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2  Calculus 
 

Preface 

Calculus is at once the most important and most difficult subject encountered early by 
students of mathematics; introductory courses often succeed only in turning students 
away from mathematics, and from the many subjects in which the calculus plays a major 
role. 

The present text introduces calculus in the informal manner adopted in my Arithmetic [1], 
a manner endorsed by Lakatos [2], and by the following words of Lanczos from his 
preface to [3]: 

Furthermore, the author has the notion that mathematical formulas have their “secret 
life” behind their Golem-like appearance. To bring out the “secret life” of 
mathematical relations by an occasional narrative digression does not appear to him 
a profanation of the sacred rituals of formal analysis but merely an attempt to a more 
integrated way of understanding. The reader who has to struggle through a maze of 
“lemmas”, “corollaries”, and “theorems”, can easily get lost in formalistic details, to 
the detriment of the essential elements of the results obtained. By keeping his mind 
on the principal points he gains in depth, although he may lose in details. The loss is 
not serious, however, since any reader equipped with the elementary tools of algebra 
and calculus can easily interpolate the missing details. It is a well-known experience 
that the only truly enjoyable and profitable way of studying mathematics is the 
method of “filling in the details” by one’s own efforts. 

The scope is broader than is usual in an introduction, embracing not only the differential 
and integral calculus, but also the difference calculus so useful in approximations, and 
the partial derivatives and the fractional calculus usually met only in advanced courses. 
Such breadth is achievable in small compass not only because of the adoption of 
informality, but also because of the executable notation employed. In particular, the array 
character of the notation makes possible an elementary treatment of partial derivatives in 
the manner used in tensor analysis. 

The text is paced for a reader familiar with polynomials, matrix products, linear 
functions, and other notions of elementary algebra; nevertheless, full definitions of such 
matters are also provided. 
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Chapter 

1 

Introduction 

A. Calculus 

Calculus is based on the notion of studying any phenomenon (such as the position of a 
falling body) together with its rate of change, or velocity. This simple notion provides 
insight into a host of familiar things: the growth of trees or financial investments (whose 
rates of change are proportional to themselves); the vibration of a pendulum or piano 
string; the shape of the cables in a powerline or suspension bridge; and the logarithmic 
scale used in music. 

In spite of the simplicity and ubiquity of its underlying notion, the calculus has long 
proven difficult to teach, largely because of the difficult notion of limits. We will defer 
this difficulty by first confining attention to the polynomials familiar from high-school 
algebra. 

We begin with a concrete experiment of dropping a stone from a height of twenty feet, 
and noting that both the position and the velocity (rate of change of position) appear to 
depend upon (are functions of) the elapsed time. However, because of the rapidity of the 
process, we are unable to observe either with any precision.  

More precise observation can be provided by recording the fall with a video camera, 
playing it back one frame at a time, and recording the successive positions in a vertical 
line on paper. A clearer picture of the motion can be obtained by moving the successive 
points to a succession of equally spaced vertical lines to obtain a graph or plot of the 
position against elapsed time. 

The position of the falling stone can be described approximately by an algebraic 
expression as follows: 

         p(t) = 20 - 16 * t * t 

We will use this definition in a computer system (discussed in Section B) to compute a 
table of times and corresponding heights, and then to plot the points detailed in the table. 
The computer expressions may be followed by comments (in Roman font) that are not 
executed: 
 
   i.11                 First eleven integers, beginning at zero 
0 1 2 3 4 5 6 7 8 9 10 
    
t=:0.1*i.11             Times from 0 to 1 at intervals of one-tenth    
 
h=:20-16*t*t            Corresponding heights 
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   t,.h 
  0    20 
0.1 19.84 
0.2 19.36 
0.3 18.56 
0.4 17.44 
0.5    16 
0.6 14.24 
0.7 12.16 
0.8  9.76 
0.9  7.04 
  1     4 

   load ’plot’ 

   PLOT=:’stick,line’&plot 
   PLOT t;h 

 

 

The plot gives a graphic view of the velocity (rate of change of position) as the slopes of 
the lines between successive points, and emphasizes the fact that it is rapidly increasing 
in magnitude. Moreover, the table provides the information necessary to compute the 
average velocity between any pair of points. 

For example, the last two rows appear as: 
   0.9  7.04 
     1     4 
 
and subtraction of the first of them from the last gives both the change in time (the 
elapsed time) and the corresponding change in position: 
 
   1 4 - 0.9 7.04 
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0.1 _3.04 
 
Finally, the change in position divided by the change in time gives the average velocity: 
    
   _3.04 % 0.1    Division is denoted by % 
_30.4             The _ denotes a negative number 
 
The negative value of this velocity indicates that the velocity is in a downward direction. 

Both the table and the plot suggest abrupt changes in velocity, but smaller intervals 
between points will give a truer picture of the actual continuous motion: 
   t=:0.01*i.101   Intervals of one-hundredth over the same range 
   h=:20-16*t*t 
 
   PLOT t;h 

 
 
This plot suggests that the actual (rather than the average) rate of change at any point is 
given by the slope of the tangent (touching line) to the curve of the graph. In terms of the 
table, it suggests the use of an interval of zero. 
 
But this would lead to the meaningless division of a zero change in position by a zero 
change in time, and we are led to the idea of the "limit" of the ratio as the interval 
"approaches" zero.  
 
For many functions this limit is difficult to determine, but we will avoid the problem by 
confining attention to polynomial functions, where it can be determined by simple 
algebra.  

The velocity (rate of change of position) is also a function of t and, because it is derived 
from the function p, it is called the derivative of p . It also can be expressed algebraically 
as follows:    v(t) = -32*t. 
Moreover, since the velocity is also a function of t, it has a derivative (the acceleration) 
which is also called the second derivative of the original function p . 
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Various notations (with various advantages) have been used for the derivative: 

                                 .                               .. 
newton p p 
leibniz dy/dt d2y/d2t dny/dnt  (y = p (t)) 

modern p' p'' pn 

heaviside (J) p D.1 p D.2 p D.n 
 

Heaviside also introduced the notion of D as a derivative operator, an entity that applies 
to a function to produce another function. This is a new notion not known in elementary 
algebra. 

In the foregoing we have seen that calculus requires three notions that will not have been 
met by most students of high school algebra: 

1. The notion of the rate of change of a function. 

2. The notion of an operator that applies to a function to produce a function. 

3. The notion of a limit of an expression that depends upon a parameter whose 
limiting value leads to an indeterminate expression such as 0%0. 

 
Although the notion of an operator that produces a function is not difficult in itself, its 
first introduction as the derivative operator (that is, jointly with another new notion of 
rate of change) makes it more difficult to embrace. We will therefore begin with the use 
of simpler (and eminently useful) operators before even broaching the notion of rate of 
change. 

A further obstacle to the teaching of calculus (common to other branches of mathematics 
as well) is the absence of working models of mathematical ideas, models that allow a 
student to gain familiarity through concrete and accurate experimentation. Such working 
models are provided automatically by the adoption of mathematical notation that is also 
executable on a computer. 

In teaching mathematics, the necessary notation is normally introduced in context and in 
passing, with little or no discussion of notation as such. Notation learned in a simple 
context is often expanded without explicit comment. For example, although the 
significance of a fractional power may require discussion, the notations x1/2 and xm/n and 
xpi used for it may be silently adapted from the more restricted integer cases x2 and xn. 

Although an executable notation must differ somewhat from conventional notation (if 
only to resolve conflicts and ambiguities), it is important that it be introducible in a 
similarly casual manner, so as not to distract from the mathematical ideas it is being used 
to convey. The subsequent section illustrates such use of the executable notation J 
(available free from webside jsoftware.com) in introducing and using vectors and 
operators. 
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B. Notation and Terminology 

The terminology used in J is drawn more from English than from mathematics: 

a) Functions such as + and * and ^ are also referred to as verbs (because 
they act upon nouns such as 3 and 4), and operators such as / and & are 
accordingly called adverbs and conjunctions, respectively. 

b) The symbol =: used in assigning a name to a referent is called a copula, 
and the names credits and sum used in the sentences credits=: 
24.5 17 38 and sum=:+/ are referred to as pronouns and proverbs 
(pronounced with a long o), respectively. 

c) Vectors and matrices are also referred to by the more suggestive terms 
lists and tables. 

Because the notation is executable, the computer can be used to explore and elucidate 
topics with a clarity that can only be appreciated from direct experience of its use. The 
reader is therefore urged to use the computer to do the exercises provided for each 
section, as well as other experiments that may suggest themselves. 

To avoid distractions from the central topic of the calculus, we will assume a knowledge 
of some topics from elementary math (discussed in an appendix), and will introduce the 
necessary notation with a minimum of comment, assuming that the reader can grasp the 
meaning of new notation from context, from simple experiments on the computer, from 
the on-line Dictionary, or from the study of more elementary texts such as Arithmetic [1]. 
The remainder of this section is a computer dialog (annotated by comments in a different 
font) that introduces the main characteristics of the notation. 

The reader is urged to try the following sentences (and variants of them) on the computer: 
 
    3.45+6.78+0.01 Plus 
10.24 
 

   2*3 Times  
6 
   2^3 Power (product of three twos) 
8 
 
   1 2 3 * 4 5 6 Lists or vectors 
4 10 18 
 
   2 < 3 2 1 Less than (1 denotes true, and 0 denotes 
false) 
1 0 0 
2 <. 3 2 1 Lesser of (Minimum) Related 
2 2 1 spellings denote related verbs 
 
   (+: , -: , *: , %:) 16 Double, halve, square, square root 
32 8 256 4 
 
   +/4 5 6 The symbol / denotes the adverb insert 
15 
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   4+5+6 
15 
 
   */4 5 6 
120 
 
   3-5 Verbs are ambivalent, with a meaning that 
_2 depends on context; the symbol - denotes 
    -5 subtraction or negation according to context 
_5 
 
   2^1 2 3 The power function 
2 4 8 
   ^1 2 3 The exponential function 
2.71828 7.38906 20.0855 
 
   */4 5 6 A derived verb produced by an 
120 adverb is also ambivalent; the 
 
   1 2 3 */ 4 5 6 dyadic case of */ produces a multiplication table 
 4  5  6 

 8 10 12 
12 15 18 
 
   a=: 1 2 3 The copula (=:) can be used to assign names 
   b=: 4 5 6 7 to nouns, verbs, adverbs, and conjunctions  
   powertable=: ^/ 
   c=: a powertable b 
   c 
 1   1   1    1 
16  32  64  128 
81 243 729 2187 
 
   +/ c Adds together items (rows) of the table c 
98 276 794 2316 
 
   +/"1 c The rank conjunction " applies its argument  
4 240 3240 (here the function +/) to each rank-1 cell (list) 
 
   3"1 c                   The constant function 3 applied to each list of c 
3 3 3 
   3"1 b                   The constant function 3 applied to the list b        
3 
   3"0 b                   The constant function 3 applied to each atom of b 
3 3 3 
  
   x=: 4 
   1+x*(3+x*(3+x*(1)))     Parentheses provide punctuation 
125 as in high-school algebra. However,  
   1+x*3+x*3+x*1 there is no precedence or hierarchy  
125 among verbs; each applies to the 
   (3*4)+5 result of the entire phrase to its right 
17 
   3*4+5 
27 
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   tithe=: %&10 The conjunction & bonds a dyad to a noun; result is 
   tithe 35 a corresponding function of one argument (a monad) 
3.5 
   log=: 10&^. 
   log 10 20 100 
1 1.30103 2 
 
   sin=: 1&o. Sine (of radian arguments) 
   sin 0 1 1r2p1 Sine of 0, 1, and one-half pi 
0 0.841471 1 
 
   x=:1 2 3 4  
   ^&3 x Cube of x  
1 8 27 64 

We will write informal proofs by writing a sequence of sentences to imply that each is 
equivalent to its predecessor, and that the last is therefore equivalent to the first. For 
example, to show that the sum of the first n odd numbers is the square of n, we begin 
with: 
   ] odds=: 1+2*i.n=: 8 The identity function ]causes display of result 
1 3 5 7 9 11 13 15 
   |.odds 
15 13 11 9 7 5 3 1 
 
   odds + |.odds 
16 16 16 16 16 16 16 16 
 
   n#n 
8 8 8 8 8 8 8 8 
 

and then write the following sequence of equivalent sentences: 
 
   +/odds 
   +/|.odds 
   -:(+/odds) + (+/|.odds) 
   -:+/ (odds+|.odds) 
   +/ -:(odds+|.odds) 
   +/n#n 
   n*n 
   *:n 

Exercises 

Solutions or hints appear in bold brackets. Make serious attempts before consulting them. 

B1 To gain familiarity with the keyboard and the use of the computer, enter some of 
the sentences of this section and verify that they produce the results shown in the 
text. Do not enter any of the comments that appear to the right of the sentences. 

B2 To test your understanding of the notions illustrated by the sentences of this 
section, enter variants of them, but try to predict the results before pressing the 
Enter key. 

B3 Enter p=: 2 3 5 7 11 and predict the results of +/p and */p; then review the 
discussion of parentheses and predict the results of -/p and %/p . 
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B4 Enter i. 5 and #p and i.#p and i.-#p . Then state the meanings of the 

primitives # and i. . 

B5 Enter asp=: p * _1 ^ i. # p to get a list of primes that alternate in sign 
(enter asp alone to display them). Compare the results of -/p and +/asp and state 
in English the significance of the phrase -/ . 

 [ -/ yields the alternating sum of a list argument] 

B6 Explore the assertion that %/a is the alternating product of the list a. 

 [ Use arp=: p^_1^i.#p  ] 

B7 Execute (by entering on the computer) each of the sentences of the informal proof  
preceding these exercises to test the equivalences. Then annotate the sentences to 
state why each is equivalent to its predecessor (and thus provide a formal proof). 

B8 Experiment with, and comment upon, the following and similar sentences: 
      s=: '4%5' 

   |.s 

   do=: ". 

   do s 

   do |.s 

   |.i.5 

   |. 'I saw' 

[ Enclosing quotes produce a list of characters that may be manipulated like other 
lists and may, if they represent proper sentences, be executed by applying the verb 
". .] 

B9 Experiment with and comment upon: 
   ]a=: <1 2 3 

   >a 

   2*a 

   2*>a 

   ]b=: (<1 2 3),(<'pqrs') 

   |.b 

   #b  

   1 2 3;'pqrs' 

[ < boxes its argument to produce a scalar encoding; > opens it.] 

B10 Experiment with and comment upon: 
   power=:^ 

   with=:& 

   cube=:^ with 3 

   cube 1 2 3 4  

1 8 27 64 

 

   cube 

^&3 

[ Entering the name of a function alone shows its definition in linear form; 
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the foreign conjunction !: provides other forms] 
 

B11  Press the key F1 (in the top row) to display the J vocabulary, and click the mouse 
on any item (such as -) to display its definition. 

C. Role of the Computer and of Notation 
Seeing the computer determine the derivatives of functions such as the square might well 
cause a student to forget the mathematics and concentrate instead on the wonder of how 
the computer does it. A student of astronomy might likewise be diverted by the wonders 
of optics and telescopes; they are respectable, but they are not astronomy. 

In the case of the derivative operator, the computer simply consults a given table of 
derivatives and an associated table of rules (such as the chain rule). The details of the 
computer calculation of the square root of  3.14159 are much more challenging. 

The important point for a student of mathematics is to treat the computer as a tool, being 
clear about what it does, not necessarily how it does it. In particular, the tool should be 
used for convenient and accurate experimentation with mathematical ideas. 

The study of notation itself can be fascinating, but the student of calculus should 
concentrate on the mathematical ideas it is being used to convey, and not spend too much 
time on byways suggested by the notation. For example, a chance application of the 
simple factorial function to a fraction (! 0.5) or the square root to a negative number 
(%:-4) might lead one away into the marvels of the gamma function and imaginary 
numbers. 

A student must, of course, learn some notation, such as the use of ^ for power (first used 
by de Morgan) and of + and * for plus and times. However, it is best not to spend too 
much conscious effort on memorizing vocabulary, but rather to rely on the fact that most 
words will be used frequently enough in context to fix them in mind. Moreover, the 
definition of a function may be displayed by simply entering its name without the usual 
accompanying argument, as illustrated in Exercise B10. 

D. Derivative, Integral, and Secant Slope 

The central notions of the calculus are the derivative and the integral or anti-derivative. 
Each is an adverb in the sense that it applies to a function (or verb) to produce a derived 
function. Both are illustrated (for the square function x2) by the following graph, in 
which the slope of the tangent at the point x,x2 as a function of x is the derivative of the 
square function, that is 2x. The area under the graph is the integral of the square, that is, 
the function x3 /3, a function whose derivative is the square function. 

Certain important properties of a function are easily seen in its graph. For example, the 
square has a minimum at the point 0 0; increases to the right of zero at an accelerating 
rate; and the area under it can be estimated by summing the areas of the trapezoids:  
   PLOT x;*: x=:i:4 



 Chapter 1  Introduction   15 
  

 
 
These properties concern the local behavior of a function in the sense that they concern 
how rapidly the function value is changing at any point. They are not easily discerned 
from the expression for the function itself, but are expressed directly by its derivative. 
More surprisingly, a host of important functions can be defined simply in terms of their 
derivatives. For example, the important exponential (or growth) function is completely 
defined by the fact that it is equal to its derivative (therefore growing at a rate equal to 
itself), and has the value 1 for the argument 0. 
The difference calculus (Chapter 4) is based upon secant slopes, such as illustrated by the 
lines in the foregoing plot of the square function. The slope of the secant (from ligne 
secante, or cutting line) through the points x,f x and (x+r),(f x+r) is obtained by 
dividing the rise(f x+r)-(f x) by the run r; the result of ((f x+r)-f x)%r is 
called the r-slope of f at the point x. 
The difference calculus proves useful in a wide variety of applications, including 
approximations to arbitrary functions, and financial calculations in which events (such as 
payments) occur at fixed intervals. 

The function used to plot the square must be prepared as follows: 
 
   load 'graph plot' 
 
   PLOT=:'stick,line'&plot 

E. Sums and Multiples 
The derivative of the function p+q (the sum of the functions p and q) is the sum of their 
derivatives. This may be seen by plotting the functions together with their sum. We will 
illustrate this by the sine and cosine functions: 

   p=:1&o.       The sine function 
 
   q=:2&o.       The cosine function 
 
   x=:(i.11)%5 
 
   PLOT x;>(p x);(q x);((p x)+(q x)) 
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Since each value of the sum function is the sum of the component functions, the slopes of 
its secants are also the sum of the corresponding slopes. Since this is true for every 
secant, it is true for the derivative. 
Similarly, the slopes of a multiple of a function p are all the same multiple of the slopes 
of p, and its derivative is therefore the same multiple of the derivative of p. For example: 

   PLOT x;>(p x);(2 * p x) 

 

F. Derivatives of Powers 

The derivative of the square function f=: ^&2 can be obtained by algebraically 
expanding the expression f(x+r) to the equivalent form (x^2)+(2*x*r)+(r^2), as 
shown in the following proof, or list of identical expressions: 
 
   ((f x+r)-(f x)) % r 

   (((x+r)^2)-(x^2))%r 

   (((x^2)+(2*x*r)+(r^2)) - (x^2)) % r 

   ((2*x*r)+(r^2)) % r 

   (2*x)+r 

Moreover, if r is set to zero in the final expression (2*x)+r, the result is 2*x, the value 
of the derivative of ^&2. 

Similar analysis can be performed on other power functions. Thus if g=: ^&3 : 

   ((g x+r)-(g x)) % r 
   ((3*(x^2)*r)+(3*x*r^2)+(r^3)) % r 
   (3*x^2)+(3*x*r)+(r^2) 

Again the derivative is obtained by setting r to zero, leaving 3*x^2. 
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Similar analysis shows that the derivative of ^&4 is 4*^&3 and, in general, the derivative 
of ^&n is n*^&n. Since the first term of the expansion of (x+r)^n is cancelled by the 
subtraction of x^n, and since all terms after the second include powers of r greater than 
1, the only term relevant to the derivative is the second, that is, n*x^n-1. 

G. Derivatives of Polynomials 
The expression (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3) is an example of a 
polynomial. We may also express it as 8 _20 _3 2 p. x, using the polynomial 
function denoted by p. . The elements of the list 8 _20 _3 2 are called the coefficients 
of the polynomial. For example: 
 
   x=:2 
 
   (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3) 
_28 
 
   8 _20 _3 2 p. x 
_28 
 
   c=:8 _20 _3 2 
   x=:0 1 2 3 4 5 
 
   (8*x^0) + (_20*x^1) + (_3*x^2) + (2*x^3) 
8 _13 _28 _25 8 83 
   c p. x 
8 _13 _28 _25 8 83 
 
The expression (8*x^0)+(_20*x^1)+(_3*x^2)+(2*x^3) is a sum whose derivative 
is therefore a sum of the derivatives of the individual terms. Each term is a multiple of a 
power, so each of these derivatives is a multiple of the derivative of the corresponding 
power. The derivative is therefore the sum: 
 
   (0*8)+(_20*1*x^0)+(_3*2*x^1)+(2*3*x^2) 
 
This is a polynomial with coefficients given by c*i.#c, with the leading element 
removed to reduce each of the powers by 1 : 
 
   c 
8 _20 _3 2 
 
   i.#c 
0 1 2 3 
 
   c*i.#c 
0 _20 _6 6 
 
   dc=:}.c*i.#c 
 
   dc 
_20 _6 6 
 
   dc p. x 
_20 _20 _8 16 52 100 
   x,.(c p. x),.(dc p. x) 
0   8 _20 
1 _13 _20 
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2 _28  _8 
3 _25  16 
4   8  52 
5 83 100 
 
   PLOT x;>(c p. x);(dc p. x)    

 
 
As remarked in Section A, " … the functions of interest in elementary calculus are easily 
approximated by polynomials … ". The following illustrates this for the sine function and 
its derivative (the cosine), using _1r6 for the rational fraction negative one-sixths: 
 
   csin=:0 1 0 _1r6 0 1r120 0 _1r5040   
   ccos=:}.csin*i.#csin 
   x=:(i:6)%2 
   PLOT x;>(csin p. x);(ccos p. x) 

 

H. Power Series 
We will call s a series function if s n produces a list of n elements. For example: 
 
   s1=:$&0 1   Press F1 for the vocabulary, and see the definition of $ 
   s2=:_1&^@s1    
   s1 5 
0 1 0 1 0 
   s2 8 
1 _1 1 _1 1 _1 1 _1 
 

A polynomial with coefficients produced by a series function is a sum of powers 
weighted by the series, and is called a power series. For example: 
 
   x=:0.5*i.6 
   (s1 5) p. x    Sum of odd powers 
0 0.625 2 4.875 10 18.125 
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   (s2 8) p. x    Alternating sum of powers 
1 0.664063 0 _9.85156 _85 _435.68 
 
We will define an adverb PS such that n (s PS) x gives the n-term power series 
determined by the series function s: 
 
   PS=:1 : (':'; '(u. x.) p. y.')  See definition of : (Explicit definition) 
    
   5 s1 PS x 
0 0.625 2 4.875 10 18.125 
    
   8 s2 PS x 
1 0.664063 0 _9.85156 _85 _435.68 
 
   S1=:s1 PS 
   5 S1 x 
0 0.625 2 4.875 10 18.125 
 
Power series can be used to approximate the functions needed in elementary calculus. For 
example: 
 
   s3=:%@!@i.     Reciprocal of factorial of integers 
   s4=:$&0 1 0 _1 
   s5=:s3*s4    
 
   s3 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
 
   s4 7 
0 1 0 _1 0 1 0 
 
   s5 7 
0 1 0 _0.166667 0 0.00833333 0 

 
   S3=:s3 PS 
   S4=:s4 PS 
   S5=:s5 PS 
  
   7 S3 x        Seven-term power series approximation to 
1 1.64872 2.71806 4.47754 7.35556 12.0097 
 
   ^x              the exponential function 
1 1.64872 2.71828 4.48169 7.38906 12.1825 
    
   10 S5 x       Ten-term power series approximation to  
0 0.479426 0.841471 0.997497 0.909347 0.599046 
 
   1&o. x          the sine function 
0 0.479426 0.841471 0.997495 0.909297 0.598472 
 
Since c=:s5 10 provides the coefficients of an approximation to the sine function, the 
expression }. c * i.10 provides (according to the preceding section) the coefficients 
of an approximation to its derivative (the cosine). Thus: 
 
   c=:s5 10 
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   y1=:c p. y=:0.5*i:6 
    
   y2=:(}.c*i.10) p. y 
    
   PLOT y;>y1;y2 

 

I. Conclusion 
We conclude with a brief statement of the ways in which the present treatment of the 
calculus differs from most introductory treatments. For the differential calculus of 
Chapter 2, the important difference is the avoidance of problems of limits by restricting 
attention to polynomials, and the use of power series to extend results to other functions. 

Moreover: 

1. In Vector Calculus (Chapter 3), Partial derivatives are treated in a simpler 
and more general way made possible by the use of functions that deal with 
arguments and results of arbitrary rank; this in contrast to the restriction to 
scalars (single elements) common in elementary treatments of the calculus. 

2. The Calculus of Differences (Chapter 4) is developed as a topic of interest in 
its own right rather than as a brief way-station to integrals and derivatives. 

