, which is measuring the position
of the satellites and learning the signal coverage. The accuracy
of these systems ranges in the region of decimeters, decreasing
rapidly in areas with low coverage of satellites. Additionally,

in many cases the systems react sensitively to changes in the
environment.

A promising alternative are systems based on the runtime of
signals. Time of arrival (TOA) based approaches estimate the
distance between peers by exchanging a signal and recording
its send and receive times on time-synchronized devices.
Alternatively, they use a transponder to bounce a signal and
record its round trip delay at the origin [4], or emit two signals
of different velocities, e.g., RF and ultrasound signals and
compare the runtime differences [5], [6]. Once the distances
between peers are known, the problem is reduced to the
intersection of circles or spheres, which is a well-researched
topic. Solutions are found using linear estimators [7], convex
optimization [8], or iterative approaches [9], [10]. These TOA
systems have in common, that all devices have to be precisely
time-synchronized and usually the hardware delays of both
sending and receiving a signal have to be calibrated in advance.
Some other approaches use intermediate nodes to eliminate the
hardware delays [11], which increases infrastructure complex-
ity and costs.

We focus on systems based on TDOA, evaluating the hyper-
bolic relation of the runtime difference of a signal received by
two receivers. In popular approaches the problem of locating
and/or tracking a signal beacon is considered, using linear
estimators, iterative approaches with squared or maximum
likelihood estimators [12], particle filters [13], [14], [15] or
Kalman filters [16], [17]. In all of these approaches the receiver
positions are known in advance, which requires the calibration
of their positions.

In recent years algorithms have evolved to localize such
a signal beacon using TDOA without knowing the position
of receivers at all. Some rely on an approximation of the
signal propagation, e.g., that the path of the signal is a
straight line [18], or that signals are emitted far away. In
this far field case the distance vectors between receivers
can be approximated [19], [20], or even calculated in closed
form [21], [22]. Once the receivers are known, the calculation
of the signal direction is straight forward.

For the general problem of TDOA, however, no analytical
solutions for the mathematical constraints of the problem seem
to exist [23], [24]. An elegant approach to general TDOA
was presented by Pollefeys and Nister [24] using matrix
factorization of the equation system. However, this approach
can be only applied when at least eight (respectively ten in
the three dimensional case) receivers are available which is
twice the minimum number [25]. Furthermore, this technique
appears to be prone to TDOA measurement errors. In contrast,
root mean squares and maximum likelihood estimators behave
more robust to Gaussian measurement errors. Biswas and
Thrun address the problem using iterative gradient descent
optimization [26]. These approaches require proper a initializa-
tion and tend to get stuck in local minima of the error function.
Multiple repeated attempts with random initialization were
proven to solve almost all simulated random scenarios [25],
but the efficient initialization of a scenario remains an open
problem. Besides, the iterative approaches, while robust to



Gaussian errors, are still prone to disproportional errors,
caused by echoes from walls, and by signal detection errors
in the receivers.

Unlike the above-mentioned approaches, our algorithm can
be reliably and efficiently initialized without any prior infor-
mation and is very robust to Gaussian noise and dispropor-
tional errors in the TDOA measurements.

III. PROBLEM FORMULATION

We consider the problem of simultaneous estimation of a
continuous trajectory St (t = 1, . . . ,m) of a signal beacon
and the stationary positions Mi (i = 1, . . . , n) of n receivers
in Euclidean space Rp, where p ∈ {2, 3}. At each discrete
time step t, the beacon emits a discrete signal at the unknown
send time st. The signal is received and uniquely identified by
some or all of the receivers at the times rit. For estimating the
beacon trajectory and the receiver positions only the arrival
times rit of the signal are available. Up to time t the mea-
surement data z1:t = {zj | j = 1, . . . , t} is available. As the
range of the sound signal is limited and its propagation may be
inhibited by obstacles, at each time step the measurement data
zj ⊆ {rij | i = 1, . . . , n} is a subset of the possible reception
times of all receivers.

