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Abstract

We study a general version of the multicast authentica-
tion problem where the underlying network, controlled by
an adversary, may drop chosen packets, rearrange the or-
der of the packets in an arbitrary way, and inject new pack-
ets into the transmitted stream. Prior work on the problem
has focused on less general models, where random, rather
than adversarially-selected, packets may be dropped and
altered, or no additional packets may be injected into the
stream. We describe an efficient and scalable authentica-
tion scheme that is based on a novel combination of error-
correcting codes with standard cryptographic primitives.
We prove the security of our scheme and analyze its per-
formance in terms of the computational effort at the sender
and receiver and the communication overhead. We also dis-
cuss specific design and implementation choices and com-
pare our scheme with previously proposed approaches.

1. Introduction

The authentication of multicast transmissions of data
streams over the Internet is a challenging problem. IP mul-
ticast is implemented with a best-effort delivery mechanism
over the UDP transport protocol, where packet losses are
tolerated. Thus, the received stream may differ from the
transmitted one. Any authentication scheme for multicast
streams should verify as many as possible of the received
packets without assuming the availability of the entire orig-
inal stream. In addition, it should resist against any types
of attacks by an adversary, even when the adversary con-
trols the underlying network.

In the multicast authentication problem, we wish to au-
thenticate a packet stream transmitted over a network that
may adversarially drop packets, arbitrarily rearrange the or-
der of the packets, and inject new packets into the stream.
Prior work on the subject has focused on a network model
where either all the received packets are valid (authentic)

or packets are lost according to some predefined random
patterns (e.g., [12, 19, 22, 27]) or no packet injections oc-
cur (e.g., [20, 21]). Thus, most of the previously proposed
schemes only tolerate erroneous network behavior and are
not resilient against an adversarial behavior of the network.

Of course, if each packet were signed by the sender,
then the only damage the adversarial network could inflict
is packet loss, as the receiver would simply reject pack-
ets whose signature is not verified. However, this simple
“sign-all” solution is undesirable because of the repeated
use by the sender of the critical and computationally ex-
pensive sign primitive for each transmitted packet and the
heavy communication overhead caused by the addition of
a signature to each packet. Additionally, this solution suf-
fers by a simple denial-of-service attack at the receiver; one
signature verification must be performed for each received
packet, valid or not.

In this paper, we formally define a general model for
multicast authentication where an adversary can perform
various attacks on the transmitted streams. In this model,
two parameters of the network, the survival rate and the
flood rate, characterize the power of the adversary. We de-
scribe an efficient authentication scheme for this model that
gives almost the same security guarantees as if each packet
were individually signed, but requires only one signature
operation for the entire stream and adds only a constant size
authentication overhead per packet. Our technique uses a
novel combination of Reed-Solomon error-correcting codes
with standard cryptographic primitives, such as collision-
resistant hashing and digital signatures.

In the rest of this section, we introduce our model,
summarize our contributions and review previous work on
multicast authentication. The cryptographic primitives and
error-correcting codes used in this paper are reviewed in
Section 2. In Section 3, we describe in detail our adversar-
ial network model and multicast authentication framework.
Section 4 describes our multicast authentication scheme and
gives proofs of correctness and security. In Section 5 we an-
alyze the performance of our scheme and compare it with



various other proposed schemes in terms of security as-
sumptions, underlying network model, resilience to packet
loss and injection, computational effort at the sender and re-
ceiver, and communication overhead. Conclusions and fu-
ture work are given in Section 6.

1.1. Model and Contributions

We consider the problem of authenticating a stream
of packets transmitted over a fully adversarial network.
Namely, the network is controlled by an adversary who can
destroy packets of her choice, arbitrarily rearrange the order
of the packets, and inject new, arbitrarily constructed, pack-
ets. We limit the power of the adversary to modify a stream
of n packets transmitted by the sender by introducing two
parameters of the network, the survival rate α, 0 < α ≤ 1,
and the flood rate β, β ≥ 1, which are assumed to be con-
stants. A network with these two parameters, which we call
an (α, β)-network, guarantees that despite the presence of
the adversary, at least αn packets in the received stream are
valid and the received stream contains at most βn packets.
The model is formally described in Section 3. For now, we
justify the introduction of the survival and flood rates with
the following observations. If too many packets are dropped
or corrupted by the adversary, then the main problem is the
loss of data, as the small number of valid packets received
may be useless even if authenticated. On the other hand, if
the adversary can inject a very large number of packets, then
we have a denial-of-service attack.

The contributions of our work can be summarized as fol-
lows:

• We provide a formal definition of multicast authenti-
cation over an (α, β)-network, where arbitrary pack-
ets are lost, injected, and rearranged, subject to a given
survival rate α and flood rate β. We also give the re-
quirements for an authentication scheme to be correct
and secure.

• We present the first efficient and scalable multi-
cast authentication scheme for an (α, β)-network. Our
scheme is based on digital signatures, cryptographic
hash functions and Reed-Solomon error-correcting
codes. This last feature of our scheme provides a new
interesting connection between coding theory and se-
curity.

• We prove the correctness and security of our scheme,
analyze its performance in terms of various cost pa-
rameters, discuss design and implementation choices,
and compare it with previous approaches. In particu-
lar, we show that our scheme adds to each transmitted
packet only a small amount of authentication informa-
tion, proportional to β/α2, and that all the valid pack-

ets received are recognized, while all the invalid pack-
ets are rejected.

The only prior approach that provides security in our adver-
sarial model and is the inefficient “sign every packet” solu-
tion, which consists of either (i) singing each packet indi-
vidually or (ii) using a Merkle hash tree [28]. The trivial so-
lution of signing each packet individually is not viable due
to heavy computational operations at both the sender and
the receiver, but also because secret-key operations are ex-
pensive in terms of the security architecture as well. The
Merkle-tree-based authentication scheme has the drawback
that the communication overhead (signature and hash val-
ues) grows with the number of packets sent.

1.2. Prior and Related Work

Previous work on multicast authentication consid-
ers both unconditionally secure and computationally
secure authentication. Approaches based on the informa-
tion theoretic model (see, e.g., [8, 26]) tend to be less
practical. In the rest of this section, we overview ap-
proaches that use computationally secure authentica-
tion.

MAC-Based Approaches. Various approaches use message
authentication codes (MACs) and secret-key cryptography.
The trivial solution here is having the group members shar-
ing a secret key and including a MAC into every packet sent,
but this scheme is not secure, as any user can spoof packets.
In another MAC-based trivial solution, each receiver has her
own secret key and the sender possesses all such keys. To
authenticate a stream, the sender adds to each packet a MAC
for every receiver. This approach is not scalable because of
the high communication cost. In [4], a MAC-based scheme
is described that is secure with high probability against any
coalition of w corrupted users and where O(w) MACs are
appended to each packet. This scheme is not fully scalable
due to its communication overhead. In [22], another scheme
that uses MACs is proposed, where a MAC is appended to
every packet and the key of the MAC is provided in some
subsequent packet. To tolerate packet losses, the keys are
generated by means of a hash chain. This approach has low
communication overhead. However, it requires time syn-
chronization between the parties. Two MAC-based schemes
that make explicit use of the topology of a multicast tree
are presented in [29]. Both schemes are similar in concept
to [22] and take denial-of-service and access control into
consideration (namely, a corrupted packet is filtered out as
soon as possible in the multicast tree and only legitimate
group subscribers can authenticate the multicast packets).
Both schemes assume the existence of secure and trusted
routers at the nodes of the tree. In addition, the first scheme
uses clock synchronization, whereas the second scheme re-



lies on the existence of secure channels between the source
and each of the receivers.

