
Lecture 1 
Page 1 

CS 111 
Summer 2015  

Introduction 
CS 111 

Operating System Principles  
Peter Reiher 



Lecture 1 
Page 2 

CS 111 
Summer 2015  

Introduction to the Course 

•  Purpose of course and relationships to other 
courses 

•  Why study operating systems? 
•  Major themes & lessons in this course 



Lecture 1 
Page 3 

CS 111 
Summer 2015  

What Will CS 111 Do? 
•  Build on concepts from other courses 

–  Data structures, programming languages, assembly 
language programming, network protocols, computer 
architectures, ... 

•  Prepare you for advanced courses 
–  Data bases and distributed computing 
–  Security, fault-tolerance, high availability 
–  Computer system modeling, queueing theory 

•  Provide you with foundation concepts 
–  Processes, threads, virtual address space, files 
–  Capabilities, synchronization, leases, deadlock 



Lecture 1 
Page 4 

CS 111 
Summer 2015  

Why Study Operating Systems? 
•  Few of you will actually build OSs 
•  But many of you will: 

–  Set up, configure, manage computer systems 
–  Write programs that exploit OS features 
–  Work with complex, distributed, parallel software 
–  Work with abstracted services and resources 

•  Many hard problems have been solved in OS context 
–  Synchronization, security, integrity, protocols, distributed 

computing, dynamic resource management, ... 
–  In this class, we study these problems and their solutions 
–  These approaches can be applied to other areas 



Lecture 1 
Page 5 

CS 111 
Summer 2015  

Why Are Operating Systems 
Interesting? 

•  They are extremely complex 
–  But try to appear simple enough for everyone to use 

•  They are very demanding 
–  They require vision, imagination, and insight 
–  They must have elegance and generality 
–  They demand meticulous attention to detail 

•  They are held to very high standards 
–  Performance, correctness, robustness, 
–  Scalability, extensibility, reusability 

•  They are the base we all work from 



Lecture 1 
Page 6 

CS 111 
Summer 2015  

Recurring OS Themes 
•  View services as objects and operations 

–  Behind every object there is a data structure 
•  Separate policy from mechanism 

–  Policy determines what can/should be done 
–  Mechanism implements basic operations to do it 
–  Mechanisms shouldn’t dictate or limit policies 
–  Must be able to change policies without changing 

mechanisms 

•  Parallelism and asynchrony are powerful and 
necessary 
–  But dangerous when used carelessly 



Lecture 1 
Page 7 

CS 111 
Summer 2015  

More Recurring Themes 
•  An interface specification is a contract 

– Specifies responsibilities of producers & 
consumers 

– Basis for product/release interoperability 

•  Interface vs. implementation 
– An implementation is not a specification 
– Many compliant implementations are possible 
–  Inappropriate dependencies cause problems 

•  Modularity and functional encapsulation 
– Complexity hiding and appropriate abstraction 



Lecture 1 
Page 8 

CS 111 
Summer 2015  

What Is An Operating System? 

•  Many possible definitions 
•  One is: 

–  It is low level software . . . 
– That provides better abstractions of hardware 

below it 
– To allow easy, safe, fair use and sharing of those 

resources 



Lecture 1 
Page 9 

CS 111 
Summer 2015  

What Does an OS Do? 

•  It manages hardware for programs 
– Allocates hardware and manages its use 
– Enforces controlled sharing (and privacy) 
– Oversees execution and handles problems 

•  It abstracts the hardware 
– Makes it easier to use and improves s/w portability 
– Optimizes performance 

•  It provides new abstractions for applications 
– Powerful features beyond the bare hardware 



Lecture 1 
Page 10 

CS 111 
Summer 2015  

What Does An OS Look Like? 
•  A set of management & abstraction services 

–  Invisible, they happen behind the scenes 
•  Applications see objects and their services 

–  CPU supports data-types and operations  
•  Bytes, shorts, longs, floats, pointers, ... 
•  Add, subtract, copy, compare, indirection, ... 

–  So does an operating system, but at a higher level 
•  Files, processes, threads, devices, ports, ... 
•  Create, destroy, read, write, signal, ... 

•  An OS extends a computer 
–  Creating a much richer virtual computing platform 

•  Supporting richer objects, more powerful operations 



Lecture 1 
Page 11 

CS 111 
Summer 2015  

Where Does the OS Fit In? 