We assume that the signal propagates from the beacon to
the receivers in a straight line with a constant signal velocity c
according to the signal propagation equation

‖Mi − St‖ = c (rit − st) , (1)

where ‖ · ‖ is the Euclidean norm.
In the general TDOA localization problem [23], [25] the

positions of signal beacons Sj and receivers Mi are arbitrary
in space. As no anchor positions are provided, the position and
the orientation of the signal beacon and the receivers relative
to global coordinates is undetermined. The estimated solution
can be compared to references by aligning it using a congruent
transformation.

IV. ROBUST STATE ESTIMATION IN THE PARTICLE FILTER

We consider the estimation of the continuous trajectory of
the signal beacon and the positions of the stationary receivers
as a recursive state estimation problem. For that, we apply
the Bayesian filtering scheme [27], which is a probabilistic
approach to recursive state estimation. It is suitable to TDOA
localization as the state can be computed online and it is
robust to motion and measurement uncertainty. The key idea
of the recursive Bayesian filter is to maintain a probability
density p(xt | z1:t,u1:t) of the state xt at time t. The state
is conditioned on all sensor data z1:t and control commands
u1:t up to that time t. This probability density which is also
called posterior distribution can be factorized into

p(xt | z1:t,u1:t) = ηt p(zt | xt)∫
p(xt | ut,xt−1) p(xt−1 | u1:t−1, z1:t−1) dxt−1 , (2)

where ηt is a normalizing constant ensuring that∫
p(xt | z1:t,u1:t) dxt = 1. In (2), the term p(xt | ut,xt−1)

is the state transition probability and p(zt | xt) is the
measurement probability specified by the motion model and
the sensor model, respectively.

Various implementations of the recursive Bayesian filter
exist. The Kalman filter assumes Gaussian uncertainty and
linear system dynamics. There are various extensions for
nonlinear systems [27]. However, their performance degrades
with increasing nonlinearities [28], and the Gaussian uncer-
tainty assumption is not valid on TDOA data with additional
measurement outliers.

We apply the particle filter, also known as Monte Carlo
localization [29], which approximates the current belief
p(xt | z1:t,u1:t) by a set M = {(x[k], w[k]) | k = 1, . . . , N}
of N particles. Each particle corresponds to a state hypothesis
x[k] weighted by the so-called importance weight w[k]. In the
particle filter, we perform the recursive belief update given
in (2) according to the following three steps:

1) In the prediction step, we propagate each particle by
drawing a successor state based on the proposal dis-
tribution p(x

[k]
t | ut,x

[k]
t−1) specified by the motion

model. Thereby, the control command ut and the motion
uncertainty is taken into account.

2) In the correction step, we integrate a new measure-
ment zt by updating the weight w[k]

t ∝ w
[k]
t−1 p(zt | x

[k]
t )

of each particle according to the measurement likelihood
given its state hypothesis. The measurement likelihood
is defined in the sensor model taking into account the
measurement process and the sensor characteristics.

3) In the resampling step, we draw a new set of particles
from M with replacement such that each particle in M
is selected with a probability that is proportional to its
weight.

In particular, we reduce the particle depletion by applying low
variance resampling [27] and omit the resampling step until the

effective number of particles [30] Neff =
(∑N

k=1

(
w[k]

)2)−1
drops below half the number of particles.

The initialization of the filter and the design of the models
described above is substantial for precise and reliable state
estimation. In the following Sections IV-B to IV-D we describe
our approach to robust initialization of the particle filter, a
constant velocity motion model suitable for standard beacon
tracking, and the TDOA sensor model.

For tracking of a mobile beacon, we define the state xt at
time t as

xt = [STt ,V
T
t ,M

T
1t, . . . ,M

T
nt]

T . (3)

Here, St is the position and Vt is the velocity of the beacon.
Furthermore, we neglect the fact that the receiver positions Mi

are assumed to be stationary, which will be taken into account
in the motion model as described in Section IV-C.

A. Calculation of the Particle Filter Estimate

In this paper, we estimate both, the position of the signal
beacon, as well as the positions of the receivers. For calcula-
tion of the filter estimate from the weighted set of particles we
approximate the posterior distribution p(xt | z1:t,u1:t) by a



Gaussian. According to that approximation, the filter estimate
x̂t is the weighted average of the particles which is the mean
of the Gaussian distribution.

