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Preface

There is hardly a field in psychology in which the effects of signal
detection theory have not been felt. The authoritative work on the
subject, Green's & Swets' Signal Detection Theory and Psycho­
physics (New York: Wiley) appearedjn 1966, and is having a
profound influence on method and theory in psychology. All this
makes things exciting but rather difficult for undergraduate students
and their teachers, because a complete course in psychology now
requires an understanding of the concepts of signal detection theory,
and many undergraduates have done no mathematics at university '
level. Their total mathematical skills consist of dim recollections of
secondary school algebra coupled with an introductory course in
statistics taken in conjunction with their studies in psychology. This
book is intended to present the methods of signal detection theory to
a person with such a mathematical background. It assumes a know­
ledge only of elementary algebra and elementary statistics. Symbols
and terminology are kept as close as possible to those of Green &
Swets (1966) so that the eventual and hoped for transfer to a more
advanced text will be accomplished as easily as possible.

The book is best considered as being divided into two main
sections, the first comprising Chapters 1 to 5, and the second,
Chapters 6 to 8. The first section introduces the basic ideas of
detection theory, and its fundamental measures. The aim is to enable
the reader to be able to understand and compute these measures.
The section ends with a detailed working through of a typical
experiment and a discussion of some of the problems which can
arise for the potential user of detection theory.

The second section considers three more advanced topics. The
first of these, which is treated thoroughly elsewhere in the literature,
is threshold theory. However, because this contender against signal
detection theory has been so ubiquitous in the literature of experi­
mental psychology, and so powerful in its influence both in the
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construction of theories and the design ofexperiments, it is discussed
again. The second topic concerns the extension of detection theory,
which customarily requires experiments involving recognition tests,
to experiments using more open-ended procedures, such as recall;
and the third topic is an examination of Thurstonian scaling
procedures which extend signal detection theory in a number of
useful ways.

An author needs the assistance of many people to produce his
book, and I have been no exception. I am particularly beholden to
David Ingleby, who, when he was working at the Medical Research
Council Applied Psychology Unit, Cambridge, gave me much useful
advice, and who was subsequently most generous in allowing me to
read a number of his reports. The reader will notice frequent
reference to his unpublished Ph.D. thesis from which I gained
considerable help when writing Chapters 7 and 8 of this book. Many
of my colleagues at Adelaide have helped me too, and I am grateful
to Ted Nettelbeck, Ron Penny and Maxine Shephard, who read and
commented on drafts of the manuscript, to Su Williams and Bob
Willson, who assisted with computer programming, and to my
Head of Department, Professor A. T. Welford for his encourage­
ment. I am equally indebted to those responsible for the production
of the final manuscript which was organised by Margaret Blaber
ably assisted by Judy Hallett. My thanks also to Sue Thom who
prepared the diagrams, and to my wife Kathie, who did the proof
reading.

The impetus for this work came from a project on the applications
of signal detection theory to the processing of verbal information,
supported by Grant No A67/16714 from the Australian Research
Grants Committee. I am also grateful to St John's College, Camb­
bridge, for making it possible to return to England during 1969 to
work on the book, and to Adelaide University, which allowed me to
take up the St John's offer.

A final word of thanks is due to some people who know more
about the development of this book than anyone else. These are
the Psychology III students at Adelaide University who have served
as a tolerant but critical proving ground for the material which
follows.

Adelaide University D. MCNICOL

September 1970
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Chapter 1

WHAT ARE STATISTICAL

DECISIONS?

AN EXAMPLE

70696865 66 67
x = Height in inches

6463

Often we must make decisions on the basis of evidence which is
less than perfect. F or instance, a group of people has heights ranging
from 5 ft 3 in. to 5 ft 9 in. These heights are measured with the group
members standing in bare feet. When each person wears shoes his
height is increased by 1 inch, so that the range of heights for the
group becomes 5 ft 4in. to 5 ft 10 in. The distributions of heights for
members of the group with shoes on and with shoes off are illustrated
in the histograms of Figure 1.1.

Solid line: Distribution 5 -shoes on
Dotted line: Distribution n-shoes off
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You can see that the two histograms are identical, with the excep­
tion that s, the 'Shoes on' histogram, is 1 in. further up the X-axis
than n, the 'Shoes off histogram.