Operating System

 System Call Interface

Hardware

 Standard instruction setPrivileged instruction set

(arithmetic, logical, copy, test, flow-control operations, ...) 

System Services/Libraries

 Application Binary Interface

(e.g. string, random #s, encryption, graphics ...) 

Applications Software
(e.g. word processor, compiler, VOIP program, ...) 



Lecture 1 
Page 12 

CS 111 
Summer 2015  

What’s Special About the OS? 
•  It is always in control of the hardware 

–  Automatically loaded when the machine boots 
–  First software to have access to hardware 
–  Continues running while apps come & go 

•  It alone has complete access to hardware 
–  Privileged instruction set, all of memory & I/O 

•  It mediates applications’ access to hardware 
–  Block, permit, or modify application requests 

•  It is trusted 
–  To store and manage critical data 
–  To always act in good faith 

•  If the OS crashes, it takes everything else with it 
–  So it better not crash . . . 



Lecture 1 
Page 13 

CS 111 
Summer 2015  

What Functionality Is In the OS? 
•  As much as necessary, as little as possible 

–  OS code is very expensive to develop and maintain 
•  Functionality must be in the OS if it ... 

–  Requires the use of privileged instructions 
–  Requires the manipulation of OS data structures 
–  Must maintain security, trust, or resource integrity 

•  Functions should be in libraries if they ... 
–  Are a service commonly needed by applications 
–  Do not actually have to be implemented inside OS 

•  But there is also the performance excuse 
–  Some things may be faster if done in the OS 



Lecture 1 
Page 14 

CS 111 
Summer 2015  

Where To Offer a Service? 

•  Hardware, OS, library or application? 
•  Increasing requirements for stability as you 

move through these options 
•  Hardware services rarely change 
•  OS services can change, but it’s a big deal 
•  Libraries a bit more dynamic 
•  Applications can change services much more 

readily 



Lecture 1 
Page 15 

CS 111 
Summer 2015  

Another Reason For This Choice 

•  Who uses it? 
•  Things literally everyone uses belong lower in 

the hierarchy 
– Particularly if the same service needs to work the 

same for everyone 
•  Things used by fewer/more specialized parties 

belong higher 
– Particularly if each party requires a substantially 

different version of the service 



Lecture 1 
Page 16 

CS 111 
Summer 2015  

The OS and Speed 

•  One reason operating systems get big is based on 
speed 

•  It’s faster to offer a service in the OS than outside it 
–  If it involves processes communicating, working at app 

level requires scheduling and swapping them 
–  The OS has direct access to many pieces of state and 

system services 
–  The OS can make direct use of privileged instructions  

•  Thus, there’s a push to move services with strong 
performance requirements down to the OS 



Lecture 1 
Page 17 

CS 111 
Summer 2015  

The OS and Abstraction 

•  One major function of an OS is to offer 
abstract versions of resources 
– As opposed to actual physical resources 

•  Essentially, the OS implements the abstract 
resources using the physical resources 
– E.g., processes (an abstraction) are implemented 

using the CPU and RAM (physical resources) 
– And files (an abstraction) are implemented using 

disks (a physical resource) 



Lecture 1 
Page 18 

CS 111 
Summer 2015  

Why Abstract Resources? 
•  The abstractions are typically simpler and better 

suited for programmers and users 
–  Easier to use than the original resources 

•  E.g., don’t need to worry about keeping track of disk interrupts 

–  Compartmentalize/encapsulate complexity 
•  E.g., need not be concerned about what other executing code is 

doing and how to stay out of its way 

–  Eliminate behavior that is irrelevant to user 
•  E.g., hide the sectors and tracks of the disk 

–  Create more convenient behavior 
•  E.g., make it look like you have the network interface entirely for 

your own use 



Lecture 1 
Page 19 

CS 111 
Summer 2015  

Common Types of OS Resources 

•  Serially reusable resources 
•  Partitionable resources 
•  Sharable resources 



