Demo Abstract: Plug&Play Site Management
or, Why Your Solar Panel Should Be Like Your Webcam

Ettore Ferranti, Alessandro Montanari, Yvonne-Anne Pignolet, Igor Zablotchi
ABB Corporate Research
Segelhofstrasse 1K, 5405 Baden, Switzerland

1. MOTIVATION AND INTRODUCTION

Automation and monitoring systems for industrial and
commercial sites (short: Site Management Systems) often
grow organically, hence they need to be able to integrate
large numbers of heterogeneous devices, based on both legacy
and novel tools and systems. Currently, many standards
are used in the site management field for both control (e.g.,
KNX, BACNet, LON) and communication (e.g., WiFi, Eth-
ernet). Different systems are responsible for different tasks
and parts of the site. Since they are usually not designed to
interoperate, the site manager is forced to choose one that
suits most of her needs, forgoing features offered by alter-
native solutions. I.e, the flexibility of the site manager is
limited. Moreover, site management systems often require
technical personnel for installation, calibration and config-
uration, and are not designed to be modified frequently to
adapt to changes. Because of this, the site manager is dis-
couraged from changing the settings of the system or from
adding or updating devices, by lack of technical knowledge
and by high costs. In other words, a site management sys-
tem that makes adding new devices, e.g., solar panels, as
easy as plugging in and using a webcam is needed.

A first step in this direction is presented in [3] showcasing
a Zeroconf system for building automation. Our approach
goes beyond [3] by integrating a large variety of devices and
protocols. Other improvements include i) the fact that in-
stead of using HTTP and TCP we rely on the more efficient
pair CoAP and UDP, ii) that our DNS-SD implementation
allows devices not only to periodically advertise their ser-
vices but also to answer queries, iii) the solution proposed
in [3] does not make use of a routing protocol specifically
tailored for sensor networks such as RPL described below
and iv) our system features a domain specific language to
write applications easily and offering greater flexibility than
the web application to write rules implemented for [3].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

SenSys’13, November 11-15, 2013, Roma, Italy.
ACM 978-1-4503-2027-6/13/11 .

2. SELF-CONFIGURING SITE
MANAGEMENT SYSTEM

To tackle these problems we propose a multi-agent ar-
chitecture [1, 7] integrating different technologies to offer
flexible interfaces to the system. Our solution is based on
standard IP protocols and reduces the cost of deployment
while improving flexibility. Hence we can take advantage
of existing infrastructures and devices (e.g. a LAN inside a
building). Below we discuss our recent extensions to increase
the user-friendliness and flexibility of our system.

Voice .
_Commands

" Flexible
SmartScript
Grammar

2
Shre
“

"

o

Constrained Devices

v

ZeroConf, \ —xY
REST, Heterogeneous

RPL \ Communication/

Multi-Agent
System

Figure 1: Extensions for more flexible site manage-
ment.

Intuitive Interaction: Our approach provides the user
with an innovative and simple way of controlling the system,
called SmartScript [1]. SmartScript is a domain-specific lan-
guage tailored for site management. It allows users to input
intuitive, high-level commands to set or query the state of an
appliance or groups of appliances. By design, SmartScript
does not rely on the assumption that the user has in-depth
knowledge of the technical details of the system. To this
end, the syntax and keywords used by SmartScript, as well
as device names and states were made as close as possible to
natural speech. Moreover, the language features flow con-
trol through conditional statements and loops. Below, we
present improvements made since the original implementa-
tion [1].

SmartScript, as well as the agent infrastructure it inter-
acts with, were revised to add more flexibility. First, they
adapt quickly to the dynamic addition or removal of de-
vices. When such a change occurs, an agent is notified
and the infrastructure related to the language is automat-
ically re-generated and re-deployed. Thus, the user is sup-
ported by auto-suggestions for newly added devices. Sec-
ond, SmartScript now has a modular grammar: the main
grammar defining core functionality and a dictionary mod-
ule for terminals such as keywords or device names. There-
fore, it can be easily adapted to accommodate languages
other than English (the current default) by implementing



dictionary modules for those languages, without changing
the core grammar.

Another focus of SmartScript is ease of use. Therefore,
users can now control devices by spoken commands in ad-
dition to the original version, where commands are given in
written form. For this purpose, the previously strict syntax
has been replaced by a less constrained one allowing for ex-
tra (non-essential) words (abundant in natural speech), ar-
bitrary word order and approximative matching of the input
to terminals. For instance, the command to lower the blinds
in an office was previously set G0147_shutter to "DOWN’,
it can now have a more natural form: Could you lower the
shutter in g147 please?

Auto-Device Discovery and Interoperability: For
auto-configuration we use the mDNS and DNS-SD [2] proto-
cols (Zeroconf) and apply a REST architecture over Coapl5].