Given these two distributions you are told that a particular
person is 5 ft 7 in. tall and from this evidence you must deduce
whether the measurement was taken with shoes on or with shoes off.
A look at these histograms in Figure 1.1 shows that you will not be
able to make a decision which is certain to be correct. The histograms
reveal that 3/16ths of the group is 5 ft 7 in. tall with shoes off and
that 4/16ths of the group is 5 ft 7 in. tall with shoes on. The best bet
would be to say that the subject had his shoes on when the measure­
ment was taken. Furthermore, we can calculate the odds that this
decision is correct. They will be (4/16)/(3/16), that is, 4/3 in favour
of the subject having his shoes on.

You can see that with the evidence you have been given it is not
possible to make a completely confident decision one way or the
other. The best decision possible is a statistical one based on the
odds favouring the two possibilities, and that decision will only
guarantee you being correct four out of every seven choices, on the
average.

It is possible to calculate the odds that each of the eight heights

WHA TARE ST A TISTICAL DECISIONS?

of the group was obtained with shoes on. This is done in Table 1.1.
The probabilities in columns 2 and 3 have been obtained from Figure
1.1.

F or the sake of brevity we will refer to the two states of affairs
'Shoes on' and 'Shoes off as states sand n respectively.

It can be seen that the odds favouring hypothesis s are calculated
in the following way:

For a particular height, which we will call x, we take the proba­
bility that it will occur with shoes on and divide it by the probability
that it will occur with shoes off. We could, had we wished, have
calculated the odds favouring hypothesis n rather than those favour­
ing s, as has been done in Table 1.1.To do this we would have divided
column 2 entries by column 3 entries and the values in column 4
would then have been the reciprocals of those which appear in the
table.

Looking at the entries in column 4 you will see that as the value of
x increases the odds that hypothesis s is correct become more favour­
able. For heights of 67 in. andabove it is more likely that hypothesis
s is correct. Below x == 67 in. hypothesis n is more likely to be correct.
If you look at Figure 1.1 you will see that from 67 in. up, the histo­
gram for 'Shoes on' lies above the histogram for 'Shoes off'. Below
67 in. the 'Shoes off histogram is higher.

P{x I n) and P{x I s) are called 'conditional probabilities' and are the probabilities
of x given n, and of x given s, respectively.

l(x) is the symbol for the 'odds' or likelihood ratio.

The evidence variable
In the example there were two relevant things that could happen.

These were state s (the subject had his shoes on) and state n (the
subject had his shoes off). To decide which of these had occurred, the
observer was given some evidence in the form of the height, x, of
the subject. The task of the observer was to decide whether the
evidence favoured hypothesis s or hypothesis n.

As you can see we denote evidence by the symbol x.' Thus x is
called the evidence variable. In the example the values of x ranged

1 Another symbol used by Green & Swets (1966) for evidence is e.

SOME DEFINITIONS

With the above example in mind we will now introduce some of
the terms and symbols used in signal detection theory.

o
1/2
2/3
3/4
4/3
3/2
2/1

Odds favouring s
l(x)

o
1/16
2/16
3/16
4/16
3/16
2/16
1/16

Shoes on (s)
p{xls)

._ L._

64
65
66
67
68
69
70

TABLE 1.1 The odds favouring the hypothesis 'Shoes on' for the eight possible heights
ofgroup members.

--_._- - - - - - ---,---- - - - - -

----~rObabili~Of obt<li~ng~is height with _

Hi~~~~sin +Shoes off(n)
x P{x\n)

--- -

63 1/16
2/16
3/16
4/16
3/16
2/16
1/16
o

2 3
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H its, misses, false alarms and correct rejections
We now come to four conditional probabilities which will be

often referred to in the following chapters. They will be defined by
referring to Table 1.1.

First, however, let us adopt a convenient convention for denoting
the observer's decision.

The two possible stimulus events have been called sand n.
Corresponding to them are two possible responses that an observer
might make; observer says's occurred' and observer says 'n

occurred'. As we use the lower case letters sand n to refer to stimulus
events, we will use the upper case letters Sand N to designate the
corresponding response events. There are thus four combinations
of stimulus and response events. These along with their accompany­
ing conditional probabilities are 'shown in Table 1.2.

