4 N

Introduction
CS 111
Operating System Principles
Peter Rether

eeeeeee

/ [Introduction to the Course] \

* Purpose of course and relationships to other
Courses

* Why study operating systems?
* Major themes & lessons 1n this course

\ /

CS 111 Lecture
Summer 2015 Page 2

/ What Will CS 111 Do? \

* Build on concepts from other courses

— Data structures, programming languages, assembly
language programming, network protocols, computer
architectures, ...

* Prepare you for advanced courses
— Data bases and distributed computing
— Security, fault-tolerance, high availability
— Computer system modeling, queueing theory

* Provide you with foundation concepts

— Processes, threads, virtual address space, files

\ — Capabilities, synchronization, leases, deadlock /
CS 111 Lecture 1

Summer 2015 Page 3

——

Why Study Operating Systems?

\ /

* Few of you will actually build OSs

———— —

* But many of you will:
— Set up, configure, manage computer systems
— Write programs that exploit OS features
— Work with complex, distributed, parallel software

— Work with abstracted services and resources

* Many hard problems have been solved in OS context

— Synchronization, security, integrity, protocols, distributed
computing, dynamic resource management, ...

— In this class, we study these problems and their solutions
\ — These approaches can be applied to other areas /

CS 111 Lecture 1
Summer 2015 Page 4

/" Why Are Operating Systems ™\
Interesting?

* They are extremely complex

— But try to appear simple enough for everyone to use
* They are very demanding

— They require vision, imagination, and insight

— They must have elegance and generality

— They demand meticulous attention to detail

* They are held to very high standards

— Performance, correctness, robustness,

— Scalability, extensibility, reusability
\e They are the base we all work from /

CS 111 Lecture 1
Summer 2015 Page 5

/ Recurring OS Themes

* View services as objects and operations

— Behind every object there 1s a data structure

* Separate policy from mechanism
— Policy determines what can/should be done
— Mechanism implements basic operations to do it
— Mechanisms shouldn’t dictate or limit policies
— Must be able to change policies without changing
mechanisms

* Parallelism and asynchrony are powerful and
necessary

— But dangerous when used carelessly
CS 111

Summer 2015

/

Lecture 1
Page 6

/ More Recurring Themes

* An interface specification 1s a contract

— Specifies responsibilities of producers &
consumers

— Basis for product/release interoperability

* Interface vs. implementation
— An 1implementation 1s not a specification
— Many compliant implementations are possible
— Inappropriate dependencies cause problems

* Modularity and functional encapsulation

\

-, — Complexity hiding and appropriate abstraction

Summer 2015

* Many possible definitions
e One 1s:
— It 1s low level software . . .

— That provides better abstractions of hardware
below it

— To allow easy, safe, fair use and sharing of those
resources

\

CS 111
Summer 2015

/ What Does an OS Do? \

* It manages hardware for programs
— Allocates hardware and manages its use
— Enforces controlled sharing (and privacy)
— Oversees execution and handles problems

* It abstracts the hardware
— Makes it easier to use and improves s/w portability

— Optimizes performance

* It provides new abstractions for applications
\ — Powertul features beyond the bare hardware Lecmrz

CS 111
Summer 2015 Page 9

* A set of management & abstraction services
— Invisible, they happen behind the scenes

* Applications see objects and their services
— CPU supports data-types and operations

* Bytes, shorts, longs, floats, pointers, ...

* Add, subtract, copy, compare, indirection, ...

— So does an operating system, but at a higher level
* Files, processes, threads, devices, ports, ...
* Create, destroy, read, write, signal, ...

* An OS extends a computer

\ — Creating a much richer virtual computing platform

s 111 * Supporting richer objects, more powerful operations

/ What Does An OS Look Like? \

Summer 2015

/

Lecture 1
Page 10

/ Where Does the OS Fit In? \

Applications Software

(e.g. word processor, compiler, VOIP program, ...)