3. Fractional derivatives (Chapter 5) constitute a powerful tool that is seldom 
treated in calculus courses. They are an extension of derivatives of integral 
order, introduced here in a manner analogous to the extension of the power 
function to fractional exponents, and the extension of the factorial and 
binomial coefficient functions to fractional arguments. 

4. Few formal proofs are presented, and proofs are instead treated (as they are 
in Arithmetic [1]) in the spirit of Lakatos in his Proofs and Refutations [2], of 
which the author says:  

"Its modest aim is to elaborate the point that informal, quasi-empirical, 
mathematics does not grow through the monotonous increase of the number 
of indubitably established theorems but through the incessant improvement 
of guesses by speculation and criticism, by the logic of proofs and 
refutations." 

5. The notation used is unambiguous and executable. Because it is executable, it 
is used for experimentation; new notions are first introduced by leading the 
student to see them in action, and to gain familiarity with their use before 
analysis is attempted. 

6. As illustrated at the end of Section B, informal proofs will be presented by 
writing a sequence of expressions to imply that each is equivalent to its 
predecessor, and that the last is therefore equivalent to the first. 
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7. The exercises are an integral part of the development, and should be 
attempted as early as possible, perhaps even before reading the relevant 
sections. Try to provide (or at least sketch out) answers without using the 
computer, and then use it to confirm your results. 

8.  Two significant parts may be distinguished in treatments of the calculus: 

a) A body comprising the central notions of derivative and anti-derivative 
(integral), together with their important consequences. 

b) A basis comprising the analysis of the notion of limit (that arises in the 
transition from the secant slope to the tangent slope) needed as a 
foundation for an axiomatic deductive treatment. 

The common approach is to treat the basis first, and the body second. For 
example, in Johnson and Kiokemeister Calculus with analytic geometry [6], 
the section on The derivative of a function occurs after eighty pages of 
preliminaries.  

The present text defers discussion of the analytical basis to Chapter 8, first 
providing the reader with experience with the derivative and the importance of its 
fruits, so that she may better appreciate the point of the analysis. 
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Chapter 

2 

Differential Calculus 

A. Introduction 
In Chapter 1 it was remarked that: 
• The power of the calculus rests upon the study of functions together with their 

derivatives, or rates-of-change. 
• The difficult notion of limits encountered in determining derivatives can be deferred 

by restricting attention to functions expressible as polynomials. 
• The results for polynomials can be extended to other functions by the use of power 

series. 
• The derivative of the polynomial c&p. is the polynomial d&p., where 
d=:}.c*i.#c. 
 
We begin by defining a function deco for the derivative coefficients, and applying it 
repeatedly to a list of coefficients that represent the cube (third power): 
 
   deco=:}.@(] * i.@#) 
 
   c=:0 0 0 1 
   x=:0 1 2 3 4 5 6 
   c p. x 
0 1 8 27 64 125 216 
   x^3 
0 1 8 27 64 125 216 
 
   ]cd=:deco c       Coefficients of first derivative of cube 
0 0 3 
   cd p. x 
0 3 12 27 48 75 108 
   3*x^2 
0 3 12 27 48 75 108 
   #cd               Number of elements  
3 
 
   ]cdd=:deco cd     Coefficients of second derivative of cube 
0 6 
   cdd p. x 
0 6 12 18 24 30 36 
   2*3*x^1 
0 6 12 18 24 30 36 
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   #cdd              Number of elements  
2 
 
   ]cddd=:deco cdd   Coefficients of third derivative of cube 
6 
   cddd p. x         A constant function 
6 6 6 6 6 6 6 
   1*2*3*x^0 
6 6 6 6 6 6 6 
   #cddd             Number of elements 
1 
 
   ]cdddd=:deco cddd Coefficients of fourth derivative of cube (empty list) 
 
   cdddd p. x        Sum of an empty list (a zero constant function) 
0 0 0 0 0 0 0 
   #cdddd            Number of elements 
0 

B. The derivative operator 
If f=:c&p. is a polynomial function, then g=:(deco c)&p. is its derivative. For 
example: 
 
   c=:3 1 _4 _2  
   f=:c&p. 
   g=:(deco c)&p. 
   ]x=:i:3 
_3 _2 _1 0 1 2 3 
 
   f x 
18 1 0 3 _2 _27 _84 
   g x 
_29 _7 3 1 _13 _39 _77 
 
   PLOT x;>(f x);(g x) 

 
Since deco provides the computations for obtaining the derivative of f in terms of its 
defining coefficients, it can also provide the basis for a derivative operator that applies 
directly to the function f. For example: 
 
   f d. 1 x 
_29 _7 3 1 _13 _39 _77 
    
In the expression f d. 1, the right argument determines the order of the derivative, in 
this case giving the first derivative. Successive derivatives can be obtained as follows: 
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   f d. 2 x 
28 16 4 _8 _20 _32 _44 
 
   (deco deco c) p. x 
28 16 4 _8 _20 _32 _44 
 
   f d. 3 x 
_12 _12 _12 _12 _12 _12 _12 
   (deco deco deco c) p. x 
_12 _12 _12 _12 _12 _12 _12  

C. Functions Defined by Equations (Relations) 

A function may be defined directly, as in f=:^&3 or g=:0 0 0 1&p. It may also be 
defined indirectly by an equation that specifies some relation that it must satisfy. For 
example:  

1.  invcube is the inverse of the cube. 

 A function that satisfies this equation may be expressed directly in various 
ways. For example: 

  cube=:^&3 
    cube x=: 1 2 3 4 5 
 1 8 27 64 125 
    
   invcube=: ^&(%3) 
    
   invcube cube x 
1 2 3 4 5 
    
   cube invcube x 
1 2 3 4 5 
     

   altinvcube=: cube ^:_1          Inverse operator 
   altinvcube cube x 
1 2 3 4 5 

 
2.  reccube is the reciprocal of the cube. 
 

   reccube=: %@cube  
   reccube x 
1 0.125 0.037037 0.015625 0.008 
   (reccube * cube) x 
1 1 1 1 1 

 
3. The derivative of s is the cube. 

 
   s=:0 0 0 0 0.25&p. 
   s x 
0.25 4 20.25 64 156.25 
   s d.1 x 
1 8 27 64 125 
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A stated relation may not specify a function completely. For example, the equation for 
Example 3 is also satisfied by the alternative function as=: 8"0+s. Thus: 
   as=:8"0 + s 
 
   as x 
8.25 12 28.25 72 164.25 
   as d.1 x 
1 8 27 64 125 

Further conditions may therefore be stipulated to define the function completely. For 
example, if it is further required that s 2 must be 7, then s is completely defined. Thus: 
 
   as=:3"0 + s 
   as 2 
7 
   as d.1 x 
1 8 27 64 125 

C1 Experiment with the expressions of this section. 

D. Differential Equations 

An equation that involves derivatives of the function being defined is called a differential 
equation. The remainder of this chapter will use simple differential equations to define an 
important collection of functions, including the exponential, hyperbolic, and circular (or 
trigonometric). 

We will approach the solution of differential equations through the use of polynomials. 
Because a polynomial includes one more term than its derivative, it can never exactly 
equal the derivative, and we consider functions that approximate the desired solution. 
However, for the cases considered, successive coefficients decrease rapidly in magnitude, 
and approximation can be made as close as desired. Consideration of the convergence of 
such approximations is deferred to Chapter 8. 

E. Growth F d.1 = F 

If the derivative of a function is equal to (or proportional to) the function itself, it is said 
to grow exponentially. Examples of exponential growth include continuous compound 
interest, and the growth of a well-fed colony of bacteria. 

If f is the polynomial c&p., then the derivative of f is the polynomial with coefficients 
deco c. Thus: 
 
   ]c=:1,(%1),(%1*2),(%1*2*3),(%!4),(%!5),(%!6) 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
   c*i.#c 
0 1 1 0.5 0.166667 0.0416667 0.00833333 
   }. c*i.#c 
1 1 0.5 0.166667 0.0416667 0.00833333 
   deco c 
1 1 0.5 0.166667 0.0416667 0.00833333 

In this case the coefficients of the derivative polynomial agree with the original 
coefficients except for the missing final element. The same is true for any coefficients 
produced by the following exponential coefficients function: 
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   ec=: %@! 

 
   ]c=: ec i. n=: 7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
   deco c 
1 1 0.5 0.166667 0.0416667 0.00833333 

Consequently, the function c&p. is approximately equal to its derivative. For example: 
 
   c&p. x=: 0 1 2 3  
1 2.71806 7.35556 19.4125  
 
   (deco c)&p. x 
1 2.71667 7.26667 18.4  
 

The primitive exponential function, denoted by ^, is defined as the limiting case for large 
n.  For example: 
 
   c=: ec i. n=: 12 
   c&p. x 
1 2.71828 7.38905 20.0841 
   ^x 
1 2.71828 7.38906 20.0855 

The related function ^@(r&*) grows at a rate proportional  to the function, the ratio 
being r. For example: 
 
   r=:0.1 
   q=: ^@(r&*) 
 
   q d.1 x 
0.1 0.110517 0.12214 0.134986  
   r * q x 
0.1 0.110517 0.12214 0.134986  

F. Decay F d.1 = -@F 

A function whose derivative is equal to or proportional to its negation is decaying at a 
rate proportional to itself. Interpretations include the charge of water remaining in a can 
punctured at the bottom, and the electrical charge remaining in a capacitor draining 
through a resistor; the rate of flow (and therefore of loss) is proportional to the pressure 
provided by the remaining charge at any time. 

The coefficients of a polynomial defining such a function must be similar to that for 
growth, except that the elements must alternate in sign. Thus: 
 
   eca=: _1&^ * ec 
   eca i.7 
1 _1 0.5 _0.166667 0.0416667 _0.00833333 0.00138889 
 
   deco eca 7 
_1 1 _0.5 0.166667 _0.0416667 0.00833333 
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   (eca 20)&p. x 
1 0.367879 0.135335 0.0497871 0.0183153 
 
   (deco eca 20)&p x 
_1 _0.367879 _0.135335 _0.0497871 _0.0183175 
 

The relation between the growth and decay functions will be explored in exercises and in 
Chapter 6. 

F1 Define a function pp such that (a pp b)&p. is equivalent to the product 
(a&p.*b&p.) ; test it for  a=:1 2 1 [ b=:1 3 3 1. 

[  pp=: +//.@(*/)  ] 

F2 Predict the value of a few elements of (ec pp eca) i.7 and enter the expression 
to validate your prediction. 

F3 Enter x=:0.1*i:30 and y1=:^ x and y2=:^@-x. Then enter PLOT x;>y1;y2. 

F4 Predict and confirm the result of the product y1*y2. 

G. Hyperbolic Functions F d.2 = F 

The second derivative of a function may be construed as its acceleration, and many 
phenomena are described by functions defined in terms of their acceleration. 

We will again use polynomials to approximate functions, first a function that is equal to 
its second derivative. Since the second derivative of the exponential ^ is also equal to 
itself, the coefficients ec i.n would suffice. However, we seek new functions and 
therefore add the restriction that f d.1 must not equal f. 

Coefficients satisfying these requirements can be obtained by suppressing (that is, 
replacing by zeros) alternate elements of ec i.n. Thus: 
 
   2|i.n=: 9 
0 1 0 1 0 1 0 1 0 
 
   hsc=: 2&| * ec 
   ]c=: hsc i.n 
0 1 0 0.166667 0 0.00833333 0 0.000198413 0 
 
   deco c 
1 0 0.5 0 0.0416667 0 0.00138889 0 
 
   deco deco c 
0 1 0 0.166667 0 0.00833333 0 
 

The result of deco c was shown above to make clear that the first derivative differs from 
the function. However, it should also be apparent that it qualifies as a second function 
that equals its second derivative. We therefore define a corresponding function hcc : 
   hcc=: 0&=@(2&|) * ec 
   hcc i.n 
1 0 0.5 0 0.0416667 0 0.00138889 0 2.48016e_5 
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   deco deco hcc i.n 
1 0 0.5 0 0.0416667 0 0.00138889 
 

The limiting values of the corresponding polynomials are called the hyperbolic sine and 
hyperbolic cosine, respectively. They are the functions defined by hsin=: 5&o. and 
hcos=: 6&o.. Thus: 
   hsin=:5&o. 
   hcos=:6&o. 
 
   (hsc i.20)&p. x=: 0 1 2 3 4 
0 1.1752 3.62686 10.0179 27.2899 
 
   hsin x 
0 1.1752 3.62686 10.0179 27.2899 
 
   (hcc i.20)&p. x 
1 1.54308 3.7622 10.0677 27.3082 
 
   hcos x 
1 1.54308 3.7622 10.0677 27.3082 
 

It should also be noted that each of the hyperbolic functions is the derivative of the other. 
Further properties of these functions will be explored in Chapter 6. In particular, it will be 
seen that a plot of one against the other yields a hyperbola. The more pronounceable 
abbreviations cosh and sinh (pronounced cinch) are also used for these functions. 

G1  Enter x=:0.1*i:30 and y1=:hsin x and y2=:hcos x. Then plot the two 
functions by entering PLOT x;>y1;y2. 
G2 Enter PLOT y1;y2 to plot cosh against sinh, and comment on the shape of the plot. 
G3 Predict the result of (y2*y2)-(y1*y1) and test it on the computer. 

H. Circular Functions F d.2 = -@F 

It may be noted that the hyperbolics, like the exponential, continue to grow with 
increasing arguments. This is not surprising, since their acceleration increases with the 
increase of the function. 

We now consider functions whose acceleration is opposite in sign to the functions 
themselves, a characteristic that leads to periodic  functions, whose values repeat as 
arguments grow. These functions are useful in describing periodic phenomena such as the 
oscillations in a mechanical system (the motion of a weight suspended on a spring) or in 
an electrical system (a coil connected to a capacitor).  

Appropriate polynomial coefficients are easily obtained by alternating the signs of the 
non-zero elements resulting from hsc and hcc. Thus: 
 
   sc=: _1&^@(3&=)@(4&|) * hsc 
   cc=: _1&^@(2&=)@(4&|) * hcc 
   sc i.n 
0 1 0 _0.166667 0 0.00833333 0 _0.000198413 0 
   cc i.n 
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1 0 _0.5 0 0.0416667 0 _0.00138889 0 2.48016e_5 

 
   (sc i.20)&p. x 
0 0.841471 0.909297 0.14112 _0.756803 
   sin=:1&o. 
   cos=:2&o. 
 
   sin x 
0 0.841471 0.909297 0.14112 _0.756802  
 
   (cc i.20)&p. x 
1 0.540302 _0.416147 _0.989992 _0.653644 
 
   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 
 

It may be surprising that these functions defined only in terms of their derivatives are 
precisely the sine and cosine functions of trigonometry (expressed in terms of arguments 
in radians rather than degrees); these relations are examined in Section 6F. 

H1  Repeat Exercises G1-G3 with modifications appropriate to the circular functions. 
H2 Use the "power series” operator PS and other ideas from Section 1G in 
experiments on the hyperbolic and circular functions. 

I. Scaling 

The function ^@(r&*) used in Section B is an example of scaling; its argument is first 
multiplied by the scale factor r before applying the main function ^. Such scaling is 
generally useful, and we define a more convenient conjunction for the purpose as 
follows: 
 

   AM=: 2 : 'x. @ (y.&*)' Atop Multiplication 
 

For example: 
 
   ^&(0.1&*) x=: 0 1 2 3 4 
1 1.10517 1.2214 1.34986 1.49182 
 
   ^ AM 0.1 x 
1 1.10517 1.2214 1.34986 1.49182 
 

Thus,  f AM r may be read as "f atop multiplication (by) r". Also: 
   ^ AM 0.1 d.1 x 
0.1 0.110517 0.12214 0.134986 0.149182 
   0.1 * ^ AM 0.1 x 
0.1 0.110517 0.12214 0.134986 0.149182 
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J. Argument Transformations 
Scaling is only one of many useful argument transformations; we define two further 
conjunctions, atop addition and atop polynomial: 
   AA=: 2 : 'x. @ (y.&+)' 
   AP=: 2 : 'x. @ (y.&p.)' 

In Section H it was remarked that the circular functions sin and cos "repeat" their 
values after a certain period. Thus: 
 
   per=: 6.28 
   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 
 
   cos AA per x 
0.999995 0.54298 _0.413248 _0.989538 _0.656051 
 

Experimentation with different values of per can be used to determine a better 
approximation to the true period of the cosine. 

The conjunction AP provides a more general transformation. Thus: 

   f AA 3 AM 4   is   f AP 3 4 

   f AM 3 AA 4   is   f AP 12 3 

A function FfC to yield Fahrenheit from Celsius can be used to further illustrate the use 
of argument transformation: 
 

   FfC=: 32"0 + 1.8"0 * ]  Uses Constant functions (See Section 1B) 
 
   fahr=: _40 0 100 
   FfC fahr 
_40 32 212 
 
   ] AA 32 AM 1.8 fahr       
_40 32 212       
 
   ] AP 32 1.8 fahr 
_40 32 212 

The following derivatives are easily obtained by substitution and the use of the table of 
Section K: 
 Function Derivative 
 f AA r f D AA r 

 f AM r (f D AM r * r"0)       

 f AP c (f D AP c * (d c)&p.) 

 

K.  Table of Derivatives 

The following table lists a number of important functions, together with their derivatives. 
Each function is accompanied by a phrase (such as Identity) and an index that will be 
used to refer to it, as in Theorem 2 or θ2 (where θ is the Greek letter theta) . 
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 θ  NAME   FUNCTION   DERIVATIVE 

 1  Constant function a"0 0"0 

 2  Identity ] 1"0 

 3  Constant Times a"0 * ] a"0 

 4  Sum f+g (f d.1)+(g d.1) 

 5  Difference f-g (f d.1)-(g d.1) 

 6  Product f*g (f*(g d.1))+((f d.1)*g) 

 7 Quotient f%g    (f%g)*((f d.1)%f)-((g d.1)%g) 

 8 Composition f@g (f d.1)@g * (g d.1) 

 9 Inverse f INV %@(f d.1 @(f INV))  

 10 Reciprocal %@f -@(f d.1 % (f*f)) 

 11 Power ^&n n&p. * ^&(n-1)   

 12 Polynomial c&p. (deco c)&p.  

Legend: 

Functions f and g and constants a and n, and list constant c 
Polynomial derivative deco=:}.@(] * i.@#) 
Inverse adverb INV=:^:_1 
 

Although more thorough analysis will be deferred to Chapter 8, we will here present 
arguments for the plausibility of the theorems: 

θ 1 Since a"0 x is a for any x, the rise is the zero function 0"0. 

θ 2 Since (]a+x)-(]x) is (a+x)-x, the rise is a, and the slope is a%a  
θ 3 Multiplying a function by a multiplies all of its rises, and hence its slopes, by a 

as well. 

θ 4,5 The rise of f+g (or f-g) is the sum (or difference) of the rises of f and g. Also 
see the discussion in Section 1D. 

θ 6 If the result of f is fixed while the result of g changes, the result of f*g changes 
by f times the change in g; conversely if f changes while g is fixed. The total 
change in f*g is the sum of these changes. 

θ 7 If h=: f%g, then g*h is f, and, using θ 6 : 

f d.1 

(g*h) d.1 

(g*(h d.1))+((g d.1)*h) 

 The equation (f d.1)=(g*(h d.1))+((g d.1)*h) can be solved for h d.1, 
giving the result of θ 7. 

θ 8 The derivative of f@g is the derivative of f "applied at the point g" (that is, (f 
d.1)@g), multiplied by the rate of change of the function that is applied first 
(that is, g d.1)   
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θ 9 f@(f INV) d.1 is the product (f d.1)@(f INV) * ((f INV) d.1) (from 

θ 6). But since f@(f INV) is the identity function, its derivative is 1&p. and the 
second factor (f INV) d.1 is therefore the reciprocal of the first. 

θ 10 This can be obtained from θ 7 using the case f=: ] . 

θ 11  Since ^&5 is equivalent to the product function ] * ^&4, its derivative may be 
obtained from θ 6 and the result for the derivative of ^&4. Further cases may be 
obtained similarly; that is, by induction. 

θ 12 This follows from θ 3 and θ 11. 

K1 Enter f=: ^&2 and f=: ^&3 and x=: 1 2 3 4 ; then test the equivalence of 
the functions in the discussion of Theorem 7 by entering each followed by x, 
being sure to parenthesize the entire sentence if need be. 

K2 If a is a noun (such as 2.7), then a"0 is a constant function. Prove that 
((a"0 + f) d.1 = f d.1) is a tautology, that is, gives 1 (true) for every 
argument. 

L. Use of Theorems 
The product of the identity function (]) with itself is the square (^&2 or *:), and the 
expression for the derivative of a product can therefore be used as an alternative 
determination of the derivative of the square and of higher powers: 
 
(] * ]) d.1 
 
(] * (] d.1)) + ((] d.1) * ])  Theorem 6 
 
(] * 1"0) + (1"0 * ])          Theorem 2 
 
] + ] 
 
2"0 * ]                        Twice the argument 
 

Further powers may be expressed as products with the identity function. Thus: 
   f4=:]*f3=:]*f2=:]*f1=:]*f0=:1"0 
 
   x=:0 1 2 3 4 
 
   >(f0;f1;f2;f3;f4) x 
1 1  1  1   1 
0 1  2  3   4 
0 1  4  9  16 
0 1  8 27  64 
0 1 16 81 256 
 
Their derivatives can be analyzed in the manner used for the square: 
 
f3 d.1  
 
(]*f2) d.1 
 
(((] d.1)*f2)+(]*(f2 d.1))) 
 
((1"0 * f2)+(]*2"0 * ])) 
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(f2+2"0 * f2) 
 
(3"0 * f2) 

M. Anti-Derivative 
The anti-derivative is an operator defined by a relation: applied to a function f, it 
produces a function whose derivative is f. Simple algebra can be applied to produce a 
function adeco that is inverse to deco.  
 
Since deco multiplies by indices and then drops the leading element, the inverse must 
divide by one plus the indices, and then append an arbitrary leading element. We will try 
two different leading elements, and then define adeco as a dyadic function whose left 
argument specifies the arbitrary element (known as the constant of integration): 
 
   f1=: 5"1 , ] % >:@i.@#@]  Constant of integration is 5 
 
   c=:3 1 4 2 
 
   f1 c 
5 3 0.5 1.33333 0.5 
   deco f1 c 
3 1 4 2 
    
   f2=: 24"1 , ] % >:@i.@#@]  Constant of integration is 24 
   f2 c 
24 3 0.5 1.33333 0.5 
   deco f2 c 
3 1 4 2 
    
   adeco=: [ , ] % >:@i.@#@]  Constant specified by left argument 
   4 adeco c 
4 3 0.5 1.33333 0.5 
   deco 4 adeco c 
3 1 4 2 
    
   zadeco=:0&adeco            Monadic for common case of zero          
   zadeco c 
0 3 0.5 1.33333 0.5 
   deco zadeco c 
3 1 4 2  
 
Just as deco provides a basis for the derivative operator d., so does adeco provide the 
basis for extending d. to the anti-derivative, using negative arguments. For example: 
 
   x=:i.6 
   f=:c&p. 
   f x 
3 10 37 96 199 358 
 
   f d._1 x 
0 5.33333 26.6667 90 233.333 506.667 
   (0 adeco c) p. x 
0 5.33333 26.6667 90 233.333 506.667 
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N. Integral 
The area under (bounded  by) the graph of a function has many important interpretations 
and uses. For example, if circle=: %: @ (1"0 - *:), then circle x gives the y 
coordinate of a point on a circle   with radius 1. The first quadrant may then be plotted as 
follows: 
 
   circle=: %: @ (1"0 - *:)  Square root of 1 minus the square 
    
   x=:0.1*i.11 
   y=:circle x 
   x,.y 
  0        1 
0.1 0.994987 
0.2 0.979796 
0.3 0.953939 
0.4 0.916515 
0.5 0.866025 
0.6      0.8 
0.7 0.714143 
0.8      0.6 
0.9  0.43589 
  1        0 
 
   PLOT x;y 

 
The approximate area of the quadrant is given by the sum of the ten trapezoids, and 
(using r=:0.1) its change from x to x+r is r times the average height of the trapezoid, 
that is, the average of circle x, and circle x+r. Therefore, its rate-of change 
(derivative) at  any argument value x is approximately the corresponding value of the 
circle function. 
 
As the increment r approaches zero, the rate of change approaches the exact function 
value, as illustrated below for the value r=:0.01: 
 
   x=:0.01*i.101 
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   PLOT x;circle x 

 
 
In other words, the area under the curve is given by the anti-derivative. 
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Chapter 

3 

Vector Calculus  

A. Introduction 
Applied to a list of three dimensions (length, width, height) of a box, the function 
vol=:*/ gives its volume. For example: 
 
   lwh=:4 3 2 
   vol=:*/ 
   vol lwh 
24 
 
Since vol is a function of a vector, or list (rank-1 array), the rank-0 derivative operator 
d. used in the differential calculus in Chapter 1 does not apply to it. But the derivative 
operator D. does apply, as illustrated below: 
 
   vol D.1 lwh 
6 8 12 
 
The last element of this result is the rate of change as the last element of the argument 
(height) changes or, as we say, the derivative with respect to the last element of the vector 
argument. Geometrically, this rate of change is the area given by the other two 
dimensions, that is, the length and width (whose product 12 is the area of the base). 
 