P(x Is)
lx = P(xln)'

Thus from Table 1.1 we can see that

A PRIMER OF SIGNAL DETECTION THEORY

from x == 63 in. to x == 70 in. In a psychological experiment x can
be identified with the sensory effect produced by a stimulus which
may be , for example, a range of illumination levels, sound intensities,
or verbal material of different kinds.

Conditional probabilities
In the example, given a particular value of the evidence variable,

say x == 66 in., Table 1.1 can be used to calculate two probabilities:

(a) P(x Is): that is, the probability that the evidence variable will
take the value x given th at state s has occurred. In terms of the
example, P(x Is) is the probability that a subject is 66 in. tall
given that he is wearing shoes. From Table 1.1 it can be seen that
for x == 66 in., P(x Is) == 1

36'

(b) P(x In): the probability that the evidence variable will take the
value x given that state n has occurred. Table 1.1 shows that for
x == 66 in., Pix In) == 1

46'

P(x Is) and P(x I n) are, called conditional probabilities because
they represent the probability of one event occurring conditional
on another event having occurred. In this case we have been looking
at the probability of a person being 66 in. tall given that he is (or
conditional on him) wearing shoes.

1/16
I(x = 64) = 2/16'

3/16
I(x = 66) = 4/16' etc.

(1.1)

T he likelihood ratio
It was suggested that one way of deciding whether state s or state

n had occurred was to first calculate the odds favouring s. In signal
detection theory, instead of speaking of 'odds' we use the term
likelihood ratio. 'Odds' and 'likelihood ratio' are synonymous
The likelihood ratio is represented symbolically as l(x).

From the foregoing discussion it can be seen that in this example
the likelihood ratio is obtained from the formula 1

1 More correctly we should write Isn(x j ) = P(xj Is)/P(xj !n), with the subscripts
i, s and n, added to (1.1). The subscript i denotes the likelihood ratio for the ith value
of x but normally we will just write x with the subscripts implied. The order of the
subscripts sand n tell us which of Pix, Is) and Pix, In) is to act as the denominator
and numerator in the expression for the likelihood ratio. The likelihood ratio
Isn(x.] is the ratio of Pix, Is) to Pix, In) where Pix, Is) serves as the numerator. On the
other hand the likelihood ratio Ins (Xi) is the ratio of Pix, In) to Pix, Is) where P(XjIn)
serves as the numerator. As all likelihood ratios in this book will use probabilities
involving s as the numerator and probabilities involving n as the denominator the
s and n subscripts will be omitted.

4

TABLE 1.2 The conditional probabilities! and their names. which correspond to the
four possible combinations of stimulus and response events. The data in
the table are the probabilities for the decision rule: (Respond S if x >
66 in.; respond N if x ~ 66 in. '

Response event Row sum
S N

'Hit' 'Miss~

p(Sls) = p(Nls) =
(4+3+2+1)/16 (3+2+1)/16

Stimulus /'

event 'False alarm 'Correct
rejection'

n P(Sln) = P(Nln) =
(3+2+1)/16 (4+ 3+ 2 + 1)! 16

The meanings of the conditional probabilities are best explained
by referring to an example from Table 1.1. An observer decides to
respond S when x > 66 in. and N when x < 66 in. The probability

5
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TABLE 1.3 The number of correct and incorrect responses for /3=1 when P(s) =
t P(n).

We can see how this rule works in practice by referring to the
example in Table 1.1.

Assume that in the example P(s) == ! P(n). Therefore by formula
(1.2) [3 == 2 will be the criterion value of l(x) which will maximize
correct responses. This criterion is twice as strict as the one which

If he says N when l(x) < 1 he will be correct 10 times out of 16,
and incorrect 6 times out of 16. Ifhe says S when l(x) ~ 1 he.will be
correct 10 times out of 16, and incorrect 6 times out of 16. Overall, his
chances of making a correct response will be 20/32 and his chances
of making an incorrect response will be 12/32.

Can the observer do better than this? Convince yourself that he
cannot by selecting other decision rules and using Table 1.1 to
calculate the proportion of correct responses. For example, if the
observer adopts the rule: 'Say N if l(x) < i and say S if l(x) ~ i: his

, chances of making a correct decision will be 19/32, less than those
he would have had with [3 == 1.