Application Binary Interface B EOTR—

System Services/Libraries

(e.g. string, random #s, encryption, graphics ...)

Privilegedlinstruction set l Standard instruction pet

Hardware (arithmetic, logical, copy, test, flow-control operations, ...)

CS 111 Lecture 1
Summer 2015 Page 11

/ What’s Special About the OS? \

* [t 1s always in control of the hardware
— Automatically loaded when the machine boots
— First software to have access to hardware
— Continues running while apps come & go

It alone has complete access to hardware

— Privileged instruction set, all of memory & 1/0

It mediates applications’ access to hardware

— Block, permit, or modify application requests

It 1s trusted

— To store and manage critical data

— To always act in good faith

\° If the OS crashes, 1t takes everything else with it /

— So 1t better not crash . . .
CS 111 Lecture 1

Summer 2015 Page 12

/ What Functionality Is In the OS’.N

* As much as necessary, as little as possible

— OS code 1s very expensive to develop and maintain

* Functionality must be 1in the OS 1f 1t ...
— Requires the use of privileged instructions
— Requires the manipulation of OS data structures

— Must maintain security, trust, or resource integrity

* Functions should be 1n libraries if they ...
— Are a service commonly needed by applications

— Do not actually have to be implemented inside OS

\° But there 1s also the performance excuse)

1, — Some things may be faster if done in the OS Lecture |
Summer 2015 Page 13

/ Where To Offer a Service? \

\

CS 111

Hardware, OS, library or application?

Increasing requirements for stability as you
move through these options

Hardware services rarely change
OS services can change, but 1t’s a big deal
Libraries a bit more dynamic

Applications can change services much more
readily

Summer 2015

Lecture 1
Page 14

/Another Reason For This Choice\

e Who uses 1t?

* Things literally everyone uses belong lower 1n
the hierarchy

— Particularly if the same service needs to work the
same for everyone

* Things used by fewer/more specialized parties
belong higher

— Particularly if each party requires a substantially
\ different version of the service Y,

CS 111 Lecture 1
Summer 2015 Page 15

/ The OS and Speed \

* One reason operating systems get big 1s based on
speed
* It’s faster to offer a service in the OS than outside it

— If it involves processes communicating, working at app
level requires scheduling and swapping them

— The OS has direct access to many pieces of state and
system services

— The OS can make direct use of privileged instructions

* Thus, there’s a push to move services with strong
\ performance requirements down to the OS

CS 111
Summer 2015

/

Lecture 1
Page 16

* One major function of an OS 1s to offer
abstract versions of resources

— As opposed to actual physical resources
* Essentially, the OS implements the abstract
resources using the physical resources

— E.g., processes (an abstraction) are implemented
using the CPU and RAM (physical resources)

— And files (an abstraction) are implemented using
\ disks (a physical resource)

CS 111
Summer 2015

Lecture 1
Page 17

/ Why Abstract Resources? \

* The abstractions are typically simpler and better
suited for programmers and users
— Easier to use than the original resources
* E.g., don’t need to worry about keeping track of disk interrupts

— Compartmentalize/encapsulate complexity

* E.g., need not be concerned about what other executing code is
doing and how to stay out of its way

— Eliminate behavior that is irrelevant to user
* E.g., hide the sectors and tracks of the disk

— Create more convenient behavior

\ * E.g., make it look like you have the network interface entirely for /

your own use
CS 111 Lecture 1

Summer 2015 Page 18

/Common Types of OS Resources\

* Serially reusable resources
* Partitionable resources

 Sharable resources

\ /

CS 111 Lecture 1
Summer 2015 Page 19

/ Serially Reusable Resources \

* Used by multiple clients, but only one at a time
— Time multiplexing

* Require access control to ensure exclusive use

* Require graceful transitions from one user to
the next

— A switch that totally hides the fact that the resource
used to belong to someone else

* Examples: printers, bathroom stalls

\ /

CS 111 Lecture 1
Summer 2015 Page 20

/ Partitionable Resources \

* Divided into disjoint pieces for multiple clients
— Spatial multiplexing

e Needs access control to ensure:

— Containment: you cannot access resources outside
of your partition

— Privacy: nobody else can access resources in your
partition

* Examples: disk space, dormitory rooms

\ /

CS 111 Lecture 1
Summer 2015 Page 21

/ Shareable Resources \

» Usable by multiple concurrent clients

— Clients do not have to “wait” for access to resource

— Clients don’t “own” a particular subset of resource

* May nvolve (effectively) limitless resources
— Air 1n a room, shared by occupants
— Copy of the operating system, shared by processes

* May involve under-the-covers multiplexing

— Cell-phone channel (time and frequency
multiplexed)

\ — Shared network interface (time multiplexed) Lecture |

CS 111
Summer 2015 Page 22

" {General OS Trends|)\

They have grown larger and more sophisticated

Their role has fundamentally changed
— From shepherding the use of the hardware
— To shielding the applications from the hardware

— To providing powerful application computing platform

They still sit between applications and hardware

Best understood through services they provide

— Capabilities they add

— Applications they enable

\ — Problems they eliminate /

CS 111 Lecture 1
Summer 2015 Page 23

/ Another Important OS Trend \

* Convergence
— There are a handful of widely used OSs

— New ones come along very rarely

* OSs 1n the same family (e.g., Windows or
Linux) are used for vastly different purposes

— Making things challenging for the OS designer
* Most OSs are based on pretty old models

— Linux comes from Unix (1970s vintage)
\ — Windows from the early 1980s /

CS 111 Lecture 1
Summer 2015 Page 24

/ A Resulting OS Challenge \

* We are basing the OS we use today on an
architecture designed 30-40 years ago

* We can make some changes 1n the architecture

* But not too many
— Due to compatibility

— And fundamental characteristics of the architecture

* Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

CS 111 Lecture 1
Summer 2015 Page 25

/ Important OS Properties \

* For real operating systems built and used by
real people

* Differs depending on who you are talking
about

— Users
— Service providers

— Application developers

— OS developers

\ /

CS 111 Lecture 1
Summer 2015 Page 26

a For the End Users, : N
* Reliability
* Performance

* Upwards compatibility in releases

* Support for differing hardware
— Currently available platforms
— What’s available 1n the future

* Availability of key applications

\° Security)

CS 111 Lecture 1
Summer 2015 Page 27

4 Reliability N

* Your OS really should never crash
— Since 1t takes everything else down with it

* But also need dependability 1n a different sense

— The OS must be depended on to behave as it’s
specified

— Nobody wants surprises from their operating
system

— Since the OS controls everything, unexpected
\ behavior could be arbitrarily bad /

CS 111 Lecture 1
Summer 2015 Page 28

/ Performance \

* A loose goal
* The OS must perform well in critical situations

* But optimizing the performance of all OS
operations not always critical

* Nothing can take too long

* But if something 1s “fast enough,” adding
complexity to make 1t faster not worthwhile

\ /

CS 111 Lecture 1
Summer 2015 Page 29

/ Upward Compatibility \

* People want new releases of an OS
— New features, bug fixes, enhancements

— Security patches to protect from malware

* People also fear new releases of an OS

— OS changes can break old applications

* What makes the compatibility 1ssue
manageable?
— Stable interfaces

\ /

CS 111 Lecture 1
Summer 2015 Page 30

-

\

CS 111
Summer 2015

Stable Interfaces

* Designers should start with well specified
Application Interfaces

— Must keep them stable from release to release

* Application developers should only use
committed interfaces

— Don’t use undocumented features or erroneous

side eftects

\

Lecture 1

Page 31

/ APIs \

* Application Program Interfaces

— A source level interface, specifying:

* Include files, data types, constants

* Macros, routines and their parameters

* A basis for software portability
— Recompile program for the desired architecture
— Linkage edit with OS-specific libraries