Lecture 1 
Page 20 

CS 111 
Summer 2015  

Serially Reusable Resources 

•  Used by multiple clients, but only one at a time 
– Time multiplexing 

•  Require access control to ensure exclusive use 
•  Require graceful transitions from one user to 

the next 
– A switch that totally hides the fact that the resource 

used to belong to someone else 
•  Examples: printers, bathroom stalls 



Lecture 1 
Page 21 

CS 111 
Summer 2015  

Partitionable Resources 

•  Divided into disjoint pieces for multiple clients 
– Spatial multiplexing 

•  Needs access control to ensure:  
– Containment: you cannot access resources outside 

of your partition 
– Privacy: nobody else can access resources in your 

partition 
•  Examples: disk space, dormitory rooms 



Lecture 1 
Page 22 

CS 111 
Summer 2015  

Shareable Resources 
•  Usable by multiple concurrent clients 

– Clients do not have to “wait” for access to resource 
– Clients don’t “own” a particular subset of resource 

•  May involve (effectively) limitless resources  
– Air in a room, shared by occupants  
– Copy of the operating system, shared by processes 

•  May involve under-the-covers multiplexing 
– Cell-phone channel (time and frequency 

multiplexed) 
– Shared network interface (time multiplexed) 



Lecture 1 
Page 23 

CS 111 
Summer 2015  

General OS Trends 

•  They have grown larger and more sophisticated 
•  Their role has fundamentally changed 

–  From shepherding the use of the hardware 
–  To shielding the applications from the hardware 
–  To providing powerful application computing platform 

•  They still sit between applications and hardware 
•  Best understood through services they provide 

–  Capabilities they add 
–  Applications they enable 
–  Problems they eliminate 



Lecture 1 
Page 24 

CS 111 
Summer 2015  

Another Important OS Trend 
•  Convergence 

– There are a handful of widely used OSs 
– New ones come along very rarely 

•  OSs in the same family (e.g., Windows or 
Linux) are used for vastly different purposes 
– Making things challenging for the OS designer 

•  Most OSs are based on pretty old models 
– Linux comes from Unix (1970s vintage) 
– Windows from the early 1980s 



Lecture 1 
Page 25 

CS 111 
Summer 2015  

A Resulting OS Challenge 

•  We are basing the OS we use today on an 
architecture designed 30-40 years ago 

•  We can make some changes in the architecture 
•  But not too many 

– Due to compatibility 
– And fundamental characteristics of the architecture 

•  Requires OS designers and builders to 
shoehorn what’s needed today into what made 
sense yesterday 



Lecture 1 
Page 26 

CS 111 
Summer 2015  

Important OS Properties 

•  For real operating systems built and used by 
real people 

•  Differs depending on who you are talking 
about 
– Users 
– Service providers 
– Application developers 
– OS developers 



Lecture 1 
Page 27 

CS 111 
Summer 2015  

For the End Users, 

•  Reliability  
•  Performance 
•  Upwards compatibility in releases 
•  Support for differing hardware 

– Currently available platforms 
– What’s available in the future 

•  Availability of key applications 
•  Security 



Lecture 1 
Page 28 

CS 111 
Summer 2015  

Reliability 

•  Your OS really should never crash 
– Since it takes everything else down with it 

•  But also need dependability in a different sense 
– The OS must be depended on to behave as it’s 

specified 
– Nobody wants surprises from their operating 

system 
– Since the OS controls everything, unexpected 

behavior could be arbitrarily bad 



Lecture 1 
Page 29 

CS 111 
Summer 2015  

Performance 

•  A loose goal 
•  The OS must perform well in critical situations 
•  But optimizing the performance of all OS 

operations not always critical 
•  Nothing can take too long 
•  But if something is “fast enough,” adding 

complexity to make it faster not worthwhile 



Lecture 1 
Page 30 

CS 111 
Summer 2015  

Upward Compatibility 

•  People want new releases of an OS 
– New features, bug fixes, enhancements 
– Security patches to protect from malware 

•  People also fear new releases of an OS 
– OS changes can break old applications 

•  What makes the compatibility issue 
manageable? 
– Stable interfaces 



Lecture 1 
Page 31 

CS 111 
Summer 2015  

Stable Interfaces 

•  Designers should start with well specified 
Application Interfaces 
– Must keep them stable from release to release 

•  Application developers should only use 
committed interfaces 
– Don’t use undocumented features or erroneous 

side effects 



Lecture 1 
Page 32 

CS 111 
Summer 2015  

APIs 
•  Application Program Interfaces  

– A source level interface, specifying: 
•  Include files, data types, constants 
•  Macros, routines and their parameters 