It is a mistake, however, to think that setting the criterion at
f3 == 1 will always maximize the number of correct decisions. This
will only occur in the special case where an event of type s has the
same probability of occurrence as an event of type n, or, to put it in
symbolic form, when P(s) = P(n). In our example, and in many
psychological experiments, this is the case.

When sand n have different probabilities of occurrence the value
of [3 which will maximize correct decisions can be found from the
formula

Number of correct responses (out of48) = 10+(10x2) = 30
Number of incorrect responses (out of48) = 6+(6x2) = 18

(1.2)

32

48

Total (out of
48)
16

Observer's response
S N

[3 == P(n)/P(s)

t =r- --- js 10 - 6

n __6 x 2 . __10 x_2 _
Stimulus event

that he will say S given that s occurred can be calculated from
column 3 of the table by summing all the P(x Is) values which fall
in or above the category x == 66in., namely, (4+3+2+1)/16 ==

10/16. This is the value of P(S Is), the hit rate or hit probability. Also
from column 3 we see that P(N Is), the probability of responding N
when s occurred is (3+ 2 + 1)/16 '== 6/16. From column 2 P(N In), the
probability of responding N when n occurred, is 10/16, and P(S In),
the false alarm rate, is 6/16. These hits, misses, false alarms and
correct rejections are shown in Table 1.2.

DECISION RULES AND THE CRITERION

The meaning of [3
In discussing the example it has been implied that the observer

should respond N if the value of the evidence variable is less than or
equal to 66 in. If the height is greater than or equal to 67 in. he should
respond S. This is the observer's decision rule and we can state it in
terms of likelihood ratios in the following manner:

'If l(x) < 1, respond N; if l(x) ~ 1, respond S:

Check Table 1.1 to convince yourself that stating the decision rule
in terms of likelihood ratios 'is equivalent to stating it in terms of
the values of the evidence variable above and below which the
observer will respond S or N.

Another way of stating the decision rule is to say that the observer
has set his criterion at [3 == 1. In essence this means that the observer
chooses a particular value of l(x) as his criterion. Any value falling
below this criterion value of l(x) is called N, while any value of l(x)
equal to or greater than the criterion value is called S. This criterion
value of the likelihood ratio is designated by the symbol [3.

Two questions can now be asked. First, what does setting the
criterion at [3 == 1 achieve for the observer? Second, are there other
decision rules that the observer might have used?

Maximizing the number of correct responses
If, in the example, the -observer chooses the decision rule: 'Set

the criterion at [3 == 1 in., he will make the maximum number of
correct responses for those distributions of sand n. This can be
checked from,Table 1.1 as follows:

6 7

B
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(1.3)
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maximized correct responses for equal probabilities of sand n.
First we can calculate the proportion of correct responses which
would be obtained if the criterion were maintained at f3 == 1. This
is done in Table 1.3. As n events are twice as likely as s events, we
multiplyentries in row n of the table by 2.

The same thing can be done for f3 == 2. Table 1.1 shows that
f3 == 2 falls in the interval x == 69 in. so the observer's decision rule
will be: 'Respond S if x ~ 69 in., respond N if x < 69 in. Again,
with the aid of Table 1.1, the proportion of correct and incorrect
responses can be calculated. This is done in Table 1.4.

WHAT ARE ST A TISTICAL DECISIONS?

(a) Maximizing gains and minimizinq losses. Rewards and penal-
ties may be attached to certain types of response so that

~ S == value of making a hit,
Cs N == cost of making a miss,
C; S == cost of making a false alarm,
v" N == value of making a correct rejection.

In the case where P(s) == P(n) the value of f3 which will maximize
the observer's gains and minimize his losses is

f3 = v"N + Cns.
~s+ CsN

TABLE 1.4 The number of correct and incorrect responses for {3=2when P(s) =
t P(n).

It can be seen that f3 == 2 gives a higher proportion of correct
responses than f3 == 1 when P(s) == t P(n). There is no other value
of f3 which will give a better result than 33/48 correct responses for
these distributions of sand n.

