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 

Abstract: -Cloud computing is a profound revolution in the way 

it offers the computation capability. The main objective now is 

to reduce the cost of deploying a service in the cloud and having 

proper coordinative in between models. Public, private, and 

hybrid cloud environments all face the performance limitations 

inherent in today’s applications and networks. In order for 

enterprises to maximize the flexibility and cost savings of the 

Public, private, and hybrid cloud they must overcome the same 

latency and bandwidth constraints that challenge distributed IT 

infrastructure environments. By overcoming application and 

network performance problems, Cloud Steelhead accelerates the 

process of migrating data and applications to the cloud, and 

accelerates access to that data from anywhere Cloud Computing 

applications that offer data management services are emerging. 

Such clouds support caching of data in order to provide quality 

query services. The users can query the cloud data, paying the 

price for the infrastructure they use. Cloud management 

necessitates an economy that manages the service of multiple 

users in an efficient, but also, resource economic way that allows 

for cloud profit. Naturally, the maximization of cloud profit 

given some guarantees for user satisfaction presumes an 

appropriate price-demand model that enables optimal pricing of 

query services. Optimal pricing is achieved based on a dynamic 

pricing scheme that adapts to time changes. This proposes a 

novel price-demand model designed for a cloud cache and a 

dynamic pricing scheme for queries executed in the cloud cache. 

The pricing solution employs a novel method that estimates the 

correlations of the cache services in a time-efficient manner and 

also applied some prediction technique in between correlation 

models with the use of cooperative cache from self as well as 

different hybrid cloud. 

Index Terms—cloud data management, data services, cloud service 

pricing, Cooperative Cache, Prediction Technique. 
I. INTRODUCTION 

 

cloud computing represents a new tipping point for the value of 

network computing. It delivers higher efficiency, massive 

scalability, and faster, easier software accessibility. It’s about new 

programming models, new IT infrastructure, and the enabling of 

new business models. The quality of services that the users receive 

depends on the utilization of the resources. The operation cost of 

used resources is amortized through user payments. Cloud resources 

can be anything, from infrastructure (CPU, memory, bandwidth, 

network), to platforms and applications deployed on the 

infrastructure. Cloud management necessitates an economy, and, 

therefore, incorporation of economic concepts in the provision of 

cloud services. The goal of cloud economy is to optimize: 1) user 

Satisfaction 2) cloud profit 3) Cloud web Security. While the 

success of the cloud service depends on the optimization of both 

objectives, businesses typically prioritize profit. To maximize cloud 

profit we need a pricing scheme and apply the some intelligence 

optimization technique that guarantees user satisfaction while  
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adapting to demand changes. Recently, cloud computing has found 

its way into the provision of web services [15], [18]. Information, as 

well as software is permanently stored in Internet servers and 

probably cached temporarily on the user side. Current businesses on 

cloud computing such as Amazon Web Services [14], Microsoft 

Azure [19], VMware [41], Google Plus [41], McAfee Cloud 

Searching Virus [42], Oracle Cloud Data Management [43] have 

begun to offer data management services:. A used web application 

passes a query to the server and collects information with the help of 

query massive data, like those supported by CERN [17], need a 

caching service and intelligent optimization technique which can be 

provided by the cloud [31]. 

The goal of such a cloud is to provide efficient proper way 

querying on the back-end data at a low cost with intelligent manner 

while being economically Viable, and furthermore, optimal 

profitable and also getting reduction of scheduling cost on demand 

changes. A price over the operating cost for each structure can 

ensure profit for the cloud. And also internally cloud is periodically 

update his caches information as required on different cloud and 

other demand will virtually manages a different dedicated server at a 

time on cloud. We propose a novel scheme with some pattern 

recognition technique by the soft computing hat achieves optimal 

pricing for the services of a cloud cache with explain on demand 

prediction cost. 

 

1.1 Setting the on Demand Price for Cloud based Caching 

Services with Prediction cost estimation on Demand model. 

The cloud makes profit from selling its services at a price that is 

higher than the actual cost. Setting the right price for a service is a 

nontrivial problem, because when there is competition the demand 

for services grows inversely but not proportionally to the price. 

There are three major challenges when trying to define an optimal 

pricing scheme for the cloud caching service with on demand cost 

prediction. First one 1) the price demand Dependency, to achieve a 

feasible pricing solution, but not economically feasible as required 

on demand same services, that is not representative.  For Example, a 

static pricing scheme cannot be optimal if the Demand for services 

has deterministic seasonal fluctuations; in this case correlation is 

automatically stopped on between different clouds when demand is 

increases on particular services because everyone wants to get on 

demand profit. The second challenge is to define a pricing scheme 

that is adaptable to 1) modeling errors, 2) Mean Percentage Error 

(MPE) on load distribution, 3) time-dependent model changes, and 

4) stochastic behavior of the application.  

A representative model for the cloud cache and prediction 

techniques should take In to account that the cloud cache structures 

(table columns or Indexes or correlation cache identification 

number) may compete or collaborate during query execution and 

any such a situation will come it will take self-decision on demand 

load balance, cloud services may be free or offered on a 

pay-per-usage model, No wasted resources because you pay for 

what you use [47], A cloud storage gateway provides basic protocol 

translation and simple connectivity to allow the incompatible 

technologies to communicate transparently [48]. And the goal is to 

minimize the number of cross-node distributed transactions, which 

incur overhead both because of the extra work done on each node 

and because of the increase in the time spent holding locks at the 

back-ends. OODBMS caching is keep only positive impact factor or 

successfully satisfying the information. So by the using cloud 

optimized cache we directly minimize the following cost 1) Hash 
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join costs, 2) Sort costs, 3) Table scan costs, 4) Index block access 

costs [49].  

 
 

Fig. 1. A cloud cache. 
 

First time cost is high not much more but when more request is do 

same process then setup and maintains cost is come very lower level 

by the using caching. So cloud cache service can satisfy infinite 

demand as long as it is maintained only the demand for a cache 

service pauses if this service is not available. Moreover, the cloud 

can schedule the service availability according to the guarantees for 

the overall revenue estimated by the long term optimization [45]. 

Nevertheless, it is important that the long-term optimization process 

is flexible enough to receive corrections while it is still in progress 

and there have no optimization scheduling or intelligent caches in 

between public, private & hybrid cloud.  
 