•  A basis for software portability 
– Recompile program for the desired architecture 
– Linkage edit with OS-specific libraries 
– Resulting binary runs on that architecture and OS 

•  An API compliant program will compile & run 
on any compliant system 



Lecture 1 
Page 33 

CS 111 
Summer 2015  

ABIs 
•  Application Binary Interfaces  

– A binary interface, specifying 
•  Dynamically loadable libraries (DLLs) 
•  Data formats, calling sequences, linkage conventions 

– The binding of an API to a hardware architecture 
•  A basis for binary compatibility 

– One binary serves all customers for that hardware 
•  E.g. all x86 Linux/BSD/MacOS/Solaris/… 
•  May even run on Windows platforms 

•  An ABI compliant program will run 
(unmodified) on any compliant system 



Lecture 1 
Page 34 

CS 111 
Summer 2015  

For the Service Providers, 
•  Reliability  
•  Performance 
•  Upwards compatibility in releases  
•  Platform support (wide range of platforms) 
•  Manageability 
•  Total cost of ownership  
•  Support (updates and bug fixes)  
•  Flexibility (in configurations and applications) 
•  Security 



Lecture 1 
Page 35 

CS 111 
Summer 2015  

For the Application Developers, 
•  Reliability  
•  Performance 
•  Upwards compatibility in releases 
•  Standards conformance 
•  Functionality (current and roadmap) 
•  Middleware and tools 
•  Documentation 
•  Support (how to ...)  



Lecture 1 
Page 36 

CS 111 
Summer 2015  

For the OS Developers,  

•  Reliability 
•  Performance  
•  Maintainability 
•  Low cost of development 

– Original and ongoing 



Lecture 1 
Page 37 

CS 111 
Summer 2015  

Maintainability 
•  Operating systems have very long lives 

– Solaris, the “new kid on the block,” came out in 1993 

•  Basic requirements will change many times 
•  Support costs will dwarf initial development 
•  This makes maintainability critical 
•  Aspects of maintainability: 

– Understandability 
– Modularity/modifiability 
– Testability 



Lecture 1 
Page 38 

CS 111 
Summer 2015  

Critical OS Abstractions 

•  One of the main roles of an operating system is 
to provide abstract services 
– Services that are easier for programs and users to 

work with 
•  What are the important abstractions an OS 

provides? 



Lecture 1 
Page 39 

CS 111 
Summer 2015  

Abstractions of Memory 

•  Many resources used by programs and people 
relate to data storage 
– Variables 
– Chunks of allocated memory 
– Files 
– Database records 
– Messages to be sent and received 

•  These all have some similar properties 



Lecture 1 
Page 40 

CS 111 
Summer 2015  

The Basic Memory Operations 

•  Regardless of level or type, memory 
abstractions support a couple of operations 
– WRITE(name, value) 

•  Put a value into a memory location specified by name 

– value <- READ(name) 
•  Get a value out of a memory location specified by name 

•  Seems pretty simple 
•  But going from a nice abstraction to a physical 

implementation can be complex 



Lecture 1 
Page 41 

CS 111 
Summer 2015  

An Example Memory Abstraction 
•  A typical file 
•  We can read or write the file 
•  We can read or write arbitrary amounts of data 
•  If we write the file, we expect our next read to 

reflect the results of the write 
– Coherence 

•  If there are several reads/writes to the file, we 
expect each to occur in some order 
– With respect to the others 



Lecture 1 
Page 42 

CS 111 
Summer 2015  

Abstractions of Interpreters 

•  An interpreter is something that performs 
commands 

•  Basically, the element of a computer (abstract 
or physical) that gets things done 

•  At the physical level, we have a processor 
•  That level is not easy to use 
•  The OS provides us with higher level 

interpreter abstractions 



Lecture 1 
Page 43 

CS 111 
Summer 2015  

Basic Interpreter Components 
•  An instruction reference 

– Tells the interpreter which instruction to do next 

•  A repertoire 
– The set of things the interpreter can do 

•  An environment reference 
– Describes the current state on which the next 

instruction should be performed 
•  Interrupts 

– Situations in which the instruction reference 
pointer is overriden 



Lecture 1 
Page 44 

CS 111 
Summer 2015  

An Example Interpreter Abstraction 

•  A CPU 
•  It has a program counter register indicating 

where the next instruction can be found 
– An instruction reference 

•  It supports a set of instructions 
–  Its repertoire 

•  It has contents in registers and RAM 
–  Its environment 



Lecture 1 
Page 45 

CS 111 
Summer 2015  

Abstractions of  
Communications Links 

•  A communication link allows one interpreter to 
talk to another 
– On the same or different machines 