Other decision rules
One or two other decision rules which might be used by observers

will now be pointed out. A reader who.wishes to see these discussed
in more detail should consult Green & Swets (1966) pp. 20-7. The
main purpose here is to illustrate that there is no one correct value

.of l(x) that an observer should adopt as his criterion. The value of
f3 he should select will depend on the goal he has in mind and this
goal may vary from situation to situation. For instance the observer
may have either of the following aims.

8

Numberofcorrectresponses(outof48) = 3+(15x2) = 33
Number of incorrect responses (out of 48) = 13 + (1 x 2) = 15

(1.4)

It is possible for a situation to occur where P(s) and P(n) are not
equal and where different costs and rewards are attached to the
four combinations of stimuli and responses. In such a case the value
of the criterion which will give the greatest net gain can be calculated
combining (1.2)with (1.3) so that

f3 = (v"N+ CnS) · P(n).
(~s+CsN ). P(s)

9

It can be seen from (1.4)that if the costs of errors equal the values of
correct responses, the formula reduces to (1.2). On the other hand,
if the probability of s equals the probability of n; the formula reduces
to (1.3).

(b) Keeping false alarms at a minimun : Under some circum­
stances an observer may wish to avoild making mistakes of a par­
ticular kind. One such circumstance with which you will already
be familiar occurs in the conducting of statistical tests. The statisti­
cian has two hypotheses to consider; H 0 the null hypothesis, and
HI' the experimental hypothesis. His job is to decide which of these
two to accept. The situation is quite like that of deciding between
hypotheses nand s in the example we have been discussing.

In making his decision the statistician risks making one of two
errors:

Type I error: accepting H 1 when H 0 was true, and
Type II error: accepting H 0 when H 1 was true.

32

48

Total (out of
48)

1613

15 x 2

Observer's response
Ns

3

lx2Stimulusevent : tL--_ I__
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The Type I errors are analogous to false alarms and the Type II
errors are analogous to misses . The normal procedure in hypothesis
testing is to keep the proportion of Type I errors below some accept­
able maximum. Thus we set up confidence limits of, say, p = 0·05,
or , in other words, we set a criterion so that P(S In) does not exceed
5 %. As you should now realize, by making the criterion stricter, not
only will false alarms become less'''11keiy but hits WIll also be de­
creased. In the language of hypothesis testing, Type I errors can be
avoided only at the expense of increasing the likelihood of Type II
errors.

SIGNAL DETECTION THEOR Y AND PSYCHOLOGY

The relevance of signal detection theory to psychology lies in
the fact that it is a theory about the ways in which choices are made.
A good deal of psychology, perhaps most of it, is concerned with the
problems of choice. A learning experiment may require a rat to
choose one of two arms of a maze or a human subject may have to
select , from several nonsense-syllables, one which he has previously
learned. Subjects are asked to choose, from a range of stimuli, the
one which appears to be the largest, brightest or most pleasant.
In attitude measurement people are asked to choose, from a number
of statements, those with which they agree or disagree. References
such as Egan & Clarke (1966), Green & Swets (1966) and Swets
(1964) give many applications of signal detection theory to choice
behaviour in a number of these areas.

Another interesting feature of signal detection theory, from a
psychological point of view, is that it is concerned with decisions
based on evidence which does not unequivocally support one out Qf
a number of hypotheses. More often than not, real-life decisions have'
to be made on the weight of the evidence and with some uncertainty,
rather than on information which clearly supports one line of action
to the exclusion of all others. And, as will be seen, the sensory
evidence on which perceptual decisions are made can be equivocal
too. Consequently some psychologists have found signal detection
theory to be a useful conceptual model when trying to understand
psychological processes. For example, John (1967) has proposed a
theory of simple reaction times based on signal detection theory;

10

WHA TARE ST A TISTICAL DECISIONS?

Welford (1968) suggests the extension of detection theory to absolute
judgement tasks where a subject is required to judge the magnitude
of stimuli lying on a single dimension ; Boneau, & Cole (1967) have
developed a model for decision-making in lower organisms and
applied it to colour discrimination in pigeons ; Suboski (1967) has
applied detection theory in a model of classical discrimination
conditioning.