1.2 Related Work 

The problem is that, no one proper handling at a time when user 

demand is increases on cloud services ,like that  1)Ease of Use, 2) 

Zero maintenance, 3) Automatic scaling, 4) High availability, 5) 

high level of parallelism, 6) Pay per actual usage vs. pay per instance 

size, resulting in over subscription, 7) automation and ease-of-use of 

a Database-as-a-Service, 8) minimal investment and maintenance of 

in-house hardware, 9) periodically Combining cache 

interoperability standards, 10) capability of dynamic traffic 

switching to balance utilization, because this are major problem 

that’s why a price scheme is fluctuated on cloud and The ―stateless‖ 

and dynamic nature of the cloud poses unique challenges for the 

―state full‖ database tier – which is the most sensitive and critical 

part of the application, and the hardest to scale, all this problem on 

present cloud , Each development team is free to use whatever local 

support it likes in this VM—Amazon doesn’t care. The creators of 

one application might choose a Java EE app server and MySQL, for 

example, while another Group might go with Ruby on Rails. While 

the service EC2 Provides is quite basic, it’s also very general, and so 

it can be used in many different ways. Existing clouds focus on the 

provision of web services targeted to developers, such as Amazon 

Elastic Compute Cloud (EC2) [14], or the deployment of servers, 

such as Go Grid [18], cloud platform providing local support is 

Force.com, offered by Salesforce.com. Emerging clouds such as the 

Amazon   Simple DB and Simple Storage Service offer data 

management services. Optimal pricing of cached structures is 

central to maximizing profit for a cloud that offers data services.  

Microsoft cloud spotlight is provide content sharing, like 

photo video ,audio etc. but the problem is Content Delivery 

Networks (CDNs) are critical for enhancing your site’s quality, 

reliability and scalability ,so fast loading and increasing 

synchronization of content is important , in this condition it will fail 

[50]. Mariposa [35] discusses an economy for querying in 

distributed databases. This economy is limited to offering budget 

options to the users, and does not propose any pricing scheme. Other 

solutions for similar frameworks [38], [8], [29], [21], [4], [22], 

[26],[36][25 focus on job scheduling and bid negotiation, issues 

orthogonal to optimal pricing.              

Pricing schemes were proposed recently for the optimal allocation 

of grid resources in order to increase revenue [36], or to achieve 

equilibrium of grid and user satisfaction [25], service demand is 

known a priori and all users are charged the same for the 

consumption of the same service. Similarly, dynamic pricing for 

web services [23] focuses on scheduling user requests. This work is 

orthogonal to ours, as we require that users’ requests for service are 

satisfied right away.  

Research on the identification of non-correlated indexes using the 

query structure [39] does not determine the negative and positive 

correlations with combining intelligent caching. Identification of 

index correlations by modeling physical design as a sub modular 

and super-modular problem [5] is restricted to one-column indexes 

and one index per query. Identification of negative index correlation 

[2] does not consider the positive and no Correlation case. A recent 

index interaction model [33] attempts to find all index correlations. 

As we show in Section 4, it does not satisfy three critical 

requirements for the pricing scheme: 1) sensitivity to the range of all 

possible correlations, 2) production of normalized values, and 3) 

fast computation [45]. 4) Less downtime and power usage, 5) 

accommodate multiple caching strategies under the same domain. 6) 

client-side modifications to the cache 5) automatic global web 

intelligent abstraction. 

 

1.3 Our Proposal 

Many Web applications are now hosted in elastic cloud 

environments where the unit of resource allocation is a virtual 

machine (VM) instance, A variety of techniques can reduce the 

latency of communication between VMs co-located on the same 

server in, say, a private cloud but The cloud caching service can 

maximize its profit using an optimal pricing scheme. Optimal 

pricing necessitates an appropriately simplified price-demand model 

that incorporates the correlations of structures in the cache services. 

The pricing scheme should be adaptable to time changes, with 

provide automatic dynamic cache in way of load balancing so 

distributed data caches is to store fast changing data that is accessed 

by multiple servers, and solving web service cost and it will give 

minimum load with dynamic automatic balance and according to 

situation it will take a self-decision, and giving self-tuning features 

like 

Control Panel – API Built to deliver quick access and real-time 

solutions, your Cloud Cache CDN, Control Panel gives you 

everything you need to manage, monitor and distribute your content 

effortlessly! From control of content behavior to robust reporting 

options, you get the  

Prime tools you need to take charge of your site’s technology 

quickly and easily. Instant Provisioning – No waiting! Use ours 

immediately. Purge Cache – Immediately purge your entire cache, 

or select only a single file. You decide what works best for you. 

Reporting – Get real-time easy-to-read reporting of all relevant 

metrics when you need them. Timely Updates – Make a change and 

they’re done, just like that. Open API – full integration with your 

favourite third-party and custom applications. Privacy Preserving 

Mask Matrix - that allows the cloud to filter out a certain 

percentage of matched files by using soft computing technique. 

Differential Query Services - the queries with higher rank can 

retrieve higher percentage of matched files. 

Intelligent Postmark – Intelligent Postmark is a file-system 

benchmark that simulates cloud workload in the form of intelligent 

distributed cache. In each VM we run Post-Mark with dynamic 

initial files and dynamic transaction, and this all process are done by 

parallelism automatic tuning then find out Postmark primarily 

measures better IO performance. 

Optimized price demand model – We model the price- -demand 

dependency employing second order differential equations with 

constant parameters. This modeling is flexible enough to represent a 

wide variety of demands as a function of price. Optional structure 

availability allows for optimal scheduling of structure availability, 

such that the cloud profit is maximized. The model of price-demand 

dependency for a set of structures incorporates their correlation in 

query execution [45]. 
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Price adapting to time changes. Profit maximization is pursued in 

a finite long-term horizon. The horizon includes sequential, no 

overlapping intervals that allow for scheduling structure 

availability. At the beginning of each interval, the cloud redefines 

availability by taking offline some of the currently available 

structures and taking online some of the unavailable ones. Pricing 

optimization proceeds in iterations on a sliding time window that 

allows online corrections on the predicted demand, via reinjection 

of the real demand values at each sliding instant. Also, the iterative 

optimization allows for redefinition of the parameters in the 

price-demand model, if the demand deviates substantially from the 

predicted. Modeling Structure correlations. We propose a method 

for the efficient computation of structure correlation by extending a 

cache based query cost estimation module and a template-based 

workload compression technique. 

