Typed Kleene Algebra

Dexter Kozen
Department of Computer Science
Cornell University
Ithaca, New York 14853-7501, USA

March 17, 1998

Abstract

In previous work we have found it necessary to argue that certain
theorems of Kleene algebra hold even when the symbols are interpreted
as nonsquare matrices. In this note we define and investigate typed
Kleene algebra, a typed version of Kleene algebra in which objects
have types s — t. Although nonsquare matrices are the principal
motivation, there are many other useful interpretations: traces, binary
relations, Kleene algebra with tests.

We give a set of typing rules and show that every expression has
a unique most general typing (mgt). Then we prove the following
metatheorem that incorporates the abovementioned results for non-
square matrices as special cases. Call an expression I-free if it contains
only the Kleene algebra operators (binary) +, (unary) *, 0, and -, but
no occurrence of 1 or *. Then every universal 1-free formula that is
a theorem of Kleene algebra is also a theorem of typed Kleene algebra
under its most general typing. The metatheorem is false without the
restriction to 1-free formulas.

1 Introduction

Typed Kleene algebra is motivated primarily by the desire to interpret regular
expressions as matrices of various shapes, possibly nonsquare. For example,

in the completeness proof of [6, 7], it must be argued that a few essential
theorems of Kleene algebra, such as

ar <xb — a*r < xb*, (1)

still hold when the symbols are interpreted as matrices of various sizes and
shapes, provided there is no type mismatch. The equational implication (1)
holds in Mat(n,X), the n x n matrices over a Kleene algebra X, simply
by virtue of the fact that Mat(n,X) is a Kleene algebra. However, for the
purposes of [6, 7], we need to know that it holds even when a is interpreted
as an m X m matrix, x is interpreted as an m X n matrix, and b is interpreted
as an n X n matrix for any m and n.

In [6, 7] we gave ad hoc arguments for each of the few theorems of Kleene
algebra needed in the completeness proof. This was done by embedding non-
square matrices in the upper left corner of sufficiently large square matrices.
However, there are certain situations in which this technique fails; in par-
ticular, dealing with the identity matrix correctly presents subtle technical
difficulties.

Understanding these subtleties and extending the theory to handle non-
square matrices with sufficient generality and rigor calls for the introduction
of a type discipline. We introduce such a type discipline in which regular
expressions « have types of the form s — t, where s and t are elements of
an abstract set). Every expression has a most general typing (mgt) under
which the expression is well-typed and which refines every other typing for
which this is true. For example, the most general typing of the expression
ab*cisa:u—v,b:v—=v, c:v—w, where u, v, and w are distinct. Most
general typings exist and are unique up to a bijection. The Kleene algebra
axioms under their most general typings give rise to a theory called typed
Kleene algebra.

In our principal interpretation, 2 = N and a : s — t indicates that « is a
matrix with row and column dimensions s and t, respectively. However, this is
not the only interesting model of typed Kleene algebra. For example, consider
sets of traces in a labeled transition system. We cannot compose traces p and
g unless the terminal state of p is the same as the initial state of ¢; this can
be handled with the type discipline. In this interpretation, the set 2 would
be the set of states, and the type judgement p : s — t specifies that p has
initial state s and terminal state t. For another example, interpreting s and t
as subsets of a set X, the type judgement a : s — t could be used to specify

that o is a binary relation o C s x t. Here Q = 2¥. A third interpretation
is the family of regular sets of guarded strings, the free Kleene algebra with
tests [8, 9]. Finally, consider the semiadditive categories with * as defined
by Manes [12]. A semiadditive category is one with zero morphisms, binary
coproducts, and a natural transformation id, — id, + id,. The operator *
is asserted to exist and satisfy the axioms of Section 2.1; it does not arise
from the categorical structure. The categorical structure together with * give
rise to a typed Kleene algebra whose elements are morphisms, pretypes are
objects, multiplication is composition of morphisms, and addition is derived
from the coproduct.