Boneh et al. [1] generalize MACs to a multicast set-
ting by defining a new primitive for multicast authentica-
tion called multicast MAC (MMAC). They show that any
MMAC scheme can be transformed into a digital signa-
ture scheme of almost the same efficiency. Thus, any mul-
ticast authentication scheme not relying on additional as-
sumptions on the network (such as synchronization, trusted
routers, or secure channels) may as well use a signature
scheme! This brings us to signature amortization. Other
research efforts have focused on building faster signature
schemes for signing every packet separately (e.g., [10, 25]).

Signature Amortization. Other approaches use the mecha-
nism of signature amortization, where a single digital sig-
nature is used for the authentication of multiple packets. A
first scheme that uses signature amortization over a hash
chain appears in [10]. Each packet pi is augmented with au-
thentication information ai, which is recursively defined as
the hash of pi+1 ◦ ai+1 (◦ denotes concatenation). Also,
the augmented first packet p1 ◦ a1 is digitally signed. This
scheme has constant authentication overhead per packet but
does not tolerate packets losses. In [28], a Merkle hash tree
is used to amortize a signature over n packets. Namely, a
hash tree is built on top of the hashes of the packets and
the root hash value is digitally signed. Each packet is aug-
mented with authentication information that consists of the
signed root hash and the hashes of the siblings of the nodes
on the path between the root and the leaf associated with the
packet. The scheme tolerates packet losses but has logarith-
mic communication overhead per packet. In contrast, our
approach, which also uses signature amortization, has con-
stant communication overhead.

Graph-Based Authentication. Graph-based authentication
[12, 19, 22, 27] generalizes the idea of amortizing a sig-
nature over a hash chain in such a way as to tolerate packet
losses. A single-sink directed acyclic graph (DAG) G is de-
fined, where each vertex corresponds to a packet. A directed
edge from packet pi to packet pj indicates that the authen-
tication information aj of packet pj includes the hash of
pi ◦ ai. Also, the augmented packet p1 ◦ a1 of the sink of
the DAG is digitally signed. The validation of packets pro-
ceeds backward along the edges of the graph. Namely, if
packet pj has been validated and edge (pi, pj) exists in G,
then the validity of packet pi can be determined using the
authentication information aj of pj . Graph-based authenti-
cation schemes offer probabilistic security guarantees pro-
vided packet losses occur randomly (i.e., they are not ad-
versarially selected). In particular, they require that the sig-
nature packet will reach the receiver intact. Two packet loss
patterns have been studied: the uniform model, where each
packet is lost with a fixed probability and independently
of other packets being lost, and the bursty model, where a

packet is lost with a fixed probability and then a given num-
ber of successive packets are also lost.

In [22], G is an augmented-chain graph, consisting of
a path plus additional edges that connect vertices at var-
ious distances. In [12], another augmented-chain graph is
designed specifically to tolerate bursty packet losses. Ran-
dom graphs and a new scheme that is resilient to multiple
bursty losses are studied in [19]. Finally, in [27], expander
graphs are used. The efficiency of graph-based authentica-
tion schemes is analyzed in [5] and experimentally studied
in [7].

Erasure Codes. In [21] and [20], erasure codes (e.g., [16,
17, 23]) are used for multicast authentication to tolerate
adversarially-chosen packet losses and disperse one signa-
ture over the packets in a group. The constructions are ef-
ficient in terms of communication cost and similar in prin-
ciple. The two schemes only differ in that in [20], encod-
ing is performed twice to reduce the size of the authenti-
cation information. Both schemes are, however, vulnerable
to a very simple attack: a single injected packet can com-
promise the correctness of the decoding procedure at the re-
ceiver. In [15], a “binding” of the valid packets through the
use of a Merkle hash tree has been recently proposed to tol-
erate packet injections: each packet carries also the Merkle-
tree authentication information so that blocks of valid pack-
ets are grouped together and blocks of invalid packets are
filtered out. This scheme suffers from high, not constant,
per-packet communication overhead.

2. Preliminaries

In this section, we introduce some notation (mostly
from [18]) and define the cryptographic and coding primi-
tives that we use in our construction.

2.1. Notation

Let A be an algorithm. By A(·) we denote that A has
one input (resp., by A(·, . . . , ·) we denote that A has sev-
eral inputs). By y ← A(x), we denote that y was obtained
by running A on input x. If A is deterministic, then this y
is unique; if A is probabilistic, then y is a random variable.
If S is a finite set, then y ← S denotes that y was cho-
sen from S uniformly at random. By y ∈ A(x) we mean
that the probability that y is output by A(x) is positive.

By AO(·), we denote an algorithm that makes queries to
an oracle O. I.e., this algorithm (Turing machine) will have
an additional (read/write-once) query tape, on which it will
write its queries in binary; once it is done writing a query,
it inserts a special symbol “#”. By external means, once the
symbol “#” appears on the query tape, oracle O is invoked
and its answer appears on the query tape adjacent to the “#”



symbol. By Q = Q(AO(x)) ← AO(x) we denote the con-
tents of the query tape once A terminates, with oracle O
and input x. By (q, a) ∈ Q we denote the event that q was a
query issued by A, and a was the answer received from or-
acle O.

Let b be a boolean function. By (y ← A(x) : b(y)),
we denote the event that b(y) is TRUE after y was gen-
erated by running A on input x. The statement Pr[{xi ←
Ai(yi)}1≤i≤n : b(xn)] = α means that the probability that
b(xn) is TRUE after the value xn was obtained by running
algorithms A1, . . . , An on inputs y1, . . . , yn, is α, where the
probability is over the random choices of the probabilistic
algorithms involved.

2.2. Cryptographic Primitives

The following definition is due to Goldwasser, Micali,
and Rivest [11], and has become the standard definition of
security for signature schemes. Schemes that satisfy it are
also known as signature schemes secure against adaptive
chosen-message attack.

Definition 2.1 (Signature scheme). Probabilis-
tic polynomial-time algorithms (G(·), Sign(·)(·),
Verify(·)(·, ·)), where G is the key generation algo-
rithm, Sign is the signature algorithm, and Verify the ver-
ification algorithm, constitute a digital signature scheme
for a family (indexed by the public key PK) of mes-
sage spacesM(·) if the following two hold:

Correctness. If a message m is in the message space for a
given public key PK, and SK is the corresponding secret
key, then the output of SignSK(m) will always be accepted
by the verification algorithm VerifyPK . More formally, for
all values m and k:

Pr[(PK,SK)← G(1k);σ ← SignSK(m) :

m←MPK ∧ ¬VerifyPK(m,σ)] = 0.

Security. Even if an adversary has oracle access to the
signing algorithm that provides signatures on messages of
the adversary’s choice, the adversary cannot create a valid
signature on a message not explicitly queried. More for-
mally, for all families of probabilistic polynomial-time or-
acle Turing machines {A(·)

k }, there exists a negligible func-
tion1 ν(k) such that

Pr[(PK,SK)← G(1k); (Q,m, σ)← A
Sign

SK(·)
k (1k) :

VerifyPK(m,σ) = 1 ∧ ¬(∃σ′ | (m,σ′) ∈ Q)] = ν(k).

For completeness, we give a standard definition of a fam-
ily of collision-resistant hash functions.

