

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

531



Abstract: -Cloud computing is a profound revolution in the way

it offers the computation capability. The main objective now is

to reduce the cost of deploying a service in the cloud and having

proper coordinative in between models. Public, private, and

hybrid cloud environments all face the performance limitations

inherent in today’s applications and networks. In order for

enterprises to maximize the flexibility and cost savings of the

Public, private, and hybrid cloud they must overcome the same

latency and bandwidth constraints that challenge distributed IT

infrastructure environments. By overcoming application and

network performance problems, Cloud Steelhead accelerates the

process of migrating data and applications to the cloud, and

accelerates access to that data from anywhere Cloud Computing

applications that offer data management services are emerging.

Such clouds support caching of data in order to provide quality

query services. The users can query the cloud data, paying the

price for the infrastructure they use. Cloud management

necessitates an economy that manages the service of multiple

users in an efficient, but also, resource economic way that allows

for cloud profit. Naturally, the maximization of cloud profit

given some guarantees for user satisfaction presumes an

appropriate price-demand model that enables optimal pricing of

query services. Optimal pricing is achieved based on a dynamic

pricing scheme that adapts to time changes. This proposes a

novel price-demand model designed for a cloud cache and a

dynamic pricing scheme for queries executed in the cloud cache.

The pricing solution employs a novel method that estimates the

correlations of the cache services in a time-efficient manner and

also applied some prediction technique in between correlation

models with the use of cooperative cache from self as well as

different hybrid cloud.

Index Terms—cloud data management, data services, cloud service

pricing, Cooperative Cache, Prediction Technique.
I. INTRODUCTION

cloud computing represents a new tipping point for the value of

network computing. It delivers higher efficiency, massive

scalability, and faster, easier software accessibility. It’s about new

programming models, new IT infrastructure, and the enabling of

new business models. The quality of services that the users receive

depends on the utilization of the resources. The operation cost of

used resources is amortized through user payments. Cloud resources

can be anything, from infrastructure (CPU, memory, bandwidth,

network), to platforms and applications deployed on the

infrastructure. Cloud management necessitates an economy, and,

therefore, incorporation of economic concepts in the provision of

cloud services. The goal of cloud economy is to optimize: 1) user

Satisfaction 2) cloud profit 3) Cloud web Security. While the

success of the cloud service depends on the optimization of both

objectives, businesses typically prioritize profit. To maximize cloud

profit we need a pricing scheme and apply the some intelligence

optimization technique that guarantees user satisfaction while

Manuscript Received on July 04, 2012.

Deepak Mishra, Information Technology, RGPV/ LNCT/ LNCT, Bhopal

(M.P.), India,

Dr. Manish Shrivastava, Information Technology, RGPV/ LNCT/

LNCT, Bhopal (M.P.), India

adapting to demand changes. Recently, cloud computing has found

its way into the provision of web services [15], [18]. Information, as

well as software is permanently stored in Internet servers and

probably cached temporarily on the user side. Current businesses on

cloud computing such as Amazon Web Services [14], Microsoft

Azure [19], VMware [41], Google Plus [41], McAfee Cloud

Searching Virus [42], Oracle Cloud Data Management [43] have

begun to offer data management services:. A used web application

passes a query to the server and collects information with the help of

query massive data, like those supported by CERN [17], need a

caching service and intelligent optimization technique which can be

provided by the cloud [31].

The goal of such a cloud is to provide efficient proper way

querying on the back-end data at a low cost with intelligent manner

while being economically Viable, and furthermore, optimal

profitable and also getting reduction of scheduling cost on demand

changes. A price over the operating cost for each structure can

ensure profit for the cloud. And also internally cloud is periodically

update his caches information as required on different cloud and

other demand will virtually manages a different dedicated server at a

time on cloud. We propose a novel scheme with some pattern

recognition technique by the soft computing hat achieves optimal

pricing for the services of a cloud cache with explain on demand

prediction cost.

1.1 Setting the on Demand Price for Cloud based Caching

Services with Prediction cost estimation on Demand model.

The cloud makes profit from selling its services at a price that is

higher than the actual cost. Setting the right price for a service is a

nontrivial problem, because when there is competition the demand

for services grows inversely but not proportionally to the price.

There are three major challenges when trying to define an optimal

pricing scheme for the cloud caching service with on demand cost

prediction. First one 1) the price demand Dependency, to achieve a

feasible pricing solution, but not economically feasible as required

on demand same services, that is not representative. For Example, a

static pricing scheme cannot be optimal if the Demand for services

has deterministic seasonal fluctuations; in this case correlation is

automatically stopped on between different clouds when demand is

increases on particular services because everyone wants to get on

demand profit. The second challenge is to define a pricing scheme

that is adaptable to 1) modeling errors, 2) Mean Percentage Error

(MPE) on load distribution, 3) time-dependent model changes, and

4) stochastic behavior of the application.

A representative model for the cloud cache and prediction

techniques should take In to account that the cloud cache structures

(table columns or Indexes or correlation cache identification

number) may compete or collaborate during query execution and

any such a situation will come it will take self-decision on demand

load balance, cloud services may be free or offered on a

pay-per-usage model, No wasted resources because you pay for

what you use [47], A cloud storage gateway provides basic protocol

translation and simple connectivity to allow the incompatible

technologies to communicate transparently [48]. And the goal is to

minimize the number of cross-node distributed transactions, which

incur overhead both because of the extra work done on each node

and because of the increase in the time spent holding locks at the

back-ends. OODBMS caching is keep only positive impact factor or

successfully satisfying the information. So by the using cloud

optimized cache we directly minimize the following cost 1) Hash

Optimal Service Pricing for Cloud Based Services

Deepak Mishra, Manish Shrivastava

Optimal Service Pricing for Cloud Based Services

532

join costs, 2) Sort costs, 3) Table scan costs, 4) Index block access

costs [49].

Fig. 1. A cloud cache.

First time cost is high not much more but when more request is do

same process then setup and maintains cost is come very lower level

by the using caching. So cloud cache service can satisfy infinite

demand as long as it is maintained only the demand for a cache

service pauses if this service is not available. Moreover, the cloud

can schedule the service availability according to the guarantees for

the overall revenue estimated by the long term optimization [45].

Nevertheless, it is important that the long-term optimization process

is flexible enough to receive corrections while it is still in progress

and there have no optimization scheduling or intelligent caches in

between public, private & hybrid cloud.

1.2 Related Work

The problem is that, no one proper handling at a time when user

demand is increases on cloud services ,like that 1)Ease of Use, 2)

Zero maintenance, 3) Automatic scaling, 4) High availability, 5)

high level of parallelism, 6) Pay per actual usage vs. pay per instance

size, resulting in over subscription, 7) automation and ease-of-use of

a Database-as-a-Service, 8) minimal investment and maintenance of

in-house hardware, 9) periodically Combining cache

interoperability standards, 10) capability of dynamic traffic

switching to balance utilization, because this are major problem

that’s why a price scheme is fluctuated on cloud and The ―stateless‖

and dynamic nature of the cloud poses unique challenges for the

―state full‖ database tier – which is the most sensitive and critical

part of the application, and the hardest to scale, all this problem on

present cloud , Each development team is free to use whatever local

support it likes in this VM—Amazon doesn’t care. The creators of

one application might choose a Java EE app server and MySQL, for

example, while another Group might go with Ruby on Rails. While

the service EC2 Provides is quite basic, it’s also very general, and so

it can be used in many different ways. Existing clouds focus on the

provision of web services targeted to developers, such as Amazon

Elastic Compute Cloud (EC2) [14], or the deployment of servers,

such as Go Grid [18], cloud platform providing local support is

Force.com, offered by Salesforce.com. Emerging clouds such as the

Amazon Simple DB and Simple Storage Service offer data

management services. Optimal pricing of cached structures is

central to maximizing profit for a cloud that offers data services.