Our initial intent was to prove something like the following, which seemed
deceptively obvious at first:

Proposition 1.1 FEvery universal formula that is a theorem of Kleene alge-
bra is a theorem of typed Kleene algebra under its most general typing.

Unfortunately, Proposition 1.1 is false, even for universal Horn formulas.
The Horn formula

O=a Na=1 — b=c

is a theorem of untyped Kleene algebra, but not of typed Kleene algebra
under its mgt a:u - u, b:s—t,c:s —t.

As noted above for the special case of matrices, the failure of Proposition
1.1 is apparently related to the presence of the multiplicative identity 1. To
remedy the situation, we restrict attention to 1-free expressions, a wide class
of formulas that is almost fully general. An expression is 1-free if it is built
from the operators (binary) +, -, 0, and (unary) * defined by a* = aa™, but
has no occurrence of 1 or *. There is a strong relationship between Kleene
algebra and 1-free Kleene algebra that is detailed in Section 2.2.

All the theorems needed in the completeness proof of [6, 7] are equivalent
to 1-free formulas; for example, in the presence of the other axioms, (1) above
is equivalent to

ar < zb — atx < axbt.
Our main theorem can now be stated.

Theorem 1.2 FEvery universal 1-free formula that is a theorem of Kleene
algebra 1s a theorem of typed Kleene algebra under its most general typing.

Whether the restriction to 1-free formulas can be weakened is a matter for
further investigation.

One possible approach to proving Theorem 1.2 would be proof-theoretic.
For Horn formulas £ — o = 3, one might show that every untyped proof
in an equational deductive system also has a typed proof under the mgt of
E — a = (. This would presumably involve transforming the untyped proof
to a typed proof that does not impose any extra type constraints than are
already present in the mgt of £ — o = . But this is not just a matter of
typing intermediate expressions in the proof under their mgt; the problem is
that the untyped proof might include some expressions that collapse types
unnecessarily, so that the proof would not be well-typed under the mgt of
E—a=p.

For example, one step of the untyped proof might use the rule of congru-
ence for multiplication to obtain

a=p3 — a0=[0.

The left-hand side imposes a type constraint that the right-hand side does
not, namely that if « : s — t and #: u — v, then t = v. The transitivity rule
also poses a problem: after we apply it in the derivation

a=fAB=7 = a=1,

the type constraints imposed by [are no longer present. We would have to
show that these steps are extraneous and can be eliminated in a systematic
way. Looking at these examples, one might conjecture that if - £ — o = f3,
then

mgt (EU{a=p}) = mgtE.
This is not true either, as can be seen by considering the untyped theorem
gzt =at.

These pathologies indicate that the problem is more subtle and interesting
than might first be imagined.

Our solution is model-theoretic rather than proof-theoretic. We define
1-free Kleene algebras, a class of structures closely related to Kleene alge-
bras, and show that every typed 1-free Kleene algebra can be embedded in
an untyped 1-free Kleene algebra (a typed Kleene algebra in which €2 is a sin-
gleton). The conclusion follows from a strong functorial relationship between
Kleene algebras and 1-free Kleene algebras, both typed and untyped.

4

2 Definitions

2.1 Kleene Algebra

Kleene algebras abound in computer science and mathematics, although of-
ten in disguised form [2, 4, 14, 15, 6, 7, 5, 16, 10, 11, 1, 13]. The definition
used here was introduced in [6, 7).

A Kleene algebra is an algebraic structure

X = (Ka +7) *7 07 1)

satisfying the following equations and equational implications:

a+(b+c)=(a+b)+c a+b=b+a

a+0=a a+t+a=a

a(bc) = (ab)c la=al =a

a(b+c¢) =ab+ ac (a+b)c = ac+ be

0Oa =al =0

1+aa* =a* 1+a*a=a*
b+ar<z — a*b<uz (2)
b+za<z — ba*<uw (3)

where < refers to the natural partial order:

a<b £ a+b=0.
Instead of (2) and (3), we might take the equivalent axioms

ar <z — a'r<z (4)
va<z — wa* <u. (5)

See [3, 6, 7] for some elementary consequences of these axioms.