1 A function ν : N → R is negligible if for every positive polynomial
p(·) and for sufficiently large k, ν(k) < 1

p(k)
.

Definition 2.2 (Collision-resistant Hash Function). Let
H be a probabilistic polynomial-time algorithm that, on in-
put 1k, outputs an algorithmH : {0, 1}∗ 7→ {0, 1}k. Then
H defines a family of collision-resistant hash functions if:

Efficiency. For all H ∈ H(1k), for all x ∈ {0, 1}∗, it takes
polynomial time in k + |x| to computeH(x).

Collision-resistance. For all families of probabilistic
polynomial-time Turing machines {Ak}, there exists a neg-
ligible function ν(k) such that

Pr[H ← H(1k); (x1, x2)← Ak(H) :

x1 6= x2 ∧H(x1) = H(x2)] = ν(k).

2.3. Error Correcting Codes

Error correcting codes allow recovering a message that is
transmitted over a noisy channel. Let q ≥ 2 be the size of al-
phabet [q] = {1, 2, ..., q}. An error correcting code [n, k]q
is a function C : [q]k → [q]n, that processes a k-length
message x over [q] and adds redundancy to form a longer
n-length codeword C(x). The processing and the added re-
dundancy help correcting up to e errors of the codeword
C(x); that is, given a received word y ∈ [q]n such that y
and C(x) differ in at most e characters of the alphabet, we
can unambiguously correct (decode) y to C(x). The value
e depends on the code. If only redundancy is added by a
code C, i.e., if all symbols of x appear also among the sym-
bols of E(x), then the code is systematic. List-decoding al-
lows to ambiguously correct even more errors. Given that
C(x) is received as word y ∈ [q]n, list-decoding provides a
list of candidate messages, such that x belongs in this list.

Reed-Solomon codes [24] are a family of codes that are
based on properties of univariate polynomials over finite
fields. We next define the [n, k + 1]q Reed-Solomon code,
where n, k and q are positive integers and parameters of
the code. We present here a slightly modified definition of
Reed-Solomon codes than the one commonly used in the lit-
erature, so that, by definition, Reed-Solomon codes consid-
ered in this paper are systematic. This property is not nec-
essary for the correctness of our scheme, but offers an ex-
tra desired property in our construction, discussed in Sec-
tion 5 and requires no extra computational effort at the en-
coder.

Definition 2.3 (Reed-Solomon code). A [n, k + 1]q Reed-
Solomon code consists of the following components:

Alphabet. The alphabet is a finite field Fq of size q ≥ n,
with q being a prime power.

Encoder. The code is a function C : F
k+1
q → F

n
q , where

n > k + 1. In more detail, the encoder:

1. takes as input the parameters n and k, and k+1 points
(i, yi), i ∈ Fq , yi ∈ Fq , 1 ≤ i ≤ k + 1,



2. finds a unique univariate polynomial p ∈ Fq[x] over
elements of Fq and of degree at most k, such that
p(i) = yi, 1 ≤ i ≤ k + 1, and

3. outputs points (i, p(i)), for 1 ≤ i ≤ n. The ratio
k+1

n
< 1 is called the rate of the code.

We have that C is a systematic code.

Decoder (GS-Decoder). Let ε > 0 be a parameter that con-
trols the performance of the decoder. The decoder takes as
input parameters n and k, the number of errors e that may
occur, and n points (xi, yi), 1 ≤ i ≤ n, and list-decodes,
i.e., it outputs a list of all univariate polynomials p ∈ Fq[x]
of degree at most k such that yi 6= p(xi) for less than e val-
ues of i, 1 ≤ i ≤ n.

For a [n, k + 1]q Reed-Solomon code, we use a decoder
that runs in polynomial time and is due to Guruswami and
Sudan [13, 14]. We refer to this decoder as GS-Decoder.

Theorem 2.1 (Guruswami-Sudan). Consider a [n, k+1]q
Reed-Solomon code. For any ε > 0, given n points with
e = n −

√

(1 + ε)kn errors, GS-Decoder outputs a list

of size O(ε−1
√

n/k) in O(n2ε−5 log2 q logO(1) log q) time,
performing O(n2ε−5 log q) field operations.

We view ε as a parameter of the GS-Decoder, ε > 0,
and use GSDecodeε(n, k, e, {(xi, yi)|1 ≤ i ≤ n}) to de-
note that GS-Decoder runs with parameter ε having as in-
put parameters the integers n, k, e and the points (xi, yi),
1 ≤ i ≤ n.

In practice, codes with constant expansion are used,
where k = ρn for some constant ρ < 1. In particular,
our construction makes use of a [n, ρn+1]q Reed-Solomon
code, with ρ < 1, over some large alphabet of size q = 2c

for some constant c. From Theorem 2.1 we have the follow-
ing.

Corollary 2.2. For any [n, ρn+1]q Reed-Solomon code, for
any constants ε > 0 and ρ < 1 such that

√

(1 + ε)ρ < 1,
on an input with e = (1−

√

(1 + ε)ρ)n errors, GS-Decoder
outputs a list of O(1) size in Õ(n2) time, performing Õ(n2)
field operations.

GS-Decoder is based on an algorithm that solves the
polynomial reconstruction problem: given k, t, and n points
{(xi, yi), 1 ≤ i ≤ n}, where xi, yi ∈ Fq , find a list that
contains all univariate polynomials p ∈ Fq[x] of degree
at most k such that yi = p(xi) for at least t values of i,
1 ≤ i ≤ n . Polynomial reconstruction and Reed-Solomon
list-decoding are equivalent problems [13]. Namely, the fol-
lowing corollary is equivalent to Corollary 2.2.

Corollary 2.3. For any constants ε > 0 and ρ < 1, polyno-
mial reconstruction on input ρn, t, and n points in Fq × Fq

can be solved, in Õ(n2) time, provided t ≥
√

(1 + ε)ρn,
where Õ(n2) field operations are performed and the out-
put list has O(1) size.

3. Network Model and Authentication Frame-
work

A sender transmits a data stream, consisting of n pack-
ets marked with a group identification tag2 (GID) to a re-
ceiver over an underlying “best-effort” network. No guaran-
tees about the delivery of the packets exist in general. Fur-
thermore, the network is an adversary of great, yet not un-
limited, power. In our model, packets may be adversarially
lost, altered, delayed, or injected. However, this adversary
is not given complete freedom — if it were, then no mes-
sages would ever get delivered, and so our task would be
hopeless.

3.1. The (α, β)-Network Model

We model the network as an adversarial entity, i.e., an
entity that can simultaneously inflict any possible type of
attack to the transmitted data stream. The repertoire of at-
tacks consists of packet losses, injections, alterations and
rearrangements. These modifications of the data stream are
adversarially chosen so that the adversary can cause the loss
of any selected packets. The ability to tolerate packet losses
has been widely considered an important property of multi-
cast authentication schemes [12, 19, 21, 22, 27, 28]. How-
ever, only a few previous schemes [21, 28] tolerate adver-
sarial losses, i.e., the capability by the adversary to choose
which packets are dropped and which survive.

Also, the adversary can inject packets of random or ma-
licious structure into the stream. This type of network fail-
ure has not been studied as widely in the context of mul-
ticast authentication. In contrast, we develop robust tech-
niques for dealing with it.

Finally the adversary can arbitrarily modify, delay or re-
arrange packets. Note that changing a packet corresponds to
destroying (losing) it and injecting a new packet.