Dynamic Cooperative caches modelling –When we are using 

dynamic cooperative caches in between different model, then top 

two benefits of cloud computing are found  speed and cost. Users 

can be up and running in minutes instead of weeks or months and 

this will come from parallelism of dynamic load balance distribution 

by using elastically scalable grid architecture. And because cloud 

computing is pay-per-use, operates at high scale and is highly 

automated, the cost and efficiency of cloud computing is very 

compelling as well. And in any situation a failure is come, then there 

no problem because all thing is done by intelligent cache 

cooperative because we use sharing cache file and this will provide 

highly benefits like 1) On-demand self-service, 2) Broad network 

access, 3) Rapid elasticity,4)Measured service ,5)Elastic 

scalability ,6) Low upfront costs  ,7)Economies of scale 

,8)Operating expense , 9)Simpler to manage 10)Greater control 

of security, compliance and quality of service ,11) Resource 

pooling. So this model is removed unpredictable demand patterns 

problems because intelligent soft computing method is doing  

scaling up or scaling down of resources for a given application on 

demand. 
Neuro - Genetic Price Model - To recap, cloud computing is 

characterized by real, new capabilities such as self-service, 

auto-scaling and chargeback, but is also based on many established 

technologies such as grid computing, virtualization, SOA shared 

services and large-scale, systems management automation. Apply 

there some intelligent technique by the using this, for maximization 

of user profit analysis the previous pattern data from cooperative 

caches and find out demand price prediction by the using of 

Artificial neural network with Genetic algorithm and trained the 

cooperative cache, so we easily getting the information when 

demand is increase for particular price, then how price is come on 

minimized and also getting information about Mean Percentage 

error on between cloud web service cost. 

 

1.4 Contributions 

This paper makes the following contributions: 

1. A novel demand-pricing model designed for cloud caching 

services and the problem formulation for the dynamic pricing 

scheme that maximizes profit and incorporates the objective for user 

satisfaction.  

2. An efficient solution to the pricing problem, based on   nonlinear 

programming, adaptable to time changes. 

3. A correlation measure for cooperative cache structures that is 

suitable for the cloud cache pricing scheme and a method for its 

efficient computation.  

4. Soft computing technique is giving parallel and distributing 

cooperative caches which are done and take self-decision when any 

user poses a query on cloud for finding information about price 

prediction for particular demand at a time and model is highly 

trained as self-tuning from cooperative caches data from current and 

previous price demand model data. 

5. Neuro - Genetic techniques is giving functionality cooperation on 

different caches scheme, like system create only default cache but 

highly trained network on cloud is create a different type cache file 

like 1) Purge cache, 2) default cache, 3) cooperative cache 4) load 

balance -distribution cache, 5) cooperative optimization cache, 6) 

external query poses query information cache and simulating on 

different ways as need of demand self-take a decision and 

self-destroy this caches file. 

6. An experimental study which shows that the highly trained 

network controller with dynamic pricing demand scheme 

outperforms any static one by achieving to orders of magnitude 

more profit per time unit with the future price on level of demand. 

 

2 QUERY EXECUTION MODEL 

 

Cloud databases can offer significant advantages over their 

traditional counterparts, including increased accessibility, automatic 

failover and fast automated recovery from failures, automated 

on-the-go scaling, minimal investment and maintenance of in-house 

hardware, and potentially better performance. At the same time, 

cloud databases have their share of potential drawbacks, including 

security and privacy issues as well as the potential loss of or inability 

to access critical data in the event of a disaster or bankruptcy of the 

cloud database service provider this basic problem is giving more 

hazards for web user which using cloud services so apply the 

intelligent cooperative cache concept [51] Like OODBMS Cache 

enables certain tables, rows and columns and session information 

with network address reference from Database to be cached in the 

memory of the middle tier servers, access it with the highly trained 

network cloud and apply self-tuning methodology for the delivering 

very low latency and high throughput. Data remains synchronized 

with Database and is accessed through a standard interface first time 

when using. RDBMS In-Memory Database Cache also supports 

clustering for elastic scalability and high availability. Our 

motivation for the necessity of such a cloud data service provider 

derives from the data management needs of huge analytical data, 

such as scientific data [31], for example physics data from CERN 

[17] and astronomy data from SDSS [20]. Users pose queries to the 

cloud, which are charged in order to be served. Following the 

business example of Amazon and Google, Microsoft, MacAfee, 

Panda etc., we assume that data reside in the same data centre and 

that users pay on-the-go based on the infrastructure they use, 

therefore, they pay by the query. We assume that the cloud 

infrastructure provides sufficient amount of storage space for a large 

number of cache structures. Each cache structure has a building and 

maintenance cost [45] and offered security cost on web user pricing 

scheme adaptation level. 

 

Global: cache structures S, prices P, availability Δ 

 

QueryExecution( ) 

 if q can be satisfied in the cache then 

     (result, cost)←runQueryInCache (q) 

else 

     (result,cost)←runQueryInBackend(q) 

end if 

S←addNewStructures() 

return result,cost 

optimalPricing (horizon T, intervals t[i], S) 

(,P)←determineAvailability&Prices(T, t,S) 

return ,P 

main() 

Execute in parallel tasks T1 and T2: 

T1: 

for every new i do 

slide the optimization window 

optimalPricing(T, t[i],S) 

end for 

T2: 

while new query q do 

(result,cost)←queryExecution(q) 

end while 
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if q executed in cache then 

charge cost to user 

else 

Calculate total price and charge price to user 

end if [45]. 

 

Modified algorithm is: Intelligent Parametric Organization 

algorithm: 

Input: Generate the super plan contains the access the data. 

Output: Top down optimizer 

Procedure: process steps 

1. We are works based on star schema 

2. Star schema contains the different dimensions of tables 

3. New queries also are joining inside the dimension tables 

4. Generate the dynamic load allocation with first iteration to next 

iteration. 

5. We are generate good join planner specification process 

6. Join planner works based on cache systems 

7. Using the time variation changes new cache systems, we are 

create under reduced cost building processor 

8. It can works on sequential interval amount of time 

9. Provides the optimization results 

10. Optimization results show the integration. 

11. We are increases iteration and integrate the number of iteration 

process. 