We usually abbreviate a - b as ab and avoid parentheses by assigning the
precedence * > - > + to the operators.

A Kleene algebra is *-continuous if

ab*c = sg[gab"c (6)

where 0 = 1, b"*t! = bb", and the supremum is with respect to the natural
order <. The *-continuity condition (6) can be regarded as the conjunction
of infinitely many axioms ab”c < ab*c and the infinitary Horn formula

/\(ab”c <y) — abc<y.
n>0

This is not part of the axiomatization. Not all Kleene algebras are *-
continuous, but all known natural examples are.
We also consider the unary * operator defined by

at < aa*. (7)

Conversely, the operator * can be defined in terms of 1 and *:

a* = 1+a". (8)

2.2 1-Free Kleene Algebra

A I-free Kleene algebra is like a Kleene algebra, except that we omit the
operators 1 and * and take the defined operator * as primitive. Formally, a
1-free Kleene algebra is a structure

X = (K7 +7 B) +7 O)

satisfying the following equations and equational implications:

a+(b+c)=(a+b)+c a+b=b+a

a+0=a ata=a

a(bc) = (ab)c

a(b+c) =ab+ ac (a+b)c = ac+ be

0Oa =al =0

a+aat =a" a+ata=a"
b+ar<z — b+a'b<uz (9)
b+za<z — b+bat <z (10)

Instead of (9) and (10), we might take the equivalent axioms

ar <z — atzx<ux (11)
ra<z — zat <z (12)

These are just like the axioms of Kleene algebra, except that the axiom
la = al = a has been omitted, and the axioms that refer to * have been
altered to use * instead.

The *-continuity condition also has a 1-free analog:

abte = sgll)ab”c. (13)

This is not part of the axiomatization, however.

There is a close functorial relationship between the category KA of Kleene
algebras and Kleene algebra homomorphisms and the category 1fKA of 1-
free and Kleene algebras and 1-free Kleene algebra homomorphisms. Every
Kleene algebra gives rise to a 1-free Kleene algebra by defining * as in (7)
and “forgetting” 1 and *. This is the forgetful functor F : KA — 1fKA.

Conversely, there is a natural construction A : 1fKA — KA that adds a
multiplicative identity 1 to any 1-free Kleene algebra X = (K, +, -, *, 0).
The Kleene algebra A X has domain {0,1} x K. Elements of the form (1, a)
are denoted 1 + a and elements of the form (0,a) are denoted a. We thus
regard the embedding a +— (0,a) as the identity map. The Kleene algebra
operations +, -, *, 0, 1 are defined on A X as follows. The operations +, -,
and 0 applied to elements of K take the same values in A X as they do in
K. The remaining values are defined as follows:

(14+a)+b = 1+ (a+b)

a+(14+b) = 1+ (a+0)

(1+a)+(1+b) = 1+ (a+bd)
(14a)b = b+ab
a(l+b) = a+ab

(14+a)(14+b0) = 14 (a+0b+ab)
af ¥ 14at
(14+a)* £ 1+a"
1 = 1+0.
It is a straightforward matter to check that the resulting structure satisfies

all the axioms of Kleene algebra. We verify axiom (4) explicitly. There are
four cases to consider:

i) ar<z = (I+a")z<z

i) 14+a)z<z = (14+a")z<z
(iii) a(l+2)<1l4+z = (14+a")(14+2)<1l+z

iv) l+a)(l1+2) <14z = (1+a")(1+2) <14z
By the definitions above, these reduce to

i) ar<zr = z+az<z

i) s4+ar<z = zr+az<z

(i) a+ar<l+z = l+at+zr+az<l+z

(iv) 14a+z+ar<1+z = l+a"+zx+a"z<1+uz,

respectively. Now (i) and (ii) follow from axiom (11), and (iv) is subsumed
by (iii), so it remains to show

a+ar<l+z = l+at+2+at2<1+2,
or in other words
atar+l+z=14+2 = 1l+a"+r+atz+1+2=1+u,
which by the definitions above reduces to
l+a+az+r=1+2 = l1+at+z+a"z2=1+u.