An adversarial network modelled with the above capa-
bilities in terms of how the adversary is acting is what we
call a fully adversarial network.

Definition 3.1 (Fully adversarial network). A fully adver-
sarial network is a network that is used for the transmission
of a data stream and is controlled by an adversary. In par-
ticular, the adversary can:

• cause packets of her choice to be lost;

2 Conventionally and without loss of generality, we consider data
streams consisting of n packets, that is, at the sender, the data for
transmission is arranged in groups of size n. The GID adds no new
assumption about the transmitted stream. It corresponds to a means
for the packets to be grouped together, which in practice can be pro-
vided by any network-layer transmission protocol in use. In our frame-
work, the GID is used as an abstract quantity of constant size; in prac-
tice, it is a string of some small constant size, e.g., the size of a hash
value (20 bytes for SHA-1).



• inject packets (either random ones or with a specific
malicious structure); and

• arbitrarily alter, delay or rearrange packets.

It is realistic to assume that even if an adversary con-
trols part of the network, there are still some honest routers
and at least a fraction of the data packets goes through them.
Thus, we expect some reliability from the network; namely,
the network will faithfully deliver at least a constant frac-
tion, α, of all the packets of a given stream. This assump-
tion is also justified by the fact that if fewer than a con-
stant fraction of the packets survive, then it is unlikely that
meaningful information can be extracted from the surviv-
ing packets. Also, in modelling the ability of the adversary
to maliciously inject invalid packets, we take the follow-
ing into consideration: if the adversary injects packets at
too high a rate, this will result in a denial-of-service attack.
In this case, the receiver’s primary concern is unlikely to be
authentication. Thus, we assume that authentication is use-
ful when the stream is expanded by no more than a constant
factor β through adversarial packet injections.

Our two assumptions about the power of the adversary
to modify a stream of n packets transmitted by the sender
are expressed by two parameters of the adversarial network:
the survival rate α and the flood rate β. In this paper, both
rates are considered to be constants.

Definition 3.2 (Network parameters). Consider a net-
work through which a stream of n packets is transmitted
by the sender.

• The survival rate α, 0 < α ≤ 1, is the minimum frac-
tion of the packets that are guaranteed to reach the re-
ceiver unmodified. I.e., at least αn packets in the re-
ceived stream are valid.

• The flood rate β, β ≥ 1, is the maximum factor by
which the size of the received stream may exceed the
size of the transmitted stream. I.e., at most βn pack-
ets are in the received stream.

A network with the above characteristics in terms of ad-
versarial behavior and reliability is what we call an (α, β)-
network and is the basis for our multicast authentication
framework.

Definition 3.3 ((α, β)-network). An (α, β)-network is a
fully adversarial network with survival rate α and flood
rate β.

3.2. Authentication Framework

We describe a new multicast authentication framework
that is based on the (α, β)-network model. Our definition
of a multicast authentication scheme essentially mimics the
classical definition of security for signatures [11]. (This is

not surprising since in [1] it is shown that the two prob-
lems are equivalent.) A signature scheme consists of key
generation, signature, and verification algorithms (see Def-
inition 2.1). Similarly, we have key generation, authentica-
tion, and decoding algorithms, specified below.
Key Generation: The key generation algorithm KeyGen

is a probabilistic polynomial-time algorithm that takes as
input the security parameter 1k, and outputs the key pair
(PK,SK). We write (PK,SK)← KeyGen(1k).

We assume that the sender knows both the public key
PK and the secret key SK and that the receiver knows the
public key PK. The following two algorithms, authentica-
tor Auth and decoder Decode, are executed by the sender
and the receiver respectively. The sender runs Auth to pro-
cess data packets and create the authenticated packets. The
receiver runs Decode to decode the received packets and
recognize the valid ones.
Authenticator: The authenticator algorithm Auth takes as
input:

• (SK,PK): the secret key and the public key.

• GID: the group identification tag of the data stream.

• n: the number of packets that need to be authenticated.

• α, β: the survival and flood rates (at least αn packets
are valid and at most βn packets claim to belong to a
given GID).

• DP = {p1, . . . , pn}: the data packets that need to be
authenticated.

The output of the authenticator algorithm is the set of au-
thenticated packets AP = {a1, . . . , an}. We write: AP ←
Auth(SK,PK, GID, n, α, β,DP).
Decoder: The decoder algorithm Decode takes as input:

• PK: the public key

• GID: the group identification tag.

• n: the number of the original data packets.

• α, β: the survival and flood rates.

• RP = {r1, . . . , rm}: the received packets.

The decoder either rejects the input (when less than αn
of the received packets are valid, or more than (β − α)n
packets are injected by the adversary), or produces the out-
put packets OP = {p′1, . . . , p

′
n}. Some of these packets

may be empty — an empty output packet is denoted by
∅, and corresponds to the event that the decoder did not
receive the corresponding authenticated packet. We write:
{OP , reject} ← Decode(PK, GID, n, α, β,RP).

A signature scheme has two requirements: correctness
and security. We have similar requirements for a multicast
authentication scheme. A multicast authentication scheme
is (α, β)-correct if, whenever at least αn correct authenti-
cated packets are received among βn total packets, all and



only the valid received packets will be decoded correctly,
i.e., the corresponding data packets will be among the out-
put packets. A multicast authentication scheme is secure if,
even if the adversary is allowed to query the authenticator
on any number of chosen inputs, the adversary cannot make
the decoder output a non-authenticated set of packets.

Definition 3.4 (Multicast Authentication Scheme). Prob-
abilistic polynomial-time algorithms (KeyGen, Auth,
Decode) constitute an (α, β)-correct and secure multicast
authentication scheme if no probabilistic polynomial-time
adversary A can win non-negligibly often in the follow-
ing game:

1. A key pair is generated:

(PK,SK)← KeyGen(1k).

2. The adversary A is given:

• The public key PK as input.

• Oracle access to the authenticator, i.e., for
1 ≤ i ≤ poly(k), where poly(·) is a poly-
nomial, the adversary can specify the val-
ues (GIDi, ni, αi, βi,DP i) and obtain
AP i ← Auth(SK,PK, GIDi, ni, αi, βi,DP i).
However, the adversary cannot issue more
than one query with the same group iden-
tification tag. That is to say, for all i 6= j,
GIDi 6= GIDj .

3. At the end, A outputs a group identification tag, GID,
the values n, α and β, and a set of packets, RP .

The adversary wins the game if one of the following viola-
tions occurs:

Violation of the correctness property: The adversary did
managed to construct RP in such a way that even
though it contains αini packets of some authenti-
cated packet set AP i for group identification tag
GIDi = GID, the decoder still failed at identify-
ing all the correct packets. Namely, the adversary wins
if all of the following hold:

• For some i, the adversary’s query i contained
GIDi = GID, ni = n, and αi = α. Let
DP i = {p1, . . . , pn} = DP be the data pack-
ets associated with that query, and let AP i =
{a1, . . . , an} = AP be the response of the au-
thenticator.

• At least αn of the authenticated packets
(a1, . . . , an) are included in the received pack-
ets RP , i.e., |RP ∩AP | ≥ αn.

• The number of received packets is at most βn,
i.e., |RP | ≤ βn.

• For some 1 ≤ j ≤ n, pj is the j’th packet in
the original set of data packets DP , such that
the corresponding authenticated packet aj was
received, i.e., aj ∈ RP ∩ AP , and yet was not
decoded correctly. Namely, let (p′1, . . . , p

′
n) ←

Decode(PK, GID, n, α, β,RP). For pj it holds
that pj 6= p′j .