Similarly, the other two elements of the result are the derivatives with respect to each of 
the further elements; for example, the second is the product of the length and height. The 
entire result is called the gradient of the function vol.    

The function vol produces a rank-0 (called scalar, or atomic) result from a rank-1 
(vector) argument, and is therefore said to have form 0 1 or to be a 0 1 function; its 
derivative produces a rank-1 result from a rank-1 argument, and has form 1 1. 
 
The product over the first two elements of lwh gives the "volume in two dimensions" 
(that is, the area of the base), and the product over the first element alone is the "volume 
in one dimension". All are given by the function VOLS as follows: 
 
   VOLS=:vol\ 
   VOLS lwh 
4 12 24 

The function VOLS has form 1 1, and its derivative has form 2 1. For example: 
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   VOLS D.1 lwh 
1 0  0 
3 4  0 
6 8 12 

This table merits attention. The last row is the gradient of the product over the entire 
argument, and therefore agrees with gradient of vol shown earlier. The second row is the 
gradient of the product over the first two elements (the base); its value does not depend at 
all on the height, and the derivative with respect to the height is therefore zero (as shown 
by the last element). 

Strictly speaking, vector calculus concerns only functions of the forms 0 1 and 1 1; 
other forms tend to be referred to as tensor analysis. Since the analysis remains the same 
for other forms, we will not restrict attention to the forms 0 1 and 1 1. However, we 
will normally restrict attention to three-space (as in vol 2 3 4 for the volume of a box) 
or two-space (as in vol 3 4 for the area of a rectangle), although an arbitrary number of 
elements may be treated. 

Because the result of a 1 1 function is a suitable argument for another of the same form, 
a sequence of them can be applied. We therefore reserve the term vector function for 1 1 
functions, even though 0 1 and 2 1 functions are also vector functions in a more 
permissive sense. 

We adopt the convention that a name ending in the digits r and a denotes an r,a func-
tion. For example, F01 is a scalar function of a vector, ABC11 is a vector function of a 
vector, and G02 is a scalar function of a matrix (such as the determinant det=: -/ . 
*). The functions vol and VOLS might therefore be renamed vol01 and VOLS11. 
 
Although the function vol was completely defined by the expression vol=:*/ our initial 
comments added the physical interpretation of the volume of a box of dimensions lwh. 
Such an interpretation can be exceedingly helpful in understanding the function and its 
rate of change, but it can also be harmful: to anyone familiar with finance and fearful of 
geometry, it might be better to use the interpretation cost=:*/ applied to the argument 
cip (c crates of i items each, at the price p).  
 
We will mainly allow the student to provide her own interpretation from some familiar 
topic, but will devote a separate Chapter (7) to the matter of interpretations. Chapter 7 
may well be consulted at any point. 

B. Gradient 
As illustrated above for the vector function VOLS, its first derivative produces a matrix 
result called the complete derivative or gradient. We will now use the conjunction D. to 
define an adverb GRAD for this purpose: 
 
   GRAD=:D.1 
   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 

We will illustrate its application to a number of functions:  
   E01=: +/@:*:           Sum of squares 
   F01=: %:@E01           Square root of sum of squares 
   G01=: 4p1"1 * *:@F01   Four pi times square of F01 
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   H01=: %@G01 
   p=: 1 2 3 
 
   (E01,F01,G01,H01) p 
14 3.74166 175.929 0.00568411 
 
   E01 GRAD p 
2 4 6 
   F01 GRAD p 
0.267261 0.534522 0.801784 
 
   G01 GRAD p 
25.1327 50.2655 75.3982 
 
   H01 GRAD p 
_0.000812015 _0.00162403 _0.00243604 
 

B1 Develop interpretations for each of the functions defined above. 

ANSWERS: 

E01 p is the square of the distance (from the origin) to a point p. 

F01 p is the distance to a point p, or the radius of the sphere (with centre at the 
origin) through the point p. 

G01 p is the surface area of the sphere through the point p. 

H01 is the intensity of illumination at point p provided by a unit light source at the 
origin. 

B2 Without using GRAD, provide definitions of functions equivalent to the derivatives of 
each of the functions defined above. 
ANSWERS:    
E11=: +:"1  
F11=: -:@%@%:@E01 * E11   
G11=: 4p1"0 * E11  
H11=: -@%@*:@G01 * G11    
 

Three important results (called the Jacobian, Divergence, and Laplacian) are obtained 
from the gradient by applying two elementary matrix functions. They are the 
determinant, familiar from high-school algebra, and the simpler but less familiar trace, 
defined as the sum of the diagonal. Thus: 
 
   det=:+/ . * 
   trace=:+/@((<0 1)&|:) 
 
   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 
 
   det VOLS GRAD lwh 
48 
 
   trace VOLS GRAD lwh 
17 
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We will also have occasion to use the corresponding adverbs det@ and trace@. Thus: 
 
   DET=:det@ 
   VOLS GRAD DET lwh 
48 
    
   TRACE=:trace@ 
   VOLS GRAD TRACE lwh 
17 

C.  Jacobian 

The Jacobian is defined as the determinant of the gradient. Thus: 
 
   JAC=: GRAD DET 
  
   VOLS lwh 
4 12 24 
 
   VOLS GRAD lwh 
1 0  0 
3 4  0 
6 8 12 
 
   VOLS JAC lwh 
48 

The Jacobian may be interpreted as the volume derivative, or rate of change of volume 
produced by application of a function. This interpretation is most easily appreciated in 
the case of a linear function. We will begin with a linear function in 2-space, in which 
case the "volume" of a body is actually the area:  
   mp=: +/ . *        Matrix Product 
   ]m=: 2 2$2 0 0 3 
2 0 
0 3 
 
   L11=: mp&m"1 
   ]fig1=:>1 1;1 0;0 0;0 1 
1 1 
1 0 
0 0 
0 1 
 
   ]fig2=: L11 fig1 
2 3 
2 0 
0 0 
0 3 
 
   L11 JAC 1 1 
6 
   L11 JAC 1 0 
6 
 
   L11 JAC fig1 
6 6 6 6 
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The result of the Jacobian is indeed the ratio of the areas of fig1 and fig2, as may be 
verified by plotting the two figures by hand. Moreover, for a linear function, the value of 
the Jacobian is the same at every point. 
 

C1 Provide an interpretation for the function K11.=:(H11*])"1. 

[ The result of K11 is the direction and magnitude of the repulsion of a negative 
electrical charge from a positive charge at the origin. The function -@K11 may be 
interpreted as gravitational attraction. ] 

C2 What is the relation between the Jacobian of the linear function L11 and the 
determinant of the matrix m used in its definition? 

C3 What is the relation between the Jacobians of two linear functions LA11 and LB11 
and the Jacobian of  LC11=: LA11@LB11 (their composition). 

[ TEST=:LA11@LB11 JAC |@- LA11 JAC * LB11 JAC ] 

C4 Define functions LA11 and LB11, and test the comparison expressed in the solution 
to Exercise C3 by applying TEST to appropriate arguments.  

C5 The Jacobian of the linear LR11=: mp&(>0 1;1 0)"1  is _1. State the 
significance of a negative Jacobian. 

[     Plot figures fig1 and fig2, and note that one can be moved smoothly onto the 
other "without crossing lines". Verify that this cannot be done with fig1 and LR11 
fig1; it is necessary to "lift the figure out of the plane and flip it over". A 
transformation whose Jacobian is negative is said to involve a "reflection".     ] 

C6 Enter, experiment with, and comment upon the following functions: 

   RM2=: 2 2&$@(1 1 _1 1&*)@(2 1 1 2&o.)"0 

    R2=: (] mp RM2@[)"0 1 

[ R2 is a linear function that produces a rotation in 2-space; the expression a R2 
fig rotates a figure (such as fig1 or fig2) about the origin through an angle of a 
radians in a counter-clockwise sense, without deforming the figure.] 

C7  What is the value of the Jacobian of a rotation a&R2"1? 

C8 Enter an expression to define FIG1 as an 8 by 3 table representing a cube, making 
sure that successive coordinates are adjacent, for example, 0 1 1 must not succeed 
1 1 0. Define 3-space linear functions to apply to FIG1, and use them together 
with K11 to repeat Exercises 1-5 in 3-space. 

C9 Enter, experiment with, and comment upon the functions 

RM3=: 1 0 0&,@(0&,.)@RM2 

R30=: (] mp RM3@[)"0 1 

[ a&R30"1 produces a rotation through an angle a  in the plane of the last two axes 
in 3-space (or about axis 0). Test the value of the Jacobian.]  

C10 Define functions R31 and R32 that rotate about the other axes, and experiment with 
functions such as a1&R31@(a2&R30)"1. 

[Experiment with the permutations p=: 2&A. and p=: 5&A. in the expression  
p&.|:@p@RM3 o.%2, and use the ideas in functions defined in terms of R30. ] 
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D. Divergence and Laplacian 

The divergence and Laplacian are defined and used as follows: 
 
   DIV=: GRAD TRACE 
    
   LAP=: GRAD DIV 
 
 
   f=: +/\"1 
   f a 
1 3 6 
 
   f GRAD a f DIV a 
1 0 0 3 
1 1 0 
1 1 1 
 
   g=: +/@(] ^ >:@i.@#)"1 
   g a g LAP a 
32 22.0268 
 

It is difficult to provide a helpful interpretation of the divergence except in the context of 
an already-familiar physical application, and the reader may be best advised to seek 
interpretations in some familiar field. However, in his Advanced Calculus [8], F.S. 
Woods offers the following: 

"The reason for the choice of the name divergence may be seen by interpreting F 
as equal to rv, where r is the density of a fluid and v is its velocity. ... Applied to 
an infinitesimal volume it appears that div F represents the amount of fluid per 
unit time which streams or diverges from a point." 

E. Symmetry, Skew-Symmetry, and Orthogonality 

A matrix that is equal to its transpose is said to be symmetric, and a matrix that equals the 
negative of its transpose is skew-symmetric. For example: 
 
   ]m=:VOLS GRAD lwh  The gradient of the volumes function 
1 0  0 
3 4  0 
6 8 12 
    
   |:m                The gradient is not symmetric 
1 3  6 
0 4  8 
0 0 12 
    
   ]ms=:(m+|:m)%2     The symmetric part of the gradient 
  1 1.5  3 
1.5   4  4 
  3   4 12 
    
   ]msk=:(m-|:m)%2    The skew-symmetric part   
  0 _1.5 _3 
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1.5    0 _4 
  3    4  0 
    
   ms+msk             Sum of parts gives m 
1 0  0 
3 4  0 
6 8 12 
 
The determinant of any skew-symmetric matrix is 0, and its vectors therefore lie in a 
plane: 
    
   det=:-/ . *        The determinant function 
   det msk            Shows that the vectors of msk lie in a plane 
0 
 
The axes of a rank-3 array can be "transposed" in several ways, by interchanging 
different pairs of axes. Such transposes are obtained by using |: with a left argument: 
 
   ]a=:i.2 2 2 
0 1 
2 3 
 
4 5 
6 7 
   0 2 1 |: a  Interchange last two axes 
0 2 
1 3 
 
4 6 
5 7 
   1 0 2 |: a  Interchange first two axes 
0 1 
4 5 
 
2 3 
6 7 
 
The permutation 0 2 1 is said to have odd parity because it can be brought to the normal 
order 0 1 2 by an odd number of interchanges of adjacent elements; 1 2 0 has even 
parity because it requires an even number of interchanges. The function C.!.2 yields the 
parity of its argument, 1 if the argument has even parity, _1 if odd, and 0 if it is not a 
permutation. 
 
An array that is skew-symmetric under any interchange of axes is said to be completely 
skew. Such an array is useful in producing a vector that is normal (or orthogonal or  
perpendicular) to a plane. In particular, we will use it in a function called norm that 
produces the curl of a vector function, a vector normal to the plane of (the skew-
symmetric part of) the gradient of the function. 
 
We will generate a completely skew array by applying the parity function to the table of 
all indices of an array: 
 
   indices=:{@(] # <@i.) 
    
   indices 3 
+-----+-----+-----+ 
|0 0 0|0 0 1|0 0 2| 
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+-----+-----+-----+ 
|0 1 0|0 1 1|0 1 2| 
+-----+-----+-----+ 
|0 2 0|0 2 1|0 2 2| 
+-----+-----+-----+ 
 
+-----+-----+-----+ 
|1 0 0|1 0 1|1 0 2| 
+-----+-----+-----+ 
|1 1 0|1 1 1|1 1 2| 
+-----+-----+-----+ 
|1 2 0|1 2 1|1 2 2| 
+-----+-----+-----+ 
 
+-----+-----+-----+ 
|2 0 0|2 0 1|2 0 2| 
+-----+-----+-----+ 
|2 1 0|2 1 1|2 1 2| 
+-----+-----+-----+ 
|2 2 0|2 2 1|2 2 2| 
+-----+-----+-----+ 
 
   e=:C.!.2@>@indices   Result is called an "e-system" by McConnell [4]  
 
   e 3 
 0  0  0 
 0  0  1 
 0 _1  0 
 
 0  0 _1 
 0  0  0 
 1  0  0 
 
 0  1  0 
_1  0  0 
 0  0  0 
 
 
 
 
 
 
 
 
   <"2 e 4  Boxed for convenient viewing 
+--------+--------+--------+--------+ 
|0 0 0 0 |0 0  0 0|0 0 0  0|0  0 0 0| 
|0 0 0 0 |0 0  0 0|0 0 0 _1|0  0 1 0| 
|0 0 0 0 |0 0  0 1|0 0 0  0|0 _1 0 0| 
|0 0 0 0 |0 0 _1 0|0 1 0  0|0  0 0 0| 
+--------+--------+--------+--------+ 
|0 0 0  0|0 0 0 0 | 0 0 0 1|0 0 _1 0| 
|0 0 0  0|0 0 0 0 | 0 0 0 0|0 0  0 0| 
|0 0 0 _1|0 0 0 0 | 0 0 0 0|1 0  0 0| 
|0 0 1  0|0 0 0 0 |_1 0 0 0|0 0  0 0| 
+--------+--------+--------+--------+ 
|0  0 0 0|0 0 0 _1|0 0 0 0 | 0 1 0 0| 
|0  0 0 1|0 0 0  0|0 0 0 0 |_1 0 0 0| 
|0  0 0 0|0 0 0  0|0 0 0 0 | 0 0 0 0| 
|0 _1 0 0|1 0 0  0|0 0 0 0 | 0 0 0 0| 
+--------+--------+--------+--------+ 
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|0 0  0 0| 0 0 1 0|0 _1 0 0|0 0 0 0 | 
|0 0 _1 0| 0 0 0 0|1  0 0 0|0 0 0 0 | 
|0 1  0 0|_1 0 0 0|0  0 0 0|0 0 0 0 | 
|0 0  0 0| 0 0 0 0|0  0 0 0|0 0 0 0 | 
+--------+--------+--------+--------+ 
 
Finally, we will use e in the definition of the function norm, as follows: 
 
   norm=:+/^:(]`(#@$)`(* e@#)) % !@(# - #@$) 
 
   mp=:+/ . *         Matrix product 
 
   ]m=:VOLS GRAD lwh  Gradient of the volumes function 
1 0  0 
3 4  0 
6 8 12 
 
   ]skm=:(m-|:m)%2    Skew part  
  0 _1.5 _3 
1.5    0 _4 
  3    4  0 
    
   ]orth=:norm m      Result is perpendicular to plane of skm 
_8 6 _3 
 
   orth mp skm        Test of perpendicularity 
0 0 0 
 
   norm skm           Norm of skew part gives the same result 
_8 6 _3 
 
   norm norm skm      Norm on a skew matrix is self-inverse 
  0 _1.5 _3 
1.5    0 _4 
  3    4  0 
 
These matters are discussed further in Chapter 6. 

F. Curl 
The curl is the perpendicular to the grade, and is produced by the function norm. We will 
use the adverb form as follows: 
 
   NORM=:norm@ 
 
   CURL=: GRAD NORM 
  
   VOLS CURL lwh 
_8 6 _3  
  
   subtotals=:+/\ 
   subtotals lwh 
4 7 9 
 
   subtotals CURL lwh 
_1 1 _1 
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Interpretation of the curl is perhaps even more intractable than the divergence. Again 
Woods offers some help: 

The reason for the use of the word curl is hard to give without extended treatment 
of the subject of fluid motion. The student may obtain some help by noticing that 
if F is the velocity of a liquid, then for velocity in what we have called irrotational 
motion, curl F=0, and for vortex motion, curl F≠0. 

It may be shown that if a spherical particle of fluid be considered, its motion in a 
time dt may be analyzed into a translation, a deformation, and a rotation about an 
instantaneous axis. The curl of the vector v can be shown to have the direction of 
this axis and a magnitude equal to twice the instantaneous angular velocity. 

In his Div, Grad, Curl, and all that [9], H.M. Schey makes an interesting attempt to 
introduce the concepts of the vector calculus in terms of a single topic. His first chapter 
begins with: 

In this text the subject of the vector calculus is presented in the context of simple 
electrostatics. We follow this procedure for two reasons. First, much of vector 
calculus was invented for use in electromagnetic theory and is ideally suited to it. 
This presentation will therefore show what vector calculus is, and at the same 
time give you an idea of what it's for. Second, we have a deep-seated conviction 
that mathematics -in any case some mathematics- is best discussed in a context 
which is not exclusively mathematical. 

Schey's treatment includes Maxwell's equations which, in Heaviside's elegant 
formulation, exhibit the powers of div, grad, and curl in joint use. 

F1 Experiment with GRAD, CURL, DIV, and JAC on the functions in Exercise B2. 

F2 Experiment with GRAD, CURL, DIV, and JAC on the following 1 1 functions: 
   q=: *:"1      
   r=: 4&A. @: q 
   s=: 1 1 _1&* @: r 
   t=: 3&A. @: ^ @: - 
   u=: ]% (+/@(*~)) ^ 3r2"0 

F3 Enter the definitions x=: 0&{ and y=: 1&{ and z=: 2&{, and use them to define 
the functions of the preceding exercise in a more conventional form. 

[ as=: *:@z,*:@x,-@*:@y  

at=: ^@-@y,^@-@z,^@-@x 

au=: (x,y,z) % (*:@x + *:@y + *:@z) ^ 3r2"0  ] 

F4 Experiment with LAP on various 0 1 functions. 

F5 Express the cross product of Section 6G so as to show its relation to CURL. See 
Section 6H. 

[ CR=: */ NORM         CURL=: GRAD NORM ]. 
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Chapter 

4 

Difference Calculus 

A. Introduction 

Although published some fifty years ago, Jordan's Calculus of Finite Differences [10] 
still provides an interesting treatment. In his introductory section on Historical and 
Biographical Notes, he contrasts the difference and differential (or infinitesimal) 
calculus: 

Two sorts of functions are to be distinguished. First, functions in which the 
variable x may take every possible value in a given interval; that is, the variable is 
continuous. These functions belong to the domain of the Infinitesimal Calculus. 
Secondly, functions in which the variable takes only the given values x0, x1, x2, 
... xn; then the variable is discontinuous. To such functions the methods of 
Infinitesimal Calculus are not applicable, The Calculus of Finite Differences 
deals especially with such functions, but it may be applied to both categories. 

The present brief treatment is restricted to three main ideas: 

1) The development of a family of functions which behaves as simply under the 
difference (secant slope) adverb as does the family of power functions ^&n 
under the derivative adverb. 

2) The definition of a polynomial function in terms of this family of functions. 

3) The development of a linear transformation from the coefficients of such a  
polynomial to the coefficients of an equivalent ordinary polynomial. 

B. Secant Slope Conjunctions 
The slope of a line from the point x,f x to the point x,f(x+r) is said to be the secant 
slope of f for a run of r, or the r-slope of f at x. Thus: 
 
   cube=:^&3"0 
   x=:1 2 3 4 5  
   r=:0.1  
   ((cube x+r)-(cube x))%r 
3.31 12.61 27.91 49.21 76.51 
 
The same result is given by the secant-slope conjunction D: as follows: 
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   r cube D: 1 x 
3.31 12.61 27.91 49.21 76.51 
 
   0.01 cube D: 1 x                                                                 
3.0301 12.0601 27.0901 48.1201 75.1501 
 
   0.0001 cube D: 1 x 
3.0003 12.0006 27.0009 48.0012 75.0015 
 
   cube d. 1 x 
3 12 27 48 75 
   3*x^2 
3 12 27 48 75 
 
In the foregoing sequence, smaller runs appear to be approaching a limiting value, a value 
given by the derivative. It is also equal to three times the square. 
 
The alternate expression ((cube x)-(cube x-r))%r could also be used to define a 
slope, and it will prove more convenient in our further work. We therefore define an 
alternate conjunction for it as follows: 
 
   SLOPE=:2 : (':'; 'x. u."0 D: n. y.-x.') 
 
   r cube SLOPE 1 x 
2.71 11.41 26.11 46.81 73.51 
 
   ((cube x)-(cube x-r))%r 
2.71 11.41 26.11 46.81 73.51 
 
   0.0001 cube SLOPE 1 x 
2.9997 11.9994 26.9991 47.9988 74.9985 
 
   cube d. 1 x 
3 12 27 48 75 
 
Much like the derivative, the slope conjunction can be used to give the slope of the slope, 
and so on. Thus: 
 
   cube d.2 x 
6 12 18 24 30 
   r cube SLOPE 2 x 
6 12 18 24 30 
 
We will be particularly concerned with the "first" slope applied to scalar (rank-0) 
functions, and therefore define a corresponding adverb: 
 
   S=:("0) SLOPE 1 
   r cube S x 
2.71 11.41 26.11 46.81 73.51 

C. Polynomials and Powers 
In Chapter 3, the analysis of the power function ^&n led to the result that the derivative of 
the polynomial c&p. could be written as another polynomial : (}.c*i.#c)&p.. 
This is an important property of the family of power functions, and we seek another 
family of functions that behaves similarly under the r-slope. We begin by adopting the 
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names p0 and p1 and p2, etc., for the functions ^&0 and ^&1 and ^&2, and by showing 
how each member of the family can be defined in terms of another. Thus: 
 
   p4=: ]*p3=: ]*p2=: ]*p1=: ]*p0=: 1:"0 

 
The following expressions for the derivatives of sums and products of functions were 
derived in Chapter 1. The corresponding expressions for the r-slopes may be obtained by 
simple algebra: 
                         f + g                        Sum 
                    (r f S)+(r g S)                   r-Slope 
                   (f d.1) + (g d.1)                  Derivative 
 

                         f * g                   Product 
 

    (f*(r g S))+((r f S)*g)-(r"0*(r f S)*(r g S))     r-Slope 
                  (f*g d.1)+(f d.1*g)                 Derivative 
 
For example: 
 
   r=:0.1 
   x=:1 2 3 4 5 
   f=:^&3 
   g=:^&2 
 
   (f+g) x 
2 12 36 80 150 
 
   r (f+g) S x                          Slope of sum  
4.61 15.31 32.01 54.71 83.41 
 
   (r f S x)+ (r g S x)                 Sum of slopes 
4.61 15.31 32.01 54.71 83.41 
 
   (f+g) d. 1 x                         Derivative of sum 
5 16 33 56 85 
 
   (f d.1 + g d.1) x 
5 16 33 56 85 
 
   r (f*g) S x                          Slope of product 
4.0951 72.3901 378.885 1217.58 3002.48 
    
   ]t1=:(f x)*(r g S x)                 Terms for slope of product 
1.9 31.2 159.3 505.6 1237.5 
   ]t2=:(r f S x)*(g x) 
2.71 45.64 234.99 748.96 1837.75 
   ]t3=:r * (r f S x) * (r g S x) 
0.5149 4.4499 15.4049 36.9799 72.7749 
    
   t1+t2-t3                             Sum and diff of terms gives slope 
4.0951 72.3901 378.885 1217.58 3002.48 
   (f*g) d. 1 x                         Derivative of product 
5 80 405 1280 3125 
   ((f d.1 *g) + (f*g d.1)) x 
5 80 405 1280 3125 
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Since the derivative of the identity function ] is the constant function 1"0, expressions 
for the derivatives of the power functions can be derived using the expressions for the 
sum and product in informal proofs as follows: 
 
 p0 d.1   p1 d.1  p2 d.1 
 1"0 d.1   (]*p0) d.1  (]*p1) d.1 
 0"0   (]*p0 d.1)+(] d.1*1"0) (]*p1 d.1)+(] d.1*p1) 
 (]*0"0)+(1"0*1"0)  (]*1"0)+(1"0*p1) 
          1"0  p1+p1 
  2"0*p1 
 
 p3 d.1      p4 d.1 
 (]*p2) d.1      (]*p3) d.1 
 (]*p2 d.1)+(] d.1*p2)      (]*p3 d.1)+(] d.1*p3) 
 (]*2"0*p1)+(1"0*p2)        (]*3"0*p2)+(1"0*p3) 
 (2"0*p2)+p2      (3"0*p3)+p3 
 3"0*p2      4"0*p3 
 

Each of the expressions in the proofs may be tested by applying it to an argument such as 
x=: i. 6, first enclosing the entire expression in parentheses.  

We will next introduce stope functions whose behavior under the slope operator is 
analogous to the behavior of the power function under the derivative. 