Since 1 +b=1+ciff c = d for ¢,d € K, this reduces to

at+ar+r=2 = a +zr+atr=u1,
or more simply,

a+ar<z = a" +atz<uz.

By axiom (11), it suffices to show

a+t+ar <xr = a+§a:,

and by the axiom a + a*a = a™, it suffices to show
a+ar<zr = a+ata<uz.

But this is an instance of axiom (9).

The functors A and F are adjoints. This means essentially that any 1-
free homomorphism h : K — F L from a 1-free Kleene algebra K to the
1-free part I L of a Kleene algebra L extends uniquely to a Kleene algebra
homomorphism A : A KX — L.

The close relationship between Kleene algebra and 1-free Kleene algebra
is reflected in the following result:

Theorem 2.1 Any universal formula in the language of 1-free Kleene alge-
bra is true in all Kleene algebras iff it is true in all 1-free Kleene algebras.

Proof. More accurately, if ¢ is a universal 1-free formula, then ¢ is true
in all 1-free Kleene algebras iff it is true in all 1-free Kleene algebras of the
form F X for K a Kleene algebra. The forward implication is immediate.
Conversely, for any 1-free Kleene algebra K, if ¢ is true in F' A K, then since
X is a subalgebra of F A K and ¢ is universal, ¢ is also true in XK. a

3 A Type Calculus

Terms in the language of Kleene algebra are built from variables z,v, .. .,
binary operators 4+ and -, unary operators * and ¥, and constants 0 and 1.
Terms are often called reqular expressions and are denoted «, 3, Atomic
formulas are equations between terms. The expressions a < 3 and § > «
are abbreviations for a + § = (.

An expression or formula is 1-free if it has no occurrences of * or 1, but
only (binary) +, (unary) *, -, and 0.

Let ©Q be a set and w : {z,y,...} — Q2> Elements of Q are denoted
s,t,u,v,... and are called pretypes. Elements of Q2 are called types and are
denoted s — t. We also include a type 2 for Boolean values.

The map w is called a type environment. If w(z) = s — t, we write
x :s — t and say that x has type s — t under w.

We can use the following calculus to derive types for certain expressions
from w. A type judgement is an expression

a:s—t or a=03:2

where o and 3 are regular expressions and s — t and 2 are types. Given
a type environment w, types for compound terms and formulas are inferred
inductively according to the following rules:

a:s—>t [f:s—t a:s—t [f:t—u Q:s—s
a+pf:s—t af:s—u a*:s—s

o:s—t :s—t
O:s—t l:s—s b

a=[F:2
The following rules can be derived:
Q:s—s a:s—t [f:s—t a:s—t [f:s—t
at:s—s a<f:2 a>[3:2

Note that 0 has all types and 1 all square types (types of the form s — s for
some s €).

Every type environment w extends uniquely to a minimal set of type
judgements closed under these rules. This unique extension is also denoted
w and is called a typing. An expression « is well-typed under the typing w
if w contains a type judgement o« : s — t. A set of expressions is said to be
well-typed under w if every expression in the set is well-typed under w.

Not all expressions are well-typed under all typings. For example, if
x:s— tands #t, the expression z* is not well-typed. Moreover, the type
of an expression under a typing w is not unique; for example, if x : s — t,
then 20 : s — u for all u. However, the type of a variable is unique.

Like the other operators +, -, *, *, different occurrences of 0 and 1 in the
same expression can be typed differently depending on context. For example,
if r :' s — t, then in a derivation of z0x = 0 : 2, the occurrence of 0 on the left-
hand side would have type t — s, and the occurrence of 0 on the right-hand
side would have type s — t.