12. Gets the results as a minimized cost with feasible and optimal 

solution  

13. Optimal solution focus on discretization (genetic algorithm-AI, 

NN) 

14. It can works on branch and bound algorithm 

15. We are gets the target results identification process 

 

Fig. 2. Query execution model for the Intelligent Parametric 

Organization algorithm. 

 

Fig. 2 represent Query execution model for the Intelligent 

Parametric Organization algorithm represents at a high level the 

query execution model of the cloud cache. The names of variables 

and functions are self-explanatory form OODBMS but the cache 

model is modified by cloud admin. The user query is executed in the 

cache if all the columns it refers to are already cached.  Otherwise it 

is executed in the back-end databases. The modified result is 

returned to the user with prediction model demand price and the cost 

is the query execution cost (the cost of operating the cloud cache or 

the cost of transferring the result via the network to the user). The 

cloud cache Determines which structures (cached columns, views, 

indexes, previous related demand price, offered price, future price 

reduction probability offered, offered price correlation),in 

destination cloud cache  is periodically update by the source cloud 

as like router.  

Artificial Neural Network. The back-propagation learning 

algorithm is one of the most important developments in neural 

networks. This learning algorithm is applied to multilayer 

feed-forward networks consisting of processing element with 

continuous differentiable activation functions. ANN & GA is 

finding best survival of genes from previous  network cloud caches 

with poses query by the user demand request and intelligent cloud is 

self-take a decision for heuristic Cloud Cache Data Set then again 

find, what Mean absolute percentage error (MAPE) will be come on 

heuristic Cloud Cache and decide which one is best for the user 

demand. Now we again apply Hybrid model (GA Tuned & ANN) 

and find out of cloud load traffic information, backend traffic load, 

number of client request traffic load, client request load distribution 

by the cloud, measurement of cloud dedicated server on demand 

creation with control of number of parallelism cache transfer 

information from network server and A real coded and binary 

chromosome will be considered for optimization of the weight of 

ANN. 

Training Algorithm of ANN: 

The error back-propagation learning algorithm can be outlined in 

the following algorithm: 

Step 0: Initialize weights and learning rate (take some                                                                                                                                                                                                       

small random values).        

Step 1: Perform Steps 2-9 when stopping condition is          false. 

Step 2: Perform Steps 3-8 for each training pair. 

Phase 1: Feed forward Algorithm 

Step 3: Each input unit receives input signal ix  and              end it 

to the hidden unit ( i =1 to n ).                                                             

Step 4: Each hidden unit jz  (j = 1 to p) sums its weighted input 

signals to calculate net input 

i

ijijinj vxvz 0
 

Calculate output of the hidden unit by applying its activation 

functions over injz (Binary or bipolar sigmoidal activation 

functional): 

   inji zfz   

And send the output signal from the hidden unit to the input of 

output layer units. 

Step 5: For each output unit ky  ( k= 1 to m), calculate  the net 

input:                

                 




p

j

jkjkink wzwy
1

0          

And apply the activation function to compute output signal 

                
 inkk yfy 

 

Phase 2: Back-propagation of error AlgorithmStep 6: Each 

output unit ky  (k =1 to m) receives a target pattern corresponding 

to the input training Pattern and computes the error correction term: 

   inkfkkk yyt '  

On the basis of the calculated error correction term, update the 

change in weights and bias:        
kk

jkjk

w
zw










0
     

 Also, send k to the hidden layer backwards. 

Step 7: Each hidden unit ( jw , j = 1 to p) sums its delta inputs from 

the output units: 

   




m

k

jkkinj w
1


 

The term inj gets multiplied with the derivative of  injzf  to 

calculate the error term: 

  injinjk zf '   
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On the basis of the calculated j , update the change in weights and 

bias: 

 
jj

ijij

v
xv










0
 

Weight and bias updation (Phase III) 

Step 8: Each output unit ( ky , k=1 to m) updates the bias and 

weights: 

    
koldknewk

jkoldjknewjk

www
www

0)(0)(0

)()(







 

Each hidden unit ( jz , j=1 to p) updates the bias and weights: 

               
joldjnewk

ijoldijnewjk

vwv
vvv

0)(0)(0

)()(







 

Step 9: Check for the stopping condition. The stopping condition 

may be certain number of epochs reached or when the actual output 

equals the target output [52]. 

The above algorithm uses the incremental approach for updating of 

weights, i.e., the weights are being changed immediately after a 

training pattern is presented, When a BPN is used as a classifier, it is 

equivalent to the optimal Bayesian discriminate function for 

asymptotically large sets of statistically independent training 

patterns. 

Genetic Algorithm. An implementation of a genetic algorithm 

begins with a population of typically random chromosomes One 

then evaluates these structures and allocates reproductive 

opportunities In such a way that those chromosomes which 

represent a better solution to the target problem are given more 

chances to reproduce than those chromosomes which are poorer 

solutions The goodness of a solution is typically defined with 

respect to the current population. So this will help on  1)selection, 2) 

cross over , 3) mutation, 4) reassembly cloud network caches, 5) 

decomposition: fitness. 
 

3 MODELING OPTIMAL PRICING ON USER DEMAND 

REQUEST 

This section describes the problem formulation of maximizing the 

cloud profit with intelligent cloud decision with cooperative 

solicitor network caches information. The presentation of the 

pricing scheme is guided by propositions that state the main 

heuristic rationale of our approach. 

 

3.1.  Problem Formulation 

This section defines the objective and the constraints of the problem, 

and gives the mathematical problem definition. 

 

3.1.1.  Objective 

The cloud cache offers to the users query services on the cloud data. 

The user queries are answered by intelligent cloud admin query 

plans that use cache structures, i.e., cached columns, views, indexes, 

previous related demand price, offered price, future price reduction 

probability offered, offered price correlation. We assume that the set 

of possible cache structures is S = {S1, . . . , Sm }. 