D. Stope Functions 
The list x+r*i.n begins at x and changes in steps of size r, like the steps in a mine stope 
that follows a rising or falling vein of ore. We will call the product over such a list a 
stope: 
 
   x=:5 
   r=:0.1 
   n=:4 
 
   x+r*i.n 
5 5.1 5.2 5.3 
 
   */x+r*i.n 
702.78 
 
   */x+1*i.n   Case r=:1 is called a rising factorial 
1680 
 
   */x+_1*i.n  Falling factorial 
120 
 
   */x+0*i.n   Case r=:0 gives product over list of n x's 
625 
   x^n         Equivalent to the power function 
625 
The two final examples illustrate the fact that the case r=:0 is equivalent to the power 
function. We therefore treat the stope as a variant of the power function, produced by the 
conjunction !. as follows: 
 
   x ^!.r n 
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702.78 
 
   x ^!.0 n 
625 
 
   stope=: ^!.    The stope adverb 
   x r stope n 
702.78 
 
We now define a set of stope functions analogous to the functions p0=:^&0 and 
p1=:^&1, etc. used for successive powers. Thus: 
 
q0=:r stope&0 
 
q1=:r stope&1 
 
q2=:r stope&2 
 
q3=:r stope&3 
 
q4=:r stope&4 
 
   x=:0 1 2 3 4 
   >(q0;q1;q2;q3;q4) x 
1     1      1      1       1 
0     1      2      3       4 
0   1.1    4.2    9.3    16.4 
0  1.32   9.24  29.76   68.88 
0 1.716 21.252 98.208 296.184 

E. Slope of the Stope 
We will now illustrate that the r-slope of  r stope&n is n*r stope&(n-1): 
 
   r q4 S x 
0 5.28 36.96 119.04 275.52 
 
   4*q3 x 
0 5.28 36.96 119.04 275.52 
 
   r q3 S x 
0 3.3 12.6 27.9 49.2 
 
      3*q2 x 
0 3.3 12.6 27.9 49.2 
 
This behavior is analagous to that of the power functions p4, p3, etc. under the 
derivative. Moreover, the stope functions can be defined as a sequence of products, in a 
manner similar to that used for defining the power functions. Thus (using R for a constant 
function): 
 
   R=:r"0 
 
   f4=:(]+3"0*R)*f3=:(]+2"0*R)*f2=:(]+1"0*R)*f1=:(]+0"0*R)*f0=:1"0 
 
From these definitions, the foregoing property of the r-slopes of stopes can be obtained in 
the manner used for the derivative of powers, but using the expression: 
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   (f*(r g S))+((r f S)*g)-(R*(r f S)*(r g S)) 
 
For the r-slope of the product of functions instead of the: 
 
                  (f*g d.1)+(f d.1*g) 
 
used for the derivative. 

F. Stope Polynomials 
The polynomial function p. also possesses a variant p.!.r, in which the terms are based 
upon the stope ^!.r rather than upon the power ^ . For example: 
 
   spr=:p.!.r 
   c=:4 3 2 1 
 
   c&spr x 
4 10.52 27.64 61.36 117.68 
   
   (4*x ^!.r 0)+(3*x^!.r 1)+(2*x^!.r 2)+(1*x^!.r 3) 
4 10.52 27.64 61.36 117.68 
 
The r-slope of  the stope polynomial c&spr then behaves analogously to the derivative of 
the ordinary polynomial. Thus: 
 
   deco=: 1:}.]*i.@#     Function for coefficients of derivative polynomial   
   ]d=:deco c 
3 4 3 
   c&p. x                Ordinary polynomial with coefficients c 
4 10 26 58 112 
 
   c&p. d.1 x            Derivative of polynomial 
3 10 23 42 67 
   d p. x                Agrees with polynomial with "derivative" coefficients 
3 10 23 42 67 
    
   spr=:p.!.r            Stope polynomial for run r 
 
   c&spr x               Stope polynomial with coefficients c 
  4 10.52 27.64 61.36 117.68 
 
   r c&spr S x           r-slope of stope polynomial 
3 10.3 23.6 42.9 68.2 
 
   d&spr x               Agrees with stope polynomial with coefficients d 
3 10.3 23.6 42.9 68.2 
 
We now define a stope polynomial adverb, whose argument specifies the run: 
 
   SPA=: 1 : '[ p.!.x. ]' 
 
   c 0 SPA x             Zero gives ordinary polynomial 
4 10 26 58 112 
   c p. x 
4 10 26 58 112 
 
   c r SPA x             Stope with run r 



 Chapter 4  Difference Calculus 53 
 
4 10.52 27.64 61.36 117.68 
 
Integration behaves analogously: 
   adeco=: [ , ] % >:@i.@#@]      The integral coefficient function 
 
   (0 adeco c)&spr x   
0 6.959 25.773 70.342 160.566 

G. Coefficient Transformations 

It is important to be able to express an ordinary polynomial as an equivalent stope 
polynomial, and vice versa. We will therefore show how to obtain the coefficients for an 
ordinary polynomial that is equivalent to a stope polynomial with given coefficients: 
 
The expression vm=:x ^/ i.#c gives a table of powers of x that is called a 
Vandermonde matrix. If mp=:+/ . * is the matrix product, then vm mp c gives 
weighted sums of these powers that are equivalent to the polynomial c p. x. For 
example:  
 
   x=:2 3 5 7 11 
   c=:3 1 4 2 1 
   c p. x 
53 177 983 3293 17801 
    
   ]vm=:x ^/ i.#c 
1  2   4    8    16 
1  3   9   27    81 
1  5  25  125   625 
1  7  49  343  2401 
1 11 121 1331 14641 
 
   mp=:+/ . * 
 
   ]y=:vm mp c 
53 177 983 3293 17801 
 
If x has the same number of elements as c, and if the elements of x are all distinct, then 
the matrix vm is non-singular, and its inverse can be used to obtain the coefficients of a 
polynomial that gives any specified result. If the result is y, these coefficients are, of 
course, the original coefficients c. Thus: 
 
   (%.vm) mp y 
3 1 4 2 1 
 
The coefficients c used with a stope polynomial give a different result y2, to which we 
can apply the same technique to obtain coefficients c2 for an equivalent ordinary 
polynomial:  
   r=:0.1 
   ]y2=:c p.!.r x 
61.532 200.928 1077.98 3536.71 18690.4 
 
   ]c2=:(%.vm) mp y2 
3 1.446 4.71 2.6 1 
 
   c2 p. x 
61.532 200.928 1077.98 3536.71 18690.4 
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We now incorporate this method in a conjunction FROM, such that r1 FROM r2 gives a 
function which, applied to coefficients c, yields d such that d p.!.r1 x is equivalent to 
c p.!.r2 x. Thus: 
 
   VM=:1 : '[ ^!.x./i.@#@]' 
 
   FROM=: 2 : '((y. VM %. x. VM)~ @i.@#) mp ]' 
 
   ]cr=:r FROM 0 c 
3 0.619 3.47 1.4 1 
 
   cr p.!.r x 
53 177 983 3293 17801 
   c p.!.0 x 
53 177 983 3293 17801 

A conjunction that yields the corresponding Vandermonde matrix rather than the 
coefficients can be obtained by removing the final matrix product from FROM. For the 
case of the falling factorial function (r=:_1) this matrix gives results of general interest: 
 
   VMFROM=: 2 : '((y. VM %. x. VM)~ @i.@#)' 
    
   0 VMFROM _1 c 
1 0  0  0  0 
0 1 _1  2 _6 
0 0  1 _3 11 
0 0  0  1 _6 
0 0  0  0  1 
 
   _1 VMFROM 0 c 
1 0 0 0 0 
0 1 1 1 1 
0 0 1 3 7 
0 0 0 1 6 
0 0 0 0 1 
 
The elements of the last of these tables are called Stirling numbers of the scond kind, and 
the magnitudes of those of the first are Stirling numbers of the first kind. 
 
G1  Experiment with the adverb VM.  
D2 Enter expressions to obtain the matrices S1 and S2 that are Stirling numbers of 

order 6 (that is, $ S1 is 6 6). 

[c=: 6?9  S1=:0 FROM 1 c S2=:1 FROM 0 c] 

D3 Test the assertion that S1 is the inverse of S2. 

H. Slopes as Linear Functions 

A linear function can be represented by a matrix bonded with the matrix product. For 
example, if v is a vector and ag=: <:/~@i.@# , then sum=: ag v is a summation or 
aggregation matrix; the linear function (mp=: +/ . *)&sum produces sums over 
prefixes of its argument. Thus: 
 
   ]v=: ^&3 i. 6 
0 1 8 27 64 125 
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   mp=: +/ . * 
   ag=: <:/~@i.@# 
   sum=: ag v 
   sum sum mp sum 
1 1 1 1 1 1  1 2 3 4 5 6 
0 1 1 1 1 1  0 1 2 3 4 5 
0 0 1 1 1 1  0 0 1 2 3 4 
0 0 0 1 1 1  0 0 0 1 2 3 
0 0 0 0 1 1  0 0 0 0 1 2 
0 0 0 0 0 1  0 0 0 0 0 1    
 
   v mp sum v mp (sum mp sum) 
0 1 9 36 100 225  0 1 10 46 146 371 
 
   +/\v +/\ +/\v 
0 1 9 36 100 225  0 1 10 46 146 371 
 
   mp&sum v   mp&(sum mp sum) v 
0 1 9 36 100 225 0 1 10 46 146 371 
 
   L1=: mp&sum   L2=:mp&(sum mp sum) 
 
   L1 v L2 v 
0 1 9 36 100 225  0 1 10 46 146 371 
 
   +/\v +/\ +/\v 
0 1 9 36 100 225  0 1 10 46 146 371 
 
   mp&sum v   mp&(sum mp sum) v 
0 1 9 36 100 225 0 1 10 46 146 371 
 
   L1=: mp&sum   L2=:mp&(sum mp sum) 
 
   L1 v L2 v 
0 1 9 36 100 225  0 1 10 46 146 371 

The results of L1 v are rough approximations to the areas under the graph of ^&3, that is, 
to the  integrals up to successive points. Similarly, the inverse matrix dif=: %. sum 
can define a linear function that produces differences between successive elements of its 
argument. For example: 
 
   dif=: %. sum 
 
   dif  dif mp dif 
1 _1  0  0  0  0  1 _2  1  0  0  0 
0  1 _1  0  0  0  0  1 _2  1  0  0 
0  0  1 _1  0  0  0  0  1 _2  1  0 
0  0  0  1 _1  0  0  0  0  1 _2  1 
0  0  0  0  1 _1  0  0  0  0  1 _2 
0  0  0  0  0  1  0  0  0  0  0  1    
 
   LD1=: mp&dif LD2=: mp&(dif mp dif) 
   LD1 v LD2 v 
0 1 7 19 37 61  0 1 6 12 18 24 
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These results may be compared with the 1-slopes of the cube function, noting that the 
first k elements of the kth slope are meaningless. The r-slopes of a function f can be 
obtained similarly, by applying %&r@LD1 to the results of f applied to arguments 
differing by r. For example: 
   ]x=: r*i.6 [ r=: 0.1 
0 0.1 0.2 0.3 0.4 0.5 
 
   %&r@LD1 ^&3 x 
0 0.01 0.07 0.19 0.37 0.61 
   r (^&3) S x 
0.01 0.01 0.07 0.19 0.37 0.61 

Because the results for the 1-slope are so easily extended to the case of a general r-slope, 
we will discuss only the 1-slope provided by the linear function DIF=: mp&dif . 

Consider the successive applications of DIF to the identity matrix: 
   ID=: (i. =/ i.) 6 
   DIF=: mp&dif 
   ID                 DIF ID DIF DIF ID 
1 0 0 0 0 0  1 _1  0  0  0  0 1 _2  1  0  0  0 
0 1 0 0 0 0    0  1 _1  0  0  0   0  1 _2  1  0  0 
0 0 1 0 0 0    0  0  1 _1  0  0   0  0  1 _2  1  0 
0 0 0 1 0 0    0  0  0  1 _1  0   0  0  0  1 _2  1 
0 0 0 0 1 0    0  0  0  0  1 _1   0  0  0  0  1 _2 
0 0 0 0 0 1    0  0  0  0  0  1   0  0  0  0  0  1 
 
   2 3$ <"2@(DIF^:0 1 2 3 4 5) ID 
+----------------+----------------+-------------------+ 
|  1 0 0 0 0 0   |1 _1  0  0  0  0| 1 _2  1  0  0  0  | 
|  0 1 0 0 0 0   |0  1 _1  0  0  0| 0  1 _2  1  0  0  | 
|  0 0 1 0 0 0   |0  0  1 _1  0  0| 0  0  1 _2  1  0  | 
|  0 0 0 1 0 0   |0  0  0  1 _1  0| 0  0  0  1 _2  1  | 
|  0 0 0 0 1 0   |0  0  0  0  1 _1| 0  0  0  0  1 _2  | 
|  0 0 0 0 0 1   |0  0  0  0  0  1| 0  0  0  0  0  1  | 
+----------------+----------------+-------------------+ 
|1 _3  3 _1  0  0|1 _4  6 _4  1  0|1 _5 10 _10   5  _1| 
|0  1 _3  3 _1  0|0  1 _4  6 _4  1|0  1 _5  10 _10   5| 
|0  0  1 _3  3 _1|0  0  1 _4  6 _4|0  0  1  _5  10 _10| 
|0  0  0  1 _3  3|0  0  0  1 _4  6|0  0  0   1  _5  10| 
|0  0  0  0  1 _3|0  0  0  0  1 _4|0  0  0   0   1  _5| 
|0  0  0  0  0  1|0  0  0  0  0  1|0  0  0   0   0   1| 
+----------------+----------------+-------------------+  
 
The foregoing results suggest that the k-th difference is a weighted sum of k+1 elements 
in which the weights are the alternating binomial coefficients of order k. For example: 
   ]v=: ^&3 i. 8 
0 1 8 27 64 125 216 343 
 
   w=: mp & 1 _2 1 
   w 0 1 2{v 
6 
   w 1 2 3{v w 2 3 4{v w 3 4 5{v 
12  18 24 

   3 <\ v       Box applied to each 3-element window 
+-----+------+-------+---------+----------+-----------+ 
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|0 1 8|1 8 27|8 27 64|27 64 125|64 125 216|125 216 343| 
+-----+------+-------+---------+----------+-----------+ 
 
   3 w\ v   Weighting function applied to  
6 12 18 24 30 36 each 3-element window 
   4 (mp & _1 3 _3 1)\ v   The third difference of the cube 
 6 6 6 6 6                 function is the constant !3 
 
   6 (mp & _1 5 _10 10 _5 1)\ ^&5 i. 11 
120 120 120 120 120 120    

The binomial coefficients of order n are provided by the expression 
(i. n+1)!n. For example: 
    (i.@>: ! ]) n=: 5 
1 5 10 10 5 1 
 

The  alternating coefficients could be obtained by multiplying alternate elements by _1. 
However, they are provided more directly by the extension of the function ! to negative 
arguments, as may be seen in the following "bordered" function table: 
   ]i=: i: 7 
_7 _6 _5 _4 _3 _2 _1 0 1 2 3 4 5 6 7 
 
    i ! table i 
+--+-------------------------------------------------+ 
|  |   _7   _6   _5   _4  _3 _2 _1 0 1 2 3 4  5  6  7| 
+--+-------------------------------------------------+ 
|_7|    1   _6   15  _20  15 _6  1 0 0 0 0 0  0  0  0| 
|_6|    0    1   _5   10 _10  5 _1 0 0 0 0 0  0  0  0| 
|_5|    0    0    1   _4   6 _4  1 0 0 0 0 0  0  0  0| 
|_4|    0    0    0    1  _3  3 _1 0 0 0 0 0  0  0  0| 
|_3|    0    0    0    0   1 _2  1 0 0 0 0 0  0  0  0| 
|_2|    0    0    0    0   0  1 _1 0 0 0 0 0  0  0  0| 
|_1|    0    0    0    0   0  0  1 0 0 0 0 0  0  0  0| 
| 0|    1    1    1    1   1  1  1 1 1 1 1 1  1  1  1| 
| 1|   _7   _6   _5   _4  _3 _2 _1 0 1 2 3 4  5  6  7| 
| 2|   28   21   15   10   6  3  1 0 0 1 3 6 10 15 21| 
| 3|  _84  _56  _35  _20 _10 _4 _1 0 0 0 1 4 10 20 35| 
| 4|  210  126   70   35  15  5  1 0 0 0 0 1  5 15 35| 
| 5| _462 _252 _126  _56 _21 _6 _1 0 0 0 0 0  1  6 21| 
| 6|  924  462  210   84  28  7  1 0 0 0 0 0  0  1  7| 
| 7|_1716 _792 _330 _120 _36 _8 _1 0 0 0 0 0  0  0  1| 
+--+-------------------------------------------------+ 
Except for a change of sign required for those of odd order, the required alternating 
binomial coefficients can be seen in the diagonals beginning in row 0 of the negative 
columns of the foregoing table. The required weights are therefore given by the following 
function: 
 
   w=: _1&^ * (i. ! i. - ])@>:"0 
   w 0 1 2 3 4 
 1  0  0  0 0 
_1  1  0  0 0 
 1 _2  1  0 0 
_1  3 _3  1 0 
 1 _4  6 _4 1 
 

Differences may therefore be expressed as shown in the following examples: 
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   ]v=: ^&3 i. 8 
0 1 8 27 64 125 216 343 
 
   2 mp & (w 1)\ v 
1 7 19 37 61 91 127 
 
   3 mp & (w 2)\ v 
6 12 18 24 30 36 
 
   5 mp & (w 4)\ ^&6 i. 10 
1560 3360 5880 9120 13080 17760 

It may also be noted that the diagonals beginning in row 0 of the non-negative columns 
of the table contain the weights appropriate to successive integrations as, for example, in 
the diagonals beginning with 1 1 1 1 1 and 1 2 3 4 5 and 1 3 6 10 15. This fact 
can be used to unite the treatment of derivatives and integrals in what Oldham and 
Spanier call differintegrals in their Fractional Calculus [5]. Moreover, the fact that the 
function ! is generalized to non-integer arguments will be used (in Chapter 5) to define 
fractional derivatives and integrals. For example: 
 
   (i.7)!4 
1 4 6 4 1 0 00 
 

   0j4":(0.01+i.7)!4  Formatted to four decimal places 
1.0210  4.0333  5.9998  3.9666  0.9793 _0.0020  0.0003 
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Chapter 

5 

Fractional Calculus 

A. Introduction 

The differential and the difference calculus of Chapters 2 and 4 concern derivatives and 
integrals of integer order. The fractional calculus treated in this chapter unites the 
derivative and the integral in a single differintegral, and extends its domain to non-
integral orders. 

Section H of Chapter 1 included a brief statement of the utility of the fractional calculus 
and a few examples of fractional derivatives and integrals. Section E of Chapter 4 
concluded with the use of the alternating binomial coefficients produced by the outof 
function ! to compute differences of arbitrary integer order. The extension of the function 
! to non-integer arguments was also cited as the basis for an analogous treatment of non-
integer differences, and therefore as a basis for approximating non-integer differintegrals. 

Our treatment of the fractional calculus will be  based on Equation 3.2.1 on page 48 of 
OS (Oldham and Spanier [5]). Thus: 
 
   f=: ^&3 Function treated 
 
   q=: 2 Order of differintegral 
 
   N=: 100 Number of points used in approximation 
   a=: 0 Starting point of integration 
 
   x=: 3 Argument 
 
   OS=: '+/(s^-q)*(j!j-1+q)*f x-(s=:N%~x-a)*j=:i.N' 
   ". OS Execute the Oldham Spanier expression to obtain the 
17.82 approximation to the second derivative of f at x 
 
   q=: 1 
   ". OS Approximation to the first derivative (the exact value   
26.7309 is 3*x^2, that is, 27) 
 
   q=: 0  
 
   ". OS Zeroth derivative (the function itself) 
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27 
 
   q=: _1 
   ". OS The first integral (exact value is 4%~x^4) 
20.657 
 
   q=: _2 
   ". OS The second integral (exact value is 20%~x^5) 
12.7677 
 
   q=: 0.5 
   ". OS 
27.9682 Semi-derivative (exact value is 28.1435) 
 

We will use the expression OS to define a fractional differintegral conjunction fd such 
that q (a,N) fd f x produces an N-point approximation to the q-th derivative of the 
function f at x if q>:0, and the (|q)-th integral from a to x if q is negative: 
 
   j=: ("_) (i.@}.@) 
   s=: (&((] - 0: { [) % 1: { [)) (@]) 
   m=: '[:+/(x.s^0:-[)*(x.j!x.j-1:+[)*[:y.]-x.s*x.j' 
   fd=: 2 : m  
 

For example: 
 
   2 (0,100) fd (^&3) 3 
17.82 
   2 (0,100) fd (^&3)"0 i. 4 
_. 5.94 11.88 17.82 
 

An approximation to a derivative given by a set of N points will be better over shorter 
intervals. For example: 
 
   x=: 6 
   1 (0,100) fd f x 
106.924 
   3*x^2 
108 
 
   1 ((x-0.01),100) fd f x 
107.998 
 

Anyone wishing to study the OS formulation and discussion will need to appreciate the 
relation between the function ! used here, and the gamma function (G) used by OS. 
Although the gamma function was known to be a generalization of the factorial function 
on integer arguments, it was not defined to agree with it on integers. Instead, G n is 
equivalent to ! n-1. Moreover, the dyadic case m!n is here defined as 
(!n)%(!m)*(!n-m); the three occurrences of the gamma function in Equation 3.2.1 of 
OS may therefore be written as j!j-1+q, as seen in the expression OS used above. 

The related complete beta function is also used in OS, where it is defined (page 21) by 
B(p,q) = (G p) * (G q) % (G p+q). This definition may be re-expressed so as to show its 
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relation to the binomial coefficients, by substituting m for p-1 and n for p+q-1. The 
expression B(p,q) is then equivalent to (!m)*(!n-m)%(!n), or simply % m!n. 

B. Table of Semi-Differintegrals 

The differintegrals of the sum f+g and the difference f-g are easily seen to be the sums 
and differences of the corresponding differintegrals, and it might be expected that 
fractional derivatives satisfy further relationships analogous to those shown in Section 2K 
for the differential calculus. Such relations are developed by Oldham and Spanier, but 
most are too complex for treatment here.  

We will confine attention to a few of their semi-differintegrals (of orders that are integral 
multiples of 0.5 and _0.5). We begin by defining a conjunction FD (similar to fd, but 
with the parameters a and N fixed at 0 and 100), and using it to define adverbs for 
approximating semi-derivatives and semi-integrals: 
 
   FD=: 2 : 'x."0 (0 100) fd y. ]' ("0) 
   x=: 1 2 3 4 5 
   1 FD (^&3) x 
2.9701 11.8804 26.7309 47.5216 74.2525 
 
   3*x^2 Exact expression  
3 12 27 48 75 
 
   si=: _1r2 FD _1r2 is the rational constant  _1%2 
   sd=: 1r2 FD 
   s3i=: _3r2 FD 
   ^&3 sd x Semi-derivative of cube 
1.79416 10.1493 27.9682 57.4131 100.296 
 
   sdc=: *:@!@[*(4&*@] ^ [) % !@+:@[ *%:@o.@] 
   3 sdc x Exact expression from OS[5] page 119 
1.80541 10.2129 28.1435 57.773 100.925 
 
   ^&3 si x  Semi-integral of cube 
0.520349 5.88707 24.3343 66.6046 145.442 
 
   sic=:*:@!@[*(4&*@]^+&0.5@[)%!@>:@+:@[*%:@o.@1: 
   3 sic x Exact function from OS[5] page 119    
0.51583 5.83596 24.123 66.0263 144.179 
 

Although the conjunctions sd and si and s3i provide only rough approximations, we 
will use them in the following table to denote exact conjunctions for the semi-
differintegrals. This makes it possible to use the expressions in computer experiments, 
remembering, of course, to wrap any fork in parentheses before applying it.  