In our state estimation problem the TDOA measurement
data specifies only the individual distances between the re-
ceivers and the signal origins, i.e., the internal configuration of
the system. Consequently, the global translation and rotation of
the state x[k] of every particle in the filter is arbitrary. To eval-
uate the weighted average of all particles we globally align the
particles in a congruent transformation. The constraints inside
the configuration estimated by every particle, and the distances
between the beacon and the receivers remain unchanged in this
procedure.

We identify the transformation parameters between two
particle states x[k] and x[l], the rotation matrix R and the
translation vector τ , by minimizing the mean squared error

e2(R, τ ) =
1

n

n∑
i=1

‖M[k]
i − (RM

[l]
i + τ )‖2 (4)

of the receiver positions, where M
[k]
i is the position of the i-th

receiver in the k-th particle. For that we follow the approach
of Arun et al. [31] and apply singular value decomposition to
determine the rotation matrix. In the first step, we calculate
the mean

µ[k] =
1

n

n∑
i=1

M
[k]
i and µ[l] =

1

n

n∑
i=1

M
[l]
i (5)

of the receiver positions of both particles, so that the transla-
tion can be expressed as τ kl = µ[k]−µ[l]. The joint covariance
of M[k] and M[l] can be estimated as

Σkl =
1

n

n∑
i=1

(M
[k]
i − µ[k])(M

[l]
i − µ[l])T . (6)

Then the optimal rotation matrix with respect to (4) is
Rkl = UV T , where UDV T is the singular value decomposi-
tion of Σkl. As the configuration of the receivers can be mirror-
inverted, the determinant of this rotation is det(Rkl) = ±1.

We align all particles to the most likely particle, which we
assume to be the first particle in the set. The alignment of every
receiver and the signal beacon in a particle is calculated by

M̃
[k]
i = R1k(M

[k]
i − µ[k]) + µ[1] (7)

S̃[k] = R1k(S[k] − µ[k]) + µ[1] (8)

from the rotation matrix and the mean of each estimate of
the receiver positions. Analogously, the velocity estimate is
transformed by Ṽ[k] = R1kV

[k].

Now, the weighted mean and the covariance of the particle
filter with normalized weights can be calculated by

µt =

N∑
k=1

w[k]x̃
[k]
t (9)

Σt =

N∑
k=1

w[k](x̃
[k]
t − µt)(x̃

[k]
t − µt)

T . (10)

B. Initialization

As long as the particle filter is in the initialization stage, we
try to initialize the filter using an iterative non-probabilistic
error minimization approach. In this stage, we periodically
initialize a certain proportion of the particles according to
the result of an iterative minimization on a subset of TDOA
measurement data as follows. In an initialization attempt at
time step t, we use a gradient descent approach, followed
by Newton’s method [25] to optimize the signal propagation
constraint (1). For that, we randomly choose m̃ < t beacon
signals including the latest signal {zI1 , . . . , zIm̃−1 , zt} ⊆ z1:t
as a subset of the available measurement data, where
Ij (j = 1, . . . , m̃− 1) is the random index of the subset. For
simplicity in notation, in the following we use j to denote the
measurement with the index Ij .

The signal propagation constraint (1) yields a maximum
of m̃n equations if all receivers obtain all signals, with
(p+ 1)m̃+ pn unknown variables. By combining two equa-
tions for receivers i and k (1 ≤ i, k ≤ n) and for a signal j the
signal emission time sj is eliminated, reducing the maximum
number of equations to m̃(n − 1) equations and pm̃ + pn
variables. We obtain the hyperbolic equation

‖Mi − Sj‖ − ‖Mk − Sj‖ = c(rij − rkj) . (11)

We define the state vector with signal and receiver positions
to optimize as

v = [S̃T1 , . . . , S̃
T
m̃, M̃

T
1 , . . . , M̃

T
n ]T . (12)

Without loss of generality, we choose k = 1 and define the
hyperbolic error function

b(v) = [f21(v), f22(v), . . . , fnm̃(v)]
T (13)

with the error functional

fij(v) = ‖M̃i − S̃j‖ − ‖M̃k − S̃j‖ − c (rij − rkj) . (14)

We search for the optimal estimate of v by minimizing the
squared norm of the error function

v̂ = argmin
v

1

2
b(v)T b(v) . (15)

The iterative search is initialized by a random estimate v(0)

close to zero. As we have no anchor points or prior informa-
tion, this is a reasonable guess.