The most immediate practical benefit of the theory, however,
is that it provides a number of useful measures of performance in
decision-making situations. It is with these that this book is con­
cerned. Essentially the measures allow us to separate two aspects
of an observer 's decision. The first of these is called sensitivity, that is,
how well the observer is able to make correct judgements and avoid
incorr ect .ones. The second ofthese is called bias that is the exten t
to which th;;observer favo~r~ one hypothesis ~ver an~ther inde­
pendent of the evidence-h'e 'l ias been given. In the past these two
a'specfs " of~p'erfO'filiance have often ' been"confounded and this has
lead to mistakes in interpreting behaviour.

Signal and noise
In an auditory detection task such as that described by Egan,

Schulman & Greenberg (1959) an observer may be asked to identify
the presence or absence of a weak pure tone embedded in a burst
of wh,itf! 1'!gise. (N oise, a hissing sound, consists of a wide band of
frequencies of vibration whose intensities fluctuate randomly from
moment to moment. An everyday example of noise is the static
heard on a bad telephone line, which makes speech so difficult
to understand.) On some trials in the experiment the observer is
presented with noise alone. On other trials he hears a mixture of
tone + noise. We can use the already familiar symbols sand n to
refer to these two stimulus events. The symbol n thus designates the
~~e~t 'no ise alone ' and the symbol s designates the eyent 'signal (in
this case the tone) + noise '. '

. The selection of the 'appropriate response, S or N, by the observer
raises the same problem of deciding whether a subject's height had
been measured with shoes on or off. A~s. _.!h.~ , nqj$~ beackground is
continually fluctuating, some noise events are likely to be mistaken
for sig~al + noise events, and some signal + nois~. events will appear

11
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to be like noise alone. On any given trial the observer's best decision
'will again have to ' be '! sta~.is..!i9~1 one based on what he, .c9nsi~~~s
are the odds that the sensory evidence favours s or n.

Visual detection tasks of a similar kind can also be conceived.
The task of detecting the presence or absence of a weak flash of
light against a background whose level of illumination fluctuates
randomly is one which would require observers to make decisions
on the basis of imperfect evidence.

N or is it necessary to think of noise only in the restricted sense
of being a genuinely random component to which a signal mayor
may not be added. From a psychological point of view, noise might
be any stimulus not designated as a signal, but whi,~h maybe ~0J1­

fused with it. For example, we may be Interested in studying an
observer's ability to recognize letters of the alphabet which have
been presented briefly in a visual display. The observer may have
been told that the signals he is to detect are occurrences of the letter
'X' but that sometimes the letters 'K'. 'Y' and 'N' will appear
instead. These three non-signal letters are not noise in the strictly
statistical sense in which white noise is defined, but they are capable
of being confused with the signal letter, and, psychologically speak­
ing, can be considered as noise.

Another example of this extended definition of noise may occur
in the context of a memory experiment. A subject may be presented
with the digit sequence '58932' and at some later time he is asked:
'Did a "9" occur in the sequence?', or, alternatively: 'Did a "4"
occur in the sequence?' In this experiment five digits out of a poss­
ible ten were presented to be remembered and there were five
digits not presented. Thus we can think of the numbers 2,3,5,8, and
9, as being signals and the numbers 1, 4, 6, 7, and 0, as being noise.
(See Murdock (1968) for an example of this type of experiment.)

These two illustrations are examples of a phenomenon which,
unfortunately, is very familiar to us-the fallibility of human per­
ception and memory. Sometimes we 'see' the wrong thing or, in
the extreme case of hallucinations, 'see' things that are not present
at all. False alarms are not an unusual perceptual occurrence. We
'hear' our name spoken when in fact it was not; a telephone can
appear to ring if we are expecting an important call; mothers are
prone to 'hear' their babies crying when they are peacefully asleep.