Function   Semi-derivative Semi-integral 
f+g f sd + g sd f si + g si 

f-g f sd - g sd f si - g si 

]*g  (]*g sd)+-:@(g si) (]*g si)--:@(g s3i) 

c"0*g c"0 * g sd c"0 * g si 

c"0 c"0 % %:@o. (2*c)"0*%:@(]%1p1"0) 

1"0 %@%:@o. +:@%:@%@o.@%  

] +:@%:@%@o.@% 4r3"0*(^&3r2)%1p1r2"0 
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*: 8r3"0*(^&3r2)%1p1r2"0 16r15"0*(^&5r2)%1p1r2"0 

%: 1r2p1r2"0  -:@(]*1p1r2"0) 

%@>: (%:@>:-%:*_5&o.@%: +:@(_5&o.@%:)%%:@(>:*1p1"0) 

   ).%%:@o.*>:^3r2"0    

%@%: 0"0 %:@(1p1"0) 

%:@>: 1p1r2"0%~%:@%+_3&o.@%: 1p1r2"0%~%:+>:*_3&o.@%: 

%@%:@>: %@(>:*%:*1p1r2"0) +:@(_3&o.)@%:%1p1r2"0 

^&p %/@!@((p-0 1r2)"0 %/@!@((p+0 1r2)"0)*^&(p+1r2) 

   )*^&(p-1r2) 

^&n *:@!@(n"0)*^&n@4: *:@!@(n"0)*^&(n+1r2)@4: 

   %!@+:@(n"0)*%:@o. %!@>:@+:@(n"0)*1p1r2" 

^&(n+1r2) !@>:@+:@(n"0)*1p !@>:@>:@+:@(n"0)*1p1 

   1r2"0*^&n@(1r4& r2"0*^&(>:n)@(%&4) 

   *)%+:@*:@!@(n"0) %*:@!@>:@(n"0) 

_3&o.@%: -:@%:@(1p1"0%>:) 1p1r2"0*%:&.>: 

Notes: 

 f Function 

 g Function 

 n Integer 

 p Constant greater than _1 

 c Constant 

To experiment with entries in the foregoing table, first enter the definitions of sd and si 
and s3i, and definitions for f and g (such as f=: ^&3 and g=: ^&2). The first row 
would then be treated as: 
 
   (f+g) sd x=: 1 2 3 4 
3.29303 14.3887 35.7565 69.404 
 
   (f sd + g sd) x 
3.29303 14.3887 35.7565 69.404 
   (f+g) si x 
1.12591 9.31267 33.7741 85.9827 
 
   (f si + g si) x 
1.12591 9.31267 33.7741 85.9827 

Entries in the table can be rendered more readable to anyone familiar only with 
conventional notation by a few assignments such as: 

        twice=: +: 

         sqrt=: %: 

      pitimes=: o. 

   reciprocal=: % 

           on=: @ 
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The table entry for the semi-derivative of the identity function could then be expressed as 
follows: 
 
   ] sd x 
1.12697 1.59378 1.95197 2.25394   
 
   twice on sqrt on reciprocal on pitimes on reciprocal x 
1.12838 1.59577 1.95441 2.25676 

 
Alternatively, it can be expressed using the under conjunction as follows: 
 
  under=: &. 
  twice on sqrt on (pitimes under reciprocal) x 
1.12838 1.59577 1.95441 2.25676 
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Chapter 

6 

Properties of Functions 

A. Introduction 

In this chapter we will analyze relations among the functions developed in Chapter 2, and 
express them all as members of a single family. We will first attempt to discover 
interesting relations by experimentation, and then to construct proofs. In this section we 
will use the growth and decay functions to illustrate the process, and then devote separate 
sections to experimentation and to proof. We will use the adverb D=: ("0)(D.1) . 

The reader is urged to try to develop her own experiments before reading Section B, and 
her own proofs before reading Section C. 

In Sections E and F of Chapter 2, the functions ec and eca were developed to 
approximate growth and decay functions. Thus: 
 
   eca=: _1&^ * ec=: %@!   
   ec i.7 
1 1 0.5 0.166667 0.0416667 0.00833333 0.00138889 
 
   eca i.7 
1 _1 0.5 _0.166667 0.0416667 _0.00833333 0.00138889 
 

We will now use the approximate functions to experiment with growth and decay: 
   GR=: (ec i.20)&p. 
 
   DE=: (eca i.20)&p. 
 

It might be suspected that the decay function would be the reciprocal of the growth 
function, in other words that their product is one. We will test this conjecture in two 
ways, first by computing the product directly, and then by computing the coefficients of 
the corresponding product polynomial. Thus: 
   GR x=: 0 1 2 3 4 
1 2.71828 7.38906 20.0855 54.5981 
 
   DE x 
1 0.367879 0.135335 0.0497871 0.0183153 
   (GR x) * (DE x) 
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1 1 1 1 0.999979 
 
   (GR * DE) x 
1 1 1 1 0.999979 
 
   PP=: +//.@(*/) 
   1 2 1 PP 1 3 3 1 
1 5 10 10 5 1 
 
   6{. (ec i.20) PP (eca i.20) 
1 0 0 _2.77556e_17 6.93889e_18 _1.73472e_18 
   6{.(ec PP eca) i.20 
1 0 0 _2.77556e_17 6.93889e_18 _1.73472e_18 
   ((ec PP eca) i.20) p. x 
1 1 1 1 0.999979 
 

Since the growth and decay functions were defined only in terms of their derivatives, any 
proof of the foregoing conjecture must be based on these defining properties. We begin 
by determining the derivative of the product as follows: 

   (DE*GR) d.1 

   (DE*GR d.1)+(DE d.1 *GR) See Section 2K 

   (DE*GR)+(DE d.1 *GR) Definition of GR 

   (DE*GR)+(-@DE*GR) Definition of DE 

   (DE*GR)-(DE*GR) 

   0"0 

Consequently, the derivative of DE*GR is zero; DE*GR is therefore a constant, whose 
value may be determined by evaluating the function at any point. At the argument 0, all 
terms of the defining polynomials are zero except the first. Hence the constant value of 
DE*GR is one, and it is defined by the function 1"0 . Thus: 
 
   (DE*GR) x 1"0 x 
1 1 1 1 0.999979 1 1 1 1 1 
 

A second experiment is suggested by the demonstration (in Section I of Chapter 2) that 
the derivative of the function f=: ^@(r&*) is r times f; the case r=: _1 should give 
the decay function: 
 
   r=: _1 
   DE x=: 0 1 2 3 4 
1 0.367879 0.135335 0.0497871 0.0183153 
 
   ^@(r&*) x 
1 0.367879 0.135335 0.0497871 0.0183156 
   ^ AM r x 
1 0.367879 0.135335 0.0497871 0.0183156 
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The final expression uses the scaling conjunction of Section I of Chapter 2. We may now 
conclude that the function ^ AM r describes growth at any rate, and that negative values 
of r subsume the case of decay. 

In the foregoing discussion we have used simple observations (such as the probable 
reciprocity of growth and decay) to motivate experiments that led to the statement and 
proof of significant identities. To any reader already familiar with the exponential 
function these matters may seem so obvious as to require neither suggestion nor proof, 
and he may therefore miss the fact that all is based only on the bare definitions given in 
Sections 2E and 2F. 

Similar remarks apply to the hyperbolic and circular functions treated in Sections 2G,H. 
The points might be better made by using featureless names such as f1, f2, and f3 for 
the functions. However, it seems better to adopt commonly used names at the outset. 
 

A1 Test the proof of this section by entering each expression with an argument. 

A2 Make and display the table T whose (counter) diagonal sums form the product of 
the coefficients ec i.7 and eca i.7. 

[  T=: (ec */ eca) i.7  ] 

A3 Denoting the elements of the table t=: 2 2{.T by t00, t01, t10, and t11, write 
explicit expressions for them. Then verify that t00 and t01+t10 agree with the 
first two elements of the product polynomial given in the text. 

[  t00 is 1*1      t01+t10 is (1*_1)+(1*1)  ] 

A4 Use the scheme of A3 on larger subtables of T to check further elements of the 
polynomial product. 

A5 Repeat the exercises of this section for other relations between functions that might 
be known to you. 

[Consider the functions f=: ^*^ and g=: ^@+: beginning by applying them to 
arguments such as f"0 i.5 and g"0 i. 5] 

 B. Experimentation 

Hyperbolics. One hyperbolic may be plotted against the other as follows: 
   sinh=: 5&o. 
   cosh=: 6&o. 
   load'plot' 
   plot (cosh;sinh) 0.1*i:21 

 

The resulting plot suggests a hyperbola satisfying the equation 1= (sqr x)-(sqr y). Thus: 
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   (*:@cosh - *:@sinh) i:10 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 

Finally, each of the hyperbolics is the derivative of the other, and their second derivatives 
equal the original functions: 
 
   sinh x=: 0 1 2 3 4 
0 1.1752 3.62686 10.0179 27.2899 
   cosh x 
1 1.54308 3.7622 10.0677 27.3082 
 
   sinh d.1  x 
1 1.54308 3.7622 10.0677 27.3082 
   cosh d.1  x 
0 1.1752 3.62686 10.0179 27.2899 
 
   sinh d.2 x 
0 1.1752 3.62686 10.0179 27.2899 
   cosh d.2 x 
1 1.54308 3.7622 10.0677 27.3082 
 

Circulars. The circular functions may be plotted similarly: 
 
   sin=: 1&o. 
   cos=: 2&o.  
   plot (cos;sin) 0.1*i:21 

 
 

The resulting (partial) circle (flattened by scaling) suggests that the following sum of 
squares should give the result 1 : 
 
   (*:@cos + *:@sin) i:10 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Finally, the derivative of cos is -@sin and sin d.1 is cos. 
Parity. If f -x equals f x for every value of x, then f is said to be even. Geometrically, 
this implies that the plot of f is reflected in the vertical axis. For example: 
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   f=:^&2  
   x=:0 1 2 3 4 
   f x 
0 1 4 9 16 
   f -x 
0 1 4 9 16 
   plot f i:4 

    
 
If f -x equals -f x, then f is said to be odd, and its plot is reflected in the origin: 
 
   f=:^&3 
   f x 
0 1 8 27 64 
   f -x 
0 _1 _8 _27 _64 
 
    plot f i:3   

  
 
The adverbs: 
 
   EVEN=: .. - 
    ODD=: .: - 
 
give the even and odd parts of a function to which they are applied; that is, f EVEN is an 
even function, f ODD is odd, and their sum is equal to f. For example: 
   ^ x 
0.0497871 0.135335 0.367879 1 2.71828 7.38906 20.0855 
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   ^ EVEN x 
10.0677 3.7622 1.54308 1 1.54308 3.7622 10.0677 
 
   ^ ODD x 
_10.0179 _3.62686 _1.1752 0 1.1752 3.62686 10.0179 
 
   (^EVEN x)+(^ODD x) 
0.0497871 0.135335 0.367879 1 2.71828 7.38906 20.0855 

Since the coefficients that define the hyperbolic and circular functions each have zeros in 
alternate positions, each is either odd or even. The following functions are all tautologies, 
that is, they yield 1 for any argument: 

   (sinh = sinh ODD) (sinh = ^ ODD) 

   (cosh = cosh EVEN) (cosh = ^ EVEN) 

   (sin = sin ODD) (cos = cos EVEN) 

B1 Repeat Exercises A2-A5 with modifications appropriate to the circular and 
hyperbolic functions. 

C. Proofs 

We will now use the definitions of the hyperbolic and circular functions to establish the 
two main conjectures of Section B: 
 
   (*:@cosh - *:@sinh)   is  1 
 
   (*:@cos + *:@sin)     is   1 
 

See Section K of Chapter 2 for justification of the steps in the proof: 
 
   (*:@cosh - *:@sinh) d.1  
 
   (*:@cosh d.1 - *:@sinh d.1) 

   ((*: d.1 @cosh*sinh)-(*: d.1 @sinh * cosh))  

   ((2"0 * cosh * sinh)-(2"0 * sinh * cosh))  

   (2"0 * ((cosh * sinh) - (sinh * cosh))) 

   0"0 

The circular case differs only in the values for the derivatives: 

   cos d.1    is   -@sin 

   sin d.1    is   cos 

C1 Write and test a proof of the fact that the sum of the squares of the functions 1&o. 
and 2&o. is 1. 

D. The Exponential Family 

We have now shown how the growth, decay, and hyperbolic functions can be expressed 
in terms of the single exponential function ^ : 
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   ^ AM r Growth at rate r 

   ^ EVEN Hyperbolic cosine 

   ^ ODD Hyperbolic sine 

Complex numbers can be used to add the circular functions to the exponential family as 
follows: 

   ^@j. EVEN Cosine 

   ^@j. ODD Sine multiplied by 0j1 

For example: 
   ^@j. EVEN x=: 0 1 2 3 4 
1 0.540302 _0.416147 _0.989992 _0.653644 
 
   cos x 
1 0.540302 _0.416147 _0.989992 _0.653644 
 
   ^@j. ODD x 
0 0j0.841471 0j0.909297 0j0.14112 0j_0.756802 
 
   j. sin x 
0 0j0.841471 0j0.909297 0j0.14112 0j_0.756802 
 
   j.^:_1 ^@j. ODD x 
0 0.841471 0.909297 0.14112 _0.756802 
 
   ^ ODD &. j. x 
0 0.841471 0.909297 0.14112 _0.756802 
 

D1 Write and test tautologies involving cosh and sinh . 

[  t=: cosh = sinh@j. and u=: sinh = cosh@j. ] 

D2  Repeat D1 for cos and sin. 

E. Logarithm and Power 

The inverse of the exponential is called the logarithm, or natural logarithm. It is denoted 
by ^. ; some of its properties are shown below: 
 
   I=: ^:_1 Inverse adverb 
 
   ^ I x=: 1 2 3 4 5 
0 0.693147 1.09861 1.38629 1.60944 
 
   ^ ^ I x 
1 2 3 4 5 
 
   ^. x Natural log  
0 0.693147 1.09861 1.38629 1.60944 
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   ^. d.1 x 
1 0.5 0.333333 0.25 0.2 
   % ^. d.1 x 
1 2 3 4 5 
 
   ^. x ^ b=: 3 
0 2.07944 3.29584 4.15888 4.82831 
 
   b * ^. x 
0 2.07944 3.29584 4.15888 4.82831 
 

The dyadic case of the logarithm ^. is defined in terms of the monadic as illustrated 
below: 
 
   (^.x) % (^.b) 
0 0.63093 1 1.26186 1.46497 
 
   b ^. x 
0 0.63093 1 1.26186 1.46497 
 
   b %&^.~ x 
0 0.63093 1 1.26186 1.46497 
 

The dyadic case of ^ is the power function; it has, like other familiar dyads (including + 
- * %) been used without definition. We now define it in terms of the dyadic logarithm 
as illustrated below: 
 
   b&^. I x (Where I=: ^:_1 is the inverse adverb) 
3 9 27 81 243 
 

   b ^ x 

3 9 27 81 243 

 

This definition extends the domain of the power function beyond the non-negative 
integer right arguments embraced in the definition of power as the product over 
repetitions of the left argument, as illustrated below: 
 
   m=: 1.5 
   n=: 4 
   n # m 
1.5 1.5 1.5 1.5 
 
   */ n # m 
5.0625 
 
   m^n 
5.0625 
 

Moreover, the extended definition retains the familiar properties of the simple definition. 
For example: 
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   5 ^ 4+3  
78125  
   (5^4)*(5^3) 
78125 
 

E1 Comment on the question of whether the equivalence of */n#m and m^n holds for 
the case n=:0. 

F. Trigonometric Functions 

Just as a five-sided (or five-angled) figure may be characterized either as pentagonal or 
pentangular, so may a three-sided figure be characterized as trigonal or triangular. The 
first of these words suggests the etymology of trigonometry, the measurement of three-
sided figures. This section concerns the equivalence of the functions sin and cos (that 
have been defined only by differential equations) and the corresponding trigonometric 
functions sine and cosine. 

The sine and cosine are also called circular functions, because they can be defined in 
terms of the coordinates of a point on a unit circle (with radius 1 and centre at the origin) 
as functions of the length of arc to the point, measured counter-clockwise from the 
reference point with coordinates 1 0. As illustrated in Figure F1, the cosine of a is the 
horizontal (or x) coordinate of the point whose arc is a, and the sine of a is the vertical 
coordinate. 
The length of arc is also called the angle, and the ratio of the circumference of a circle to 
its diameter is called pi, given by pi=: o. 1, or by the constant 1p1. The circular 
functions therefore have the period 2p1, that is two pi. Moreover, the coordinates of the 
end points of arcs of lengths 1p1 and 0.5p1 are _1 0 and 0 1; the supplementary angle 
1p1&- a and the complementary angle 0.5p1&- a are found by moving clockwise from 
these points. 
 
 
 
 
 
 
 
 
 
 

Figure F1 

Taken together with these remarks, the properties of the circle make evident a number of 
useful properties of the sine and cosine. We will illustrate some of them below by 
tautologies, each of which can be tested by enclosing it in parentheses and applying it to 
an argument, as illustrated for the first of them: 
 
   S=: 1&o. 

 

    sin a 

               1                     a 

 

                    cos a 
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   C=: 2&o. 
   x=: 1 2 3 4 5 
 (1"0 = *:@S + *:@C) x Theorem of Pythagoras 
1 1 1 1 1 
 

   S@- = -@S The sine is odd 

   S ODD = S 

   C@- = C The cosine is even 

   S @ (2p1&+) = S The period of the sine is twice pi 

   C @ (2p1&+) = C The period of the cosine is twice pi 

   S @ (1p1&-) = S Supplementary angles 

       C @ (1p1&-) = -@C   " 

   S @ (0.5p1&-) = C Complementary angles 

   C @ (0.5p1&-) = S       " 
 

Sum Formulas. A function applied to a sum of arguments may be expressed equivalently 
in terms of the function applied to the individual arguments; the resulting relation is 
called a sum formula: 
 
   a=: 2 3 5 7 
   b=: 4 3 2 1 
   +: a+b 
12 12 14 16 
 
   (+:a)+(+:b) 
12 12 14 16 
 
   *: a+b 
36 36 49 64 
 
   (*:a)+(+:a*b)+(*:b) 
36 36 49 64 
 
   ^ a+b 
403.429 403.429 1096.63 2980.96 
 
   (^a)*(^b) 
403.429 403.429 1096.63 2980.96 

Sum formulas may also be expressed as tautologies: 
 
   +:@+ = +:@[ + +:@] 
   a(+:@+ = +:@[ + +:@]) b 
1 1 1 1 
 
   *:@+ = *:@[ + +:@* + *:@] 
   ^@+ = ^@[ * ^@] 
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The following sum formulas for the sine and cosine are well-known in trigonometry: 
 

   S@+ = (S@[ * C@]) + (C@[ * S@]) 

   S@- = (S@[ * C@]) - (C@[ * S@]) 

   C@+ = *&C - *&S 

   C@- = *&C + *&S 

 

Since a S@+ a is equivalent to (the monadic) S@+:, we may obtain the following 
identities for the double angle: 
 

   S@+: = +:@(S * C) 

   C@+: = *:@C - *:@S 

 

The theorem of Pythagoras can be used to obtain two further forms of the identity for 
C@+: : 
 

   C@+: = -.@+:@*:@S 

   C@+: = <:@+:@*:@C 

 

An identity for the sine of the half angle may be obtained as follows: 
 

   (C@+:@-: = 1"0 - +:@*:@S@-:) 

   (C = 1"0 - +:@*:@S@-:) 

   (+:@*:@S@-: = 1"0 - C) 

   (S@-: =&| (+:@*: I)@(1"0 - C)) 

   (S@-: =&| %:@-:@(1"0 - C)) 

 

The last two tautologies above compare magnitudes (=&|) because the square root yields 
only the positive of the two possible roots.  Similarly for the cosine:  
 

   (C@+:@-: = <:@+:@*:@C@-:) 

   (C = <:@+:@*:@C@-:) 

   (C@-: =&| %:@-:@>:@C) 

Tautologies may be re-expressed in terms of arguments i and x as illustrated below for 
S@+ and C@+: 
   i=:0.1 

   (S i+x) = ((S i)*(C x)) + ((C i)*(S x)) 

   (C i+x) = ((C i)*(C x)) - ((S i)*(S x)) 

Derivatives. Using the results of Section 2A, we may express the secant slope of the sine 
function at the points x and i+x as follows: 
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   ((S i+x)-(S x))%i 

Using the sum formula for the sine we obtain the following equivalent expressions: 
 
   (((S i)*(C x)) + ((C i)*(S x)) - (S x))%i 

   (((S i)*(C x)) + (S x)*(<:C i))%i 

   (((S i)*(C x))%i) - (S x)*((1-C i)%i) 

   ((C x)*((S i)%i)) - (S x)*((1-C i)%i) 

To obtain the derivative of S from this secant slope, it will be necessary to obtain limiting 
values of the ratios (S i)%i and (1-C i)%i. 

In the unit circle of Figure F2, the magnitude of the area of the sector with arc length 
(angle in radians) i lies between the areas of the triangles OSC and OST. Moreover, the 
lengths of the relevant sides are as shown below: 

 OC  CS OS ST 

 C i S i 1 (S%C) i 

 
 
 
 
 

 
 
 
 
 
 
 
              Figure F2 

 

ST is the tangent to the circle, and its length is called the tangent of i. Its value (S%C) i 
follows from the ratios in the similar triangles. 

The values of the cited areas are therefore -:@(S*C) i and -:@i and -:@(S%C) i . 
Multiplying by 2 and dividing by S i gives the relative sizes C i and i%S i and %C i . 
Hence, the ratio i%S i lies between C i and %C i, both of which are 1 if i=: 0. 
Finally, the desired limiting ratio (S i)%i is the reciprocal, also 1.  

The limiting value of (1-C i)%i is given by the identity +:@*:@S@-: =  1"0-C, for 
: 

   (1-C i)% i 

   (+: *: S i%2) % i  

   (*: S i%2) % (i%2) 

                                     i 
  

              O        C                                        T      

 

 S 
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   ((S i%2)%(i%2)) * (S i%2) 

The limit of the first factor has been shown to be 1, and the limit of S i%2 is 0; hence the 
limit of (1-C i)%i is their product, that is, 0. 

Substituting these limiting values in the expression for the secant slope ((C x)*((S 
i)%i)) - (S x)*((1-C i)%i) we obtain the expression for the derivative of the 
sine, namely: 
 
   ((C x)*(1)) - (S x)*(0) 
   C x 

Similar analysis shows that the derivative of C is -@S, and we see that the relations 
between S and C and their derivatives are the same as those between sin and cos and 
their derivatives. Moreover, the values of S and sin and of C and cos agree at the 
argument 0. 

F1 Define f=:sin@(+/) = perm@:sc and sc=:1 2&o."0 and perm=: +/ . * 
and sin=:1&o.and cos=:2&o.; then evaluate f a,b for various scalar values of 
a and b and comment on the results. 
[  f is a tautology recognizable  as 
(sin(a+b))=((sin a)*(cos b))+((cos a)*(sin b))] 

F2 Define other tautologies known from trigonometry in the form used in F1.  

  [   Consider the use of det=: -/ . *  ] 

G. Dot and Cross Products 
As illustrated in Section 3E, the vector derivative of the function */\ yields a matrix 
result; the vectors in this matrix lie in a plane, and the vector perpendicular or normal to 
this plane is an important derivative called the curl of the vector function. We will now 
present a number of results needed in its definition, including the dot or scalar product 
and the cross or vector product. 

The angle between two rays from the origin is defined as the length of arc between their 
intersections with a circle of unit radius centred at the origin. The angle between two 
vectors is defined analogously. For example, the angle between the vectors 3 3 and 0 2 
is 1r4p1 (that is, one-fourth of pi) radians, or 45 degrees. If the angle between two 
vectors is 1r2p1 radians (90 degrees), they are said to be perpendicular or normal. 

Similar notions apply in three dimensions, and a vector r that is normal to each of two 
vectors p and q is said to be normal to the plane defined by them, in the sense that it is 
normal to every vector of the form (a*p)+(b*q), where a and b are scalars. 

The remainder of this section defines the dot and cross products, and illustrates their 
properties. Proofs of these properties may be found in high-school level texts as, for 
example, in Sections 6.7, 6.8, and 6.12 of Coleman et al [11]. Again we will leave 
interpretations to the reader, and will defer comment on them to exercises. 

The dot product may be defined by +/@* or, somewhat more generally, by 
+/ . * . Thus: 
 
   a=: 1 2 3 [ b=: 4 3 2 
   +/a*b 
16 
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   dot=: +/ . * 
 
   a dot b The product of the cosine of the angle between a 
16 and b with the product of their lengths 
 
   dot~ a Squared length of a 
14 
 
   L=: %:@(dot~)"1 Length function 
   a,:b 
1 2 3 
4 3 2 
 
   L a,:b 
3.74166 5.38516 
 
   */ L a,:b Product of lengths 
20.1494 
 
   (a dot b) % */L a,:b 
0.794067 
 
   cos=:dot % */@(L@,:)   Re-definition of cos (not of 2&o.) 
   a cos b 
0.794067 
 
   0 0 1 cos 0 1 0 Perpendicular or normal vectors 
0 
 
   0 0 1 cos 0 1 1 
0.707107 
 
   2 o. 1r4p1 Cosine of 45 degrees 
0.707107 
 
The following expressions lead to a definition of the cross product and to a definition of 
the sine of the angle between two vectors: 
 
   rot=: |."0 1 Rotation of vectors 
   1 _1 rot a 
2 3 1 
3 1 2 
 
   (1 _1 rot a) * (_1 1 rot b) 
4 12 3 
9  2 8 
 
   ]c=:-/(1 _1 rot a)*(_1 1 rot b) Cross product 
_5 10 _5 
 
   a dot c The vectors are each normal to  
0    their cross product 
   b dot c 
0    
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   cross=: -/@(1 _1&rot@[ * _1 1&rot@]) 
   a cross b 
_5 10 _5 
 
   (a,:b) dot a cross b  
0 0 
 
   b cross a The cross product is not commutative 
5 _10 5 
 
   L a cross b The product of the sine of the angle between  
12.2474 the vectors with the product of their lengths 
 
   (L a cross b) % */ L a,:b The sine of the angle 
0.607831 
 
   sin=: L@cross % */@(L@,:)  The sine function 
   a sin b  
0.607831  
    
   a +/@:*:@(sin , cos) b 
1 
 
The following expressions suggest interpretations of the dot and cross products that will 
be pursued in exercises: 
 
   c=: 4 1 2 m=: c,a,:b 
   c dot a cross b m -/ . * m 
_20 4 1 2 _20 
  1 2 3 
  4 3 2 

 

G1 Experiment with the dot and cross products, beginning with vectors in 2-space (that 
is with two elements) for which the results are obvious. Continue with other 
vectors in 2-space and in 3-space. Sketch the rays defined by the vectors, showing 
their intersection with the unit circle (or sphere). 