In every iteration step h we calculate the first term of the
Taylor series at the current estimate v(h), the Jacobian

Q =
∂b

∂v
. (16)



We apply a gradient descent optimization to minimize the
objective w = 1

2b
Tb at the position v. The update vector ∆v

is then calculated by the direction of steepest descent

∆v = γ(h)∇w = γ(h)QTb (17)

with an adaptive step width γ(h). The next estimate is calcu-
lated by v(h+1) = v(h) −∆v.

When the gradient descent algorithm has converged such
that ‖∆v‖ < ε1 we switch to the faster Newton algorithm.
Here, in every intersection we use the least squares method to
calculate the zero of the first Taylor series term, which results
in the update vector ∆v:

(QTQ)∆v = QTb ⇒ ∆v = (QTQ)(QTb) . (18)

Again, we calculate the next estimate v(h+1) by subtracting
the update vector. We terminate when ‖∆v‖ < ε2.

The sequence of gradient descent steps, followed by New-
ton’s method is an effort to improve the convergence of the
algorithm, as the unpredictability of Newton’s method on the
error function denies its application from the beginning.

The result of the iterative approach describes an approxima-
tion of the latest position of the beacon St and the stationary
positions of the receivers M1 to Mn:

x̃ = [S̃Tt ,0
T , M̃T

1 , . . . , M̃
T
n ]T . (19)

We inject this approximation as a possible initialization
into the particle filter by sampling a certain proportion of
the particle set from the multivariate Gaussian distribution
N (x̃,ΣNewton). Here, the covariance ΣNewton of the Newton
optimization results with respect to the true state can be
determined straight forward from recorded data.

Some of these attempts of the iterative algorithm may not
be successful. In fact, especially in the beginning, when only
few signals are given and the signal beacon did not move that
far so that the positions of the signal emissions are not well
distributed, most optimization attempts will fail or converge
to a local minimum. However, the probability of finding
the correct solution is increased by repeated attempts [25].
Furthermore, by using varying subsets of data, we circumvent
adverse scenarios, where the iterative algorithm never finds a
solution.

After some time, the initialization algorithm has provided
an estimate which is close to the true configuration and the
particle filter converges towards the correct positions. We
detect this by continuously evaluating the internal TDOA error
‖[f1, . . . , fn]‖ of the particle filter mean µt, where

fi(µt) = ‖M̃1t − S̃‖ − ‖M̃it − S̃‖ − c (r1t − rit) . (20)

After a possible initialization was found, a lowpass filtered
indicator of the TDOA error will fall below a threshold δinit,
which is proportional to the noise of the system. Empirically,
we have determined this value to δinit = 1, which is suitable for
all experiments that we conducted, reliably indicating proper
convergence.

Naturally, the internal TDOA error of the position estimate
is not a safe guarantee that a possible solution of low TDOA

error is also the correct solution with low deviation from
the reference positions. The discrepancy becomes evident
when additional measurements are received which are not
compatible to the current state, so the TDOA error will then
increase to a high level. We allow the algorithm to re-enable
initialization mode if such an inconsistency occurs, which is
triggered by the internal error rising above a threshold of
δretry = 2.

C. Motion Model
The proper design of the probabilistic motion model is

substantial for the efficiency and the accuracy of the state
estimation during the prediction step of the particle filter. In
the context of mobile beacon tracking with simultaneous cali-
bration of the receiver positions we factorize the probabilistic
motion model into

p(x
[k]
t | ut,x

[k]
t−1) = p(S

[k]
t ,V

[k]
t | ut,S

[k]
t−1,V

[k]
t−1)

·
n∏
j=1

p(M
[k]
jt | ut,M

[k]
jt−1) (21)

assuming an independent motion of the beacon and the indi-
vidual receivers.