Whenever a structure S is built in the cache, it has a onetime 

building cost BS. While S is maintained in the cache it has a low 

maintenance cost which depends on time with network solicitor, MS 

(t). Heuristic computing and parallelism on cloud infrastructure may 

benefit the performance of structure creation, for a column, the 

building cost is the cost of transferring it from the backend and 

combining it with the currently optimized cached columns. The 

maintenance cost of a column or an index is just the cost of using 

disk space in the cloud. Hence, building a column or an index in the 

cache has a one-time static cost, whereas their maintenance yields a 

storage cost that is linear with time1. for more information on the 

building and maintenance cost of cloud cache structures the reader 

is referred to [7]. In any case, the cost of a structure S as soon as it is 

built at time (tbuilt) in the cache and until it is discarded is 

Cs(t) = BS+ MS(t _ tbuilt).                     ……………. (1) 

Co_caches=ScacheIndex(t)+NcacheIndexdest 

 

Cache services are offered through query execution that Uses cache 

structures, cooperative caches (Co_caches) is combination of caches 

which is maintained by self OODBMS query in cloud ScacheIndex(t) 

and network cloud cooperation caches NcacheIndexdest maintained 

self-tuned heuristic function on the controls of this with respect to 

time (t). 

 

Definition 1. The demand for a cache structure S, denoted as λs(t), is 

the number of times that S is employed in query plans selected for 

execution at time t. Naturally, in realistic situations the demand for a 

structure is measured in time intervals. If a structure S is built in the 

cache then query plans that involve it can be selected, i.e.  λs(t)> 0, 

otherwise not, i.e., λs(t)=0. Intuitively, there is a trade-off between 

1) keeping a structure in the cache and paying the maintenance cost, 

and 2) soft computing model is dynamically maintaining the 

structure occasionally and 3) maintaining load balancing of caches 

transfer on network traffic, on user demand request with respect to 

time (t).  

 
1. Index updating is assumed to incur rebuilding the index from scratch. 

Data updates on caches from network solicitor are external factors but that 

can be controlled by the heuristic optimization procedure. In Section 6, we 

study the effect of updates to the dynamic pricing solution. 

 

Than pay the maintenance cost; if the demand is high, then the 

opposite tactic may be more profitable for the cloud. The cloud 

makes profit by charging the usage of structures in selected query 

plans for a price. Let us assume that the price of a structure S at time 

t is pS(t). Then the profit of the cloud at a specific time is 

          m 

r(t) = ∑ δi.( λsi(t)  . psi(t) - csi(t), δi  =  0,1,   …….    2 

           i 
 

Where δi represents the fact that the structure Si is present in the 

cloud cache. Specifically, a structure may be present or not in the 

cache at any time point in [0, T]. and not present before the 

beginning of optimization time, i.e. 

 

 
 

Based on this, the cost of a structure w.r.t. time becomes 

 

 
 

Where t0  is the start time of cost observation. Structures can be built 

and discarded at any time t Є [0, T] and the total profit of the cloud is 

R (T) =∫0
T r(t) dt. The goal is to maximize the total profit in [0, T] by 

choosing which structures to build or discard and which price to 

assign to each built structure at any time.  

 

max R(t) = =∫0
T r(t) dt                                        (4)                                                                                         

δ,p         

 

3.1.2 Problem Constraints 
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It is necessary to constrain the optimization of the objective 4, so 

that a reasonable and correct solution can be found. Value 

constraints. It is straightforward that both the demand and the price 

of a structure must be positive numbers. Furthermore, it is necessary 

to impose an upper bound on the price. The reason is that the 

optimum solution is to instantaneously raise the price of at least one 

structure to infinity, if this is allowed.2 these bounds can be 

formulated as follows:   

       

0 ≤ λi ,  i = 1,……..,m .                                 (5) 

0 ≤ pi ≤ pmax  ,  i = 1,……..,m .                   (6)             

     

Dynamics of the demand. Naturally, the demand and the price of a 

structure are connected variables: intuitively, as the price for a 

structure increases the demand decreases and vice versa. In order to 

solve the optimization problem (4). 

 
2. Mathematically, the integral of (4) goes to infinity if the price for one 

structure is infinite and the demand for this structure is not zero. If the 

demand is zero, the profit, ∞ * 0 is undefined. 

 

Proposition 1. The demand of a structure S has memory: the 

demand at time t depends on the demand before (t) 

consequently, the relationship between price and demand is 

 

         (7) 

 

Where m ≤ n, to respect the causality principle, as m > n would 

imply that demand could change (due to a change of price) before 

the price has changed. In particular, since there is no inertia in 

setting a price for a structure, m = 0 and (7) can be rewritten in its 

explicit form 

 

 
 

Justification 1. As the cloud cache and its users has inertia, which 

means that the current system behavior depends on past and 

influences future behavior. Two intuitive exemplifying reasons for 

this are: 1) the structure is already built and remains available 

because the building cost is already amortized, while the 

maintenance cost is not very high; and 2) the structure.  
 

3. Note that an abrupt drop is expressed by a first order differential equation, 

which is encapsulated in the second order one, as the parameter a can be set 

to 0. 

               We 

constrain f to be an ordinary differential relation between price and 

demand. 

    
          

The parameters α, β, γ are constrained to be constants. This means 

that the price model considers a static relation between demand and 

price. Therefore, it is necessary to extend (9) so that it captures 

correlations of demand and prices between pairs of structures. Let us 

assume that V is a (m * m) matrix where the row and the column (i) 

corresponds to the structure (Si i = 1, . . ., m.) Each element (vij, i, 

j = 1, . . ., m )corresponds to the correlation of the price of Sj to the 

demand of Si. We call V the correlation matrix of prices and 

demands. If (˄) and (P) are the (m * 1) matrices of demands and 

prices for the respective structures in S, and A, B, Γ are ( m *1 
)matrices of parameters, then the constraint in (9) becomes 

 

   
 

(10) is actually a set of constraints of the form:  

 

                  
 

 
 

Problem definition. The previous discussion leads to the following 

problem formulation for optimal pricing: The maximization of the 

cloud OODBMS profit is achieved with the solution of the 

following optimization problem:  

                                                   

 
 

Subject to the constraints:  

 

         
 

3.2 Generalization of Optimization Objective 

From a mathematical point of view, we expect a solution that is on 

the boundaries of the feasible area, meaning a solution along the 

constraints of the problem that satisfies the objective. The 

constraints on the price-demand dependency in (10) do not actually 

constrain the sought solution, but only the value of the optimal 

profit, if the solution is applied; therefore, the sought solution is 

expected to be on the boundaries of the allowed price, (6), and 

demand values, (5), meaning maximum price selections as long as 

the demand for structures is above zero, This is called a bang-bang 

solution and the mathematical reason for this expectation is that the 

objective of the problem is linear w.r.t. the control variables: the 

price p and the structure availability δ intuitively. 
  