H. Normals 
We now use the function e introduced in Section 3E to define a function norm that is a 
generalization of the cross product; it applies to arrays other than vectors, and produces a 
result that is normal to its argument. Moreover, when applied to skew arrays of odd order 
(having an odd number of items) it is self-inverse. Thus: 
 
   indices=:{@(] # <@i.)    
   e=:C.!.2@>@indices   Result is called an "e-system" by McConnell [4]  
 
   ]skm=: *: .: |: i. 3 3 A skew matrix 
 0 _4 _16 
 4  0 _12 
16 12   0 
 
   ]v=: -: +/ +/ skm * e #skm 
_12 16 _4 
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   v +/ . * skm Test of orthogonality 
0 0 0 
 
   +/ v * e #v Inverse transformation 
 0 _4 _16 
 4  0 _12 
16 12   0 
   norm=: +/^:(]`(#@$)`(* e@#)) % !@(#-#@$) 
   ]m=: (a=: 1 2 3) */ (b=: 4 3 2) 
 4 3 2 
 8 6 4 
12 9 6 
 
   n=: norm ^: An adverb for powers of norm 
   0 n m 
 4 3 2 
 8 6 4 
12 9 6 
 
   1 n m 
_5 10 _5 
 
   a cross b 
_5 10 _5 
 
   2 n m Skew part of m 
  0 _2.5   _5 
2.5    0 _2.5 
  5  2.5    0 
   3 n m 
_5 10 _5 
 
   1 n a 
   0  1.5  _1 
_1.5    0 0.5 
   1 _0.5   0 
 
   2 n a Self-inverse for odd dimension 
1 2 3 
 
   mp=: +/ . * 
   a mp 1 n a*/b 
0 
 
   b mp 1 n a*/b 
0 
 
   x=: 1 2 
   1 n x 
_2 1 
 
   x mp 1 n x 
0 
 
   2 n x For even orders 2 n is inverse  
_1 _2 only up to sign change 
 



 Chapter 6  Properties of Functions 81 
 
   4 n x 
1 2 
 
   2 n y=: 1 2 3 4 
_1 _2 _3 _4 
 
   4 n y 2 n 1 2 3 4 5 
1 2 3 4 1 2 3 4 5 
 
   cr=: norm@(*/) Alternative definition of cross product 
   a cr b 
_5 10 _5 
 
   a cross b 
_5 10 _5 
 

H1 Experiment with the expressions of this section. 
H2 Using the display of e 3 shown in Section 3E, and using a0, a1, and a2 to denote 

the elements of a vector a in 3-space, show in detail that norm(*/) is indeed an 
alternative definition of the cross product. 

H3 Show in detail that +/@,@(e@# * *//) is an alternative definition of the 
determinant. 
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Chapter 

7 

Interpretations and Applications 

A. Introduction 
As remarked in Section 3A, various interpretations of a particular function definition are 
possible (as in vol=: */ and cost=: */), and any one of them may be either helpful 
or confusing, depending upon the background of the reader. A helpful interpretation may 
also be misleading, either by suggesting too little or too much. We will illustrate this 
point by three examples. 
Example 1. The sentences: 
 
   S=: 2 : '%&x. @ (] -&y. -&x.)' 
   f=: ^ 
   h=: 1e_8 
   sf=: h S f 
   sf x=: 1 
2.71828 
 

define and use the function sf. Moreover, sf can be helpfully interpreted as the secant 
slope of the exponential with spacing h, and (because h is small) as an approximation to 
the tangent slope of the exponential.  

However, for the case of the discontinuous integer part  function <. this interpretation 
would be misleading because its "tangent slope" at the point 1 is infinite. Thus: 
   h S <. x 
1e8 
 

Example 2. If the spacing h is complex, the function h S ^ has the behaviour expected 
of a secant slope: 
 
   ^ y=: 2j3 
_7.31511j1.04274 
 
   h=: 1e_6j1e_8 
   h S ^ y 
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_7.31511j1.04274 
 
   (r=: 1e_6j0) S ^ y 
_7.31511j1.04274 
 
   (i=: 0j1e_8) S ^ y 
_7.31511j1.04274 
 

Again the interpretation of the function h S f as an approximation to the tangent slope 
is valid. However, the (continuous) conjugate function + shows unusual behaviour: 
 
   h S + y r S + y i S + y 
0.9998j_0.019998 1 _1 
 

The problem arises because the conjugate is not an analytic function. A clear and simple 
discussion of this matter may be found in Churchill [12]. 
 

Example 3. 

Section 2D interprets the integral of a function f as a function that gives the area under 
the graph of f from a point a (that is, the point a,f a on the graph of f) to a second 
point b. This interpretation is helpful for real-valued functions, but how should we 
visualize the area under a function that gives a complex result? 

It is, of course, possible to interpret the integral as a complex result whose real and 
imaginary parts are the areas under the real and imaginary parts of f, respectively. 
However, the beginning and end points may themselves be complex, and although there 
is a clearly defined "path" through real numbers between a pair of real numbers a and b, 
there are an infinity of different paths through complex numbers from complex a to 
complex b. 

This observation leads to the more difficult, but highly useful, notion of integration along 
a prescribed path (called a line or contour integral), a notion not hinted at by the 
interpretation of integration as the area under a curve.  

B. Applications and Word Problems 

What we have treated as interpretations of functions may also be viewed as applications 
of math, or as word problems in math. For example, if cos=:2&o. and sin=:1&o., then 
the function: 
  f=:0.1&path=:(cos,sin)@*"0 

may be interpreted as the “Position of a car ... moving on a circular path at an angular 
velocity of 0.1 radians per second”. Conversely, the expression in quotes could be 
considered as an application of the circular functions, and could be posed as a word 
problem requiring as its solution a definition of the function f. 

Similarly, the phrase f D.1 may be interpreted as the velocity of the car whose position 
is prescribed by f. Because the phrase involved a derivative, the corresponding word 
problem would be considered as an application of the calculus. 
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Just as a reader’s background will determine whether a given interpretation is helpful or 
harmful in grasping new concepts in the calculus, so will it determine the utility of word 
problems. We will limit our treatment of interpretations and applications to a few 
examples, and encourage the reader to choose further applications from any field of 
interest, or from other calculus texts. 

C. Extrema and Inflection Points 

If f=: (c=: 0 1 2.5 _2 0.25)&p., then p. is a polynomial in terms of coefficients, 
and f is a specific polynomial whose (tightly) formatted results: 
 
   (fmt=: 5.1&":) f x=: 0.1*>:i.6 10 
  0.1  0.3  0.5  0.7  0.9  1.1  1.3  1.5  1.6  1.8 
  1.8  1.9  1.8  1.8  1.6  1.4  1.2  0.9  0.5  0.0 
 _0.5 _1.1 _1.8 _2.6 _3.4 _4.2 _5.2 _6.1 _7.2 _8.2 
 _9.4_10.5_11.7_12.9_14.1_15.3_16.5_17.7_18.9_20.0 
_21.1_22.1_23.0_23.9_24.6_25.2_25.7_26.1_26.3_26.2 
_26.0_25.6_25.0_24.1_22.9_21.4_19.6_17.4_14.9_12.0 
 

suggest that it has a (local) maximum (of 1.9) near 1.2 and a minimum near 4.9. 
Moreover, a graph of the function over the interval from 0 to 4 shows their location more 
precisely. 

A graph of the derivative f d.1 over the same interval illustrates the obvious fact that 
the derivative is zero at an extremum (minimum or maximum): 
 
    fmt f d.1 x 
  1.4  1.8  2.0  2.1  2.1  2.1  1.9  1.7  1.4  1.0 
  0.6  0.1 _0.4 _1.0 _1.6 _2.3 _2.9 _3.6 _4.3 _5.0 
 _5.7 _6.4 _7.1 _7.7 _8.4 _9.0 _9.6_10.1_10.6_11.0 
_11.4_11.7_11.9_12.1_12.1_12.1_12.0_11.8_11.4_11.0 
_10.4 _9.8 _8.9 _8.0 _6.9 _5.6 _4.2 _2.6 _0.9  1.0 
  3.1  5.4  7.8 10.5 13.4 16.5 19.8 23.3 27.0 31.0 
 

We may therefore determine the location of an extremum by determining the roots 
(arguments where the function value is zero) of the derivative function. Since we are 
concerned only with real roots we will define a simple adverb for determining the value 
of a root in a specified interval, where the function values at the ends of the interval must 
differ in sign. The method used is sometimes called the bisection method; the interval is 
repeatedly halved in length by using the midpoint (that is, the mean) together with that 
endpoint for which the function value differs in sign. Thus: 
 
   m=: +/ % # 
   bis=: 1 : '2&{.@(m , ] #~ m ~:&(*@x.) ])' 
   f y=: 1 4 Interval that bounds a root of f 
1.75 _20 
 
   f bis y One step of the bisection method 
2.5 1 
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   f f bis y Resulting interval still bounds a root 
_3.35938 1.75 
 
   f bis^:0 1 2 3 4 y Successive bisections  
     1     4 
   2.5     1 
  1.75   2.5 
 2.125  1.75 
1.9375 2.125 
 
   f bis^:_ y Limit of bisection 
2 2 
 
   ]root=: m f bis^:_ y Root is mean of final interval 
2 
 
   f root 
_3.55271e_14 
 
A root of the derivative of f identifies an extremum of f: 
 
   f d.1 z=: 0.5 1.5 
2.125 _1.625 
 
   ]droot=: m f d.1 bis^:_ z 
1.21718 
 
   f d.1 droot 
_9.52571e_14 

When the derivative of f is increasing, the graph of f bends upward; when the derivative 
is decreasing, it bends downward. At a maximum (or minimum) point of the derivative, 
the graph of f therefore changes its curvature, and the graph crosses its own tangent. 
Such a point is called a point of inflection. 

Since an extremum of the derivative occurs at a zero of its derivative, an inflection point 
of f occurs at a zero of f d.2 . Thus: 
     fmt f d.2 x 
  3.8  2.7  1.7  0.7 _0.3 _1.1 _1.9 _2.7 _3.4 _4.0 
 _4.6 _5.1 _5.5 _5.9 _6.3 _6.5 _6.7 _6.9 _7.0 _7.0 
 _7.0 _6.9 _6.7 _6.5 _6.2 _5.9 _5.5 _5.1 _4.6 _4.0 
 _3.4 _2.7 _1.9 _1.1 _0.2  0.7  1.7  2.7  3.8  5.0 
  6.2  7.5  8.9 10.3 11.8 13.3 14.9 16.5 18.2 20.0 
 21.8 23.7 25.7 27.7 29.8 31.9 34.1 36.3 38.6 41.0 
 
   * f (d.2) 0 1 
1 _1 
 
   ]infl=: m f d.2 bis^:_ (0 1) 
0.472475 
 
   f d.2 infl 
_6.83897e_14 

A graph of f will show that the curve crosses its tangent at the point infl. 
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C1 Test the assertion that droot is a local minimum of f . 

[  f droot + _0.0001 0 0.0001   

    It is not a minimum, but a maximum. ] 

C2 What is the purpose of 2&{.@ in the definition of bis?  

   [     Remove the phrase and try f bis 1 3     ] 

C3 For various coefficients c, make tables or graphs of the derivative c&p. D to 
determine intervals bounding roots, and use them with bis to determine extrema of 
the polynomial c&p. 

D. Newton's Method 

Although the bisection method is certain to converge to a root when applied to an interval 
for which the function values at the endpoints differ in sign, this convergence is normally 
very slow. The derivative of the function can be used in a method that normally 
converges much faster, although convergence is assured only if the initial guess is 
"sufficiently near" the root.  

The function g=: (]-1:)*(]-2:) has roots at 1 and 2, as shown by its graph: 

   plot y;g y=: 1r20*i.60 

  
 
Draw a tangent at the point x,g x=: 3 intersecting the axis at a point nx,0 and note 
that nx is a much better approximation to the nearby root at 2 than is x. The length x-nx 
is the run that produces the rise g x with the slope g d.1 x. As a consequence, 
nx=:x-(g x) % (g d.1 x) is a better approximation to the root at 2. Thus: 
 
   x=:3 
   g=: (]-1:)*(]-2:) 
   g x 
2 
   ]nx=:x-(g x) % (g d.1 x) 
2.33333 
   g nx 
0.444444 

A root can be determined by repeated application of this process, using an adverb N as 
follows: 
   N=:(1 : '] - x. % x. d.1') (^:_) 
   f=: (c=: 0 1 2.5 _2 0.25)&p.       Used in Section C 
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   f N 6 
6.31662 
 
   f f N 6 Test if f N 6 is a root of f  
7.01286e_16 
 
   f N x=: i. 7        Different starts converge  
0 _0.316625 2 2 2 6.31662 6.31662 to different roots 
 
   f f N x 
0 0 0 0 0 7.01286e_16 7.01286e_16 

This use of the derivative to find a root is called Newton's method. Although it converges 
rapidly near a single root, the method may not converge to the root nearest the initial 
guess, and may not converge at all. The initial guess droot determined in the preceding 
section as a maximum point of f illustrates the matter; the derivative at the point is 
approximately 0, and division by it yields a very large value as the next guess: 
 
   f N droot 
6.31662 

Since the derivative of a polynomial function c&p. can be computed directly using the 
coefficients }.c*i.#c, it is possible to define a version of Newton's method that does 
not make explicit use of the derivative adverb. Thus: 
 
   dc=: 1 : '}.@(] * i.@#)@(x."_) p. ]' ("0) 
   NP=: 1 : '] - x.&p. % x. dc' ("0)(^:_) 
   c NP x 
0 _0.316625 2 2 2 6.31662 6.31662 
 
   c&p. N x 
0 _0.316625 2 2 2 6.31662 6.31662 
 

The following utilities are convenient for experimenting with polynomials and their 
roots: 
 
   pir=:<@[ p. ] Polynomial in terms of roots 
   _1 _1 _1 pir x 
1 8 27 64 125 216 343 
 
   1 3 3 1 p. x 
1 8 27 64 125 216 343 
 
   pp=: +//.@(*/) Polynomial product 
   1 2 1 pp 1 3 3 1 
1 5 10 10 5 1 
 
   (1 2 1 pp 1 3 3 1) p. x 
1 32 243 1024 3125 7776 16807 
   (1 2 1 p. x) * (1 3 3 1 p. x) 
1 32 243 1024 3125 7776 16807 
 
   cfr=: pp/@(- ,. 1:) Coefficients from roots 
   cfr _1 _1 _1 
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1 3 3 1 
 

D1 Use Newton's method to determine the roots for which the bisection method was 
used in Section C. 

E. Kerner's Method 

Kerner's method for the roots of a polynomial is a generalization of Newton's method; at 
each step it treats an n-element list as an approximation to all of the <:#c roots of the 
polynomial c&p., and produces an "improved" approximation. We will first define and 
illustrate the use of an adverb K such that c K b yields the <:#c (or #b) roots of the 
polynomial with coefficients c: 
 
   k=: 1 : ']-x.&p. % (<0 1)&|:@((1&(*/\."1))@(-/~))' 
   K=: k (^:_) 
   b=: 1 2 3 4 
   ]c=: cfr b+0.5 Coefficients of polynomial 
59.0625 _93 51.5 _12 1 with roots at b+0.5 
 
   c k b Single step of Kerner 
2.09375 2.46875 3.28125 4.15625 
 
   c K b Limit of Kerner 
1.5 2.5 3.5 4.5 Roots of c&p. 
 
   c k ^: (i.7) b Six steps of Kerner 
      1       2       3       4 
2.09375 2.46875 3.28125 4.15625 
1.20508 2.59209  3.7207 4.48213 
1.45763 2.53321 3.50503 4.50413 
1.49854 2.50154 3.49996 4.49997 
    1.5     2.5     3.5     4.5 
    1.5     2.5     3.5     4.5 
 
   ]rb=: 4?.20 Random starting value 
17 4 9 7 
 
   c K rb 
1.5 3.5 4.5 2.5 
 

The adverb K applies only to a normalized coefficient c, that is, one whose last non-zero 
element (for the highest order term) is 1. Thus: 
 
   norm=:(] % {:)@(>./\.@:|@:* # ]) 
   norm 1 2 0 3 4 0 0 
0.25 0.5 0 0.75 1 

The polynomials c&p. and (norm c)&p. have the same roots, and norm c is a suitable 
argument to the adverb K. 

Kerner's method applies to polynomials with complex roots; however it will not converge 
to complex roots if the beginning guess is completely real: begin provides a suitable 
beginning argument: 
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   (begin=: %:@-@i.@<:@#) 1 3 3 1 
0 0j1 0j1.41421  
 

For example, the coefficients d=: cfr 1 2 2j3 4 2j_4 define a polynomial with two 
complex roots. Thus: 
   d=: cfr 1 2 2j3 4 2j_4 
   ]roots=: (norm d) K begin d 
4 2j3 2j_4 2 1 
 
   /:~roots    Sorted roots 
1 2j3 2j_4 2 4 
 

The definition of the adverb k (for a single step of Kerner) can be revised to give an 
alternative equivalent adverb by replacing the division (%) by matrix division (%.), and 
removing the phrase (<0 1)&|:@ that extracts the diagonal of the matrix produced by 
the subsequent phrase. Thus: 
 
   ak=: 1 : ']-x.&p. %. ((1&(*/\."1))@(-/~))' 
   c ak b 
2.09375 2.46875 3.28125 4.15625 
 

In this form it is clear that the vector of residuals produced by x.&p. (the values of the 
function applied to the putative roots, which must all be reduced to zero) is divided by the 
matrix produced by the expression to the right of %. . This expression produces the 
vector derivative with respect to each of the approximate roots; like the analogous case of 
the direct calculation of the derivative in the adverb NP it is a direct calculation of the 
derivative without explicit use of the vector derivative adverb VD=: ("1) (D. 1). 
These matters are left for exploration by the reader. 

E1 Find all roots of the functions used in Section C. 

E2 Define some polynomials that have complex roots, and use Kerner's method to find 
all roots. 

F. Determinant and Permanent 
The function -/ . * yields the determinant of a square matrix argument. For example: 
 
   det=: -/ . * 
   ]m=: >3 1 4;2 7 8;5 1 6 
3 1 4   
2 7 8 
5 1 6 
 
   det m    
_2 
 
The determinant is a function of rank 2 that produces a rank 0 result; its derivative is 
therefore a rank 2 function that produces a rank 2 result. For example:  
 
   MD=: ("2) (D.1) 
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   det MD m 
 34  28 _33 
 _2  _2   2 
_20 _16  19 
 

This result can be checked by examining the evaluation of the determinant as the 
alternating sum of the elements of any one column, each weighted by the determinant of 
its respective complementary minor, the matrix occupying the remaining rows and 
columns; the derivative with respect to any given element is its weighting factor. For 
example, the complementary minor of the leading element of m is the matrix m00=: 7 
8,:1 6, whose determinant is 34, agreeing with the leading element of the derivative.  

Corresponding results can be obtained for the permanent, defined by the function +/ .*. 
For example: 
 
   (per=: +/ . *)  m 
350 
   per MD m 
50 52 37 
10 38  8 
36 32 23 
 

F1 Read the following sentences and try to state the meanings of the functions defined 
and the exact results they produce. Then enter the expressions (and any related 
expressions that you might find helpful) and again try to state their meanings and 
results. 

   alph=: 4 4$ 'abcdefghijklmnop' 

   m=: i. 4 4 

   box=: <"2 

   minors=: 1&(|:\.)"2 ^:2 

   box minors m 

   box minors alph 

   box^:2 minors^:2 alph 

[The function minors produces the complementary minors of its argument; the 
complementary minor of any element of a matrix is the matrix obtained by deleting 
the row and column in which the element lies.] 

F2 Enter and then comment upon the following sentences: 

   sqm=: *:m 

   det minors sqm 

   det D.1 sqm 

    (det D.1 sqm) % (det minors sqm) 

   ((+/ .*D.1)%+/ .*@minors)sqm   
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G. Matrix Inverse 
The matrix inverse is a rank 2 function that produces a rank 2 result; its derivative is 
therefore a rank 2 function that produces a rank 4 result. For example: 
 
   m=: >3 1 4;2 7 8;5 1 6 
   MD=: ("2) (D. 1)  

 
   <"2 (7.1) ": (miv=: %.) MD m 
+---------------------+---------------------+---------------------+ 
| _289.0 _238.0  280.5|   17.0   17.0  _17.0|  170.0  136.0 _161.5| 
|   17.0   14.0  _16.5|   _1.0   _1.0    1.0|  _10.0   _8.0    9.5| 
|  170.0  140.0 _165.0|  _10.0  _10.0   10.0| _100.0  _80.0   95.0| 
+---------------------+---------------------+---------------------+ 
| _238.0 _196.0  231.0|   14.0   14.0  _14.0|  140.0  112.0 _133.0| 
|   17.0   14.0  _16.5|   _1.0   _1.0    1.0|  _10.0   _8.0    9.5| 
|  136.0  112.0 _132.0|   _8.0   _8.0    8.0|  _80.0  _64.0   76.0| 
+---------------------+---------------------+---------------------+ 
|  280.5  231.0 _272.2|  _16.5  _16.5   16.5| _165.0 _132.0  156.7| 
|  _17.0  _14.0   16.5|    1.0    1.0   _1.0|   10.0    8.0   _9.5| 
| _161.5 _133.0  156.8|    9.5    9.5   _9.5|   95.0   76.0  _90.3| 
+---------------------+---------------------+---------------------+ 

H. Linear Functions and Operators 
As discussed in Section 1K, a linear function distributes over addition, and any rank 1 
linear function can be represented in the form mp&m"1, where m is a matrix, and mp is the 
matrix product. For example: 
 
   r=: |."1 Rank 1 reversal 
   a=: 3 1 4 [ b=: 7 5 3 
   r a 
4 1 3 
   r b 
3 5 7 
   (r a)+(r b)  Reversal is linear. 
7 6 10   
   r (a+b) 
7 6 10 
 
   mp=: +/ . *  
   ]m=: i. 3 3 
0 1 2 
3 4 5 
6 7 8 
   L=: m&mp A linear function 
   L a 
9 33 57 
   L b 
11 56 101 
   L a+b 
20 89 158 

 
   VD=: ("1) (D. 1) 
   L VD a  The derivative of a linear  
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0 1 2    function yields the matrix 
3 4 5  that represents it. 
6 7 8 
   =/~a  An identity matrix 
1 0 0 
0 1 0 
0 0 1 
 
   L =/~a  A linear function applied to 
0 1 2  the identity matrix also yields 
3 4 5  the matrix that represents it. 
6 7 8  
 
   r VD a  The matrix that represents the 
0 0 1   linear function reverse 
0 1 0   
1 0 0   
 
   r =/~a 
0 0 1 
0 1 0 
1 0 0 
 
   perm=: 2&A.  A permutation is linear. 
 
   perm a  
1 3 4   
 
   perm VD a 
0 1 0 
1 0 0 
0 0 1 
 
A function such as (^&0 1 2)"0 can be considered as a family of component functions. 
For example: 
 
   F=: (^&0 1 2)"0 
 
   F 3 
1 3 9 
 
   F y=: 3 4 5 
1 3  9 
1 4 16 
1 5 25 
 
The function L@F provides weighted sums or linear combinations of the members of the 
family F, and the adverb L@ is called a linear operator. Thus: 
 
   L @ F y    The linear function F applied 
21  60  99    to the results of the family of 
36  99 162    functions F 
55 148 241 
 
   LO=: L@    A linear operator 
   F LO y 
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21  60  99 
36  99 162 
55 148 241 
 
   C=: 2&o.@(*&0 1 2)"0 Family of cosines (harmonics) 
   C y 
1 _0.989992   0.96017 
1 _0.653644   _0.1455 
1  0.283662 _0.839072 
 
   C LO y A Fourier series 
 0.930348    3.84088  6.75141 
_0.944644  _0.342075 0.260494 
 _1.39448 _0.0607089  1.27306 
 

H1 Enter and experiment with the expressions of this section.  

I. Linear Differential Equations 
 
If f=: 2&o. and: 
   F=: (f d.0)`(f d.1)`(f d.2) `:0 "0 
   L=: mp&c=: 1 0 1 
 

then F is a family of derivatives of f. If the function L@F is identically zero, then the 
function f is said to be a solution of the linear differential equation defined by the linear 
function L. In the present example, f was chosen to be such a solution: 
 
   L@F y=: 0.1*i.4 
0 0 0 0 
 

The solution of such a differential equation is not necessarily unique; in the present 
instance the sine function is also a solution: 
 
   f=: 1&o. 
   L@F y=: 0.1*i.4 
0 0 0 0 
 

In general, the basic solutions of a linear differential equation defined by the linear 
function L=: mp&c are f=: ^@(*&sr), where sr is any one root of the polynomial 
c&p.. In the present instance: 
   f=: s=: ^@(*&0j1) 
 
   L@F y 
0 0 0 0 
c=: 1 0 1 
   c K begin c Roots of c&p. using Kerner’s method 
0j_1 0j1 
 
   f=: t=: ^@(*&0j_1) 
   L@F y 
0 0 0 0 
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Moreover, any linear combination of the basic solutions s and t is also a solution. In 
particular, the following are solutions: 
 

   u=: (s+t)%2"0 The cosine function 2&o. 

   v=: (s-t)%0j2"0  The sine function 1&o. 