In most applications no controls of the movement of the
beacon are given. Hence, we assume the control command
ut = ∆t to contain only the time elapsed since the last
prediction step and apply a constant velocity motion model.
This model in principle assumes that the beacon moves with
a constant velocity and models changes in the velocity by a
covariance matrix ΣV, which can be determined from em-
pirical data. According to these assumptions the probabilistic
model is

St+1 = St + Vt ∆t (22)
Vt+1 = Vt + ζt with ζt ∼ N (ζt;0,ΣV) . (23)

The positions of the stationary receivers do not have to be
modified so that the probability density function of the motion
model

p(M
[k]
jt | ut,M

[k]
jt−1) = δ(M

[k]
jt−1) (24)

of the receivers is the Dirac delta distribution. This results in a
sample degeneracy, or “attrition”, which is usually prevented
by adding small random Gaussian disturbances to the receiver
positions of each sample during resampling. However, this
leads to a loss of information in each resampling step, and
hence is a suboptimal solution. We use kernel smoothing [32]
instead, as soon as the particle filter is converged:

M
[k]
jt ∼ N (M

[k]
jt ; aM

[k]
jt−1 + (1− a)Mjt−1, h

2ΣMjt−1
) .

(25)

Mjt−1 and ΣMjt−1 are the weighted mean and covariance of
the j-th receiver position over the particle set at time t−1. The
constant factors a = 3γ−1

2γ and h2 = 1− a2 only depend on a
discount factor γ, which we set to 0.95. Compared to adding
disturbances, kernel smoothing prevents a loss of information
in the receiver positions. Before each kernel smoothing step
the particle set is aligned as described in Section IV-A.



D. Sensor Model

The probabilistic sensor model p(z | x) defines the like-
lihood of the measurement data z given the state x of the
system. Here, the measurement data zt = {z1, . . . , zk} ⊆
{rit | i = 1, . . . , n} is a subset of all possible reception
times of the beacon signal emitted at time st measured by
the receivers. We assume the measurements of the individual
receivers to be independent given the current state x of the
system, i.e., the position of the beacon and the receivers:

p(z | x) =

k∏
j=1

p(zj | x) . (26)

Based on Eq. (1) the measurement process of each individ-
ual measurement zj is described by

zj − st =
1

c
‖Mj − St‖+ εj . (27)

In our model, we assume that the corresponding error vari-
able εj is basically Gaussian distributed with an additional
small proportion of extreme outliers induced by external influ-
ences like reflections of the signal and echoes. Consequently,
we apply a mixed model combining a Gaussian and a uniform
distribution:

p(εj) = α
1

2δ
+ (1− α)N (εj ; 0, σ2) . (28)

Here, δ is the maximum error of measurement outliers and we
define the proportion of measurement outliers by the parameter
0 ≤ α ≤ 1.

Based on this measurement error, the measurement likeli-
hood is defined as

p(zj | x) = α
1

2δ
+ (1− α)N (zj ;µj , σ

2) (29)

with the mean µj = st + 1
c‖Mj − St‖.

To maximize the likelihood of the measured data with
respect to the expected measurements given the current pose
of the beacon, we estimate the most likely send time ŝt:

ŝt = argmax
s̃t

p(z | x, s̃t) = argmax
s̃t

k∏
j=1

p (zj | x, s̃t) . (30)

Maximizing Eq. (30) requires to solve

d

dŝt
p(z | x, ŝt)

=
d

dŝt

k∏
j=1

p (zj | x, ŝt)

=
d

dŝt

k∏
j=1

(
α

2δ
+ (1− α)N

(
zj ; ŝt +

‖Mj − St‖
c

, σ2

))
!
= 0 . (31)

This product results in a binomial term of degree k, depending
on the number of available receiver measurements. For that
derivative, we see no way to find a direct solution in a
closed form. A practical solution can be found using iterative

optimization with only a few iterations. However, as the
likelihood maximization is calculated in every observation step
and for every particle in the filter this will eventually be very
slow.