Microsoft cloud spotlight is provide content sharing, like

photo video ,audio etc. but the problem is Content Delivery

Networks (CDNs) are critical for enhancing your site’s quality,

reliability and scalability ,so fast loading and increasing

synchronization of content is important , in this condition it will fail

[50]. Mariposa [35] discusses an economy for querying in

distributed databases. This economy is limited to offering budget

options to the users, and does not propose any pricing scheme. Other

solutions for similar frameworks [38], [8], [29], [21], [4], [22],

[26],[36][25 focus on job scheduling and bid negotiation, issues

orthogonal to optimal pricing.

Pricing schemes were proposed recently for the optimal allocation

of grid resources in order to increase revenue [36], or to achieve

equilibrium of grid and user satisfaction [25], service demand is

known a priori and all users are charged the same for the

consumption of the same service. Similarly, dynamic pricing for

web services [23] focuses on scheduling user requests. This work is

orthogonal to ours, as we require that users’ requests for service are

satisfied right away.

Research on the identification of non-correlated indexes using the

query structure [39] does not determine the negative and positive

correlations with combining intelligent caching. Identification of

index correlations by modeling physical design as a sub modular

and super-modular problem [5] is restricted to one-column indexes

and one index per query. Identification of negative index correlation

[2] does not consider the positive and no Correlation case. A recent

index interaction model [33] attempts to find all index correlations.

As we show in Section 4, it does not satisfy three critical

requirements for the pricing scheme: 1) sensitivity to the range of all

possible correlations, 2) production of normalized values, and 3)

fast computation [45]. 4) Less downtime and power usage, 5)

accommodate multiple caching strategies under the same domain. 6)

client-side modifications to the cache 5) automatic global web

intelligent abstraction.

1.3 Our Proposal

Many Web applications are now hosted in elastic cloud

environments where the unit of resource allocation is a virtual

machine (VM) instance, A variety of techniques can reduce the

latency of communication between VMs co-located on the same

server in, say, a private cloud but The cloud caching service can

maximize its profit using an optimal pricing scheme. Optimal

pricing necessitates an appropriately simplified price-demand model

that incorporates the correlations of structures in the cache services.

The pricing scheme should be adaptable to time changes, with

provide automatic dynamic cache in way of load balancing so

distributed data caches is to store fast changing data that is accessed

by multiple servers, and solving web service cost and it will give

minimum load with dynamic automatic balance and according to

situation it will take a self-decision, and giving self-tuning features

like

Control Panel – API Built to deliver quick access and real-time

solutions, your Cloud Cache CDN, Control Panel gives you

everything you need to manage, monitor and distribute your content

effortlessly! From control of content behavior to robust reporting

options, you get the

Prime tools you need to take charge of your site’s technology

quickly and easily. Instant Provisioning – No waiting! Use ours

immediately. Purge Cache – Immediately purge your entire cache,

or select only a single file. You decide what works best for you.

Reporting – Get real-time easy-to-read reporting of all relevant

metrics when you need them. Timely Updates – Make a change and

they’re done, just like that. Open API – full integration with your

favourite third-party and custom applications. Privacy Preserving

Mask Matrix - that allows the cloud to filter out a certain

percentage of matched files by using soft computing technique.

Differential Query Services - the queries with higher rank can

retrieve higher percentage of matched files.

Intelligent Postmark – Intelligent Postmark is a file-system

benchmark that simulates cloud workload in the form of intelligent

distributed cache. In each VM we run Post-Mark with dynamic

initial files and dynamic transaction, and this all process are done by

parallelism automatic tuning then find out Postmark primarily

measures better IO performance.

Optimized price demand model – We model the price- -demand

dependency employing second order differential equations with

constant parameters. This modeling is flexible enough to represent a

wide variety of demands as a function of price. Optional structure

availability allows for optimal scheduling of structure availability,

such that the cloud profit is maximized. The model of price-demand

dependency for a set of structures incorporates their correlation in

query execution [45].

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

533

Price adapting to time changes. Profit maximization is pursued in

a finite long-term horizon. The horizon includes sequential, no

overlapping intervals that allow for scheduling structure

availability. At the beginning of each interval, the cloud redefines

availability by taking offline some of the currently available

structures and taking online some of the unavailable ones. Pricing

optimization proceeds in iterations on a sliding time window that

allows online corrections on the predicted demand, via reinjection

of the real demand values at each sliding instant. Also, the iterative

optimization allows for redefinition of the parameters in the

price-demand model, if the demand deviates substantially from the

predicted. Modeling Structure correlations. We propose a method

for the efficient computation of structure correlation by extending a

cache based query cost estimation module and a template-based

workload compression technique.

Dynamic Cooperative caches modelling –When we are using

dynamic cooperative caches in between different model, then top

two benefits of cloud computing are found speed and cost. Users

can be up and running in minutes instead of weeks or months and

this will come from parallelism of dynamic load balance distribution

by using elastically scalable grid architecture. And because cloud

computing is pay-per-use, operates at high scale and is highly

automated, the cost and efficiency of cloud computing is very

compelling as well. And in any situation a failure is come, then there

no problem because all thing is done by intelligent cache

cooperative because we use sharing cache file and this will provide

highly benefits like 1) On-demand self-service, 2) Broad network

access, 3) Rapid elasticity,4)Measured service ,5)Elastic

scalability ,6) Low upfront costs ,7)Economies of scale

,8)Operating expense , 9)Simpler to manage 10)Greater control

of security, compliance and quality of service ,11) Resource

pooling. So this model is removed unpredictable demand patterns

problems because intelligent soft computing method is doing

scaling up or scaling down of resources for a given application on

demand.
Neuro - Genetic Price Model - To recap, cloud computing is

characterized by real, new capabilities such as self-service,

auto-scaling and chargeback, but is also based on many established

technologies such as grid computing, virtualization, SOA shared

services and large-scale, systems management automation. Apply

there some intelligent technique by the using this, for maximization

of user profit analysis the previous pattern data from cooperative

caches and find out demand price prediction by the using of

Artificial neural network with Genetic algorithm and trained the

cooperative cache, so we easily getting the information when

demand is increase for particular price, then how price is come on

minimized and also getting information about Mean Percentage

error on between cloud web service cost.

1.4 Contributions

This paper makes the following contributions:

1. A novel demand-pricing model designed for cloud caching

services and the problem formulation for the dynamic pricing

scheme that maximizes profit and incorporates the objective for user

satisfaction.