Since u is equivalent to the cosine function, this agrees with the solution f used at the 
outset. 

I1 Enter the expressions of this section, and experiment with similar differential 
equations. 

J. Differential Geometry 

The differential geometry of curves and surfaces, as developed by Eisenhart in his book 
of that title [13], provides interpretations of the vector calculus that should prove 
understandable to anyone with an elementary knowledge of coordinate geometry. We 
will provide a glimpse of his development, beginning with a function which Eisenhart 
calls a circular helix. 

The following defines a circular helix in terms of an argument in degrees, with a rise of 4 
units per revolution: 
 
   CH=:(1&o.@(%&180p_1),2&o.@(%&180p_1),*&4r360)"0 
   CH 0 1 90 180 360 
           0        1         0 
   0.0174524 0.999848 0.0111111 
           1        0         1 
           0       _1         2 
_2.44921e_16        1         4 
 
   D=: ("0) (D. 1) 
   x=:0 1 2 3 4 
 
   CH D x 
0.0174533            0 0.0111111 
0.0174506 _0.000304602 0.0111111 
0.0174427 _0.000609111 0.0111111 
0.0174294 _0.000913435 0.0111111 
0.0174108  _0.00121748 0.0111111 
   CH D D x 
          0            0 0 
 _5.3163e_6 _0.000304571 0 
 _1.0631e_5 _0.000304432 0 
_1.59424e_5   _0.0003042 0 
 _2.1249e_5 _0.000303875 0 

The derivatives produced by CH D in the expression above are the directions of the 
tangents to the helix; their derivatives produced by CH D D are the directions of the 
binormals. The binormal is perpendicular to the tangent, and indeed to the osculating 
(kissing) plane that touches the helix at the point given by CH. 
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These matters may be made more concrete by drawing the helix on a mailing tube or 
other circular cylinder. An accurate rendering of a helix can be made by drawing a 
sloping straight line on a sheet of paper and rolling it on the tube. A drawing to scale can 
be made by marking the point of overlap on the paper, unrolling it, and drawing the 
straight line with a rise of 4 units and a run of the length of the circumference. Finally, 
the use of a sheet of transparent plastic will make visible successive laps of the helix. 
Then proceed as follows: 

1. Use a nail or knitting needle to approximate the tangent at one of the points 
where its directions have been computed, and compare with the computed results.  

2. Puncture the tube to hold the needle in the direction of the binormal, and again 
compare with the computed results. 

3. Puncture a thin sheet of flat cardboard and hang it on the binormal needle to 
approximate the osculating plane. 

4. Hold a third needle in the direction of the principal normal, which lies in the 
osculating plane perpendicular to the tangent. 

To compute the directions of the principal normal we must determine a vector 
perpendicular to two other vectors. For this we can use the skew array used in Section 6I, 
or the following simpler vector product function:    
 
   vp=: (1&|.@[ * _1&|.@]) - (_1&|.@[ * 1&|.@]) 
   a=: 1 2 3 [ b=: 7 5 2 
   ]q=: a vp b 
_11 19 _9 
 
   a +/ . * q b +/ . * q 
0  0 
 

Although we used degree arguments for the function CH we could have used radians, and 
it is clear that the choice of the argument to describe a curve is rather arbitrary. As 
Eisenhart points out, it is possible to choose an argument that is intrinsic to the curve, 
namely the length along its path. In the case of the helix defined by CH, it is easy to 
determine the relation between the path length and the degree argument. From the 
foregoing discussion of the paper tube model it is clear that the length of the helix 
corresponding to 360 degrees is the length of the hypotenuse of the triangle with sides 
360 and 4. Consequently the definition of a function dfl to give degrees from length is 
given by: 
 
   dfl=: %&((%: +/ *: 4 360) % 360) 

and the function CH@dfl defines the helix in terms of its own length. 

It is possible to modify the definition of the function CH to produce more complex curves, 
all of which can be modelled by a paper tube. For example: 

1. Replace the constant multiple function for the last component by other 
functions, such as the square root, square, and exponential. 

2. Multiply the functions for the first two elements by constants a and b 
respectively, to produce a helix on an elliptical cylinder. This can be 
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modelled by removing the cardboard core from the cylinder and flattening it 
somewhat to form an approximate ellipse. 

K. Approximate Integrals 

Section M of Chapter 2 developed a method for obtaining the integral or anti-derivative 
of a polynomial, and Section N outlined a method for approximating the integral of any 
function by summing the function values over a grid of points to approximate the area 
under the graph of the function. Better approximations to the integral can be obtained by 
weighting the function values, leading to methods known by names such as Simpson's 
Rule.  

We will here develop methods for producing these weights, and use them in the 
definition of an adverb (to be called I) such that f I x yields the area under the graph of 
f from 0 to x.  

The fact that the derivative of f I equals f can be seen in Figure C1; since the difference 
(f I x+h)-(f I x)is approximately the area of the rectangle with base h and altitude 
f x, the secant slope of the function f I is approximately f. Moreover, the 
approximation approaches equality for small h. 

 
 

Figure C1 
 

Figure C1 can also be used to suggest a way of approximating the function AREA=: f I; 
if the area under the curve is broken into n rectangles each of width x%n, then the area is 
approximately the sum of the areas of the rectangles with the common base h and the 
altitudes f h*i.n. For example: 
 
   h=: y % n=: 10 [ y=: 2 
   cube=: ^&3 
   cube h*i.n 
0 0.008 0.064 0.216 0.512 1 1.728 2.744 4.096 5.832 
 
  +/h*cube h*i.n    (4: %~ ^&4) y 

f

x+h   x 
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3.24   4 
 

The approximation can be improved by taking a larger number of points, but it can also 
be improved by using the areas of the trapezoids of altitudes f h*k and f h*k+1 (and 
including the point h*n). Since the area of each trapezoid is its base times the average of 
its altitudes, and since each altitude other than the first and last enter into two trapezoids, 
this is equivalent to multiplying the altitudes by the weights w=: 0.5,(1 #~ n-
1),0.5 . Thus: 
 
   ]w=: 0.5,(1 #~ n-1),0.5 
0.5 1 1 1 1 1 1 1 1 1 0.5 
 
   +/h*w*cube h*i. n+1 
4.04 
 

The trapezoids provide, in effect, linear approximations to the function between grid 
points; much better approximations to the integral can be obtained by using groups of 
1+2*k points, each group being fitted by a polynomial of degree 2*k. For example, the 
case k=: 1 provides fitting by a polynomial of degree 2 (a parabola) and a consequent 
weighting of 3%~1 4 1 for the three points. If the function to be fitted is itself a 
polynomial of degree two or less, the integration produced is exact. For example: 
 
   w=: 3%~1 4 1 
   h=: (x=: 5)%(n=:2) 
   ]grid=: h*i. n+1 
0 2.5 5   
   f=: ^&2 
   w*f grid 
0 8.33333 8.33333 
 
   +/h*w* f grid Exact integral of ^&2 
41.6667 
 
   +/h*w* ^&4 grid Exact result is 625 
651.042 
 

Better approximations are given by several groups of three points, resulting in weights of 
the form 3%~1 4 2 4 2 4 2 4 1. For example, using g groups of 1+2*k points each: 
   n=: (g=: 4) * 2 * (k=: 1) 
   ]h=: n %~ x=: 5 
0.625 
 
   ]grid=: h*i. n+1 
0 0.625 1.25 1.875 2.5 3.125 3.75 4.375 5 
   1,(4 2 $~ <: 2*g),1 
1 4 2 4 2 4 2 4 1 
 
   w=: 3%~ 1,(4 2 $~ <: 2*g),1 
   +/h*w*^&2 grid +/h*w*^&4 grid 
41.6667 625.102 
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This case of fitting by parabolas (k=:1) is commonly used for approximate integration, 
and is called Simpson's Rule. The weights 3%~1 4 1  used in Simpson's rule will now be 
derived by a general method that applies equally for higher values of k, that is, for any 
odd number of points. Elementary algebra can be used to determine the coefficients c of 
a polynomial of degree 2 that passes through any three points on the graph of a function 
f. The integral of this polynomial (that is, (0,c%1 2 3)&p.) can be used to determine 
the exact area under the parabola, and therefore the approximate area under the graph of 
f. 

The appropriate weights are given by the function W, whose definition is presented below, 
after some examples of its use: 
 
   W 1 
0.333333 1.33333 0.333333 
 
   W 2 
0.311111 1.42222 0.533333 1.42222 0.311111 
 
   3*W 1 45*W 2 
1 4 1 14 64 24 64 14 
 

The derivation of the definition of W is sketched below:  
 
   vm=: ^~/~@i=: i.@>:@+: (Transposed) 
   vm 2 Vandermonde of i. k  
1 1  1  1   1 (for k=: 1+2* n) 
0 1  2  3   4 
0 1  4  9  16 
0 1  8 27  64 
0 1 16 81 256 
 
   %. vm 2 Inverse of Vandermonde 
1 _2.08333  1.45833 _0.416667 0.0416667 
0        4 _4.33333       1.5 _0.166667 
0       _3     4.75        _2      0.25 
0  1.33333 _2.33333   1.16667 _0.166667 
0    _0.25 0.458333     _0.25 0.0416667 
 
   integ=:(0:,.%.@(^~/~)%"1>:)@i     Rows are integrals 
   integ 2 of rows of inverse Vm 
0 1 _1.04167  0.486111 _0.104167 0.00833333 
0 0        2  _1.44444     0.375 _0.0333333 
0 0     _1.5   1.58333      _0.5       0.05 
0 0 0.666667 _0.777778  0.291667 _0.0333333 
0 0   _0.125  0.152778   _0.0625 0.00833333 
 
   W=: integ p. +:                Polynomial at double argument 
   3*W 1 45*W 2 
1 4 1 14 64 24 64 14 
The results produced by W may be compared with those derived in more conventional 
notation, as in Hildebrand [7], p 60 ff. Finally, we apply the adverb f. to fix the 
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definition of W (by replacing each function used in its definition by itsdefinition in terms 
of primitives: 
 
   W f. 
(0: ,. %.@(^~/~) %"1 >:)@(i.@>:@+:) p. +: 
 
   W=:(0: ,. %.@(^~/~) %"1 >:)@(i.@>:@+:) p. +: 
   W 1 
0.333333 1.33333 0.333333 
 
A result of the function x: is said to be in extended precision, because a function applied 
to its result will be computed in extended precision, giving its results as rationals (as in 
1r3 for the result of 1%3). Thus: 
 
   ! x:20   Factorial 20 to complete precision  
2432902008176640000 
 
   1 2 3 4 5 6 % x:3 
1r3 2r3 1 4r3 5r3 2 
 
   W x:1 
1r3 4r3 1r3 
   3*W x:1 
1 4 1 
 
   W x:3 
41r140 54r35 27r140 68r35 27r140 54r35 41r140 
   140*W x:3 
41 216 27 272 27 216 41 

We now define a function EW for extended weights, such that g EW k yields the weights 
for g groups of fits for 1+2*k points: 
 
   ew=:;@(#<) +/;.1~ 0: ~: #@] | 1: >. i.@(*#) 
   EW=: ew W 
   2 EW x:1 
1r3 4r3 2r3 4r3 1r3 
 
   3*2 EW x:1         
1 4 2 4 1  
   45*2 EW x:2 
14 64 24 64 28 64 24 64 14 

Finally, we define a conjunction ai such that w ai f x gives the approximate integral 
of the function f to the point x, using the weights w: 
 
   ai=: 2 : '+/@(x.&space * x.&[ * y.@(x.&grid))"0' 
      grid=: space * i.@#@[ 
         space=: ] % <:@#@[ 
   3*w=: 1 EW 1 
1 4 1 
 
   w ai *: x=: 1 2 3 4 Weights for Simpson's rule (gives   
0.333333 2.66667 9 21.3333 exact results for the square function) 
 
   (x^3)%3 



Chapter 7  Interpretations And Applications   101 
  

 

0.333333 2.66667 9 21.3333 
 
   (1 EW 2) ai (^&4) x Weights give exact results for 
0.2 6.4 48.6 204.8  integral of  fourth power 
 
   (x^5)%5 
0.2 6.4 48.6 204.8 
 
   (cir=:0&o.)0 0.5 1  0&o. is %:@(1"0-*:) and cir  0.866025 
1 0.866025 0 is the altitude of a unit circle 
 

   (2 EW 2) ai cir 1      Approximation to area under cir  
0.780924              (area of quadrant) 
 
   4 * (2 EW 2) ai cir 1  Approximation to pi 
3.1237 
 
   4*(20 EW 3) ai (0&o.) 1 
3.14132 
 
   o.1 
3.14159 
 

For use in exercises and in the treatment of interpretations in Section L, we will define 
the adverb I in terms of  the weights 4 EW 4, that is, four groups of a polynomial 
approximation of order eight: 
 
   I=: (4 EW 4) ai 
   ^&9 I x=: 1 2 3 4 
0.0999966 102.397 5904.7 104854 
   (x^10) % 10 
0.1 102.4 5904.9 104858 
   ^&9 d._1 x 
0.1 102.4 5904.9 104858 
 
K1  Use the integral adverb I to determine the area under the square root function up to 

various points. 
K2 Since the graphs of the square and the square root intersect at 0 and 1, they enclose 

an area. Determine its size. 

[ (%:I-*:I) 1 or (%:-*:)I 1 ] 

K3 Experiment with the expression (f - f I D) x for various functions f and 
arguments x. 

 

L. Areas and Volumes  

The integral of a function may be interpreted as the area under its graph. To approximate 
integrals, we will use the adverb I defined in the preceding section. For example: 
 
   (0&o.) I 1 Approximate area of quadrant of circle 
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0.784908 
   4 * (0&o.) I 1 Approximation to pi 
3.13963 
 
   *: I x=: 1 2 3 4 
0.333317 2.66654 8.99956 21.3323 
   (^&3 % 3"0) x 
0.333333 2.66667 9 21.3333   

The foregoing integral of the square function can be interpreted as the area under its 
graph. Alternatively, it can be interpreted as the volume of a three-dimensional solid as 
illustrated in Figure L1; that is, as the volume of a pyramid. In particular, the equivalent 
function ^&3 % 3"0 is a well-known expression for the volume of a pyramid. 

Similarly for a function that defines the area of a circle in terms of its radius: 
 
   ca=: o.@*:@] " 0 
   ca x 
3.14159 12.5664 28.2743 50.2655 
   ca I x 

1.04715 8.37717 28.273 67.0174 

 
 
 
 
 
 
 
 
 

 
      Figure L1 
 
By drawing a figure analogous to Figure L1, it may be seen that the cone whose volume 
is determined by ca I can be generated by revolving the 45-degree line through the 
origin about the axis. The volume is therefore called a volume of revolution. 
Functions other than ] (the 45-degree line) can be used to generate volumes of 
revolution. For example: 
 
   cade=: ca@^@- Area of circle whose radius is 
   cade x the decaying exponential 
0.425168 0.0575403 0.00778723 0.00105389 
 
   cade I x Volume of revolution of the 
1.3583 1.5423 1.56746 1.57123  decaying exponential 

  h*x 

  x
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Because the expression f I y applies the function f to points ranging from 0 to y, the 
area approximated is the area over the same interval from 0 to y. The area under f from a 
to b can be determined as a simple difference. For example: 
 
   f=: ^&3 
   f I b=: 4 f I a=: 2 
63.9965 3.99978 
 
   (f I b) -(f I a) -/f I b,a 
59.9967 59.9967 

However, this approach will not work for a function such as %, whose value at 0 is 
infinite. In such a case we may use the related function %@(+&a), whose value at 0 is %a, 
and whose value at b-a is %b. Thus: 
 
   g=: %@(+&a) 
   g 0 g b-a 
0.5 0.25 
 
   g I b-a The integral of the reciprocal from 2 to 4 
0.693163 
 
   ^. 2 The natural log of 2 
0.693147  
 

L1 Use integration to determine the areas and volumes of various geometrical figures, 
including cones and other volumes of revolution. 

M. Physical Experiments 

Simple experiments, or mere observation of everyday phenomena, can provide a host of 
problems for which simple application of the calculus provides solutions and significant 
insights. The reason is that phenomena are commonly governed by simple relations 
between the functions that describe them, and their rates of change (that is, derivatives). 

For example, the position of a body as a function of time is related to its first derivative 
(velocity), its second derivative (acceleration), and its third derivative (jerk). More 
specifically, if p t gives the position at time t of a body suspended on a spring or rubber 
band, then the acceleration of the body (p d.2) is proportional to the force exerted by 
the spring, which is itself a simple linear function of the position p. 

If position is measured from the rest position (where the body rests after motion stops) 
this linear function is simply multiplication by a constant function c determined by the 
elasticity of the spring, and c*p must be equal and opposite to m*p d.2, where the 
constant function m is the mass of the body. In other words, (c*p)-(m*p d.2) must be 
zero. 

This relation can be simplified to 0: = p - c2 * p d.2, where c2 is the constant 
function defined by c2=: m%c. The function p is therefore (as seen in Section I) the sine 
function, or, more generally, p=: (a*sin)+(b*cos), where a and b are constant 
functions. 
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This result is only an approximation, since a body oscillating in this manner will finally 
come to rest, unlike the sine and cosine functions which continue with undiminished 
amplitude. The difference is due to resistance (from friction with the air and internal 
friction in the rubber band) which is approximately proportional to the velocity. In other 
words, the differential equation: 
 
       0: = (d*p)+(e*p D. 1)+(f*p D. 2) 
 

provides a more accurate relation. 

As seen in Section I,  a solution of such a linear differential equation is given by ^@r, 
where r is a (usually complex) root of the polynomial (d,e,f)&p.. If r=: x+j. y, 
then ^r may also be written as (^x)*(^j. y), showing that the position function is a 
product of a decay function (^x) and a periodic function (^j. y) like the solution to the 
simpler case in which the (resistance) constant e was zero. 

Because oscillations similar to those described above are such a familiar sight, most of us 
could perform the corresponding "thought experiment" and so avoid the effort of an 
actual experiment. However, the performance of actual experiments is salutary, because it 
commonly leads to the consideration of interesting related problems. 

For example, direct observations of the effect of greater damping can result from 
immersing the suspended body in a pail of water. The use of a heavier fluid would 
increase the damping, and raise the following question: Could the body be completely 
damped, coming to rest with no oscillation whatever? 

The answer is that no value of the decay factor ^x could completely mask the oscillatory 
factor ^j. y. However, a positive value of the factor f (the coefficient of p d.2) will 
provide real roots r, resulting in non-oscillating solutions in terms of the hyperbolic 
functions sinh  and cosh. Such a positive factor cannot, of course, be realized in the 
experiment described.  

The performance of actual experiments might also lead one to watch for other phenomena 
governed by differential equations of the same form. For example, if the function q 
describes the quantity of electrical charge in a capacitor whose terminals are connected 
through a resistor and a coil, then q d.1 is the current (whose value determines the 
voltage drop across the resistor), and q d.2 is its rate of change (which determines the 
voltage drop across the coil). In other words, the charge q satisfies the same form of 
differential equation that describes mechanical vibrations, and enjoys the same form of 
electrical oscillation. 

Other systems concerning motion suggest themselves for actual or thought experiments: 

* The voltage generated by a coil rotating in a magnetic field. 

* The amount of water remaining in a can at a time t following the puncture of 
its bottom by a nail. 

* The amount of electrical charge remaining in a capacitor draining through a 
resistor (used in circuits for introducing a time delay). 

Coordinate geometry also provides problems amenable to the calculus. For example, c=: 
(1&o.,2&o.)"0 is a rank 1 0 function that gives the coordinates of a circle, and the 
gradient c D. 1 gives the slope of its tangent. Similarly, e=: (a*1&o.),(b*2&o.) 
gives the coordinates of an ellipse. 
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If we are indeed surrounded by phenomena so clearly and simply described by the 
calculus, why is it that so many students forced into calculus fail to see any point to the 
study? This is an important question, for which we will now essay some answers: 

1. Emphasis on rigorous analysis of limits in an introductory course tends to 
obscure the many interesting aspects of the calculus which can be enjoyed 
and applied without it. 

2. On the other hand, a superficial treatment that does not lead the student far 
enough to actually produce significant new results is likely to leave her 
uninterested. Textbook pictures of suspension bridges with encouraging but 
unhelpful remarks that calculus can be used to analyze the form assumed by 
the cables, are more likely to discourage than stimulate a student. 

3. The use of scalar notation makes it difficult to reach the interesting results of 
the vector calculus in an introductory course. 

4. Although the brief treatments of mechanical and electrical vibrations given 
here may provide significant insights into their solutions, they would prove 
unsatisfactory in a text devoted to physics: they ignore the matter of relating 
the coefficients in the differential equations to the actual physical 
measurements (Does mass mean the same as weight? In what system of units 
are they expressed?); they ignore questions concerning the goodness of the 
approximation to the actual physical system; and they ignore the practicality 
of the computations required.  

The treatment of such matters, although essential in a physics text, would 
make difficult its use by a student in some other discipline looking only for 
guidance in calculus. 
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Chapter 

8 

Analysis 

A. Introduction 
To a math student conversant only with high-school algebra and trigonometry, the 
arguments used in Section 1E to determine the exact derivative of the cube (dividing the 
rise in the function value by the run r, and then setting r to zero in the resulting 
expression) might appear not only persuasive but conclusive. Moreover, the fact that the 
derivative so determined leads to consistent and powerful results would only tend to 
confirm a faith in the validity of the arguments. 

On the other hand, a more mature student familiar with the use of rigorous axiomatic and 
deductive methods would, like Newton's colleagues at the time of his development of 
what came to be the calculus, have serious qualms about the validity of assuming a 
quantity r to be non-zero and then, at a convenient point in the argument, asserting it to 
be zero. 

Should a student interested primarily in the practical results of the calculus dismiss such 
qualms as pedantic “logic-chopping”, or are there important lessons to be learned from 
the centuries-long effort to put the calculus on a “firm” foundation? If so, what are they, 
and how may they be approached? 

The important lesson is to appreciate the limitations of the methods employed, and to 
learn the techniques for assuring that they are being properly observed. As Morris Kline 
says in the preface to his Mathematics: The Loss of Certainty [14]: 

But intellectually oriented people must be fully aware of the powers of the tools at 
their disposal. Recognition of the limitations, as well as the capabilities, of reason is 
far more beneficial than blind trust, which can lead to false ideologies and even to 
destruction. 

Concerning “This history of the illogical development  [of the calculus]  ...”, Kline states 
(page 167): 

But there is a deeper reason. A subtle change in the nature of mathematics had been 
unconsciously made by the masters. Up to about 1500, the concepts of mathematics 
were immediate realizations of or abstractions from experience. ... In other words, 
mathematicians were [now] contributing concepts rather than abstracting ideas from 
the real world. 



108  Calculus 
  
Chapter VII of Kline provides a brief and readable overview of ingenious attempts to put 
the calculus on a firm basis, and equally ingenious refutations. Students are urged to read 
it in full, and perhaps to supplement it with Lakatos’ equally readable account of the 
interplay between proof and refutation in mathematics. In particular, a student should be 
aware of the fact that weird and difficult functions sometimes brought into presentations 
of the calculus are included primarily because of their historical role as refutations. The 
words of Poincare (quoted by Kline on page 194) are worth remembering:  

When earlier, new functions were introduced, the purpose was to apply them. 
Today, on the contrary, one constructs functions to contradict the conclusions of 
our predecessors and one will never be able to apply them for any other purpose. 

The central concept required to analyze derivatives is the limit; it is introduced in Section 
B, and applied to series in Section D. 

B. Limits  

The function  h=: (*: - 9"0) % (] - 3"0) applied to the argument a=: 3 yields 
the meaningless result of zero divided by zero. On the other hand, a list of arguments that 
differ from a by successively smaller amounts appear to be approaching the limiting 
value g=:6"0. Thus: 
 
   g=: 6"0   
   h=: (*:-9"0) % (]-3"0) 
   a=: 3 
   h a 
0  
 
  ]i=: ,(+,-)"0 (10^-i.5) 
1 _1 0.1 _0.1 0.01 _0.01 0.001 _0.001 0.0001 _0.0001 
 
   a+i 
4 2 3.1 2.9 3.01 2.99 3.001 2.999 3.0001 2.9999 
 
   h a+i 
7 5 6.1 5.9 6.01 5.99 6.001 5.999 6.0001 5.9999 
 
   |(g-h) a+i 
1 1 0.1 0.1 0.01 0.01 0.001 0.001 0.0001 0.0001 
 

We might therefore say that h x approaches a limiting value, or limit, as x approaches a, 
even though it differs from h a. In this case the limit is the constant function 6"0. 