Hence, we approximate the most likely send time by ne-
glecting the (comparably small) uniform part of the measure-
ment likelihood and obtain

0 =
d

dŝt

k∏
j=1

N
(
zj ; ŝt +

‖Mj − St‖
c

, σ2

)

=

(
1√

2π σ

)k
exp

−
∑k
j=1

(
zj − ŝt − ‖Mj−St‖

c

)2
2 σ2


1

σ2

k∑
j=1

(
zj − ŝt −

‖Mj − St‖
c

)
. (32)

As the first and the second factor are always greater than
zero, the equation can be rewritten as

0 =
1

σ2

k∑
j=1

(
zj − ŝt −

‖Mj − St‖
c

)
, (33)

which finally can be solved to

ŝt =
1

k

k∑
j=1

(
zj −

‖Mj − St‖
c

)
. (34)

With that approximation of ŝt, we calculate the likelihood
of a measurement zt in (26) with

p(zj | x) = α
1

2δ
+(1−α)N (zj ; ŝt+

1

c
‖Mj−St‖, σ2) (35)

taking into account measurement outliers for robust beacon
tracking in the particle filter.

V. EXPERIMENTS

We have verified the capability of our approach in extensive
experiments in an indoor test setting. In our experiments
we use a two-dimensional setting of receivers in an oval
arrangement and a signal beacon to be tracked, similar to
the testbed in the experiment of tracking a moving model
train [25].

A. Experimental Setup

For the experiments we use an ultrasound system, which
consists of a moving beacon and multiple stationary receiver
devices. The beacon (see Fig. 2) emits short bursts at 40 kHz
frequency, which can be detected by the receivers. It does not
communicate with the receivers, so that it fits into a small case
and can operate battery powered. Our prototypical ultrasound
beacon has a diameter of 6.4 cm and weighs 44 grams, so that
it can be attached to moving objects or can be carried by hand.

Each receiver device consists of an ultrasound capsule
attached to a custom controller board amplifying and digitizing
the signal. The controller board is connected to a computer
which detects the ultrasound bursts of the beacon and calcu-
lates their points in time. Furthermore, for a flexible integration



Fig. 2. The ultrasound beacon mounted onto the top of a R/C model car.
For ground truth information reflective MoCap markers are attached to the
car and the beacon and allow for precise high-speed tracking of the position
of the beacon.

Fig. 3. One of our integrated receiver units with a Gumstix® Overo®

computer and wireless communication. A reflective MoCap marker is placed
above the ultrasound microphone.

into arbitrary environments we have built integrated receiver
units that do not require an external computer. These are based
on Gumstix® Overo® Computer-on-Modules (COMs) with an
ARM Cortex-A8 processor (see Fig. 3). With their low power
consumption and the small dimensions of 12 cm × 11 cm ×
4 cm they can be battery powered and quickly installed into the
environment. For both versions we use a WiFi connection for
data communication and time synchronization of the receivers.
The latter is a critical factor for TDOA localization. In a
802.11g network we achieve a precision of 0.1 ms by using a
method based on message exchange between the peers [22].

Our present ultrasound system consists of five integrated re-
ceiver units and additional six conventional ultrasound receiver
devices connected to laptop computers. The receivers were
arranged in a roughly oval shaped formation on the same level
(see Fig. 1) with the ultrasound microphone directed towards
the center of the tracking area. As pointed out in Section III,
our algorithm works in two- or three-dimensional space so that
our implementation can be extended to three dimensions.

For continuous tracking we programmed the beacon to emit
an ultrasound burst in a fixed interval of 300 ms. Although our
tracking system does not rely on fixed intervals, the 300 ms
interval turned out to allow for a precise and all-over tracking
of the moving beacon while the receivers can still uniquely
identify the individual bursts.

To evaluate the precision and robustness of our ultrasound
tracking system we use a MotionAnalysis optical motion
capture system (MoCap) with nine Raptor-E cameras. The
MoCap cameras were installed at the ceiling of the exper-
imental area observing the full area inside the microphone
array. The position of the microphones were obtained by
attaching a reflective marker to each receiver exactly above
the microphone. We attached another marker to the top of the
ultrasound beacon, so that the trajectory of the sender could
also be determined at a tracking frequency of 100 Hz. In an
experiment, where the beacon is carried by a person, he wore a
hat with reflective markers on its top to obtain the ground-truth
positions of the person instead of the position of the beacon.