•  At the physical level, wires and cables 
•  At more abstract levels, networks and 

interprocess communication mechanisms 
•  Some similarities to memory abstractions 

– But also differences 



Lecture 1 
Page 46 

CS 111 
Summer 2015  

Basic Communication Link 
Operations 

•  SEND(link_name, outgoing_message_buffer) 
– Send some information contained in the buffer on 

the named link 
•  RECEIVE(link_name, 

incoming_message_buffer) 
– Read some information off the named link and put 

it into the buffer 
•  Like WRITE and READ, in some respects 



Lecture 1 
Page 47 

CS 111 
Summer 2015  

An Example Communications  
Link Abstraction 

•  A Unix-style socket 
•  SEND interface: 

– send(int sockfd, const void *buf, size_t len, int 
flags) 

– The sockfd is the link name 
– The buf is the outgoing message buffer 

•  RECEIVE interface: 
–  recv(int sockfd, void *buf, size_t len, int flags) 
– Same parameters as for send  



Lecture 1 
Page 48 

CS 111 
Summer 2015  

Some Other Abstractions 
•  Actors 

– Users or other “active” entities 

•  Virtual machines 
– Collections of other abstractions 

•  Protection environments 
– Security related, usually 

•  Names 
•  Not a complete list 
•  Not everyone would agree on what’s distinct 



Lecture 1 
Page 49 

CS 111 
Summer 2015  

Hardware and the  
Operating System 

•  OS abstractions are built on the hardware, at 
the bottom 
– Everything ultimately relies on hardware 

•  One of the major roles of the operating system 
is to hide details of the hardware 
– Messy and difficult details 
– Specifics of particular pieces of hardware 
– Details that prevent safe operation of the computer 

•  A major element of OS design concerns HW 



Lecture 1 
Page 50 

CS 111 
Summer 2015  

OS Abstractions and the Hardware 
•  Many important OS abstractions aren’t supported 

directly by the hardware 
•  Virtual machines 

–  There’s one real machine 
•  Virtual memory 

–  There’s one set of physical memory 
–  And it often isn’t as big as even one process thinks it is 

•  Typical file abstractions 
•  Many others 
•  The OS works hard to make up the differences 



Lecture 1 
Page 51 

CS 111 
Summer 2015  

Processor Issues 

•  Execution mode 
•  Handling exceptions 



Lecture 1 
Page 52 

CS 111 
Summer 2015  

Execution Modes 

•  Modern CPUs can usually execute in two 
different modes: 
– User mode 
– Supervisor mode 

•  User mode is to run ordinary programs 
•  Supervisor mode is for OS use 

– To perform overall control 
– To perform unsafe operations on the behalf of 

processes 



Lecture 1 
Page 53 

CS 111 
Summer 2015  

User Mode 

•  Allows use of all the “normal” instructions 
– Load and store general registers from/to memory 
– Arithmetic, logical, test, compare, data copying 
– Branches and subroutine calls 

•  Able to address some subset of memory 
– Controlled by a Memory Management Unit 

•  Not able to perform privileged operations 
–  I/O operations, update the MMU 
– Enable interrupts, enter supervisor mode 



Lecture 1 
Page 54 

CS 111 
Summer 2015  

Supervisor Mode 
•  Allows execution of privileged instructions 

– To perform I/O operations 
–  Interrupt enable/disable/return, load PC 
–  Instructions to change processor mode 

•  Can access privileged address spaces 
– Data structures inside the OS 
– Other process's address spaces 
– Can change and create address spaces 

•  May have alternate registers, alternate stack 



Lecture 1 
Page 55 

CS 111 
Summer 2015  

Controlling the Processor Mode 
•  Typically controlled by the Processor Status 

Register (AKA PS) 
•  PS also contains condition codes 

– Set by arithmetic/logical operations (0,+,-,ovflo) 
– Tested by conditional branch instructions 

•  Describes which interrupts are enabled 
•  May describe which address space to use 
•  May control other processor features/options 

– Word length, endian-ness, instruction set, ... 