2. An efficient solution to the pricing problem, based on nonlinear

programming, adaptable to time changes.

3. A correlation measure for cooperative cache structures that is

suitable for the cloud cache pricing scheme and a method for its

efficient computation.

4. Soft computing technique is giving parallel and distributing

cooperative caches which are done and take self-decision when any

user poses a query on cloud for finding information about price

prediction for particular demand at a time and model is highly

trained as self-tuning from cooperative caches data from current and

previous price demand model data.

5. Neuro - Genetic techniques is giving functionality cooperation on

different caches scheme, like system create only default cache but

highly trained network on cloud is create a different type cache file

like 1) Purge cache, 2) default cache, 3) cooperative cache 4) load

balance -distribution cache, 5) cooperative optimization cache, 6)

external query poses query information cache and simulating on

different ways as need of demand self-take a decision and

self-destroy this caches file.

6. An experimental study which shows that the highly trained

network controller with dynamic pricing demand scheme

outperforms any static one by achieving to orders of magnitude

more profit per time unit with the future price on level of demand.

2 QUERY EXECUTION MODEL

Cloud databases can offer significant advantages over their

traditional counterparts, including increased accessibility, automatic

failover and fast automated recovery from failures, automated

on-the-go scaling, minimal investment and maintenance of in-house

hardware, and potentially better performance. At the same time,

cloud databases have their share of potential drawbacks, including

security and privacy issues as well as the potential loss of or inability

to access critical data in the event of a disaster or bankruptcy of the

cloud database service provider this basic problem is giving more

hazards for web user which using cloud services so apply the

intelligent cooperative cache concept [51] Like OODBMS Cache

enables certain tables, rows and columns and session information

with network address reference from Database to be cached in the

memory of the middle tier servers, access it with the highly trained

network cloud and apply self-tuning methodology for the delivering

very low latency and high throughput. Data remains synchronized

with Database and is accessed through a standard interface first time

when using. RDBMS In-Memory Database Cache also supports

clustering for elastic scalability and high availability. Our

motivation for the necessity of such a cloud data service provider

derives from the data management needs of huge analytical data,

such as scientific data [31], for example physics data from CERN

[17] and astronomy data from SDSS [20]. Users pose queries to the

cloud, which are charged in order to be served. Following the

business example of Amazon and Google, Microsoft, MacAfee,

Panda etc., we assume that data reside in the same data centre and

that users pay on-the-go based on the infrastructure they use,

therefore, they pay by the query. We assume that the cloud

infrastructure provides sufficient amount of storage space for a large

number of cache structures. Each cache structure has a building and

maintenance cost [45] and offered security cost on web user pricing

scheme adaptation level.

Global: cache structures S, prices P, availability Δ

QueryExecution()

 if q can be satisfied in the cache then

 (result, cost)←runQueryInCache (q)

else

 (result,cost)←runQueryInBackend(q)

end if

S←addNewStructures()

return result,cost

optimalPricing (horizon T, intervals t[i], S)

(,P)←determineAvailability&Prices(T, t,S)

return ,P

main()

Execute in parallel tasks T1 and T2:

T1:

for every new i do

slide the optimization window

optimalPricing(T, t[i],S)

end for

T2:

while new query q do

(result,cost)←queryExecution(q)

end while

Optimal Service Pricing for Cloud Based Services

534

if q executed in cache then

charge cost to user

else

Calculate total price and charge price to user

end if [45].

Modified algorithm is: Intelligent Parametric Organization

algorithm:

Input: Generate the super plan contains the access the data.

Output: Top down optimizer

Procedure: process steps

1. We are works based on star schema

2. Star schema contains the different dimensions of tables

3. New queries also are joining inside the dimension tables

4. Generate the dynamic load allocation with first iteration to next

iteration.

5. We are generate good join planner specification process

6. Join planner works based on cache systems

7. Using the time variation changes new cache systems, we are

create under reduced cost building processor

8. It can works on sequential interval amount of time

9. Provides the optimization results

10. Optimization results show the integration.

11. We are increases iteration and integrate the number of iteration

process.

12. Gets the results as a minimized cost with feasible and optimal

solution

13. Optimal solution focus on discretization (genetic algorithm-AI,

NN)

14. It can works on branch and bound algorithm

15. We are gets the target results identification process

Fig. 2. Query execution model for the Intelligent Parametric

Organization algorithm.

Fig. 2 represent Query execution model for the Intelligent

Parametric Organization algorithm represents at a high level the

query execution model of the cloud cache. The names of variables

and functions are self-explanatory form OODBMS but the cache

model is modified by cloud admin. The user query is executed in the

cache if all the columns it refers to are already cached. Otherwise it

is executed in the back-end databases. The modified result is

returned to the user with prediction model demand price and the cost

is the query execution cost (the cost of operating the cloud cache or

the cost of transferring the result via the network to the user). The

cloud cache Determines which structures (cached columns, views,

indexes, previous related demand price, offered price, future price

reduction probability offered, offered price correlation),in

destination cloud cache is periodically update by the source cloud

as like router.

Artificial Neural Network. The back-propagation learning

algorithm is one of the most important developments in neural

networks. This learning algorithm is applied to multilayer

feed-forward networks consisting of processing element with

continuous differentiable activation functions. ANN & GA is

finding best survival of genes from previous network cloud caches

with poses query by the user demand request and intelligent cloud is

self-take a decision for heuristic Cloud Cache Data Set then again

find, what Mean absolute percentage error (MAPE) will be come on

heuristic Cloud Cache and decide which one is best for the user

demand. Now we again apply Hybrid model (GA Tuned & ANN)

and find out of cloud load traffic information, backend traffic load,

number of client request traffic load, client request load distribution

by the cloud, measurement of cloud dedicated server on demand

creation with control of number of parallelism cache transfer

information from network server and A real coded and binary

chromosome will be considered for optimization of the weight of

ANN.

Training Algorithm of ANN:

The error back-propagation learning algorithm can be outlined in

the following algorithm:

Step 0: Initialize weights and learning rate (take some

small random values).

Step 1: Perform Steps 2-9 when stopping condition is false.

Step 2: Perform Steps 3-8 for each training pair.

Phase 1: Feed forward Algorithm

Step 3: Each input unit receives input signal ix and end it

to the hidden unit (i =1 to n).

Step 4: Each hidden unit jz (j = 1 to p) sums its weighted input

signals to calculate net input 

i

ijijinj vxvz 0

Calculate output of the hidden unit by applying its activation

functions over injz (Binary or bipolar sigmoidal activation

functional):

  inji zfz 

And send the output signal from the hidden unit to the input of

output layer units.

Step 5: For each output unit ky (k= 1 to m), calculate the net

input:

 




p

j

jkjkink wzwy
1

0

And apply the activation function to compute output signal

 inkk yfy 

Phase 2: Back-propagation of error AlgorithmStep 6: Each

output unit ky (k =1 to m) receives a target pattern corresponding

to the input training Pattern and computes the error correction term:

   inkfkkk yyt '

On the basis of the calculated error correction term, update the

change in weights and bias:
kk

jkjk

w
zw










0

 Also, send k to the hidden layer backwards.