These lightweight protocols are perfectly suited for constrained

devices and allow us to keep the resource usage low.

Each device is able to answer mDNS/DNS-SD queries
and exposes a RESTful API for its sensors and actuators.
To discover a new device, each node publishes a service
(node._coap._udp) identifying the IPv6 address and port
of its RESTful interface. In the agent system, a specific
agent browses the network for the service type _coap._udp
and as soon as it detects a new device it performs a GET
operation as described in [4]. This returns a list of links of
the resources hosted by that device. This way, the system
knows what the device can do, obsoleting manual configu-
ration. After the discovery phase, the system can interact
with any device using standard HTTP-based methods GET,
POST, PUT and DELETE. Disappearing devices are handled by
the DNS-SD protocol automatically as well. Moreover, the
RESTful interface guarantees a homogeneous access to the
sensors and actuators hosted by the devices and facilitates
interoperation with other web technologies.

Heterogeneous Communication: Often the high cost
for the installation of cables and the configuration of the
communication infrastructure is an obstacle for brown field
site management. Furthermore, adaptable links between
components are an essential feature of a flexible distributed
system. As a consequence, we extended the networking stack
of the embedded Contiki OS, in order to offer flexibility re-
garding the communication technologies used and to satisfy
the constraints of Low Power and Lossy Networks. More
precisely we modified the stack to allow the IPv6 routing
protocol RPL [6] to use more than one communication in-
terface, e.g., wireless and Ethernet. RPL is a self-healing
Distance Vector protocol that can be optimized for various
applications by changing the objective function it uses to
compute suitable paths to border routers. It ensures that
new devices join an existing network automatically and dis-
cover communication paths to and from any node in the
network.

3. DEMONSTRATION DESCRIPTION

For the demonstration, we set up a mini office-like en-
vironment, complete with various sensors (e.g., brightness,
movement, temperature) and actuators (e.g., light switch,
shutter motor) and showcase the main features of our sys-
tem. In particular, we show how the system can be con-
trolled by issuing voice commands, how plugging devices in
and out is automatically recognized, and how communica-
tion seamlessly switches between wireless and wired links.

b)

Figure 2: a) Setup for service discovery and REST
demo, with two Arduinos equipped with sensors
b) Schema of RPL demo with four Arduinos with
802.15.4 and Ethernet shields, two cables, sending a
message from A to B over one of the two paths

Part 1 - SmartScript + Voice Recognition We show-
case the voice command capability. Users can control the
appliances in the miniature office environment by issuing
commands with a headset connected to a computer. Users
are encouraged to experiment with different wordings to il-
lustrate the flexibility of the interface.

Part 2 - Service Discovery + REST We show how
to realize a flexible and auto-configurable system with stan-
dard protocols and technologies. New sensor and actuator
devices will be turned on and their presence will be detected
automatically by the system. The new devices will appear
in the Web user interface along with all the information they
carry. Moreover, the newly added devices become address-
able in SmartScript commands, therefore it is possible to
use them in the language without any manual intervention.

Part 3 - Reliability over Heterogeneous Links We
demonstrate how RPL switches paths depending on the avail-
ability of reliable links. Our setup (Figure 2.b) consists of
four nodes, equipped with an 802.15.4 shield and an Eth-
ernet (ENC28J60) shield, forming a ring connection (using
MAC address filtering to ensure that no other messages are
received). When transmitting a message from node A to
a node B connected by Ethernet, RPL chooses this direct
path, as can be seen by a blinking LED on node B. If the ca-
ble between them is unplugged, the LED on the other nodes
start blinking, signaling that they are forwarding packets.

4. REFERENCES

[1] D. Adolf, E. Ferranti, S. Koch. SmartScript-A
Domain-Specific Language for Appliance Control in
Smart Grids. IEEE SmartGridComm’12.

[2] S. Cheshire, M. Krochmal. Multicast DNS (IETF RFC
6773), DNS-Based Service Discovery (IETF RFC
6762), '11.

[3] L. Schor, P. Sommer, R. Wattenhofer. Towards a
zero-configuration wireless sensor network architecture
for smart buildings. BuildSys’09.

[4] Z. Shelby. Constrained RESTful Environments (CoRE)
Link Format, IETF RFC 6690, ’12.

[5] Z. Shelby, K. Hartke, C. Bormann. Constrained
application protocol (coap), draft-ietf-core-coap-18, ’13.

[6] T. Winter, P. Thubert, A. Brandt, T. H. Clausen,

J. W. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur. RPL: IPv6 Routing Protocol for Low power
and Lossy Networks. IETF RFC 6550, ’12.

[7] D.-Y. Yu, E. Ferranti, H. Hadeli. An intelligent

building that listens to your needs. ACM SAC ’13.