Lecture 1 
Page 56 

CS 111 
Summer 2015  

How Do Modes Get Set? 
•  The computer boots up in supervisor mode 

– Used by bootstrap and OS to initialize the system 

•  Applications run in user mode 
– OS changes to user mode before running user code 

•  User programs cannot do I/O, restricted address space 

– They can’t arbitrarily enter supervisor mode 
•  Because instructions to change the mode are privileged 

•  Re-entering supervisor mode is strictly 
controlled 
– Only in response to traps and interrupts 



Lecture 1 
Page 57 

CS 111 
Summer 2015  

So When Do We Go Back To 
Supervisor Mode? 

•  In several circumstances 
•  When a program needs OS services 

–  Invokes system call that causes a trap 
– Which returns system to supervisor mode 

•  When an error occurs 
– Which requires OS to clean up 

•  When an interrupt occurs 
– Clock interrupts (often set by OS itself) 
– Device interrupts 



Lecture 1 
Page 58 

CS 111 
Summer 2015  

Asynchronous Exceptions  
and Handlers 

•  Most program errors can be handled “in-line” 
–  Overflows may not be errors, noted in condition codes 
–  If concerned, program can test for such conditions 

•  Some errors must interrupt program execution 
–  Unable to execute last instruction (e.g., illegal op) 
–  Last instruction produced non-results (e.g., divide by zero) 
–  Problem unrelated to program (e.g., power failure) 

•  Most computers use traps to inform OS of problems 
–  Define a well specified list of all possible exceptions 
–  Provide means for OS to associate handler with each 



Lecture 1 
Page 59 

CS 111 
Summer 2015  

Control of Supervisor  
Mode Transitions 

•  All user-to-supervisor changes via traps/interrupts 
–  These happen at unpredictable times 

•  There is a designated handler for each trap/interrupt 
–  Its address is stored in a trap/interrupt vector table managed 

by the OS 

•  Ordinary programs can't access these vectors 
•  The OS controls all supervisor mode transitions 

–  By carefully controlling all of the trap/interrupt “gateways” 

•  Traps/interrupts can happen while in supervisor mode 
–  Their handling is similar, but a little easier 



Lecture 1 
Page 60 

CS 111 
Summer 2015  

Software Trap Handling 

1st level trap handler 
(saves registers and 

selects 2nd level handler) 

2nd level handler 
(actually deals 

with the problem) 

return to 
user mode 

Application Program 

user mode 
supervisor mode PS/PC 

TRAP vector table 

PS/PC 
PS/PC 
PS/PC 

instr ;  instr ;  instr ;  instr ;  instr ;  instr ;  



Lecture 1 
Page 61 

CS 111 
Summer 2015  

Dealing With the Cause of a Trap 
•  Some exceptions are handled by the OS 

– For example, page faults, alignment, floating point 
emulation 

– OS simulates expected behavior and returns 

•  Some exceptions may be fatal to running task 
– E.g. zero divide, illegal instruction, invalid address 
– OS reflects the failure back to the running process 

•  Some exceptions may be fatal to the system 
– E.g. power failure, cache parity, stack violation 
– OS cleanly shuts down the affected hardware 



Lecture 1 
Page 62 

CS 111 
Summer 2015  

Returning  To User Mode 
•  Return is opposite of interrupt/trap entry 

– 2nd level handler returns to 1st level handler 
– 1st level handler restores all registers from stack 
– Use privileged return instruction to restore PC/PS 
– Resume user-mode execution after trapped 

instruction 
•  Saved registers can be changed before return 

– To set entry point for newly loaded programs 
– To deliver signals to user-mode processes 
– To set return codes from system calls 



Lecture 1 
Page 63 

CS 111 
Summer 2015  

Stacking and Unstacking a Trap 

stack frames 
 from 

application 
computation 

User-mode Stack Supervisor-mode Stack 

direction 
of growth 

user mode 
PC & PS 

saved 
user mode 
registers 

parameters 
to 2nd level 
trap handler 

return PC 

2nd level 
trap handler 
stack frame 

resumed 
computation 

TRAP! 