Violation of the security property: The adversary did
managed to construct RP in such a way that the de-
coder will output packets OP = {p′1, . . . , p

′
n} that

were never authenticated by the authenticator al-
gorithm for the group identification tag GID. More
precisely, the adversary wins if one of the follow-
ing happens:

• The authenticator was never queried with group
identification tag GID and the size n, and yet the
decoder algorithm does not reject. I.e., reject 6=
OP = Decode(PK, GID, n, α, β,RP).

• The authenticator was queried with the group
identification tag GID, the values n, α and β,
and the data packets DP = {p1, . . . , pn}. How-
ever, some output packet p′j 6= ∅ is different
from the corresponding data packet pj , where
OP = {p1, . . . , pn}.

4. Construction

In this section we describe a multicast authentication
scheme (KeyGen,Auth,Decode) that meets the definitions
of the previous section. In the sequel, we denote with ε > 0
the tolerance parameter of the decoder, which yields a
trade-off between the error-tolerance ability of the decoder
and its performance. By ◦, we denote concatenation and by
∅ we appropriately denote either a packet that is empty or
the empty string. We also often omit the floor and ceiling
notation in order to avoid notational overload.

4.1. Key Generation

We assume that a signature scheme (G(·), Sign(·)(·),
Verify(·)(·, ·)) and a collision-resistant hash function H are
given (see Definitions 2.1 and 2.2). If (PKσ,SKσ) ←
G(1k), we set PK = (PKσ,H) and SK = SKσ .

4.2. Authenticator Auth

Input: The secret key SK, the public key PK, the group
identification tag GID, the data stream size n, parame-
ters α and β of the network and the data packets DP =
{p1, . . . , pn}.
Algorithm: For 1 ≤ i ≤ n, compute the hash value
hi = H(pi). The concatenation of all the hash values,



together with the value GID, is digitally signed: σ ←
SignSK(GID◦h1◦ . . .◦hn). The string S = h1◦ . . .◦hn◦σ
is called the authentication information. We want to guar-
antee that, even if only an α fraction of the packets survive,
and a large number of packets (β−α)n are injected, the re-
ceiver still gets all the authentication information. To that
end, we encode S using a Reed-Solomon code in a man-
ner that is tolerant to packet loss and insertion; namely:

1. Let the rate of the code be ρ = α2

(1+ε)β . Recall that
α and β are the survival and flood rates of the net-
work, respectively, whereas ε is the tolerance parame-
ter of the decoder. Observe that since α ≤ 1, β ≥ 1
and ε > 0, we have ρ < 1.

2. Split S into ρn + 1 substrings of size
⌈

|S|
ρn+1

⌉

, where

each substring is viewed as a value of Fq , with q =

2d
|S|

ρn+1e 3. If S is not an exact multiple of ρn + 1, pad
S with ` 0’s, such that |S ◦ 0`| mod ρn + 1 ≡ 0.

3. Treat the resulting set of ρn+1 field elements as an in-
put to the Reed-Solomon encoder (see Definition 2.3).
Compute the corresponding codeword E(S) using an
[n, ρn + 1]q Reed-Solomon code4. E(S) consists of n
elements of Fq , denoted as (s1, . . . , sn).

4. Let AP = {a1, . . . , an}, where for 1 ≤ i ≤ n, we
have ai = GID ◦ i ◦ pi ◦ si.

Output: Authenticated packets AP = {a1, . . . , an}.

4.3. Decoder Decode

Our decoder Decode uses a modification of the GS-
Decoder (see Definition 2.3) as a subroutine. The standard
GS-Decoder expects to receive, as input, n pairs (xi, yi),
and outputs a list L of all the polynomials of degree at
most k such that every p ∈ L has the property that for at
least

√

(1 + ε)kn of the i’s, p(xi) = yi. We write L ←

GSDecodeε(n, k,
√

(1 + ε)kn, {(xi, yi)|1 ≤ i ≤ n}). The
modified decoder is specified by parameters that are slightly
different: it takes as input up to βn points (xi, yi) and finds
a list of inputs that can be encoded by polynomials of de-
gree at most ρn (with ρ = α2

(1+ε)β ) such that each polyno-
mial agrees with at least αn of the input points (see Corol-
lary 2.3). The modified decoder is obtained by adapting the
original GS-Decoder, as follows:
Modified GS-Decoder MGSDecoderε
Input: n, α, β, and m points (xi, yi), 1 ≤ i ≤ m.
Algorithm:

3 We see that q is in fact a function of n, α and β, thus it need not be
transmitted to the receiver. Observe that |S| is a function of n.

4 We assume that the value of ε is known also to the encoder; thus, in
fact E(S) = Eε(S).

1. If m > βn, reject.

2. Else if there are fewer than αn distinct values of xi,
reject.

3. Else, run the GS-Decoder, that is, let L ←
GSDecodeε(m, ρn, αn, {(xi, yi)|1 ≤ i ≤ m}),
where ρ = α2

(1+ε)β . If L is empty, reject.

4. Process L = {Q1(x), . . . , Q`(x)} as follows: for each
Q(i) ∈ L, evaluate Q(i) for 1 ≤ i ≤ ρn + 1 and let
the string Qj(1) ◦Qj(2) ◦ · · · ◦Qj(ρn + 1) be a can-
didate ci.

Output: List of all computed candidates {c1, . . . , c`} or
reject.

Lemma 4.1. MGSDecoderε runs in time Õ(n2), where
Õ(n2) field operations are involved, and outputs the con-
stant size list of all candidate inputs that are consistent with
αn of the received points.

Proof. All claims follow from Theorem 2.1, Corollary 2.3
and the fact that GS-Decoder operates even when the xi’s
are not distinct (see Guruswami and Sudan [14]). Observe
that Corollary 2.3 holds, since, if m = γn, α ≤ γ ≤ β, then

t ≥ αn ≥
√

γ
β
αn =

√

(1 + ε)ρnm. (Note that the correct

input is guaranteed to be contained in the output list, since it
is a polynomial of degree at most ρn that is consistent with
αn points.)

Now, we are ready to describe our decoder:
Decoder Decodeε

Input: The public key PK, a group identification tag GID,
n, parameters α and β and the received packets RP =
{r1, . . . , rm}.
Algorithm:

1. View packets in RP as ri = GIDi ◦ ji ◦ pi ◦ si.

2. Discard all non-conforming packets, i.e., all packets
for which GIDi 6= GID or packets with ji /∈ [1..n]. Let
(r1, . . . , rm′) be the remaining packets in RP . Each of
them is viewed as ri = GID ◦ ji ◦ pi ◦ si, such that
ji ∈ [1..n].

3. If m′ < αn or m′ > βn, then reject.

4. For 1 ≤ i ≤ m′, set (xi, yi) = (ji, si)

5. Run algorithm MGSDecoderε with input parameters
n, α, β and the m′ points (xi, yi), 1 ≤ i ≤ m′.
If MGSDecoderε rejects, reject; otherwise, obtain the
candidate codewords {c1, . . . , c`}.

6. For 1 ≤ i ≤ n, set hi = ∅. Let j = 1. While j ≤ `:

• Parse the codeword cj as string hj
1 ◦ . . . ◦ hj

n ◦ σ.