For the first experiment, which we denote as the model
car experiment, we installed the ultrasound beacon to an R/C
model car on a pole, such that it resides at the same height as
the receivers (see Fig. 2). In several runs of three to ten minutes
we navigated the model car through the experimental area, at
varying velocities at an average of 1.5 m/s and up to 4 m/s. In
Exp. 1 the path of the model car included sharp turns, sudden
stops, and rapid starts. In Exp. 2 we extended the movements
by leaving the perimeter of the ultrasound microphones and
the optical reference and re-entering at another location to
force the particle filter to recover at totally different positions.
Naturally, the signal is not received by all receivers, as the car
navigates into a corner of the area, or even outside.

In the pedestrian experiment (Exp. 3) a person carried the
sender in his hand. He walked a random path of a few minutes
through the area, with sharp turns and stops. At all times,
he held the beacon at the same height as the receivers to
satisfy the planar constraint. In this experiment the direct
path of the ultrasound signal to the receivers was obstructed
by the body of the person, blocking some of the signals.
Most notably, the ultrasound beacon and the hat with the
reflective markers were not vertically aligned, such that their
horizontal positions differed up to half a meter. Consequently,
the reference positions are less reliable in this experiment.

We have split the experiments into several data sets to
evaluate the behavior of the algorithm from different aspects.
We obtain four data sets from the model car, namely Exp. 1a,
Exp. 1b, Exp. 2a, and Exp. 2b. From the pedestrian experiment
we obtain the data sets Exp. 3a and Exp. 3b.

B. Initialization Phase

In the beginning, no positions of neither the beacon nor the
receivers are known. The particle filter algorithm is initialized
with a uniform distribution. As the number of measurements
increases, the iterative TDOA algorithm described in Sec-
tion IV-B begins to compute configurations of likely receiver
positions and the beacon using a random subset of the available
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Fig. 5. The end time of the initialization (which is triggered by the TDOA
error falling below δinit = 1) and the corresponding localization error for six
particle filter runs on each of the six data sets. In all runs the initialization
time does not exceed 35 seconds.

signals. We choose to use the algorithm with a fixed number
of 10 signals, which is a compromise between computational
load and a good chance of converging.

We have evaluated the initialization scheme described in
Section IV-B with six runs for each of the six data sets. During
the initialization period the beacon moved on a curvy trajec-
tory in the experimental area, which we require to initialize.
Our localization algorithm monitors and low-pass filters the
internal TDOA error of the particle filter estimate as shown
in Fig. 4. It automatically finishes the initialization phase as
soon as the filtered TDOA error drops below the threshold
δinit = 1. As shown in Fig. 5, the end of initialization of the
filter is achieved in all of the tested scenarios after a maximum
initialization time of 35 seconds. When the initialization was
finished, the position error of the beacon was already below
70 cm in all cases, which indicates a proper initialization near
to the true state.

C. Tracking Phase

After the initialization phase was finished, we deactivate
the iterative algorithm and switch to position tracking in the
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Fig. 6. An extract of 30 seconds of Exp. 1a. Top: In sharp corners the particles
are slightly drawn to the outside – an effect of the constant velocity motion
model. Bottom: Position error and velocity of the beacon. The mean position
error is 4.8 cm (σ = 2.8 cm).

particle filter. Additionally, we enable kernel smoothing on the
receiver estimates to prevent from information loss during the
resampling step. Fig. 1 depicts an illustration of the beacon
and the receiver estimate in the particle filter.

During the tracking phase the estimated beacon positions
are very consistent to the indicated references. We observe an
effect of the constant velocity motion model, which assumes
a straight path of the beacon and consequently pushes the
particles slightly to the outside curve. In an extract of 30
seconds of the first data set Exp. 1a we find that 95 % of all
positions deviate less than 10 cm from the reference positions,
at a mean of 4.8 cm (Fig. 6).