12
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Perceptual errors '. may occur because o{ the Roor quality or
ambTgmty o{iii~ , stlmul~s"Rr,~s~nte~ to, a~ Qbserv~r~- 'The'lette; '-M'
may be badly written so that it closely resembles an 'N'. The word
'bat', spoken over a bad telephone line, may be masked to such an
extent by static that it is indistinguishable from the word 'pat'. But
this is not the entire explanation of the perceptual mistakes we
commit. Not only can the stimulus be noisy but noise can occur
within the perceptual system itself. It is known that neurons in the
central nervous system can fire spontaneously without external
stimulation. The twinkling spots of light seen when sitting in a dark
"room are the result of spontaneously firing retinal cells and, in
general, the continuous activity of the brain provides a noisy
background from which the genuine effects of external signals must
be discriminated (Pinneo, 1966). FitzHugh (1957) has measured
noise in the ganglion cells of cats, and also the effects of a signal
which was a brief flash of light of near-threshold intensity. The
effects of this internal noise can be seen even more clearly in older
people where degeneration of nerve cells has resulted in a relatively
higher level of random neural activity which results in a correspond­
ing impairment of some perceptual functions (Welford, 1958).
Another example of internal noise of a rather different kind may be
found in schizophrenic patients whose cognitive processes mask
and distort information from the outside world causing failures of
perception or even hallucinations.

The concept of internal noise carries with it the implication that
all our choices are based on evidence which is to some extent
unreliable (or noisy). Decisions in the face of uncertainty are there­
fore the rule rather the exception in human choice behaviour. An
experimenter must expect his subjects to 'perceive' and 'remember'
stimuli which did not occur (for the most extreme example of this see
Goldiamond & Hawkins, 1958). So, false alarms are endemic to a
noisy perceptual system, a point not appreciated by earlier psycho­
physicists who, in their attempts to measure thresholds, discouraged
their subjects from such 'false perceptions'. Similarly, in the study
of verbal behaviour, the employment of so-called 'corrections for
chance guessing' was an attempt to remove the effects of false
alarms from a subject's performance score as if responses of this
type were somehow improper.

13
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Problems

Before giving the pack to the subject the experimenter paints an
extra spot on 225 cards as follows:

Number of cards in
this groupreceiving

an extra spot
25
50
75
50
25

Number of cards
in pack

50
100
150
100
50

1
2
3
4
5

Number ofspots
on card

1
'2
3
4
5

Original number of
spots on card

The subject is then asked to sort the cards in the pack into two
piles; one pile containing cards to which an extra spot has been added
and the other pile, of cards without the extra spot.

1. What is the maximum proportion of cards which can be sorted
correctly into their appropriate piles?

2. State, in terms of x, the evidence variable, the decision rule which
will achieve this aim.

3. If the subject stands to gain 1¢ for correctly identifying each
card with an extra spot and to lose 2¢ for correctly classifying a'

15

The following experiment and its data are to be used for problems
1 to 6.

In a card-sorting task a subject is given a pack of 450 cards, each
of which has had from 1 to 5 spots painted on it. The distribution
of cards with different numbers of spots is as follows:

A PRIMER OF SIGNAL DETECTION THEORY

The fact is, if noise does playa role in human decision-making,
false alarms are to be expected and should reveal as much about the
decision process as do correct detections. The following chapters of"
this book will show that it is impossible to obtain good measures of
sensitivity and bias without obtaining estimates of both the hit and
false alarm rates of an observer.

A second consequence of accepting the importance of internal
noise is that signal detection theory becomes something more than
just another technique for the special problems of psychophysicists.
All areas of psychology are concerned with the ways in which the
internal states of an individual affect his interpretation of informa­
tion from the world around him. Motivational states, past learning
experiences, attitudes and pathological conditions may determine
the efficiency with which a person processes information and may
also predispose him towards one type of response rather than
another. Thus the need for measures of sensitivity and response bias
applies over a wide range of psychological problems.

Egan (1958) was first to extend the use of detection theory beyond
questions mainly of interest to psychophysicists by applying it to
the study ofrecognition memory. Subsequently it has been employed
in the study of human vigilance (Broadbent & Gregory, 1963a,
1965; Mackworth & Taylor, 1963), attention (Broadbent & Gregory,
1963b; Moray & O'Brien, 1967) and short-term memory (Banks,
1970; Murdock, 1965; Lockhart & Murdock, 1970; Norman &
Wickelgren, 1965; Wickelgren & Norman, 1966). The effects of
familiarity on perception and memory have been investigated by
detection theory methods by Allen & Garton (1968, 1969) Broadbent
(1967) and Ingleby (1968). Price (1966) discusses the application of
detection theory to personality, and Broadbent & Gregory (1967),
Dandeliker & Dorfman (1969), Dorfman (1967) and Hardy &
Legge (1968) have studied sensitivity and bias changes in perceptual
defence experiments.