• If VerifyPK(GID ◦hj
1 ◦ . . . ◦h

j
n, σ) = 1, then set

hi = hj
i for 1 ≤ i ≤ n and break out of the loop;

otherwise, increment j.



7. If (h1, . . . , hn) = (∅, . . . , ∅), reject. Else, compute
the output packets OP as follows:

• Initialize OP = {p′1, . . . , p
′
n}: for each 1 ≤ i ≤

n, set p′i = ∅.

• For 1 ≤ i ≤ m′:

– view ri as ri = GID ◦ j ◦ pj ◦ sj , such that
j ∈ [1..n].

– ifH(pj) = hj , set p′j = pj .

8. Let OP = {p′1, . . . , p
′
n}.

Output: OP = {p′1, . . . , p
′
n} or reject.

We postpone the analysis of the running time of these al-
gorithms until the next section.

4.4. Correctness and Security Proofs

Let us show that our scheme satisfies Definition 3.4. Sup-
pose that we have an adversary A who manages to break
the (α, β)-correctness or security of our scheme with (non-
negligible) probability π(k). Then one of the following is
true:

• With probability π(k)/2, the adversary A violates the
(α, β) correctness property.

• With probability π(k)/2, the adversary A violates the
security property.

Let us show that a non-negligible probability of either
event contradicts the security properties of the underlying
signature scheme and hash function.

Claim 4.2. If a polynomial-time adversary A violates the
(α, β)-correctness property of our scheme, then the under-
lying signature scheme is not secure, or the underlying hash
function is not collision-resistant.

Proof. Let us prove the claim by exhibiting a reduction
which transforms an attack that violates the correctness
of our scheme, into an attack on the underlying signature
scheme.

Reduction. The input to the reduction is the public key
PKσ of the signature scheme. Our reduction is also given
oracle access to the corresponding signer SignSK . The re-
duction sets up the public key PK = (PKσ,H).
Our reduction does not know the corresponding se-
cret key. Our reduction invokes the adversary A on
input PK. It now needs to be able to answer the ad-
versary’s queries to the authenticator Auth. In order to
respond to a query (GIDi, ni, αi, βi,DP i), run the algo-
rithm Auth with the following modification: at the begin-
ning of the algorithm Auth, instead of computing the signa-
ture σi, obtain it by querying the signature oracle SignSK .
Everything else is carried out as prescribed by the algo-
rithm Auth.

It is clear that the view of the adversary in this reduction
will be identical to the view that the adversary obtains in
real life. Therefore, with the same probability as in real life,
the adversary violates the correctness property. Namely, it
outputs values GID, n, α, β and the set of received pack-
ets RP , such that all of the following hold:

1. GID = GIDi, n = ni, α = αi, and β = βi for
some i. Let DP i = {p1, . . . , pn} be the data pack-
ets associated with that query, and let AP be the re-
sponse that we gave to the adversary. In particular, let
σi be the signature associated with this query, that is,
σi ← SignSK(GID ◦ h(p1) ◦ . . . ◦ h(pn)).

2. |RP ∩AP | ≥ αn and |RP | ≤ βn.

3. For some j such that rj ∈ RP , pj 6= p′j ,where
(p′1, . . . , p

′
n)← Decode(PK, GID, n, α, β,RP).

Case 1. Suppose that p′j 6= ∅. From 3, we get that either
h(pj) 6= h(p′j), or it is easy to find a collision to the hash
function. By definition of Decode, if ∅ 6= p′j ∈ RP , then,
in Step 6, the algorithm Decode processes a candidate c =
h1◦. . .◦hn◦σ such that VerifyPK(GID◦h1◦. . .◦hn, σ) = 1.
We must argue that our signature oracle was never queried
on input (GID ◦ h1 ◦ . . . ◦ hn). Note that the only time
it was queried with this GID, it was when we obtained σi

on input (GID ◦ h(p1) ◦ . . . ◦ h(pn)). Moreover, in Step 7,
Decode includes p′j into OP if and only if h(p′j) = hj .
Therefore, hj 6= h(pj), and so our signature oracle was
never queried with (GID ◦ h1 ◦ . . . ◦ hn), and yet our ad-
versary has caused us to compute a signature σ such that
VerifyPK(GID ◦ h1 ◦ . . . ◦ hn, σ) = 1. Thus, the underly-
ing signature scheme is insecure.

Case 2. So, suppose that p′j = ∅. From 1 and 2, we
know that αn of the original authenticated packets were re-
ceived, among the total of βn packets. Then, by the prop-
erties of MGSDecoderε (Lemma 4.1), Step 5 of the algo-
rithm Decode includes the candidate value c = h(p1)◦ . . .◦
h(pn) ◦ σi. Then, by construction, it cannot be the case that
in Step 7, (h1, . . . , hn) = (∅, . . . , ∅). If (h1, . . . , hn) =
(h(p1), . . . , h(pn)), then by construction of Decode, if (as
is the case according to 3) rj ∈ RP , then p′j 6= ∅, be-
cause p′j is set to pj when the packet rj is considered in
Step 7. Therefore, (h1, . . . , hn) 6= (h(p1), . . . , h(pn)), and
yet VerifyPK(GID◦h1◦. . .◦hn, σ) = 1. But the only query
with GID that we ever issued to the signer was for the mes-
sage (GID ◦ h(p1) ◦ . . . ◦ h(pn)) 6= (GID ◦ h1 ◦ . . . ◦ hn).
Thus σ is a successful forgery.

Claim 4.3. If a polynomial-time adversary A violates the
security property of our scheme, then the underlying signa-
ture scheme is not secure, or the underlying hash function
is not collision-resistant.

Proof. Consider setting up the reduction in exactly the same
way as in the proof of Claim 4.2. Again, the adversary’s



view in the reduction is the same as in real life. So, just
as often as in real life, the adversary will violate the secu-
rity property of our scheme, namely, one of the following
will hold:

1. The authenticator was never queried with group
identification tag GID and size n, and yet
the decoder algorithm does not reject. I.e.,
reject 6= OP = Decode(PK, GID, n, α, β,RP).

2. The authenticator was queried with the group identifi-
cation tag GID, with the values n, α and β, and data
packets DP = {p1, . . . , pn}. However, some output
packet p′j 6= ∅ is different from the corresponding data
packet pj , where OP = {p′1, . . . , p

′
n}.

Suppose 1 holds. Then, from the description of the de-
coder, we know that the only way that it will produce some
non-empty set of output packets is if, in Step 6, it sees a
string c and a signature σ such that VerifyPK(GID◦ c, σ) =
1. Since the signature oracle was never queried for this GID
and n, σ is a successful forgery.

So, suppose that 2 holds. Then this is exactly the same
situation as Case 1 of the proof of Claim 4.2, and we ob-
tain either a successful forgery or a hash function collision
in the same manner.

5. Analysis

We now analyze our scheme in terms of the various cost
parameters. Recall that: α (0 < α ≤ 1) is the survival rate
of the network, β (β ≥ 1) is the flood rate of the network,
ε (ε > 0) is the tolerance parameter of the list-decoder, and
ρ + 1

n
is the rate of the encoder, where

ρ =
α2

(1 + ε)β
< 1.

In the sequel, by h we denote the size of a hash value and
by s the size of a digital signature.

Computational Cost. The sender and the receiver execute
algorithms Auth and Decode, respectively. Both algorithms
involve field operations (additions and multiplications) over

finite field Fq of size q = 2d
nh+s
ρn+1 e ' 2

h
ρ . Both operations

take O
(

h
ρ

logO(1) h
ρ

)

time [13]. Setting N = h
ρ

, both oper-

ations take O(N logO(1) N) time. Note that N is indepen-
dent of n.