3.1 Type Refinement and Most General Typing

In this section we define the concept of most general typing (mgt) of an
expression or set of expressions and prove that most general typings exist
and are unique up to a bijection.

Intuitively, a representation of the mgt of an expression can be con-
structed as follows. Assign a unique pair of pretypes to each symbol in

10

the expression, then equate all and only those pretypes that must be equal
in order for a type to be derivable for the expression. For example, consider
the expression zy*z. We would initially assign z : p — q, ¥y : s — t, and
z:u — v, where p,q,s,t,u,v are all distinct; but in order to type the expres-
sion, we would need q =s, s =t, and t = u. After collapsing these pretypes,
we would be able to derive the typing zy*z : p — v.

Let © and €' be two sets of pretypes, and let w and w’ be typings over
Q and ', respectively. The typing w is said to refine w' if there exists a
function h : Q — €' such that for all variables x, if x : s — t in the typing w
then x : h(s) — h(t) in the typing '.

Lemma 3.1 If w refines W', then any expression well-typed under w is also
well-typed under w'.

There may be expressions well-typed under w’ but not under w. For
example, if w refines w’ via the function h, if s # t but h(s) = h(t), and if
x :s — t under w, then 2™ is well-typed under ' but not under w.

There are two extremal typings L and T, the “least collapsed” and “most
collapsed” typings, respectively. The typing L is generated by the type
environment

xr:s;, —t,

where s, and t, are distinct pretypes for each variable x. This typing types
the fewest expressions. The typing T is generated by the type environment

r:0—0

where o is the only pretype. Under this typing, every expression is typed.
This gives the untyped theory. The typing L refines every typing, and every
typing refines T.

Lemma 3.2 Modulo the equivalence relation of mutual refinement, the set
of typings forms a complete lattice ordered by refinement. Moreover, typing
15 continuous with respect to this lattice structure: for any expression o and
any set D of typings, a is well-typed under inf D iff it is well-typed under all
elements of D, and for any directed set D, « is well-typed under sup D iff it
1s well-typed under some element of D.

11

Proof. Define
def .
T = {s;t; |z avariable}.

For any typing w : {z,y,...} — Q2, collapse two elements of T if they have
the same image under the unique map T — €2 under which | refines w. This
gives an equivalence relation on T whose equivalence classes are in one-to-one
correspondence with (2. Thus every typing is equivalent under mutual refine-
ment to a typing whose pretypes are equivalence classes of some equivalence
relation on Y. Moreover, two such typings inducing distinct equivalence re-
lations on Y are not equivalent under mutual refinement. Thus the set of
typings modulo mutual refinement ordered by refinement is isomorphic to
the complete lattice of equivalence relations on Y.

Continuity follows from the fact that the coarsest common refinement of
a set D of equivalence relations on Y collapses two elements of T iff they are
collapsed in all elements of D, and the join of a directed set D of equivalence
relations on T collapses two elements of T iff they are collapsed in some
element of D. O

Definition 3.3 A most general typing of a set E of expressions, denoted
mgt F, is a typing under which F is typed and which refines any other
typing under which E is typed. O

Theorem 3.4 For any set E' of expressions, mgt E exists and is unique up
to mutual refinement.

Proof. The set E is well-typed under T. By Lemma 3.2, the typings
under which FE is well-typed have an infimum mgt £ that is unique up to
mutual refinement, and by continuity, F is well-typed under mgt E. a

3.2 Typed Kleene Algebra

Informally, a typed Kleene algebra is structure in which
e cach element has a unique type of the form s — t;

e there is a collection of polymorphic typed operators +, -, *, 0, 1 whose
application is governed by the typing rules of Section 3;

12

e all well-typed instances of the Kleene algebra axioms of Section 2.1
hold.