Step 7: Each hidden unit (jw , j = 1 to p) sums its delta inputs from

the output units:

 




m

k

jkkinj w
1



The term inj gets multiplied with the derivative of  injzf to

calculate the error term:

  injinjk zf ' 

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

535

On the basis of the calculated j , update the change in weights and

bias:

jj

ijij

v
xv










0

Weight and bias updation (Phase III)

Step 8: Each output unit (ky , k=1 to m) updates the bias and

weights:

koldknewk

jkoldjknewjk

www
www

0)(0)(0

)()(







Each hidden unit (jz , j=1 to p) updates the bias and weights:

joldjnewk

ijoldijnewjk

vwv
vvv

0)(0)(0

)()(







Step 9: Check for the stopping condition. The stopping condition

may be certain number of epochs reached or when the actual output

equals the target output [52].

The above algorithm uses the incremental approach for updating of

weights, i.e., the weights are being changed immediately after a

training pattern is presented, When a BPN is used as a classifier, it is

equivalent to the optimal Bayesian discriminate function for

asymptotically large sets of statistically independent training

patterns.

Genetic Algorithm. An implementation of a genetic algorithm

begins with a population of typically random chromosomes One

then evaluates these structures and allocates reproductive

opportunities In such a way that those chromosomes which

represent a better solution to the target problem are given more

chances to reproduce than those chromosomes which are poorer

solutions The goodness of a solution is typically defined with

respect to the current population. So this will help on 1)selection, 2)

cross over , 3) mutation, 4) reassembly cloud network caches, 5)

decomposition: fitness.

3 MODELING OPTIMAL PRICING ON USER DEMAND

REQUEST

This section describes the problem formulation of maximizing the

cloud profit with intelligent cloud decision with cooperative

solicitor network caches information. The presentation of the

pricing scheme is guided by propositions that state the main

heuristic rationale of our approach.

3.1. Problem Formulation

This section defines the objective and the constraints of the problem,

and gives the mathematical problem definition.

3.1.1. Objective

The cloud cache offers to the users query services on the cloud data.

The user queries are answered by intelligent cloud admin query

plans that use cache structures, i.e., cached columns, views, indexes,

previous related demand price, offered price, future price reduction

probability offered, offered price correlation. We assume that the set

of possible cache structures is S = {S1, . . . , Sm }.

Whenever a structure S is built in the cache, it has a onetime

building cost BS. While S is maintained in the cache it has a low

maintenance cost which depends on time with network solicitor, MS

(t). Heuristic computing and parallelism on cloud infrastructure may

benefit the performance of structure creation, for a column, the

building cost is the cost of transferring it from the backend and

combining it with the currently optimized cached columns. The

maintenance cost of a column or an index is just the cost of using

disk space in the cloud. Hence, building a column or an index in the

cache has a one-time static cost, whereas their maintenance yields a

storage cost that is linear with time1. for more information on the

building and maintenance cost of cloud cache structures the reader

is referred to [7]. In any case, the cost of a structure S as soon as it is

built at time (tbuilt) in the cache and until it is discarded is

Cs(t) = BS+ MS(t _ tbuilt). ……………. (1)

Co_caches=ScacheIndex(t)+NcacheIndexdest

Cache services are offered through query execution that Uses cache

structures, cooperative caches (Co_caches) is combination of caches

which is maintained by self OODBMS query in cloud ScacheIndex(t)

and network cloud cooperation caches NcacheIndexdest maintained

self-tuned heuristic function on the controls of this with respect to

time (t).

Definition 1. The demand for a cache structure S, denoted as λs(t), is

the number of times that S is employed in query plans selected for

execution at time t. Naturally, in realistic situations the demand for a

structure is measured in time intervals. If a structure S is built in the

cache then query plans that involve it can be selected, i.e. λs(t)> 0,

otherwise not, i.e., λs(t)=0. Intuitively, there is a trade-off between

1) keeping a structure in the cache and paying the maintenance cost,

and 2) soft computing model is dynamically maintaining the

structure occasionally and 3) maintaining load balancing of caches

transfer on network traffic, on user demand request with respect to

time (t).

1. Index updating is assumed to incur rebuilding the index from scratch.

Data updates on caches from network solicitor are external factors but that

can be controlled by the heuristic optimization procedure. In Section 6, we

study the effect of updates to the dynamic pricing solution.

Than pay the maintenance cost; if the demand is high, then the

opposite tactic may be more profitable for the cloud. The cloud

makes profit by charging the usage of structures in selected query

plans for a price. Let us assume that the price of a structure S at time

t is pS(t). Then the profit of the cloud at a specific time is

 m

r(t) = ∑ δi.(λsi(t) . psi(t) - csi(t), δi = 0,1, ……. 2

 i

Where δi represents the fact that the structure Si is present in the

cloud cache. Specifically, a structure may be present or not in the

cache at any time point in [0, T]. and not present before the

beginning of optimization time, i.e.

Based on this, the cost of a structure w.r.t. time becomes

Where t0 is the start time of cost observation. Structures can be built

and discarded at any time t Є [0, T] and the total profit of the cloud is

R (T) =∫0
T r(t) dt. The goal is to maximize the total profit in [0, T] by

choosing which structures to build or discard and which price to

assign to each built structure at any time.

max R(t) = =∫0
T r(t) dt (4)

δ,p

3.1.2 Problem Constraints

Optimal Service Pricing for Cloud Based Services

536

It is necessary to constrain the optimization of the objective 4, so

that a reasonable and correct solution can be found. Value

constraints. It is straightforward that both the demand and the price

of a structure must be positive numbers. Furthermore, it is necessary

to impose an upper bound on the price. The reason is that the

optimum solution is to instantaneously raise the price of at least one

structure to infinity, if this is allowed.2 these bounds can be

formulated as follows:

0 ≤ λi , i = 1,……..,m . (5)

0 ≤ pi ≤ pmax , i = 1,……..,m . (6)

Dynamics of the demand. Naturally, the demand and the price of a

structure are connected variables: intuitively, as the price for a

structure increases the demand decreases and vice versa. In order to

solve the optimization problem (4).

2. Mathematically, the integral of (4) goes to infinity if the price for one

structure is infinite and the demand for this structure is not zero. If the

demand is zero, the profit, ∞ * 0 is undefined.

Proposition 1. The demand of a structure S has memory: the

demand at time t depends on the demand before (t)

consequently, the relationship between price and demand is

 (7)

Where m ≤ n, to respect the causality principle, as m > n would

imply that demand could change (due to a change of price) before

the price has changed. In particular, since there is no inertia in

setting a price for a structure, m = 0 and (7) can be rewritten in its

explicit form

Justification 1. As the cloud cache and its users has inertia, which

means that the current system behavior depends on past and

influences future behavior. Two intuitive exemplifying reasons for

this are: 1) the structure is already built and remains available

because the building cost is already amortized, while the

maintenance cost is not very high; and 2) the structure.

3. Note that an abrupt drop is expressed by a first order differential equation,

which is encapsulated in the second order one, as the parameter a can be set

to 0.

 We

constrain f to be an ordinary differential relation between price and

demand.