Proposition  2. The altruistic tend of pricing optimization is 

Expressed as: 1) a guarantee for a low limit on user satisfaction, 

Or, 2) an additional maximization objective.  

 

Justification 2. There are two policies in order to incorporate an 

altruistic tend in pricing optimization. The 

first is to give a much lower priority to user satisfaction than cloud 

profit, which results into a constraint (static or time dependent) that 

passively restricts the maximization of profit, i.e., expression (4). 

The second is to handle it as a secondary goal of the pricing 

optimization, which results into a new objective that actively 

restricts profit maximization. ―Passive‖ restriction means that the 

altruistic tend turns down pricing solutions proposed by the 

optimization procedure, 

 If the altruistic tend is expressed as low-limit guarantee on user 

satisfaction, then it can be formulated as an additional constraint of 

the optimization problem of Section 3.1 on the demand drop  

 

 where 

λmin is the selected minimum value of demand drop rate.   

            
In this case, the problem can accommodate, either a new constraint 

or a new optimization objective. In the first case, the constraint can 

be 

         
Where (rmin) is the selected minimum value of cloud profit. Adding 

one of the constraints (11) or (12) to the optimization problem does 

not change the objective of the optimization. 

If the altruistic tend is expressed as a new maximization goal, the 

optimization objective is a combination of (4) and (12) 
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where (w) is a weight that calibrates the influence of the Altruistic 

tend to the optimization procedure. The augmented optimization 

objective (14) leads the optimization procedure to seek a trajectory 

that balances the opposite egoistic and altruistic tends.                             

 

4. MODELING PRICE-DEMAND CORRELATIONS 

The pricing scheme depends on the estimated values of 

price-demand correlations for all structures, which is stored in the 

matrix V (see the constraint (10)). success of the scheme depends 

greatly on the accuracy of the estimation of the correlation degree 

for all candidate structures. We refer to the elements, (vij, i, j = i., 

m) of V, as correlation coefficients, defined as follows:  

 

Definition 2. For any pair of structures Si and Sj we define the 

symmetric correlation coefficient (vij ≡ vji) that represents the 

combined usage of Si and Sj in executed query plans.  

 
4.1 Correlation Requirements 

In order to construct a measure for correlation estimation, we define 

the following requirements.4  

 

Proposition 3. The correlation coefficient vij should satisfy the 

following requirements: 

R1.  vij is negative if Si can replace Sj and the opposite, positive if 

they collaborate, and zero if they are used independent of each other 

in query plans. 

R2.  vij can be normalized for any pair of Si and Sj. 

R3. vij is easy to compute.  

 

Justification 3. R1: The sign of the coefficient vij denotes the 

competitive or collaborative behaviour between a Si and Sj.   

    

Example 1. In a workload with only one query = select A from T 

where B = ’b’ and C = ’c’, the columns B and C should have positive 

correlation, while the indexes IA-D = T(A,B,C,D) and IA-E = 

T(A,B,C,D,E) should have negative correlation, and an irrelevant to 

the query index T(E,F) should have zero correlation. It is 

straightforward that the pricing scheme requires these properties 

from the correlation coefficients V. 

 
4. Please note that the correlation requirements that we propose are tailored 

to the problem in hand. These requirements may be too strict for other use 

cases of management of data structures. 

 

R2: The correlation coefficients V determine the price of all the 

structures in the cloud cache (see constraint (10)).  

R3: It is necessary to compute all correlation coefficients V before 

the structures are materialized or even selected by the cloud cache.  

 

4.2 Limitations of the Existing Approaches 

Recently Schnaitter et al. [33] proposed a technique that computes 

the correlation between indexes. Given a set of indexes I ⊆ S and 

two indexes from the set, {Si, Sj}, their correlation coefficient v
q

ij 
given a query q is  

 

 
 

Proposition 4. Measure (16) satisfies the requirements R1 - R3. 

 

Justification 4. R1: We show that R1 is satisfied by proving its 

satisfaction for the extreme cases of structure collaboration and 

competition. 

Case 1: If Si and Sj do not coexist in query plans, then let us assume 

that Si is very beneficial to a query q, hence coq(Xi) →0 and Sj has 

no effect on it, hence coq(Xj) → coq({}). Since the cost function is 

monotonic [33],coq(Xij) =coq(Xi) =min{a,b}coq({a,b}) → 0. Hence, 

vij → 0. 

Case 2: If Si and Sj   collaborate tightly in the extreme case, 

coq(Xi) =  coq(Xj) →  coq({}) , coq(Xij) → 0.Then vij → 1. 

Case 3: If the indexes are the same, then coq(Xi) = coq(Xj) 

=coq(Xij) , implying that vij = -1. 

 R2: Since the cases discussed above are extreme, all structure 

correlation cases fall between them and, therefore their value is 

bounded by [-1, 1]. 

R3: We ensure efficient computation of the correlation coefficients 

by reducing the set of possible query plans. For columns, we 

propose the following measure:  

 

   
 

 If two distinct columns appear in the same query, then they 

collaborate, otherwise they do not. Self-correlation or a column is 

set to -1, as a column can replace itself.                                                                            

For a pair of index Sj and column Si, we use the following measure:

  

 

    
     

We extend the correlation computation for a Workload. If  v
q 

ij is the 

correlation of  Si and Sj for query q, then the coefficient for an entire 

workload is 

 

 
 

Measure (19) normalizes the coefficients by using the maximum 

cost of the query. This allows the ―heavy‖ queries to provide more 

weight to the coefficient, when compared to the ―lighter‖ queries. 

Computing this measure requires O(|I|2) optimizer calls to 

determine the index correlation coefficients, compared to the 

exponential number of calls proposed by the state-of-the-art 

method, but it is still expensive to make so many  optimizer calls on 

every query. We speed up the correlation computation using the 

observation that, even though the total number of index 

combinations is O (|I|2) the set of possible plans is typically much 

smaller. INUM issues hundreds of calls to the optimizer to find the 

internal nodes of the plans that can be reused. Given access to the 

optimizer, the overhead can be drastically reduced to just two calls 

per query by using the internal optimizer structures [6]. 