— Resulting binary runs on that architecture and OS

* An API compliant program will compile & run
\ on any compliant system /

CS 111 Lecture 1
Summer 2015 Page 32

/ ABIs \

* Application Binary Interfaces
— A binary interface, specifying
* Dynamically loadable libraries (DLLs)
* Data formats, calling sequences, linkage conventions

— The binding of an API to a hardware architecture

* A basis for binary compatibility

— One binary serves all customers for that hardware

* E.g. all x86 Linux/BSD/MacOS/Solaris/...
* May even run on Windows platforms

* An ABI compliant program will run

\ /

.\ (unmodified) on any compliant system e

Summer 2015 Page 33

For the Service Providers, \
+ Reliability
* Performance
* Upwards compatibility in releases
 Platform support (wide range of platforms)
* Manageability
* Total cost of ownership
* Support (updates and bug fixes)

 Flexibility (1n configurations and applications)
\ Security /

CS 111 Lecture 1
Summer 2015 Page 34

———

. Rehablhty

* Performance

* Upwards compatibility in releases

* Standards conformance

* Functionality (current and roadmap)
* Middleware and tools

 Documentation

* Support (how to ...)

\ /

CS 111 Lecture 1
Summer 2015 Page 35

S e e o e e e M e e M M M e R M M e REm M M e MEm M M e MEm M M e M M e e

* Reliability

* Performance

* Maintainability

* Low cost of development

— Original and ongoing

\ /

CS 111 Lecture 1
Summer 2015 Page 36

4 Maintainability N

* Operating systems have very long lives
— Solaris, the “new kid on the block,” came out in 1993

* Basic requirements will change many times
* Support costs will dwart initial development
* This makes maintainability critical

* Aspects of maintainability:
— Understandability
— Modularity/modifiability

\ ' Testability /

CS 111 Lecture 1
Summer 2015 Page 37

/ " Critical OS Abstractions | \

* One of the main roles of an operating system 1s
to provide abstract services

— Services that are easier for programs and users to
work with

* What are the important abstractions an OS
provides?

\ /

CS 111 Lecture 1
Summer 2015 Page 38

———

__

* Many resources used by programs and people
relate to data storage
— Variables
— Chunks of allocated memory
— Files
— Database records
— Messages to be sent and received

* These all have some similar properties

\ /

CS 111 Lecture 1
Summer 2015 Page 39

/ The Basic Memory Operations \

* Regardless of level or type, memory
abstractions support a couple of operations
— WRITE(name, value)

* Put a value into a memory location specified by name

— value <- READ(name)

* Get a value out of a memory location specified by name
* Seems pretty stmple

* But going from a nice abstraction to a physical
\ Implementation can be complex)

CS 111 Lecture 1
Summer 2015 Page 40

/An Example Memory Abstraction\
* A typical file

* We can read or write the file
* We can read or write arbitrary amounts of data

* If we write the file, we expect our next read to
reflect the results of the write

— Coherence

* [fthere are several reads/writes to the file, we
expect each to occur in some order

\ — With respect to the others /

CS 111 Lecture 1
Summer 2015 Page 41

__

* An interpreter 1s something that performs
commands

* Basically, the element of a computer (abstract
or physical) that gets things done

* At the physical level, we have a processor
* That level 1s not easy to use

* The OS provides us with higher level
\ interpreter abstractions

CS 111 Lecture 1
Summer 2015 Page 42

/ Basic Interpreter Components \

 An instruction reference

— Tells the iterpreter which instruction to do next
* A repertoire

— The set of things the interpreter can do
* An environment reference

— Describes the current state on which the next
instruction should be performed

* Interrupts

\ — Situations 1in which the instruction reference /
s pointer 1s overriden Lecture |

Summer 2015 Page 43

Kn Example Interpreter Abstractioﬁ

« ACPU

* It has a program counter register indicating
where the next instruction can be found