The parameters α, β, γ are constrained to be constants. This means

that the price model considers a static relation between demand and

price. Therefore, it is necessary to extend (9) so that it captures

correlations of demand and prices between pairs of structures. Let us

assume that V is a (m * m) matrix where the row and the column (i)

corresponds to the structure (Si i = 1, . . ., m.) Each element (vij, i,

j = 1, . . ., m)corresponds to the correlation of the price of Sj to the

demand of Si. We call V the correlation matrix of prices and

demands. If (˄) and (P) are the (m * 1) matrices of demands and

prices for the respective structures in S, and A, B, Γ are (m *1
)matrices of parameters, then the constraint in (9) becomes

(10) is actually a set of constraints of the form:

Problem definition. The previous discussion leads to the following

problem formulation for optimal pricing: The maximization of the

cloud OODBMS profit is achieved with the solution of the

following optimization problem:

Subject to the constraints:

3.2 Generalization of Optimization Objective

From a mathematical point of view, we expect a solution that is on

the boundaries of the feasible area, meaning a solution along the

constraints of the problem that satisfies the objective. The

constraints on the price-demand dependency in (10) do not actually

constrain the sought solution, but only the value of the optimal

profit, if the solution is applied; therefore, the sought solution is

expected to be on the boundaries of the allowed price, (6), and

demand values, (5), meaning maximum price selections as long as

the demand for structures is above zero, This is called a bang-bang

solution and the mathematical reason for this expectation is that the

objective of the problem is linear w.r.t. the control variables: the

price p and the structure availability δ intuitively.

Proposition 2. The altruistic tend of pricing optimization is

Expressed as: 1) a guarantee for a low limit on user satisfaction,

Or, 2) an additional maximization objective.

Justification 2. There are two policies in order to incorporate an

altruistic tend in pricing optimization. The

first is to give a much lower priority to user satisfaction than cloud

profit, which results into a constraint (static or time dependent) that

passively restricts the maximization of profit, i.e., expression (4).

The second is to handle it as a secondary goal of the pricing

optimization, which results into a new objective that actively

restricts profit maximization. ―Passive‖ restriction means that the

altruistic tend turns down pricing solutions proposed by the

optimization procedure,

 If the altruistic tend is expressed as low-limit guarantee on user

satisfaction, then it can be formulated as an additional constraint of

the optimization problem of Section 3.1 on the demand drop

 where

λmin is the selected minimum value of demand drop rate.

In this case, the problem can accommodate, either a new constraint

or a new optimization objective. In the first case, the constraint can

be

Where (rmin) is the selected minimum value of cloud profit. Adding

one of the constraints (11) or (12) to the optimization problem does

not change the objective of the optimization.

If the altruistic tend is expressed as a new maximization goal, the

optimization objective is a combination of (4) and (12)

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

537

where (w) is a weight that calibrates the influence of the Altruistic

tend to the optimization procedure. The augmented optimization

objective (14) leads the optimization procedure to seek a trajectory

that balances the opposite egoistic and altruistic tends.

4. MODELING PRICE-DEMAND CORRELATIONS

The pricing scheme depends on the estimated values of

price-demand correlations for all structures, which is stored in the

matrix V (see the constraint (10)). success of the scheme depends

greatly on the accuracy of the estimation of the correlation degree

for all candidate structures. We refer to the elements, (vij, i, j = i.,

m) of V, as correlation coefficients, defined as follows:

Definition 2. For any pair of structures Si and Sj we define the

symmetric correlation coefficient (vij ≡ vji) that represents the

combined usage of Si and Sj in executed query plans.

4.1 Correlation Requirements

In order to construct a measure for correlation estimation, we define

the following requirements.4

Proposition 3. The correlation coefficient vij should satisfy the

following requirements:

R1. vij is negative if Si can replace Sj and the opposite, positive if

they collaborate, and zero if they are used independent of each other

in query plans.

R2. vij can be normalized for any pair of Si and Sj.

R3. vij is easy to compute.

Justification 3. R1: The sign of the coefficient vij denotes the

competitive or collaborative behaviour between a Si and Sj.

Example 1. In a workload with only one query = select A from T

where B = ’b’ and C = ’c’, the columns B and C should have positive

correlation, while the indexes IA-D = T(A,B,C,D) and IA-E =

T(A,B,C,D,E) should have negative correlation, and an irrelevant to

the query index T(E,F) should have zero correlation. It is

straightforward that the pricing scheme requires these properties

from the correlation coefficients V.

4. Please note that the correlation requirements that we propose are tailored

to the problem in hand. These requirements may be too strict for other use

cases of management of data structures.

R2: The correlation coefficients V determine the price of all the

structures in the cloud cache (see constraint (10)).

R3: It is necessary to compute all correlation coefficients V before

the structures are materialized or even selected by the cloud cache.

4.2 Limitations of the Existing Approaches

Recently Schnaitter et al. [33] proposed a technique that computes

the correlation between indexes. Given a set of indexes I ⊆ S and

two indexes from the set, {Si, Sj}, their correlation coefficient v
q

ij
given a query q is

Proposition 4. Measure (16) satisfies the requirements R1 - R3.

Justification 4. R1: We show that R1 is satisfied by proving its

satisfaction for the extreme cases of structure collaboration and

competition.

Case 1: If Si and Sj do not coexist in query plans, then let us assume

that Si is very beneficial to a query q, hence coq(Xi) →0 and Sj has

no effect on it, hence coq(Xj) → coq({}). Since the cost function is

monotonic [33],coq(Xij) =coq(Xi) =min{a,b}coq({a,b}) → 0. Hence,

vij → 0.

Case 2: If Si and Sj collaborate tightly in the extreme case,

coq(Xi) = coq(Xj) → coq({}) , coq(Xij) → 0.Then vij → 1.

Case 3: If the indexes are the same, then coq(Xi) = coq(Xj)

=coq(Xij) , implying that vij = -1.

 R2: Since the cases discussed above are extreme, all structure

correlation cases fall between them and, therefore their value is

bounded by [-1, 1].

R3: We ensure efficient computation of the correlation coefficients

by reducing the set of possible query plans. For columns, we

propose the following measure:

 If two distinct columns appear in the same query, then they

collaborate, otherwise they do not. Self-correlation or a column is

set to -1, as a column can replace itself.

For a pair of index Sj and column Si, we use the following measure:

We extend the correlation computation for a Workload. If v
q

ij is the

correlation of Si and Sj for query q, then the coefficient for an entire

workload is

Measure (19) normalizes the coefficients by using the maximum

cost of the query. This allows the ―heavy‖ queries to provide more

weight to the coefficient, when compared to the ―lighter‖ queries.

Computing this measure requires O(|I|2) optimizer calls to

determine the index correlation coefficients, compared to the

exponential number of calls proposed by the state-of-the-art

method, but it is still expensive to make so many optimizer calls on

every query. We speed up the correlation computation using the

observation that, even though the total number of index

combinations is O (|I|2) the set of possible plans is typically much

smaller. INUM issues hundreds of calls to the optimizer to find the

internal nodes of the plans that can be reused. Given access to the

optimizer, the overhead can be drastically reduced to just two calls

per query by using the internal optimizer structures [6].