 

5 SOLVING THE OPTIMAL PRICING PROBLEM 

The problem of optimal pricing is an optimal control problem [11] 

with a finite horizon, i.e., the maximum time of optimization T is a 

given finite value. The free variables are the prices of the cache 

structures, pis, called the control variables, and the dependent 

variables, called state variables, is the demand for the structures, λis 

and the availability of the structures δis. The problem is augmented 

with bounds on the values of both the control and the state variables 

and by a constraint on the dependency type of the state on the 

control variables. 

 

5.1 Designing the Optimization Solution 

The objective function of the problem is the maximization of an 

integral, i.e., max∫T0(r(t) – w.v(t))dt. The optimality scope of the 

sought solution depends on the convexity of the objective function. 

The latter is bilinear w.r.t. the demand and the price (this is the result 

of factor λs_(t) . ps(t) in (2) and ps(t) in (12)). It is not possible to 
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prove that the objective function is convex and, therefore, there is no 

guarantee of global optimality of the solution.  

Due to: 1) the nonlinearity of the objective function, 2) the presence 

of both integer inputs (the δis control binary variables) and 

continuous inputs and states (the pis and the λis, respectively), and 3) 

the potentially large scale of the system (when m is high), it is 

almost impossible to find an analytical solution to the optimization 

problem. This calls for numerical optimization techniques, such as 

mixed-integer nonlinear programming (MINLP) [11], which 

present the advantage of being implementable online.  

We propose the division of the prediction horizon [0, T] into time 

intervals: let us assume that there are time points tj ε [0,T] , j =  0, . . 

. ,k, such that t0 = 0 and tk = T on which built structures can be built 

or discarded. Therefore, the problem is to maximize the total profit 

in [0,T] by choosing  which structures to built or discard on each tj ε 

[0,T], j=1,..k. and which price to assign to each built structure. 

 

 
 
Fig. 3. The optimization procedure is divided into short time intervals 

and iterates on a sliding time window.   
     

 
 

Fig. 3 depicts the proposed repeated optimization over a sliding time 

prediction horizon of length T. For simplicity, we consider equal 

time intervals, tj+1 - tj = tj+2 - tj+1, 0,……,k-2. The optimization is 

performed repeatedly for k prediction horizons beginning at tstart 

and ending at tend, such that: [tstart , tend ], tstart  = 0, t1 . . . T and tend 

= T,T + t1, 2T, respectively.  

   

    
 

 For example, even for linear dependency of price on time: p = a * t + 

b with static a, b, the number of variables in the problem is doubled. 

 

5.2 Estimating the Parameters Structure 

Concerning the constraints on the price-demand dependency in 

(10), it is necessary to estimate the parameters A, B, Γ. For this, the 

nonhomogeneous m order system of second order differential 

equations in (10) has to be solved. One way to do is to transform the 

system into a 2 * m order system of first order differential equations, 

by breaking each second order equation into a set of two. The result 

in both cases is a set of equations that show the dependency of 

demand on price involving the parameters  

 

 
Where F is a m * m matrix of functions on time and elements of the 

parameter matrices A, B, Γ. If the m constraints in (10) are 

independent, i.e., if the m differential equations are independent.  

 

Proposition 5. It is always possible to manage the cache structures 

in a way that the constraints in (10) are independent differential 

equations. 

 

Justification 5. Independency of the constraints in (10) means that 

there are no pair of cache structures for which the demand depends 

in the exact same way from the Prices of all the cache structures, 

assume two structures S1 and S2. If these are competitive, each one 

has a negative dependency on its own price and a positive 

dependency on the price of the other; therefore, it is not possible that 

they create the same constraint. If S1 and S2 are collaborative, 

creating the same constraint means that they depend on the exact 

same way on each other’s price and on the price of the rest of the 

structures; this fact implies that S1 and S2 are always employed 

together in the cloud; therefore, they can be represented as a set of 

structures with a single price [22]. 

 

5.3 Optimization Horizon 

An important issue is to estimate the appropriate length of the time 

period, in which we seek to optimize the cloud profit. Specifically, 

we have to determine the value of T which represents the 

optimization horizon of (4).  

Example 2. Assume a structure S with demand λs(t)and an 

optimization procedure of two short phases [0, T small) and [T small , 

T big) or a procedure with one long phase [0, T big). For simplicity, 

the demand is a step function i.e. λ s(t) = λ2,t ε [0 , Tsmall] 

corresponding to price p1 and λ s(t) = λ2,t ε [Tsmall , Tbig ) 

corresponding to price p2 (for simplicity we ignore structure 

correlations). Assume that the building cost of S is BS and the 

maintenance cost is MS(t) =  a *  t and S is built once at time t = 0. 

The cloud profit in [0, T small) is rsmall = λ1 * p1 - BS -MS (T small). 

If r small < 0, the cloud decides to discard S and the second 

optimization phase starts with S not available. Since the demand is 

significant in (T small , T big), the cloud may decide to build S again, 

at t ≥ Tsmall, resulting in profit rbig-smal l ≤ λ2 * p2 - BS - MS(T big 

_ T small). For the long-term optimization the profit is: r big = λ1 * 

p1 + λ2 * p2 - BS - MS(T big). Obviously, r big   > r small + r big - 

small. Therefore, the result of the two-phase short-term optimization 

procedure is not as optimal as that of the one-phase long-term 

procedure.   

 

5.4 Discussion on the Model Simplicity  

Yet, it is possible that in a real system the dependency of demand on 

the prices changes with time, because of any reasons. This means 

that the parameters, A, B, Γ should be time varying. Hence the 

problem falls in the scope of optimization of uncertain systems 

(potentially subject to model mismatch or Parametric uncertainty or 

disturbances), which is an active research domain [12], [34]. In 

these situations using tendency models (i.e., models that capture the 

main trends of a process) and measurements is generally sufficient 

to improve the process performances up to such a level that the 

costly efforts for identifying a more accurate process model are not 

justified by the loss of optimality [28].  Finally, as the optimization 

proceeds, new data are collected and this data can clearly be used to 

re-identify the price/demand model periodically. 

 

6 EXPERIMENTAL EVALUATIONS 

We present the simulation study for a cloud cache system That uses 

the proposed pricing model. 