Formally, a typed Kleene algebra is a structure
g(= (K7 Q7 w? +7 .7 *7 07]'7 :)

where K and Q are sets and w : K — 2. Elements of K are denoted
a,b,c,.... We write w(a) =s — t and a : s — t interchangeably.
For s,t € (2, define

Koy = {a€eK|w(a) =s—t}.

The operators +, -, *, 0, 1 and relation = have the following polymorphic
types:

+ : As,teQ(s—=t)x(s—=t) = (s—=t)
As,t,ue Q.(s—=t) X (t = u) = (s —u)
: AseQ.(s—s) = (s—s)

0 : As,t € Q.(s—t)

1 As € Q.(s —s)

= As,teQ(s—t)x(s—=t) =2

*

This means for example that + consists of a family of functions +s,; :
K2, — Ky, one for each choice of s,t € Q. The operator +_,; can only be
applied to arguments of type s — t and produces a sum of type s — t. The
polymorphic constant 0 represents a family of elements 05 .., one for each
choice of s, t € 2. The polymorphic constant 1 represents a family of square
elements 1¢_,s, s € (2.

To be a typed Kleene algebra, X must also satisfy all well-typed instances
of the Kleene algebra axioms. For example, the multiplicative associativity
property a(bc) = (ab)ec must hold whenever the expression a(bc) = (ab)c
makes type sense; that is, whenever a : s —t, b:t — u, and ¢: u — v for
some s, t,u,v € .

Typed 1-free Kleene algebras are defined similarly, except we use the ax-
iomatization of Section 2.2. The operator * has the same polymorphic type
as *:

T AseQ(s—s) = (s—s).

13

3.3 Homomorphisms

Let X and X’ be typed structures of the signature of Kleene algebra. A typed
Kleene algebra homomorphism h : X — X' is a two-sorted map

h:Q — h: K — K'
such that for any a, s, and t,
a:s—t = hla):h(s)— h(t),

and h commutes with the distinguished operations in the sense that all well-
typed instances of the following equations hold:

h(a+b) = h(a)+ h(b)
h(ab) = h(a)h(b)
h(a*

h
h

0
1

~— — ' — —
=
—
Q
~—
*

(0) = 0
(1.

A 1-free homomorphism is similar, except that that it is only required to
preserve 0, +, -, and *.

4 Proof of Theorem 1.2

Lemma 4.1 Fvery typed 1-free Kleene algebra can be embedded into an un-
typed 1-free Kleene algebra.

Proof. Let
X = (I(7S27 w, +, +7 B) 0)

be a typed 1-free Kleene algebra. Form the untyped 1-free Kleene algebra
Mat, (€2, K) as follows. An QxQ matriz over X is an element of the dependent
product

H K

s,teq)

14

that is, a map A : Q> — K such that A(s,t) € K,.;. A matrix A is
of finite support iff A(s,t) = 05 for all but finitely many pairs s,t. The
algebra Mat; (€2, X) consists of all 2 x) matrices of finite support over X.
The operations +, -, 0 are the usual matrix sum, matrix product, and zero
matrix:

(A+B)st) € A,
(AB)(s,t) ¥

—+

)+ B(s, t)
A(s,u)B(u,t)

uen
A(s,u)B(u,t) #0

0(s,t) & 0o
The operation T is defined as follows. For any A, let ' be any finite subset
of Q2 containing the support of A; that is, such that A(s,t) = 05 if either
sZ Qort¢g). Let A" be the Q' x Q' submatrix of A. Since A’ is finite,
we can form A’ and prove that it satisfies (4) and (5) as in [6, 7]. Then

AT AT A satisfies (11) and (12). We define A™ to be the matrix

I+ : /
At (s, 1) def {A (s,t), ifs,teQ

- Os—t otherwise.

It is not difficult to check that the matrix algebra Mat, (€2, X) satisfies all the
axioms of 1-free Kleene algebra.