5 SOLVING THE OPTIMAL PRICING PROBLEM

The problem of optimal pricing is an optimal control problem [11]

with a finite horizon, i.e., the maximum time of optimization T is a

given finite value. The free variables are the prices of the cache

structures, pis, called the control variables, and the dependent

variables, called state variables, is the demand for the structures, λis

and the availability of the structures δis. The problem is augmented

with bounds on the values of both the control and the state variables

and by a constraint on the dependency type of the state on the

control variables.

5.1 Designing the Optimization Solution

The objective function of the problem is the maximization of an

integral, i.e., max∫T0(r(t) – w.v(t))dt. The optimality scope of the

sought solution depends on the convexity of the objective function.

The latter is bilinear w.r.t. the demand and the price (this is the result

of factor λs_(t) . ps(t) in (2) and ps(t) in (12)). It is not possible to

Optimal Service Pricing for Cloud Based Services

538

prove that the objective function is convex and, therefore, there is no

guarantee of global optimality of the solution.

Due to: 1) the nonlinearity of the objective function, 2) the presence

of both integer inputs (the δis control binary variables) and

continuous inputs and states (the pis and the λis, respectively), and 3)

the potentially large scale of the system (when m is high), it is

almost impossible to find an analytical solution to the optimization

problem. This calls for numerical optimization techniques, such as

mixed-integer nonlinear programming (MINLP) [11], which

present the advantage of being implementable online.

We propose the division of the prediction horizon [0, T] into time

intervals: let us assume that there are time points tj ε [0,T] , j = 0, . .

. ,k, such that t0 = 0 and tk = T on which built structures can be built

or discarded. Therefore, the problem is to maximize the total profit

in [0,T] by choosing which structures to built or discard on each tj ε

[0,T], j=1,..k. and which price to assign to each built structure.

Fig. 3. The optimization procedure is divided into short time intervals

and iterates on a sliding time window.

Fig. 3 depicts the proposed repeated optimization over a sliding time

prediction horizon of length T. For simplicity, we consider equal

time intervals, tj+1 - tj = tj+2 - tj+1, 0,……,k-2. The optimization is

performed repeatedly for k prediction horizons beginning at tstart

and ending at tend, such that: [tstart , tend], tstart = 0, t1 . . . T and tend

= T,T + t1, 2T, respectively.

 For example, even for linear dependency of price on time: p = a * t +

b with static a, b, the number of variables in the problem is doubled.

5.2 Estimating the Parameters Structure

Concerning the constraints on the price-demand dependency in

(10), it is necessary to estimate the parameters A, B, Γ. For this, the

nonhomogeneous m order system of second order differential

equations in (10) has to be solved. One way to do is to transform the

system into a 2 * m order system of first order differential equations,

by breaking each second order equation into a set of two. The result

in both cases is a set of equations that show the dependency of

demand on price involving the parameters

Where F is a m * m matrix of functions on time and elements of the

parameter matrices A, B, Γ. If the m constraints in (10) are

independent, i.e., if the m differential equations are independent.

Proposition 5. It is always possible to manage the cache structures

in a way that the constraints in (10) are independent differential

equations.

Justification 5. Independency of the constraints in (10) means that

there are no pair of cache structures for which the demand depends

in the exact same way from the Prices of all the cache structures,

assume two structures S1 and S2. If these are competitive, each one

has a negative dependency on its own price and a positive

dependency on the price of the other; therefore, it is not possible that

they create the same constraint. If S1 and S2 are collaborative,

creating the same constraint means that they depend on the exact

same way on each other’s price and on the price of the rest of the

structures; this fact implies that S1 and S2 are always employed

together in the cloud; therefore, they can be represented as a set of

structures with a single price [22].

5.3 Optimization Horizon

An important issue is to estimate the appropriate length of the time

period, in which we seek to optimize the cloud profit. Specifically,

we have to determine the value of T which represents the

optimization horizon of (4).

Example 2. Assume a structure S with demand λs(t)and an

optimization procedure of two short phases [0, T small) and [T small ,

T big) or a procedure with one long phase [0, T big). For simplicity,

the demand is a step function i.e. λ s(t) = λ2,t ε [0 , Tsmall]

corresponding to price p1 and λ s(t) = λ2,t ε [Tsmall , Tbig)

corresponding to price p2 (for simplicity we ignore structure

correlations). Assume that the building cost of S is BS and the

maintenance cost is MS(t) = a * t and S is built once at time t = 0.

The cloud profit in [0, T small) is rsmall = λ1 * p1 - BS -MS (T small).

If r small < 0, the cloud decides to discard S and the second

optimization phase starts with S not available. Since the demand is

significant in (T small , T big), the cloud may decide to build S again,

at t ≥ Tsmall, resulting in profit rbig-smal l ≤ λ2 * p2 - BS - MS(T big

_ T small). For the long-term optimization the profit is: r big = λ1 *

p1 + λ2 * p2 - BS - MS(T big). Obviously, r big > r small + r big -

small. Therefore, the result of the two-phase short-term optimization

procedure is not as optimal as that of the one-phase long-term

procedure.

5.4 Discussion on the Model Simplicity

Yet, it is possible that in a real system the dependency of demand on

the prices changes with time, because of any reasons. This means

that the parameters, A, B, Γ should be time varying. Hence the

problem falls in the scope of optimization of uncertain systems

(potentially subject to model mismatch or Parametric uncertainty or

disturbances), which is an active research domain [12], [34]. In

these situations using tendency models (i.e., models that capture the

main trends of a process) and measurements is generally sufficient

to improve the process performances up to such a level that the

costly efforts for identifying a more accurate process model are not

justified by the loss of optimality [28]. Finally, as the optimization

proceeds, new data are collected and this data can clearly be used to

re-identify the price/demand model periodically.

6 EXPERIMENTAL EVALUATIONS

We present the simulation study for a cloud cache system That uses

the proposed pricing model.

6.1 Experimental Setup and Methodology

The cloud cache is set up with one back-end database. The cache is

operated under a TPC-H-based workload, which consists of seven

TPC-H query templates and simulates the query evolution of 1

million SDSS [20] queries against a 2.5TB back-end database. The

SDSS workload consists of phases that show locality in data access

that repeats. In each phase the query execution cost may fall in three

categories, low, medium, and high. Queries arrive at 10 second

intervals. We copy the setup in [24], the distribution of the query

templates in one phase consisting of 10,000 queries. We select this

International Journal of Soft Computing and Engineering (IJSCE)

 ISSN: 2231-2307, Volume-2, Issue-3, July 2012

539

workload, as it is portable across different OODBMS, allows for the

employment of techniques to improve the runtime of correlation

estimations, and the queries are tunable by using the query

generation mechanism of the TPC-H Benchmark. The building and

the maintenance costs are determined using Amazon’s pricing

model and are based on statistics for the cost of executing the SDSS

queries. As an indication, while varying the price from the building

cost (cost) to pmax = 10 * cost, the demand varies from 0 up to

8,000 queries, with many values around 4,000. Set A contains two

structures that collaborate, one more expensive than the other, and

one that is competitive; set B is similar, but two expensive

structures are highly competitive to a third that is cheap; set C

contains two structures that are necessary to many queries and not

correlated to others; set D contains two collaborative structures of

comparable cost. The pricing optimization problem is implemented

and run in Matlab 7.8.0 using the tool Tomlab [16].