Authenticator: The cost to encode n packets is as follows.
First, n hashes are computed and one signature op-
eration is performed over the hashes. Then, a Reed-
Solomon code is applied on the authentication infor-
mation, which consists of a polynomial interpolation
on ρn + 1 positions and a polynomial evaluation in
n − ρn − 1 positions. These tasks require O(n log n)

field operations or O(n log n N logO(1) N) time, since
both polynomial evaluation and interpolation for poly-
nomials of degree at most n can be solved using
O(n log n) field operations (thus, Reed-Solomon en-
coding requires a quasi-linear O(n log n) number of
field operations). Observe that the use of a systematic
Reed-Solomon code adds no extra computational cost.

Decoder: From Theorem 2.1, we have that
O(β2n2N) = Õ(n2) field operations are re-
quired and thus O(β2n2N2 logO(1) N) = Õ(n2) time
is needed for the decoder to run. Also, for each of
O(1) candidate polynomials, we perform a polyno-
mial evaluation at ρn + 1 positions, thus O(n log n)

field operations and so O(n log nN logO(1) N) time,
and one signature verification. In total, we have
O(n2N2 logO(1) N) = Õ(n2) processing time and
O(1) signature verifications. Finally, O(n) hash val-
ues are computed.

Communication Cost. The size of the authentication infor-
mation is n

ρn+1 (nh + s). That is, we have constant commu-

nication overhead per packet nh+s
ρn+1 < h

ρ
+ s

ρn
= h

ρ
+ o(1).

We see that 1/ρ hash values are included in each packet,
with ρ = α2

(1+ε)β < 1. The larger the value of ρ the smaller
the authentication overhead.

Delay. As delay, we count the number of packets that the
authenticator or decoder algorithm has to buffer. Of course,
by definition, any authentication scheme according to our
model needs to process n packets. However, delay is a cost
parameter that is useful even in our model, since it cap-
tures the ability of the authenticator or the decoder to pro-
cess packets in an on line fashion. In our scheme the sender
processes n packets and the receiver processes βn packets
in the worst case. However, the receiver can invoke an de-
coding procedure only after ρn+1 or αn packets have been
received.

In particular, the receiver can try to compute the authenti-
cation information exactly after ρn+1 packets are received:
the used code is systematic and the first ρn + 1 symbols of
E(S) equal S (where S is the authentication information).
Of course, we need no packet loss to occur among these
packets. If the correct polynomial is computed (and veri-
fied) from the first ρn + 1 packets, the authentication infor-
mation is computed without any decoding overhead. Simi-
larly, the receiver can try to compute the authentication in-
formation after αn packets are received: this time the de-
coder runs completely, but computation is a less expensive,
and if the correct authentication information is computed,
no attack is in process and the delay is αn. Otherwise, if
no polynomial can be verified, the receiver is under attack
and βn delay is required in the worst case. In other words,
our scheme can distinguish between the less expensive de-
tection of an attack by an adversary from the more expen-



sive verification of the valid received packets. We believe
that this feature is desirable, for less computational effort is
spent when no adversary acts.

5.1. Tuning and Extensions

Given specific values of the survival rate α and flood
rate β of the network, the parameter ρ, which controls the
communication overhead, can be tuned by the tolerance pa-
rameter ε. This gives one degree of freedom in implement-
ing the exact encoding-decoding procedures. Namely, band-
width consumption can be decreased at the cost of increas-
ing by a constant factor the time complexity and vise versa.
A realistic deployment of our scheme can consider α and
β as an additional degree of freedom: early packet streams
(groups of packets) are encoded for bigger values of α and
smaller values of β. Depending on the observed network’s
behavior, the network parameters can be later adjusted to a
new desired level of security. Table 1 shows the communi-
cation overhead per packet for specific values of α, β and ε.

Independently of the choice of parameters, our scheme
can be further modified in two ways, achieving different
trade-offs between communication cost and computational
efficiency. First, we can decrease the communication over-
head, by applying the technique of [20]. The idea is that,
since (at least) αn packets are guaranteed to be received
intact, a significant portion of the authentication informa-
tion is obtained by the decoder for free and without decod-
ing: the (at least) αn hash values of the valid packets. Thus,
less authentication information can be used and less redun-
dancy is added to packets. To implement this idea, one has
to encode the n hash values appropriately and, thus, Reed-
Solomon codes are applied twice. Interestingly, as opposed
to the case of erasure codes [20], in our case where Reed-
Solomon error correcting codes are used, the decrease of
the communication overhead occurs only for appropriate
ranges of values for the network parameters α and β.

In particular, let {X,X ′} ← C[n, k+1]q(X) denote the
application of systematic Reed-Solomon code [n, k + 1]q
on word X , where X ′ is the added redundancy. Also let
H = h1 ◦ . . . ◦ hn be the hash values of the n pack-
ets. We get the modified scheme by encoding {H,H ′} ←
C[γn, n+1]q1

(H) and then {A,A′} ← C[n, ρn+1]q2
(A),

where A = H ′ ◦ SignSK(H), γ = 1 − α +
√

(1 + ε)β,

q1 = 2h, ρ = α2

(1+ε)β and q2 = 2d
|A|

ρn+1e. As in our ba-
sic scheme, A ◦ A′ is split in n equal shares Ai and packet
pi corresponds to authenticated packet ai = GID◦i◦pi◦Ai.
At the decoder, by the network reliability (at least αn pack-
ets will be valid) it is guaranteed that a constant size list of
candidate strings for H ′◦SignSK(H) is produced; also, list-
decoding is transformed to unambiguous decoding by veri-
fying a constant number of signatures. Furthermore, the re-
ceiver is always capable to list-decode the packet hashes H .

If in total δn packets reach the receiver, δ ≤ β, then Corol-
lary 2.3 holds, since, t ≥ αn + (γ − 1)n ≥

√

(1 + ε)δn.
The per packet communication overhead of this scheme is
(γ−1)h

ρ
. When γ < 2, with this scheme we save in commu-

nication overhead. That is, for network parameters α and

β in appropriate ranges so that β < (α+1)2

1+ε
we can de-

crease the communication cost by the constant factor γ at
the cost of increasing the computational cost by roughly a
factor of 2, since two applications of Reed-Solomon codes
are required.

Also, by decreasing the field size, we can reduce the
cost of performing field operations. For instance, we could
split the authentication information into γρn + 1 substrings
of size `, γ > 1 (e.g., γ = 10), consider each substring
as a field element in Fq , with q = 2`, encode with a
[γn, γρn+1]q Reed-Solomon code, and split the augmented
authentication information into n pieces (each of γ field ele-
ments). In this way, the communication cost stays the same,
but field operations become faster. The number of field op-
erations at the encoder or decoder is increased by only a
constant factor. Depending on the hardware architecture,
this modification may be useful. A drawback here is that
one injected packet by the adversary is now affecting the
decoding algorithm by a factor γ.

5.2. Comparison with other schemes

We compare our schemes against various classes of pro-
posed multicast authentication schemes.

Sign-All and Merkle Tree Schemes. The sign-all and
Merkle-tree [28] authentication schemes are resilient to
fully adversarial networks. The sign-all scheme involves
one signature (resp. verification) operation per packet
and a communication overhead that is equal to the sig-
nature size. Depending on the specific signature scheme
in use, the parameters of our scheme or the architec-
ture, both communication and computational costs of our
scheme are comparable to the corresponding costs of the
sign-all scheme.