N or has detection theory been restricted to the analysis of data
from human observers. Suboski's (1967) analysis of discrimination
con~itioningin pig~?ns·'li-~·~-·alreaaY'-fie¢n . tTIentio~ed, ' and C Nevin
(1'965) and Riflirig~" '& " ~Mcvb'l~imid (i965) ' ''hav~" ' '' ~i so .studied dis-
crimination iii ' '' pIge6ilff ''by'~ ~d'ete'(;ti6h+ e theory methods. Rats have
(~G.eiYed_s.imilar · a,tJe!!!i.Qn.IiQn1 ~.B.~c;k .f!9~}I, ~l}g. "NeYi·~"!1964):'-..
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(a) for the problem data,
(b) for the data in Table 1.1.

(The issues raised in this problem will be discussed in Chapter 4.)

~.. "

4
0'6
0'9

3
0'5
0'8

x 1
P(x In) 0'2
P(x Is) 0'5

8. At a particular value of x, l(x) = 0'5 and the probability of x
given that n has occurred is 0'3. What is the probability of x given
that s has occurred?

A PRIMER OF SIGNAL DETECTION THEORY

card as containing an extra spot, find firstly in terms of f3~ and
secondly in terms of x, the decision rule which will maximize his
gains and minimize his losses.

4. What proportions of hits and false alarms will the observer
achieve ifhe adopts the decision rule f3 = f?
5. What will P(N Is) and f3 be if the subject decides not to allow the
false alarm probability to exceed i?

6. If the experimenter changes the pack so that there are two cards
in each group with an extra spot to every one without, state the
decision rule both.in terms of x and in terms of f3 which will maximize
the proportion of correct responses.

7. Find the likelihood ratio for each value of x for the following
data:

9. If P(S Is) = 0'7 and P(N In) = 0'4~ what is P(N Is) and P(S In)?

10. The following table shows P(x In) and P(x Is) for a range of
values ofx.

x 63 64 65 66 67 68 69 70 71
P(x In) 1/16 2/16 3/16 4/16 3/16 2/16 1/16 0 0
p(x 'i s) 1/16 1/16 2/16 2/16 4/16 2/16 2/16 1/16 1/16

Draw histograms for the distributions of signal and noise and
compare your diagram with Figure 1.1. What differences can you
see?
Find l(x) for each x value in the table. Plot l(x) against x for your
data and compare it with a plot of l(x) against x for the data in
Table 1.1. How do the two plots differ?
If P(s)were equal to 0'6 and P(n) to 0'4 state, in terms of x, the decision
rule which would maximize correct responses:
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1
2'

< 5.

~ x ~ 66.

1. f3

Lax
0'90
0'70

Medium
0'70
0'30

Strict
0'50
0'14

1. Criterion:
P(S Is)
P(SIn)

(a) 0'74.
2. (a) Observer 1 :

P(S Is) = 0'31,0'50,0'69,0'77,0'93,0'98, 1'00.
P(SIn) = 0'02,0'07,0'16,0'23, 0'50, 0~69, 1'00.
Observer 2:
P(S Is) = 0'23,0'44,0'50,0'60,0'69,0-91, 1'00.
p(SI n) == 0'11,0'26,0'31,0'40,0'50,0-80,1.'00.

(b) Observer 1. = 0'85; observer 2 = 0'63.

CHAPTER 2

CHAPTER

Appendix 1

1. 0'67.
2. RespondSwhenx ~ 4; respond N when x ~ 3.
3. f3 = 2. Respond S when x ~ 5 ; respond N when x
4. p(S Is) = 0'67, P(S In) = 0'33.
5. P(N\s) = 0'11 ;f3 = ~or~.

6. Respond S when x ~ 2; respond N when x
7. l(x) = 2'50, 1'75, 1'60, 1'50.
8. p(xIS) = 0'15.
9. P(N Is) = 0'3, P(SIn) = 0'6.

10. l(x) = 1,1, j ,1,1,1,2, 00, 00. .

(a) Respond S if x ~ 63 or if x ~ 67. Respond N If 64
(b) Respond S ifx ~ 65; respond N if x < 65.
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