— An 1nstruction reference

* [t supports a set of instructions

— Its repertoire

* It has contents 1n registers and RAM

— [ts environment

\ /

CS 111 Lecture 1
Summer 2015 Page 44

/(T Abstractions of 7\

. Communications Links

— . W S S W EEE MEE WEE RSN RSN B MmN MmN MmN MEE RSN RSN RS G N MEE MEE MEE MEE RSN RS R e e Mme e R e e e o e

* A communication link allows one interpreter to
talk to another

— On the same or different machines
* At the physical level, wires and cables

At more abstract levels, networks and
interprocess communication mechanisms

* Some similarities to memory abstractions

— But also differences

CS 111 Lecture 1
Summer 2015 Page 45

/ Basic Communication Link \

Operations
* SEND(link name, outgoing message buffer)

— Send some information contained in the buffer on
the named link

 RECEIVE(link name,
Incoming message buffer)

— Read some information off the named link and put
it into the buffer

* Like WRITE and READ, in some respects

\ /

CS 111 Lecture 1
Summer 2015 Page 46

/~ An Example Communications

Link Abstraction
* A Unix-style socket

« SEND interface:

— send(int sockfd, const void *buf, size t len, int
flags)

— The sockfd is the link name

— The buf is the outgoing message buffer

e RECEIVE interface:

— recv(int socktd, void *buf, size t len, int flags)

\ — Same parameters as for send /

CS 111 Lecture 1
Summer 2015 Page 47

——

— Users or other “active’ entities
 Virtual machines
— Collections of other abstractions

 Protection environments

— Security related, usually

e Names

* Not a complete list

CS 111

\e Not everyone would agree on what’s distinct |

!
Q
=3
o .
o
e
> !
a !
=
2> |
onl
2!
=
—
o |
O !
. |
o |
>
SO

/

ecture 1

Summer 2015 Page 48

/ "Hardware and the
 Operating System |

e OS abstractions are built on the hard
the bottom

1s to hide details of the hardware
— Messy and difficult details

\e A major element of OS design concerns HW /

CS 111

ware, at

— Everything ultimately relies on hardware

* One of the major roles of the operating system

— Specifics of particular pieces of hardware
— Details that prevent safe operation of the computer

\

Lecture 1

Summer 2015

Page 49

/OS Abstractions and the Hardware\

* Many important OS abstractions aren’t supported
directly by the hardware

Virtual machines

— There’s one real machine

Virtual memory
— There’s one set of physical memory
— And 1t often 1sn’t as big as even one process thinks it 1s

* Typical file abstractions
* Many others
\° The OS works hard to make up the differences)

CS 111 Lecture 1
Summer 2015 Page 50

/ 'Processor Issues |

e Execution mode

* Handling exce;

\

CS 111

ptions

\

Lecture 1

Summer 2015

Page 51

/" Execution Modes:

* Modern CPUs can usually execute in two
different modes:

— User mode
— Supervisor mode

* User mode 1s to run ordinary programs

* Supervisor mode 1s for OS use

— To perform overall control

— To perform unsafe operations on the behalf of
\ processes

CS 111

Summer 2015

Lecture 1
Page 52

/ User Mode \

* Allows use of all the “normal” instructions
— Load and store general registers from/to memory
— Arithmetic, logical, test, compare, data copying
— Branches and subroutine calls

* Able to address some subset of memory
— Controlled by a Memory Management Unit

* Not able to perform privileged operations
— I/O operations, update the MMU
\ — Enable interrupts, enter supervisor mode /

CS 111 Lecture 1
Summer 2015 Page 53

/ Supervisor Mode \

* Allows execution of privileged instructions
— To perform I/O operations
— Interrupt enable/disable/return, load PC
— Instructions to change processor mode

* Can access privileged address spaces
— Data structures inside the OS

— Other process's address spaces
— Can change and create address spaces

\° May have alternate registers, alternate stack /

CS 111 Lecture 1
Summer 2015 Page 54

/ Controlling the Processor Mode\

* Typically controlled by the Processor Status
Register (AKA PS)

* PS also contains condition codes
— Set by arithmetic/logical operations (0,+,-,0v{lo)
— Tested by conditional branch instructions

* Describes which interrupts are enabled
* May describe which address space to use

* May control other processor features/options

\ — Word length, endian-ness, instruction set, ...)