In Exp. 2 we navigated the model car outside the range
of the receivers, re-entering at another position after three to
five seconds. As shown in Fig. 7, the estimate of the beacon
diverges, as soon as not enough TDOA measurement data is
available. However, a few steps after re-entering the range of
the receivers new measurement data is received and the particle
filter quickly recovers to the correct position.

D. Robustness to Outliers and Comparison of Algorithms

A common problem for TDOA localization in indoor envi-
ronments are extreme measurement errors caused by echoes
from nearby walls, noise from the environment, and wrong
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Fig. 8. The error distribution of the two model car experiments Exp. 1 and
Exp. 2 and of the pedestrian experiment Exp. 3, comparing Cone Alignment
(CA), particle filtering without (PF) and with (KS) kernel smoothing. Top: No
outliers. Bottom: Simulated outliers with 100 ms standard deviation.

assignment of signals. These typical errors appear as single
spikes in the TDOA graph, with magnitudes of 10 ms to more
than 100 ms. We verify the robustness of our particle filtering
approach by a systematical simulation of such spikes.

We compared our algorithm to the Iterative Cone Alignment
algorithm [25]. This iterative optimization approach minimizes
the constraints between signals and receivers according to
Eq. (1) in terms of energy minimization. For every new signal
we call the algorithm with a set of 80 previous signals.

Fig. 9. The cumulative density of the position errors of the beacon for Cone
Alignment (CA) and for the particle filter with kernel smoothing (KS) in data
set Exp. 1a for varying magnitudes of measurement outliers. Whereas the
particle filter is robust even to extreme outliers of 200 ms, the Cone Alignment
algorithm shows an increasing proportion of wrong estimates.

Although defective measurements are carried for a longer time,
the high number of measurements taken into account increases
the precision and the robustness of the algorithm.

For the evaluation of the robustness of the algorithms we
systematically manipulated our measurement data by ran-
domly generating outliers every 50 to 70 measurements. Their
magnitudes were sampled from a Gaussian distribution with
standard deviations of 10, 20, 50, 100, 200 and 500 millisec-
onds. For all of the six data sets we compare the deviation
of the estimated positions from the reference positions for the
different standard deviations.

Fig. 8 shows the error distribution of all algorithms with and
without outliers. In all data sets without outliers the particle
filter with kernel smoothing performs slightly better than the
iterative approach. In contrast, in the presence of outliers,
even the particle filter without kernel smoothing outperforms
the Cone Alignment algorithm which is susceptible to these
errors. Especially with kernel smoothing the particle filter
performs robustly as soon as the estimates of the receiver
positions are converged. The position errors in case of different
magnitudes of outliers are illustrated in Fig. 9. As the estimates
of the signal and receiver positions are related through the
TDOA constraints between them, a wrongly estimated beacon
position, caused by an outlier in the TDOA data, can also cor-
rupt the receiver position estimates. In this way, the estimate
of iterative algorithms like the Cone Alignment can literally
“explode”, resulting in a complete loss of the estimate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel approach to robust
localization of a mobile beacon using TDOA measurement
data when no receiver positions are given. We cope with the
high-dimensional state estimation problem, which typically
has ambiguities in the measurements and several local optima,
through a probabilistic formulation in a particle filter. The filter
is reliably initialized through multiple attempts of an iterative
optimization algorithm and implicitly selects the correct state



hypothesis. We have proposed a sensor model which considers
the Gaussian characteristics of the TDOA measurements at
the receivers and explicitly takes into account measurement
outliers for accurate and robust localization. In our motion
model we assume a continuous movement of the signal
beacon, which enables a quick recovery in case of temporary
signal loss.

In experiments with our ultrasound system we have demon-
strated the accuracy and reliability of our approach. The
particle filter initialized successfully in less than 35 seconds in
all experiments. In the subsequent tracking phase the algorithm
localized the beacon with an average position error of less than
5 cm and was able to reliably recover the beacon position when
it was lost due to signal blackouts. In experiments with random
measurement outliers, which may occur from environmental
influences such as noise and echoes, the particle filter proved
to be hardly affected, even from very high errors of tenths of
a second.

In our future work, we plan to extend our implementation to
three dimensions and carry out further experiments localizing
flying vehicles and smart phones.
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