Methodology. The initial demand for all structures is set to a very

low value in order 1) to avoid high cloud profit by solely exploiting

high demand values λis and 2) force the pricing scheme to fluctuate

λis in order to maximize the profit. The price variable for each

structure ranges from 0 to 100 % of the respective building cost, i.e.

0 ≤ pi ≤ BSi * 100. The experiments measure 1) the average cloud

profit per time point, 2) the average user loss per time point, and 3)

the execution time. Cloud profit is defined in (2) and user loss is the

user satisfaction as defined in (12). The dynamic pricing scheme is

compared with a static pricing scheme that fixes the cloud profit to a

specific percentage of the building cost.

6.2. Experimental Results View

This section summarizes the experimental results.

6.2.1Pricing with Dynamic Structure Availability

Assuming that all structures are constantly available (i.e., fixed

caching but changeable with permission of cloud), and, therefore

built once in the cache at the beginning of pricing and maintained

ever since, i.e., δi = 1, i = 1,…, m always. As the optimization

horizon is extended the profit drops because structures are

maintained in the cache even though their demand drops; naturally

the bigger the weight w, the smaller the profit and the user loss. Yet,

for long horizons, the maintenance of non-profitable structures

makes it impossible to satisfy the combined optimization objective

in (14) for big values of weight, i.e., w = 30, 40, resulting in zero

profit and user loss. Assuming that we have complete knowledge of

the workload, we select the best structures to build at the beginning

of time. The best structures are selected after observation of the

matrix V (we spotted groups of collaborative and competitive

structures and we experimented in order to find the subset that

increases profit; the combinations to examine were few).

Experimentation with various fixed prices of these structures

resulted in maximum possible profit equal to about $400 and user

loss equal to about $30. The results of this experiment are in

accordance with the results of the works in [37].

6.2.2 Pricing with Choice on Structure Availability

This section presents results on the dynamic pricing scheme

assuming that structures are initially built in the cache, but during

optimization they can be discarded and rebuilt. Contrary to pricing

with fixed because optimization procedure takes advantage of

long-term predictions in order to schedule the structure availability

in a more optimal way.

6.2.3 Sensitivity of the Optimization Schedule

The profit increases as the number of intervals increases (and,

therefore their length decreases), because the procedure is allowed

to change the structure availability more often, in order to achieve

optimality.

6.2.4 Performance Comparison with Analysis

We compare the performance of the optimization procedure

employing first and second order differential equations for the

pricing model. Models using first order equations are faster to solve,

hence preferred over second order differential equations if the

real-world constraint can be modeled using them. First order

differential equation makes the procedure slightly faster than using a

second order differential equation. The second order formulation,

however, is more generic and we use it as default. The δ variable

makes the solver an order of magnitude faster than the problem with

δ variables on average. Therefore, the solver spends most of the time

in the branch and bound method that seeks the optimal integer

values [16].

6.2.5 Correlation Binding of Structures

This section presents the index correlations achieved using (16) and

compares the proposed measure for correlation coefficients (19)

with the state-of-the-art measure (15) [33]. Furthermore, it is also

bounded by the range [-1, 1].

6.2.6 Predicting the Price Demand for Structures

The demand for these structures shows qualitative differences: the

demand for A reacts smoothly to price change after some weak

inertia to the workload; the demand for B shows similar inertia but

after that it drops abruptly; the demand for C shows great inertia to

the workload.

6.2.7 Optimization in Presence of Updates

The optimization procedure works under the assumption that data

structures do not have to be evicted and rebuilt due to data updates.

Even though updates cannot be controlled by the optimization

procedure, if they can be predicted, they can be used as new

constraints on the optimization problem. Specifically, an update of

structure S at time t incurs a reset of the respective δ parameter from

1 to 0 at that time. The cloud profit is bigger if updates are predicted.

Yet, as the number of updates increases, the profit drops and is

closer to profit in the case of no update prediction. User loss is

bigger (w = 0 for these experiments) in case of update prediction,

since the optimization sets higher prices for the structures.

7 CONCLUSIONS

This work proposes a novel pricing demand scheme designed for a

cloud cache that offers querying services and aims at the

maximization of the cloud profit with predictive demand price

solution on economic way of user profit. The proposed solution

allows: on one hand, long-term profit maximization with price

minimization on request of same demand, and, on the other,

dynamic calibration to the actual behaviour of the cloud application,

while the optimization process is in progress.

Fig. 4. Optimization using or not predictions for updates for 1-5

updates on average per structure.

The viability of the pricing solution is ensured with the proposal of a

method that estimates the correlations of the cache services in an

time-efficient manner.

REFERENCES

[1] G.R. Bitran and R. Caldentey, ―An Overview of Pricing Models for

Revenue Management,‖ Manufacturing and Service Operations

Management, vol. 5, no. 3, pp. 203-209, 2003.

Optimal Service Pricing for Cloud Based Services

540

[2] N. Bruno and S. Chaudhuri, ―An Online Approach to Physical Design

Tuning,‖ Proc. Int’l Conf. Data Eng. (ICDE ’07), 2007.

[3] X.-R. Cao, H.-X. Shen, R. Milito, and P. Wirth, ―Internet Pricing with a

Game Theoretical Approach: Concepts and Examples,‖ IEEE/ACM Trans.

Networking, vol. 10, no. 2, pp. 208-216, Apr. 2002.

[4] C. Chen, M. Maheswaran, and M. Toulouse, ―Supporting Co-Allocation

In an Auctioning-Based Resource Allocator for Grid Systems,‖ Proc. 16th

Int’l Parallel and Distributed Processing Symp. (IPDPS ’02), 2002.

[5]S. Choenni, H.M. Blanken, and T. Chang, ―On the Selection of Secondary

Indices In Relational Databases,‖ Data and Knowledge Eng., vol. 11, no. 3,

pp. 207-233, 1993.

[6] D. Dash, Y. Alagiannis, C. Maier, and A. Ailamaki, ―Caching All Plans

with One Call to the Optimizer,‖ Proc. Self-Managing Database Systems

(SMDB), 2010.

[7] D. Dash, V. Kantere, and A. Ailamaki, ―An Economic Model for

Self-Tuned Cloud Caching,‖ Proc. IEEE Int’l Conf. Data Eng. (ICDE ’09),

2009.

[8] C. Ernemann, V. Hamscher, and R. Yahyapour, ―Economic Scheduling

In Grid Computing,‖ Proc. Eighth Int’l Workshop Job Scheduling Strategies

for Parallel Processing (JSSPP ’02), 2002.

[9] G. Gallego and G. van Ryzin, ―Optimal Dynamic Pricing of Inventories

with Stochastic Demand over Finite Horizons,‖ Management Science, vol.

40, no. 8, pp. 999-1020, 1994.

[10] A. Ghose, V. Choudhary, T. Mukhopadhyay, and U. Rajan,―Dynamic

Pricing: A Strategic Advantage for Electronic Retailers,‖ Proc. Conf.