We make a more precise definition of limit as follows: The function h has the limit  g at 
a if there is a frame function fr such that for any positive value of e, the expression 
e>:|(g h) y is true for any y such that  (|y-a) <: a fr e. In other words, for any 
positive value e, however small, there is a value d=: a fr e such that h y differs from 
g y by no more than e, provided that y differs from a by no more than d. 

Figure B1 provides a graphic picture of the role of the frame function: 
d=: a fr e specifies the half-width of a frame such that the horizontal boundary lines 
at e and -e are not crossed by the graph of g-h within the frame. 
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As illustrated at the beginning of this section, the function g=: 6"0 is the apparent limit 
of the function  h=: (*:-9"0) % (]-3"0) at the point a=: 3. The simple frame 
function fr=: ] suffices, as illustrated (and later proved) below: 

 

                                    

                      Figure B1 
   fr=: ] 
   a=: 3 
   e=: 0.2 
   ]d=: a fr e 
0.2 
 
   ]i=: ,(+,-)"0,5%~>:i.5 
0.2 _0.2 0.4 _0.4 0.6 _0.6 0.8 _0.8 1 _1 
 
   ]j=: d*i 
0.04 _0.04 0.08 _0.08 0.12 _0.12 0.16 _0.16 0.2 _0.2 
 
   |(g-h) a+j 
0.04 0.04 0.08 0.08 0.12 0.12 0.16 0.16 0.2 0.2 
 
   e>:|(g-h) a+j 
1 1 1 1 1 1 1 1 1 1 

 We now offer a proof that fr=: ] suffices, by examining the difference function g-h in 
a series of simple algebraic steps as follows: 
 
   g-h 
   6"0 - (*:-9"0) % (]-3"0) Definitions of g and h 
   6"0 + (*:-9"0) % (3"0-]) 
   ((6"0*3"0-])+(*:-9"0))%(3"0-])  
   ((18"0-6"0*])+(*:-9"0))%(3"0-]) 
   ((9"0-6"0*])+*:)%(3"0-]) 
   ((3"0-])*(3"0-]))%(3"0-]) 
   3"0-] Cancel terms, but the domain now excludes 3 
To recapitulate: for the limit point a=: 3 we require a frame function fr such that the 
magnitude of the difference (g-h) at the point a+a fr e shall not exceed e. We have 
just shown that the difference function (g-h) is equivalent to (3"0-]). Hence: 
 
   |(g-h) a + a fr e 

 

   e 

 

  0 

 

            0  a-d   a  a+d 
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   |(3"0-]) 3+3 fr e Definition of (g-h) and limit point 
   |3-(3+3 fr e) 
   |-3 fr e 
   |3 fr e 

Consequently, the simple function fr=: ] will suffice. 

In the preceding example, the limiting function was a constant. We will now examine a 
more general case of the limit of the secant slope (that is, the derivative) of the fourth-
power function. Thus: 
 
   f=: ^&4 
   h=: [ %~ ] -&f -~ 
   x=: 0 1 2 3 4 
   ]a=: 10^->:i. 6 
0.1 0.01 0.001 0.0001 1e_5 1e_6 
 
   a h"0/ x 
_0.001   3.439  29.679 102.719 246.559 
 _1e_6  3.9404 31.7608 107.461 255.042 
 _1e_9   3.994  31.976 107.946 255.904 
_1e_12  3.9994 31.9976 107.995  255.99 
_1e_15 3.99994 31.9998 107.999 255.999 
_1e_18 3.99999      32     108     256 
 

The last row of the foregoing result suggests the function 4"0*^&3 as the limit. Thus: 
 
   g=: 4:*^&3 
   g x 
0 4 32 108 256 
 
   a=: 1e_6 
   (g-a&h) x 
1e_18 5.99986e_6 2.4003e_5 5.39897e_5 9.59728e_5 

In simplifying the expression for the difference (g-a&h) x we will use functions for the 
polynomial and for weighted binomial coefficients as illustrated below: 
 
   w=: (]^i.@-@>:@[) * i.@>:@[ ! [ 
   x=: 0 1 2 3 4 5 
   a=: 0.1 
   (x-a)^4 
0.0001 0.6561 13.0321 70.7281 231.344 576.48 
 
   (4 w -a) p. x 
0.0001 0.6561 13.0321 70.7281 231.344 576.48 
   4 w -a 
0.0001 _0.004 0.06 _0.4 1 

The following expressions for the difference can each be entered so that their results may 
be compared: 
   (g-a&h) x 

   (4*x^3)-a %~ (f x) - (f x-a) 
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   (4*x^3)-a %~ (x^4) - (x-a)^4     

   (0 0 0 4 0 p. x)-a%~(0 0 0 0 1 p. x)-(4 w -a)p. x 

   a%~((a*0 0 0 4 0)p.x)-(0 0 0 0 1 p.x)-(4 w -a)p.x 

   a%~(1 _4 6 * a^ 4 3 2) p. x 

   (1 _4 6 * a^3 2 1) p. x 

We will now obtain a simple upper bound for the magnitude of the difference (that is, 
|(g-a&h) x), beginning with the final expression above, and continuing with a 
sequence of expressions that are greater than or equal to it: (If the expressions are to be 
entered, x should be set to a scalar value, as in x=: 5, to avoid length problems) 

 
   x=:5 

|(1 _4 6 * a^3 2 1) p. x         Magnitude of (g-a&h) x 

| +/1 _4 6*(a^3 2 1)*x^i.3      Polynomial as sum of terms 

+/(|1 _4 6)*(|a^3 2 1)*(|x^i.3)  Sum of mags>:mag of sum  

+/1 4 6*(a^3 2 1)*|x^0 1 2 a is non-negative 

+/6*(a^3 2 1)*|x^0 1 2    

+/6*a*|x^0 1 2            For a<1, the largest term is a^1 

6*a*+/|x^0 1 2 

a* (6*+/|x^0 1 2) 

The final expression provides the basis for a frame function: if 
a=: e % (6*+/|x^0 1 2), then the magnitude of the difference 
|(g-a&h) x will not exceed e. For example: 
 
   e=: 0.001 
   a=: e % (6*+/|x^0 1 2) 
   |(g-a&h) x 
0.000806451 

C. Continuity 
Informally we say that a function f is continuous in an interval if its graph over the 
interval can be drawn without lifting the pen. Formally, we define a function f to be 
continuous in an interval if it possesses a limit at every point in the interval. 

For example, the integer part function <. is continuous in the interval from 0.1 to 0.9, 
but not in an interval that contains integers. 

D. Convergence of Series 

The exponential coefficients function ec=:%@!, generates coefficients for a polynomial 
that approximates its own derivative, and the growth function (exponential) is defined as 
the limiting value for an infinite number of terms. Since the coefficients produced by ec 
decrease rapidly in magnitude (the 20th element is %!19, approximately 8e_18), it 
seemed reasonable to assume that the polynomial (ec i.n)&p. would converge to a 
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limit for large n even when applied to large arguments. We will now examine more 
carefully the conditions under which a sum of such a series approaches a limit. 

It might seem that the sum of a series whose successive terms approach zero would 
necessarily approach a limiting value. However, the series %@>:@i. n provides a 
counter example, since (by considering sums over successive groups of 2^i. k 
elements) it is easy to show that its sum can be made as large as desired. 

If at a given term t in a series the remaining terms are decreasing in such a manner that 
the magnitudes of the ratios between each pair of successive terms are all less than some 
value r less than 1, then the magnitude of the sum of the terms after t is less than the 
magnitude of t%(1-r); if this quantity can be shown to approach 0, the sum of the entire 
series therefore approaches a limit. 

This can be illustrated by the series r^i.n, which has a fixed ratio r, and has a sum 
equal to (1-r^n) % (1-r). For example: 
 
   S=: [ ^ i.@] 
   T=: (1"0-^)%(1"0-[) 
   r=: 3 
   n=: 10 
   r S n 
1 3 9 27 81 243 729 2187 6561 19683 
 
   +/ r S n 
29524 
   r T n 
29524 

A proof of the equivalence of T and the sum over S can be based on the patterns observed 
in the following: 
 
   (1,-r) */ r S n 
 1  3   9  27   81  243   729  2187   6561  19683 
_3 _9 _27 _81 _243 _729 _2187 _6561 _19683 _59049 
 
   ]dsums=:+//.(1,-r) */ r S n 
1 0 0 0 0 0 0 0 0 0 _59049 
 
   -r^10 +/dsums    (1-r) * r T n  
_59049   _59048 _59048 
 

If the magnitude of r is less than 1, the value of r^n in the numerator of r T n 
approaches zero for large n, and the numerator itself therefore approaches 1; 
consequently, the result of r T n approaches %(1-r) for large n. 

The expression ec j-0 1 gives a pair of successive coefficients of the polynomial 
approximation to the exponential, and %/ec j-0 1 gives their ratio. For example: 
   ec=:%@! 
   j=: 4 
   ec j-0 1 
0.0416667 0.166667 
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   %/ec j-0 1  
0.25  
   %j 
0.25 
The ratio of the corresponding terms of the polynomial (ec i.n)&p. applied to x is x 
times this, namely, x%j. At some point this ratio becomes less than 1, and the series for 
the exponential therefore converges. Similar proofs of convergence can be made for the 
series for the circular and hyperbolic sines and cosines, after removing the alternate zero 
coefficients. 

Another generally useful proof of convergence can be made for certain series by 
establishing upper and lower bounds for the series. This method applies if the elements 
alternate in sign and decrease in magnitude.  

We will illustrate this by first developing a series approximation to the arctangent, that is, 
the inverse tangent _3o.. The development proceeds in the following steps: 

1. Derivative of the tangent 

2. Derivative of the inverse tangent 

3. Express the derivative as a polynomial in the tangent 

4. Express the derivative as the limit of a polynomial 

5. Integrate the polynomial 

6. Apply the polynomial to the argument 1 to get a series whose sum  approximates 
the arctangent of 1 (that is, one-quarter pi): 

 
   ]x=: 1,1r6p1,1r4p1,1r3p1 
1 0.523599 0.785398 1.0472 
 
   '`sin cos tan arctan'=: (1&o.)`(2&o.)`(3&o.)`(_3&o.) 
 
   sin x 
0.841471 0.5 0.707107 0.866025 
 
   cos x 
0.540302 0.866025 0.707107 0.5 
 
   tan x 
1.55741 0.57735 1 1.73205 
   (sin % cos) x 
1.55741 0.57735 1 1.73205 
 
   INV=: ^:_1 
   tan INV tan x 
1 0.523599 0.785398 1.0472 
 
   D=:("0) (D.1) 
   tan D  
   (sin % cos) D  Definition of tan 
   (sin%cos)*(sin D%sin)-(cos D%cos)  θ7§2K 
   tan*(cos%sin)-(-@sin%cos)               §2K 
   tan * %@tan +tan 
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   1"0 + tan * tan 
   1"0 + *:@tan Derivative of tangent QED 
    
   tan INV D 
   1"0 % tan D @(tan INV) θ7§2K 
   1"0 % (1"0 + *:@tan) @ (tan INV) 
   1"0 % (1"0@(tan INV)) + *:@tan@(tan INV) 
   1"0 % 1"0 + *:@] 
   1"0 % 1"0 + *: 
   %@(1"0+*:) Derivative of inverse tan QED 
 
   c=: 1 0 1 
   % c&p. x    Derivative of inverse tangent as 
0.5 0.784833 0.618486 0.476958    reciprocal of a polynomial 
 
   b=: 1 0 _1 0 1 0 _1 0 1 0 _1 Coeffs of approx reciprocal 
   c */ b 
1 0 _1 0 1 0 _1 0 1 0 _1 
0 0  0 0 0 0  0 0 0 0  0 
1 0 _1 0 1 0 _1 0 1 0 _1 
 
   +//. c */ b    Product polynomial  shows that 
1 0 0 0 0 0 0 0 0 0 0 0 _1  b&p.is approx reciprocal of c&p. 
 
   %@(1:+*:) x 
0.5 0.784833 0.618486 0.476958 
 
   b&p. x Better approx needs more terms of b 
0 0.7845 0.584414 _0.352555 
 
   int=: 0: , ] % 1: + i.&# 
   a=: int b The fn a&p. is the integral of b&p. 
   a&p. x Approximation to arctangent 
0.744012 0.482334 0.6636 0.736276 
 
   tan INV x 
0.785398 0.482348 0.665774 0.808449 
 
   7.3 ": 8{. a Coeffs for arctan are reciprocals of odds 
0.000  1.000  0.000 _0.333  0.000  0.200  0.000 _0.143 
   1r4p1 , a p. 1 Arctan 1 is one-quarter pi 
0.785398 0.744012 
 
   +/a Polynomial on 1  is sum of coefficients 
0.744012 
 
   gaor=: _1&^@i. * 1: % 1: + 2: * i. 
   gaor 6 Generate alternating odd reciprocals 
1 _0.333333 0.2 _0.142857 0.111111 _0.0909091 
 
   +/\gaor 6 
1 0.666667 0.866667 0.72381 0.834921 0.744012 
 
    7 2 $ +/\ gaor 14 
       1 0.666667 First column (sums of odd number 
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0.866667  0.72381 of terms) are decreasing upper  
0.834921 0.744012 bounds of limit. Second column 
0.820935 0.754268                 (sums of even number of terms) 
0.813091  0.76046          are increasing lower bounds of limit. 
0.808079 0.764601 
0.804601 0.767564 
 
   1r4p1 , +/gaor 1000 
0.785398 0.785148 

D1 Test the derivations in this section by enclosing a sentence in parens and applying 
it to an argument, as in (1: + *:@tan) x 

D2 Prove that a decreasing alternating series can be bounded as illustrated.          

[Group pairs of successive elements to form a sum of positive or negative terms]  
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Appendix 

Topics in Elementary Math 

A. Polynomials  

An atomic constant multiplied by an integer power (as in a"0 * ^&n) is called a 
monomial, and a sum of monomials is called a polynomial. We now define a polynomial 
function, the items of its list left argument being called the coefficients of the polynomial: 
 
   pol=: +/@([ * ] ^ i.@#@[) " 1 0    
 
For example: 
 
   c=: 1 2 3 [ x=: 0 1 2 3 4 
   c pol x 1 3 3 1 pol x 
1 6 17 34 57 1 8 27 64 125 
 
The polynomial may therefore be viewed as a weighted sum of powers, the weights being 
specified by the coefficients. It is important enough to be treated as a primitive, denoted 
by p. . 
 
It is important for many reasons. In particular, it is easily expressed in terms of sums, 
products, and integral powers; it can be used to approximate almost any function of 
practical interest; and it is closed under a number of operations; that is, the sums, 
products, derivatives, and integrals of polynomials are themselves polynomials. For 
example:    
 
   x=: 0 1 2 3 4 [ b=: 1 2 1 [ c=: 1 3 3 1 
   (b p. x) + (c p. x) Sum of polynomials 
2 12 36 80 150 
 
   b +/@,: c “Sum” of coefficients 
2 5 4 1 
 
   (b +/@,: c) p. x Sum polynomial 
2 12 36 80 150 
 
   (b p. x) * (c p. x) Product of polynomials 
1 32 243 1024 3125 
 
   b +//.@(*/) c “Product” of coefficients 
1 5 10 10 5 1 
 
   (b +//.@(*/) c) p. x Product polynomial 
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1 32 243 1024 3125 
 
   c&p. d.1 x Derivative of polynomial 
3 12 27 48 75 
 
   c&p. d._1 x Integral of polynomial 
0 3.75 20 63.75 156 
 
   derc=: }.@(] * i.@#) 
   derc c “Derivative” coefficients 
3 6 3 
 
   (derc c) p. x Derivative polynomial 
3 12 27 48 75 
 
   intc=: 0: , ] % >:@i.@# “Integral” coefficient 
   intc c 
0 1 1.5 1 0.25 
   (intc c)&p. x 
0 3.75 20 63.75 156 

A polynomial is "linear in its coefficients" in that (c+d) p. x is 
(c p. x)+(d p. x). This linearity can be made clear by expressing 
c p. x as m&mp c, where m is the Vandermonde matrix obtained as a function of x and 
c. Thus: 
 
   vm=: [ ^/ i.@#@] 
   x=: 0 1 2 3 4 5 
   c=: 1 3 3 1 
   x vm c   (x vm c) mp c c p. x 
1 0   0   0 1 8 27 64 125 216     1 8 27 64 125 
216 
1 1   1   1 
1 2   4   8 
1 3   9  27 
1 4  16  64 
1 5  25 125 
 

The expression c=: (f x) %. x^/i.n yields an n-element list of coefficients such 
that c p. x is the best least-squares approximation to the values of the function f 
applied to the list x. In other words, the value of +/sqr (f x)-c p. x is the least 
achievable for an n-element list of coefficients c. 

We now define a conjunction FIT such that a FIT f x produces the coefficients for the 
best polynomial fit of a elements: 
   FIT=: 2 : 'y. %. ^/&(i. x.)' 
   ]c=: 5 FIT ! x=: 0 1 2 3 4 
1 _2.08333 3.625 _1.91667 0.375 
 
   c p. x !x 
1 1 2 6 24 1 1 2 6 24 
   ]c=: 4 FIT ! x 
0.871429 3.27381 _3.71429 1.08333 
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   c p. x 
0.871429 1.51429 1.22857 6.51429 23.8714 

B. Binomial Coefficients 

m!n is the number of ways that m things can be chosen out of n; for example 2!3 is 3, 
and 3!5 is 10. The expression c=: (i. n+1)!n yields the binomial coefficients of 
order n, and c p. x is equivalent to (x+1)^n. For example: 
 
   ]c=: (i. n+1)!n=: 3 
1 3 3 1 
 
   c p. x=: 0 1 2 3 4 5 
1 8 27 64 125 216 
 
   (x+1) ^ n 
1 8 27 64 125 216 
 
   <@(i.@>: ! ])"0 i. 6 
┌─┬───┬─────┬───────┬─────────┬─────────────┐ 
│1│1 1│1 2 1│1 3 3 1│1 4 6 4 1│1 5 10 10 5 1│ 
└─┴───┴─────┴───────┴─────────┴─────────────┘ 

C. Complex Numbers 

Just as subtraction and division applied to the counting numbers (positive integers) 
introduce new classes of numbers (called negative numbers and rational numbers), so 
does the square root applied to negative numbers introduce a new class called imaginary 
numbers. For example: 
   a=: 1 2 3 4 5 6 
   ]b=: -a Negative numbers 
_1 _2 _3 _4 _5 _6 
 
   % a Rational numbers 
1 0.5 0.333333 0.25 0.2 0.166667 
 
   %: b Imaginary numbers 
0j1 0j1.41421 0j1.73205 0j2 0j2.23607 0j2.44949 
 
Arithmetic functions are extended systematically to this new class of numbers to produce 
complex numbers, which are represented by two real numbers, a real part and an 
imaginary part, separated by the letter j. Thus: 
 
   a+%:b Complex numbers 
1j1 2j1.41421 3j1.73205 4j2 5j2.23607 6j2.44949 
 
   j. a The function j. multiplies 
j1 0j2 0j3 0j4 0j5 0j6 its argument by 0j1 
   ]d=: a+j. 5 4 3 2 1 0 The monad + is the conjugate 
1j5 2j4 3j3 4j2 5j1 6 function; it reverses the 
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   +d sign of the imaginary part 
1j_5 2j_4 3j_3 4j_2 5j_1 6 
 
   d*+d Product with the conjugate 
26 20 18 20 26 36 produces a real number 
 
   %: d*+d Magnitude of a 
5.09902 4.47214 4.24264 4.47214 5.09902 6  complex number 
 
   |d 
5.09902 4.47214 4.24264 4.47214 5.09902 6 
 

D. Circular and Hyperbolic Functions.  
 
   sin=: 1&o. sinh=: 5&o. 
   cos=: 2&o. cosh=: 6&o. 
   tan=: 3&o.  tanh=: 7&o. 
   SIN=: sin@rfd       Sine in degrees 
   COS=: cos@rfd 
   TAN=: tan@rfd 
   rfd=: o.@(%&180)    Radians from degrees  

E. Matrix Product and Linear Functions 

The dot conjunction applied to the sum and product functions yields a function 
commonly referred to as the dot or matrix product. Thus: 
 
   mp=: +/ . * 
   ]m=: i. 3 3 ]n=: i. 4 3    
0 1 2  0  1  2 
3 4 5  3  4  5 
6 7 8  6  7  8 
 9 10 11 
 
   n mp m 3 2 1 mp m 
15  18  21 12 18 24 
42  54  66 1 4 6  mp m 
69  90 111 48 59 70 
96 126 156 
 

Left and right bonds of the matrix product distribute over addition; that is, a&mp c+d is 
(a&mp c)+(a&mp d), and mp&b c+d is (mp&b c)+(mp&b d). For example: 
 
   mp&m 3 2 1 + 1 4 6 
60 77 94 
   (mp&m 3 2 1) + (mp&m 1 4 6) 
60 77 94 

A function that distributes over addition is said to be linear; the name reflects the fact that 
a linear function applied to the coordinates of collinear points produces collinear points. 
For example: 
 



Appendix   121 
  

 

   ]line=: 3 _7 1,:2 2 4 ]a=: 3 1,:_4 2 
3 _7 1  3 1 
2  2 4 _4 2 
 
   a&mp line 
11 _19 7 
_8  32 4 
 
    mp& 3 1 _2 line mp&3 1 _2 a &mp line 
0 0 0 0 

F. Inverse, Reciprocal, And Parity 

We will now define and illustrate the use of four further adverbs: 
      I=: ^: _1 Inverse adverb 
      R=: %@ Reciprocal adverb 
    ODD=: .: - Odd adverb 
   EVEN=: .. - Even adverb 
 
 
   *: I x=: 0 1 2 3 4 5 Inverse of the square, 
0 1 1.41421 1.73205 2 2.23607 that is, the square root 
 
   *: R x Reciprocal of the square,  
_ 1 0.25 0.111111 0.0625 0.04   that is, %@*:, or ^&_2 
 
   c=: 4 3 2 1 
   even=: c&p. EVEN Even part of polynomial c&p. 
 
   odd=: c&p.  ODD Odd part of polynomial 
 
   even x Even function applied to x 
4 6 12 22 36 54 
 
   odd x Odd function applied to x 
0 4 14 36 76 140 
 
   (even + odd) x Sum of even and odd parts 
4 10 26 58 112 194 is equal to the original 
 
   c&p. x function c&p. 
4 10 26 58 112 194 
 
   4 0 2 0 p. x Even part is a polynomial with non- 
4 6 12 22 36 54 zero coefficients for even powers 
 
   0 3 0 1 p. x Odd part is a polynomial with non- 
0 4 14 36 76 140  zero coefficients for odd powers 
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For an even function, f -y equals f y; for an odd function, f -y equals -f y. Plots of 
even and odd functions show their graphic properties: the graph of an even function is 
"reflected" in the vertical axis, and the odd part in the origin. 

 

Exercises 

AP1 Enter the expressions of this section, and verify that the results agree with those 
given in the text. 

AP2 Predict the results of each of the following sentences, and then enter them to 
validate your predictions: 

   D=: ("1) (D.1) 

   x=: 1 2 3 4 5 

   |. D x 

   2&|. D x 

   3 1 0 2 &{ D x 

   +/\ D x 

   +/\. D x 

AP3 Define show=: {&'.*' and use it to display the results of Exercises G2, as in 
show |. D x . 

AP4  Define a function rFd to produce radians from degrees, and compare rFd 90 180 
with 

 o. 0.5 1 . 

[     rFd=: %&180@o.   ] 

AP5 Define a function AREA such that AREA v yields the area of a triangle with two 
sides of lengths 0{v and 1{v and with an angle of 2{v degrees between them. 
Test it on triangles such as 2 3 90 and 2 3 30, whose areas are easily 
computed. 

           [AREA=: -:@(0&{ * 1&{ * 1&o.@rFd@{:)"1] 

AP6 Experiment with the vector derivative of the triangle area function of Exercise 
G5, using VD=: ("1)(D.1) . 

[AREA VD 2 3 90] 

AP7 Heron's formula for the area of a triangle is the square root of the product of the 
semiperimeter with itself less zero and less each of the three sides. Define a 
function hat to give Heron's area of a triangle, and experiment with its vector 
derivative hat VD. In particular, try the case hat VD 3 4 5, and explain the 
(near) zero result in the final element. 

[     hat=: %:@(*/)@(-:@(+/) - 0: , ])"1   ] 

AP8 Define a function bc such that bc n yields the binomial coefficients of order n, a 
function tbc such that tbc n yields a table of all binomial coefficients up to 
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order n, and a function tabc for the corresponding alternating binomial 
coefficients. 

[    bc=: i.@>: ! ] 

tbc=: !/~ @ (i.@>:) 

tabc=: %.@tbc        ] 

AP9 Test the assertion that (bc n) p. x=: i. 4 is equivalent to x^n+1 for 
various values of n. 

AP10 Write an expression to yield the matrix m such that mp&m is equivalent to a given 
linear function L. Test it on the linear functions L=:|."1 and L=:3&A."1, using 
the argument x=:3 1 4 1 6 

[  L = i. # x ] 

AP11 Experiment with the use of various functions on imaginary and complex 
numbers, including the exponential, the sine, cosine, hyperbolic sine and 
hyperbolic cosine. Also experiment with matrices of complex numbers and with 
the use of the matrix inverse and matrix product functions upon them. 
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