 

6.1 Experimental Setup and Methodology 

The cloud cache is set up with one back-end database. The cache is 

operated under a TPC-H-based workload, which consists of seven 

TPC-H query templates and simulates the query evolution of 1 

million SDSS [20] queries against a 2.5TB back-end database. The 

SDSS workload consists of phases that show locality in data access 

that repeats. In each phase the query execution cost may fall in three 

categories, low, medium, and high. Queries arrive at 10 second 

intervals. We copy the setup in [24], the distribution of the query 

templates in one phase consisting of 10,000 queries. We select this 
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workload, as it is portable across different OODBMS, allows for the 

employment of techniques to improve the runtime of correlation 

estimations, and the queries are tunable by using the query 

generation mechanism of the TPC-H Benchmark. The building and 

the maintenance costs are determined using Amazon’s pricing 

model and are based on statistics for the cost of executing the SDSS 

queries. As an indication, while varying the price from the building 

cost (cost) to pmax = 10 * cost, the demand varies from 0 up to 

8,000 queries, with many values around 4,000. Set A contains two 

structures that collaborate, one more expensive than the other, and 

one   that is competitive; set B is similar, but two expensive 

structures are highly competitive to a third that is cheap; set C 

contains two structures that are necessary to many queries and not 

correlated to others; set D contains two collaborative structures of 

comparable cost. The pricing optimization problem is implemented 

and run in Matlab 7.8.0 using the tool Tomlab [16]. 

 

Methodology. The initial demand for all structures is set to a very 

low value in order 1) to avoid high cloud profit by solely exploiting 

high demand values λis and 2) force the pricing scheme to fluctuate 

λis in order to maximize the profit. The price variable for each 

structure ranges from 0 to 100 % of the respective building cost, i.e. 

0 ≤ pi ≤ BSi * 100. The experiments measure 1) the average cloud 

profit per time point, 2) the average user loss per time point, and 3) 

the execution time. Cloud profit is defined in (2) and user loss is the 

user satisfaction as defined in (12). The dynamic pricing scheme is 

compared with a static pricing scheme that fixes the cloud profit to a 

specific percentage of the building cost. 

 

6.2. Experimental Results View 

This section summarizes the experimental results. 

 

6.2.1Pricing with Dynamic Structure Availability 

Assuming that all structures are constantly available (i.e., fixed 

caching but changeable with permission of cloud), and, therefore 

built once in the cache at   the beginning of pricing and maintained 

ever since, i.e., δi = 1, i = 1,…, m always. As the optimization 

horizon is extended the profit drops because structures are 

maintained in the cache even though their demand drops; naturally 

the bigger the weight w, the smaller the profit and the user loss. Yet, 

for long horizons, the maintenance of non-profitable structures 

makes it impossible to satisfy the combined optimization objective 

in (14) for big values of weight, i.e., w = 30, 40, resulting in zero 

profit and user loss. Assuming that we have complete knowledge of 

the workload, we select the best structures to build at the beginning 

of time. The best structures are selected after observation of the 

matrix V (we spotted groups of collaborative and competitive 

structures and we experimented in order to find the subset that 

increases profit; the combinations to examine were few). 

Experimentation with various fixed prices of these structures 

resulted in maximum possible profit equal to about $400 and user 

loss equal to about $30. The results of this experiment are in 

accordance with the results of the works in [37]. 

 

6.2.2 Pricing with Choice on Structure Availability 

This section presents results on the dynamic pricing scheme 

assuming that structures are initially built in the cache, but during 

optimization they can be discarded and rebuilt. Contrary to pricing 

with fixed because optimization procedure takes advantage of 

long-term predictions in order to schedule the structure availability 

in a more optimal way.   

 

6.2.3 Sensitivity of the Optimization Schedule 

The profit increases as the number of intervals increases (and, 

therefore their length decreases), because the procedure is allowed 

to change the structure availability more often, in order to achieve 

optimality.  

 

6.2.4 Performance Comparison with Analysis  

We compare the performance of the optimization procedure 

employing first and second order differential equations for the 

pricing model. Models using first order equations are faster to solve, 

hence preferred over second order differential equations if the 

real-world constraint can be modeled using them. First order 

differential equation makes the procedure slightly faster than using a 

second order differential equation. The second order formulation, 

however, is more generic and we use it as default. The δ variable 

makes the solver an order of magnitude faster than the problem with 

δ variables on average. Therefore, the solver spends most of the time 

in the branch and bound method that seeks the optimal integer 

values [16].  
 

6.2.5 Correlation Binding of Structures 

This section presents the index correlations achieved using (16) and 

compares the proposed measure for correlation coefficients (19) 

with the state-of-the-art measure (15) [33]. Furthermore, it is also 

bounded by the range [-1, 1].  

 

6.2.6 Predicting the Price Demand for Structures 

The demand for these structures shows qualitative differences: the 

demand for A reacts smoothly to price change after some weak 

inertia to the workload; the demand for B shows similar inertia but 

after that it drops abruptly; the demand for C shows great inertia to 

the workload. 

 

6.2.7 Optimization in Presence of Updates 

The optimization procedure works under the assumption that data 

structures do not have to be evicted and rebuilt due to data updates. 

Even though updates cannot be controlled by the optimization 

procedure, if they can be predicted, they can be used as new 

constraints on the optimization problem. Specifically, an update of 

structure S at time t incurs a reset of the respective δ parameter from 

1 to 0 at that time. The cloud profit is bigger if updates are predicted. 

Yet, as the number of updates increases, the profit drops and is 

closer to profit in the case of no update prediction. User loss is 

bigger (w = 0 for these experiments) in case of update prediction, 

since the optimization sets higher prices for the structures. 

 

7 CONCLUSIONS 

 

This work proposes a novel pricing demand scheme designed for a 

cloud cache that offers querying services and aims at the 

maximization of the cloud profit with predictive demand price 

solution on economic way of user profit. The proposed solution 

allows: on one hand, long-term profit maximization with price 

minimization on request of same demand, and, on the other, 

dynamic calibration to the actual behaviour of the cloud application, 

while the optimization process is in progress. 

 

 
           

Fig. 4. Optimization using or not predictions for updates for 1-5 

updates on average per structure. 

The viability of the pricing solution is ensured with the proposal of a 

method that estimates the correlations of the cache services in an 

time-efficient manner.       
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