Information Systems and Technology (CIST), 2003.

[11] I.E. Grossmann and Z. Kravanja, Large-Scale Optimization with

Applications: Optimal Design and Control. Springer, 1997.

[12] M. Guay and T. Zhang, ―Adaptive Extremum Seeking Control of

Nonlinear Dynamic Systems with Parametric Uncertainty,‖ Automatica, vol.

39, pp. 1283-1294, 2003.

[13] L. He and J. Walrand, ―Pricing Differentiated Internet Services,‖ Proc.

IEEE INFOCOM, pp. 195-204, 2005.

[14] http://aws.amazon.com/, 2011.

[15] http://code.google.com/appengine/, 2011.

[16] http://tomopt.com/tomlab/, 2011.

[17] http:/www.cern.ch/, 2011.

[18] http://www.gogrid.com/, 2011.

[19] http://www.microsoft.com/azure/, 2011.

[20] http://www.sdss.org/, 2011.

[21]M. Kradolfer and D. Tombros, ―Market-Based Workflow

Management,‖ Int’l J. Cooperative Information Systems, vol. 7, pp.

297-314, 1998.

[22] J. Li and R. Yahyapour, ―Negotiation Model Supporting Co-Allocation

for Grid Scheduling,‖ Proc. IEEE/ACM Seventh Int’l Conf. Grid

Computing, 2006.

[23] Z. Lin, S. Ramanathan, and H. Zhao, ―Usage-Based Dynamic Pricing of

Web Services for Optimizing Resource Allocation,‖ Information Systems

and E-Business Management, vol. 3, no. 3, pp. 221-242, 2005.

[24] T. Malik, X. Wang, R. Burns, D. Dash, and A. Ailamaki, ―Automated

Physical Design In Database Caches,‖ Proc. Workshop Self-Managing

Database Systems (SMDB), 2008.

[25] T. Malik, R.C. Burns, and A. Chaudhary, ―A Financial Option Based

Grid Resources Pricing Model: Towards an Equilibrium between Service

Quality for User and Profitability for Service Providers,‖ Proc. Advances in

Grid and Pervasive Computing, pp. 13- 24, 2009.

[26] V. Marbukh and K. Mills, ―Demand Pricing and Resource Allocation In

Market-Based Compute Grids: A Model and Initial Results,‖ Proc. Int’l

Conf. Networking (ICN), pp. 752-757, 2008.

[27] Y. Masuda and S. Whang, ―Dynamic Pricing for Network Service:

Equilibrium and Stability,‖ Management Science, vol. 45, no. 6, pp.

857-869, 1999.

[28] M. Morari and J.H. Lee, ―Model Predictive Control: Past, Present and

Future,‖ Computers and Chemical Eng., vol. 23, no. 4/5, pp. 667- 682, 1999.

[29] R.A. Moreno, ―A.B.: Job Scheduling and Resource Management

Techniques In Economic Grid Environments,‖ Proc. Across Grids 2003, pp.

25-32, 2004.

[30]Y. Narahari, C.V.L. Raju, K. Ravikumar, and S. Shah, ―Dynamic

Pricing Models for Electronic Business,‖ Dynamic Pricing Models for

Electronic Business, vol. 30, pp. 231-256, 2005.

[31] Series of Meetings of the EPFL-IC-IIF-DIAS Lab with the Data

Management Group of the European Organization for Nuclear Research

(CERN) Started on the, Dec. 2008.

[32] S. Papadomanolakis, D. Dash, and A. Ailamaki, ―Efficient Use of the

Query Optimizer for Automated Database Design,‖ Proc. 33rd Int’l Conf.

Very Large Data Bases (VLDB ’07), pp. 1093-1104, 2007.

[33] K. Schnaitter, N. Polyzotis, and L. Getoor, ―Modeling Index

Interactions,‖ Proc. VLDB Endowment, vol. 2, no. 1, pp. 1234- 1245, 2009.

[34] B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki, ―Dynamic

Optimization of Batch Processes: Ii. Role of Measurements In Handling

Uncertainty,‖ Computers and Chemical Eng., vol. 27, pp. 27-44, 2003.

[35] M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C.

Staelin, and A. Yu, ―Mariposa: A Wide-Area Distributed Database System,‖

Int’l J. Very Large Data Bases, vol. 5, no. 1, pp. 48-63, 1996.

[36]A.Sulistio, K. Kyong Hoon, and R. Buyya, ―Using Revenue

Management to Determine Pricing of Reservations,‖ Proc. IEEE Int’l Conf.

e-Science and Grid Computing, pp. 396-405, 2007.

[37] X. Wang, T. Malik, R.C. Burns, S. Papadomanolakis, and A. Ailamaki,

―A Workload-Driven Unit of Cache Replacement for Mid-Tier Database

Caching,‖ Proc. 12th Int’l Conf. Database Systems for Advanced

Applications (DASFAA ’07), pp. 374-385, 2007.

[38] M.P. Wellman, W.E. Walsh, P.R. Wurman, and J.K. Mackie-mason,

―Auction Protocols for Decentralized Scheduling,‖ Games and Economic

Behavior, vol. 35, pp. 271-303, 2001.

[39] K.-Y. Whang, G. Wiederhold, and D. Sagalowicz, ―Separability: An

Approach to Physical Database Design,‖ IEEE Trans. Computers, vol. C-33,

no. 3, pp. 209-222, Mar. 1984.

[40] P.-S. You and T.C. Chen, ―Dynamic Pricing of Seasonal Goods with

Spot and Forward Purchase Demands,‖ Computer and Math. Applications,

vol. 54, no. 4, pp. 490-498, 2007.

[41] www.vmware.com

[42] http://en.wikipedia.org/wiki/Google%2B

[43]http://www.mcafee.com/us/products/security-as-a- service/index.aspx

[44]http://www.oracle.com/technetwork/oem/cloud-mgmt-496758.html

[45]Verena Kantere, Debabrata Dash, Gre´ gory Franc¸ois, Sofia

Kyriakopoulou, and Anastasia Ailamaki, ―Optimal Service Pricing for a

Cloud Cache‖, IEEE Transaction On Knowledge & Data Engineering, VOL.

23, NO. 9, SEPTEMBER 2011

[47]http://searchcloudcomputing.techtarget.com

[48]http://storagedecisions.techtarget.com/seminars/cloud_storage.html

[49]http://www.dba-oracle.com/art_builder_cpu_io.htm

[50http://windows.microsoft.com/en-IN/windows/explore/cloud

[51]http://www.webopedia.com/TERM/C/cloud_database.html

[52]S.N.Sivnandan, S.N.Deepa, ‖ Introduction To GeneticAlgorithm‖,

ISBN 978-3-540-73189-4 Springer Berlin Heidelberg New York.

http://www.vmware.com/
http://en.wikipedia.org/wiki/Google%2B
http://www.mcafee.com/us/products/security-as-a-
http://searchcloudcomputing.techtarget.com/
http://www.dba-oracle.com/art_builder_cpu_io.htm
http://www.webopedia.com/TERM/C/cloud_database.html