We can embed X into Mat; (€2, X) as follows. Let h : K — Mat,(£2, X)
be the map

h(a) def a, ifa:s—t
st T 0s_t, otherwise.
It is easily checked that h is a typed 1-free homomorphism. O

Note that even if A is of finite support, A* need not be; in fact, we have
not even defined A* or 1. However, A" is always of finite support if A is.
Moreover, there is no obvious way to extend the embedding A constructed in
the proof of Lemma 4.1 to include A* or 1.

Proof of Theorem 1.2. Let ¢ be a 1-free universal formula that is true in
all Kleene algebras. Let

j< = (K7 Q’ w? +7) *7 07 17 :)

15

be any typed Kleene algebra and ¢ a valuation of the variables in ¢ over K
under which ¢ is well-typed. We wish to argue that ¢ holds under o.

By Lemma 4.1, there is a 1-free embedding h : F K — Mat; (€, K). Let
7 = hoo. The map 7 interprets ¢ in Mat;(€2,X). Since this is an untyped
1-free Kleene algebra, and since by assumption ¢ is a theorem of untyped
1-free Kleene algebra, we have that

Mat, (2, K), 7 = .

Since h is one-to-one, this implies that X, o = ¢.

Since K and o were arbitrary, the universal formula ¢ is a theorem of
typed 1-free Kleene algebra under any typing in which it is well-typed; in
particular, by Theorem 3.4, under its most general typing. O

Acknowledgements

[am indebted to Michael Slifker and Mark Hopkins for valuable ideas and
comments. This work was supported by the National Science Foundation
under grant CCR-9708915.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass., 1975.

[2] Jean Berstel and Christophe Reutenauer. Rational Series and Their Lan-
guages. Springer-Verlag, Berlin, 1984.

[3] John Horton Conway. Regular Algebra and Finite Machines. Chapman and
Hall, London, U.K., 1971.

[4] S. C. Kleene. Representation of events in nerve nets and finite automata.
In C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3—41.
Princeton University Press, Princeton, N.J., 1956.

[5] Dexter Kozen. On induction vs. *-continuity. In Kozen, editor, Proc. Work-
shop on Logic of Programs, volume 131 of Lecture Notes in Computer Science,
pages 167-176, New York, 1981. Springer-Verlag.

16

[6]

[11]

[12]

[13]

[15]

[16]

Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. In Proc. 6th Symp. Logic in Comput. Sci., pages 214-225,
Amsterdam, July 1991. IEEE.

Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Infor. and Comput., 110(2):366-390, May 1994.

Dexter Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, pages 427-443, May 1997.

Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness
and decidability. In D. van Dalen and M. Bezem, editors, Proc. 10th Int.
Workshop Computer Science Logic (CSL’96), volume 1258 of Lecture Notes
in Computer Science, pages 244-259, Utrecht, The Netherlands, September
1996. Springer-Verlag.

Werner Kuich. The Kleene and Parikh theorem in complete semirings. In
T. Ottmann, editor, Proc. 14th Colloq. Automata, Languages, and Program-
ming, volume 267 of Lecture Notes in Computer Science, pages 212-225, New
York, 1987. EATCS, Springer-Verlag.

Werner Kuich and Arto Salomaa. Semirings, Automata, and Languages.
Springer-Verlag, Berlin, 1986.

Ernest Manes. Predicate transformer semantics. Cambridge University Press,
1992.

Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and
NP-Completeness. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1984.

K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University
of California, Berkeley, 1984.

K. C. Ng and A. Tarski. Relation algebras with transitive closure, abstract
742-02-09. Notices Amer. Math. Soc., 24:A29-A30, 1977.

Vaughan Pratt. Dynamic algebras as a well-behaved fragment of relation
algebras. In D. Pigozzi, editor, Proc. Conf. on Algebra and Computer Science,
volume 425 of Lecture Notes in Computer Science, pages 77-110, Ames, Towa,
June 1988. Springer-Verlag.

17