CS 111 Lecture 1
Summer 2015 Page 55

/ How Do Modes Get Set? \

* The computer boots up in supervisor mode
— Used by bootstrap and OS to initialize the system

* Applications run in user mode

— OS changes to user mode before running user code
* User programs cannot do I/O, restricted address space

— They can’t arbitrarily enter supervisor mode
* Because instructions to change the mode are privileged
* Re-entering supervisor mode i1s strictly
controlled

/

\ — Only 1n response to traps and interrupts Lecture |

CS 111
Summer 2015 Page 56

/ So When Do We Go Back To \

Supervisor Mode?
e In several circumstances

 When a program needs OS services
— Invokes system call that causes a trap

— Which returns system to supervisor mode

* When an error occurs
— Which requires OS to clean up

* When an interrupt occurs
— Clock interrupts (often set by OS itself)
\ — Device interrupts Lecture 1

CS 111
Summer 2015 Page 57

/ Asynchronous Exceptions \
and Handlers

* Most program errors can be handled “in-line”
— Overflows may not be errors, noted in condition codes
— If concerned, program can test for such conditions

* Some errors must interrupt program execution
— Unable to execute last instruction (e.g., illegal op)

— Last instruction produced non-results (e.g., divide by zero)
— Problem unrelated to program (e.g., power failure)

* Most computers use traps to inform OS of problems

— Define a well specified list of all possible exceptions

\ — Provide means for OS to associate handler with each /

CS 111 Lecture 1
Summer 2015 Page 58

/ Control of Supervisor \
Mode Transitions

* All user-to-supervisor changes via traps/interrupts
— These happen at unpredictable times

* There 1s a designated handler for each trap/interrupt

— Its address 1s stored 1n a trap/interrupt vector table managed
by the OS

* Ordinary programs can't access these vectors

The OS controls all supervisor mode transitions
— By carefully controlling all of the trap/interrupt “gateways”

* Traps/interrupts can happen while in supervisor mode
\ — Their handling 1s similar, but a little easier /

CS 111 Lecture 1
Summer 2015 Page 59

/ Software Trap Handling \

Application Program

instr; instr; instr; instr; instr; instr;

f user mode

supervisor mode

PS/PC <&——

y

15t level trap handler
(saves registers and
selects 2™ level handler)

TRAP vector table return to
user mode

\ /

CS 111 Lecture 1
Summer 2015 Page 60

/Dealing With the Cause of a Trap\

* Some exceptions are handled by the OS

— For example, page faults, alignment, floating point
emulation

— OS simulates expected behavior and returns

* Some exceptions may be fatal to running task
— E.g. zero divide, illegal instruction, invalid address
— OS reflects the failure back to the running process

* Some exceptions may be fatal to the system

— E.g. power failure, cache parity, stack violation

/

\ — OS cleanly shuts down the affected hardware Lecture 1

CS 111
Summer 2015 Page 61

/ Returning To User Mode \

* Return 1s opposite of interrupt/trap entry
— 2nd level handler returns to 1st level handler

— Ist level handler restores all registers from stack

— Use privileged return instruction to restore PC/PS

— Resume user-mode execution after trapped
instruction

* Saved registers can be changed before return

— To set entry point for newly loaded programs

\ — To deliver signals to user-mode processes)

<1, — To set return codes from system calls Lecture 1

Summer 2015 Page 62

/ Stacking and Unstacking a Trap\

User-mode Stack

\

CS 111

TRAP!

Y

direction
of growth

Supervisor-mode Stack

user mode
PC & PS

saved
user mode
registers

parameters
to 2 level
trap handler

return PC

Summer 2015

Lecture 1
Page 63