Very short signature schemes have recently been pro-
posed [3]. While the length of a signature can be as low
as 160 bits, the security of this signature scheme is only
proven in the random oracle model, and only under a strong
assumption (Diffie-Hellman assumption in gap-DH groups,
see Boneh and Franklin [2] for more on these groups).
Signing every packet with this short signature, therefore,
has a communication advantage over our construction, but
loses in provable security. On the other hand, signing ev-
ery packet with a provably secure signature, such as the the
Cramer-Shoup [6] signature or its modification due to Fis-
chlin [9], will add about 500 bytes to each packet — which
is more than what we have for reasonable α and β.



α β ε 1/ρ cost c (bytes) α β ε 1/ρ cost c (bytes)

0.33 1.5 0.1 15.15 303 0.5 1 0.01 4.04 81
0.5 1.5 0.1 6.6 132 0.5 2 0.01 8.08 162

0.75 1.5 0.1 2.93 59 0.5 3 0.01 12.12 243
0.33 1.5 0.5 20.66 414 0.5 1 0.1 4.4 88
0.5 1.5 0.5 9 180 0.5 2 0.1 8.8 176

0.75 1.5 0.5 4 80 0.5 3 0.1 13.2 264

Table 1. Communication cost c per packet for various values of the survival rate α, flood rate β and
tolerance parameter ε. We assume the use of the SHA-1 hashing algorithm, that is, h = 20 bytes.
The communication cost should be compared with the size s of the signature in use (e.g., an RSA
signature with s = 256 bytes). Recall that ρ = α2

(1+ε)β is the rate of the code in use and that c = h
ρ

=
hβ(1+ε)

α2 .

Additionally, signing every packet is undesirable in prac-
tice. Indeed, by signing every packet separately we lose
both in efficiency and in architecture design since the se-
cret key operations are computationally expensive and re-
quire extra need of security. Invoking a signature operation
involves fetching the private key and temporarily storing it
in the main memory of the system. When secret key opera-
tions are performed at high rates, the secret key resides al-
most exclusively in the memory of the system increasing the
danger of the key being compromised to other running pro-
cesses in the system. Special-purpose hardware can be used
to overcome this problem, but of course at a higher cost. In
terms of secure architecture design costs, and also for prov-
able security or efficiency reasons, the sign-all approach is
inferior to ours.

Finally, since one signature verification must be per-
formed for each received packet, valid or not, the sign-all
solution suffers by the following denial-of-service attack at
the receiver: by injecting invalid packets an adversary can
increase the computation resources spent at the receiver for
signature verifications. In our scheme, where signature dis-
persal is used, no such attack is possible.

On the other hand, the Merkle-tree scheme has better
time complexity than our scheme. For a group of pack-
ets of size n, only 2n hash computations and one signa-
ture computation (resp. verification) are performed at the
sender (resp. receiver5). However, the Merkle-tree scheme
has communication cost that grows with the number of
packets, thus, this scheme is not scalable. Our scheme is
efficient in terms of communication cost: packets have con-
stant authentication overhead.

5 Note that at the receiver, by appropriately caching hash values, only
one signature verification is needed: once the first valid packet is veri-
fied, its (authenticated) hashes are stored and subsequent packets need
only be verified with respect to the hashes they carry. Because of that,
injected packets do not necessarily cause signature verifications.

Graph-Based Schemes. These schemes [12, 22, 19, 27] as-
sume the reliable receipt of a signature packet. However, a
fully adversarial network will capture the signature packet
and invalidate the scheme. Even if the signature packet is
assumed to arrive intact, any efficient scheme in terms of
communication overhead (i.e., with constant overhead for
packet) will have the undesirable property that O(1) critical
packets can be adversarially chosen to disconnect from the
authentication chain the signature node (packet). In the pig-
gybacking scheme in [19], this number of critical packets
can be O(n) at the expense of a communication overhead
of O(n) per packet. Our scheme does not have these draw-
backs since the signature is dispersed among all the pack-
ets. As opposed to graph-based authentication where the au-
thentication of a packet crucially depends on other packets
(with packets closer to the signature packet being more im-
portant), our scheme is symmetric in this context: all pack-
ets share the authentication information.

Erasure-Code Schemes. These schemes [21, 20] make use
of erasure codes to tolerate packet losses, up to a constant
fraction. However, no packet injections are tolerated: a sin-
gle injected packet suffices to fail the decoding procedure.
For networks where packets get only lost, they perform
slightly better than our scheme in terms of communication
cost and time complexity. This is due to the fact that era-
sure codes are more efficient than error-correcting codes in
terms of time complexity and space requirement. Moreover,
erasure codes can tolerate more erasures than the theoreti-
cal limit d/2 for error correcting codes (d is the diameter
of the code). In [15], the authors address the vulnerabil-
ity to packet injections that any scheme based on erasure-
codes has, but their proposed scheme has high communi-
cation overhead and is not scalable, because a Merkle hash
tree is used to “filter out” the injected packets (and thus the
communication cost is O(log n)).



Other Schemes. TESLA [22] and the scheme by Xu and
Sandhu [29] have very different assumptions from our
model. They are both based on MACs and on strong time-
synchronization requirements about the nodes of the net-
works that do not fit our model. For instance, in [29],
the routers of the networks are considered trusted enti-
ties.

Table 2 summarizes the above discussion, were se-
lected schemes are compared with our scheme. In particu-
lar, we consider two graph-based authentication schemes,
one of constant degree (expander construction [27]) and
one of O(n) degree (piggybacking scheme with parameter-
ized performance [19], where we assume a constant num-
ber of classes), and one erasure scheme (optimized in terms
of communication scheme [20]).

6. Conclusion

In this paper, we propose a new general framework for
the multicast authentication problem, where the network is
controlled by an adversary that has great, yet not unlimited,
power in modifying the transmitted stream. Our model is re-
alistic in terms the of adversarial model and the security as-
sumptions. The limitations on the adversary’s power, char-
acterized by the survival and flood rates, exclude from con-
sideration only degenerate cases, where the authentication
problem actually disappears.

Our work establishes a new direction in multicast au-
thentication by going beyond erroneous networks and ad-
dressing fully adversarial networks. Our authentication
scheme is efficient, lightweight and practical. It is as se-
cure as the “sign-all” solution, but more efficient in both
computational effort and communication overhead. Its con-
stant communication overhead makes it scalable and prefer-
able to the approach by Wong and Lam [28]. When com-
pared with this Merkle-tree based scheme, the O(n2)
time complexity of our scheme is a shortcoming. How-
ever, it is possible that in practice this may not be a serious
concern. Additionally, our scheme can be tuned by the net-
work parameters α and β and distinguishes between
the less expensive detection of an attack by the adver-
sary and the more expensive task of verification.

Open problems to address in future work are as follows.
First, we would like to investigate the practical performance
of our multicast authentication approach by implementing it
and conducting an experimental study. Also, a natural ques-
tion to explore is whether other classes of error correcting
codes can be employed in our framework.

Moreover, in this paper we showed a connection be-
tween coding theory and cryptography. In particular, we
employed cryptographic primitives to unambiguously list-
decode an error correcting code. It would be interesting to
study whether there are other connections between the two

areas. Finally, we would like to explore the use of our tech-
nique in other authentication problems.
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