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Abstract 

In this paper, we analyzed dynamics of malaria disease by a compartment model involving ordinary differential 

equations for the human and mosquito populations. An equivalent system is obtained, which has two 

equilibriums: a disease-free equilibrium and an endemic equilibrium. The stability of these two equilibriums is 

controlled by the basic reproduction number    . In this model the disease-free equilibrium state is stable if 

     and if      , the endemic equilibrium stable. The analytical predictions are conformed by numerical 

simulation and graphical results. 
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1. Introduction 

Mathematical models have been widely used in various areas of infectious disease epidemiology. 

Mathematically modelling of malaria disease transmission in human and vector populations has been done since 

the beginning of last century (Aron, 1988; Bailey, 1982; Ross, 1911). Epidemiology modelling can contribute 

the design and analysis of epidemiological survey, suggest crucial data that should be collected, identify trends, 

make general forecasts   and estimate the uncertainty in forecasts (Anderson et al., 1991; Hale, 1969; Hethcote, 

2000; Hethcote, 1976). 

Malaria can be defined as “a mosquito-borne infectious disease of humans and many types of animals and birds”. 

Malaria is caused by a single-celled parasite from the genus Plasmodium. The general symptoms of Malaria 

typically include fever, fatigue, muscular pains and occasionally nausea, vomiting and diarrhea. In later stages it 

can cause yellow skin, seizures, coma or death. The disease is transmitted by the biting of mosquitoes, and the 

symptoms first appear one and half week to two weeks after the infectious mosquito bite. If not properly treated, 

malaria attacks can recur at regular time periods (in every 2 days or every 3 days). In those who have recently 

survived an infection, re-infection typically causes milder symptoms. This partial resistance disappears over 

months to years if the person has no continuing exposure to malaria. In other areas, where the infection rate is 

low, people do not develop immunity because they rarely infected by this disease. This makes them more 

susceptible to the ravages of an epidemic. During the last decades various mathematical models have been used 

for infectious diseases especially for malaria (Ngwa et al., 2000; Olumese, 2005; Sachs, 2002; Tumwiine et al., 

2005). In case of malaria, mathematical models were used in comparing planning, implementing, evaluating and 

optimizing various detection, therapy and control programs.  

In this paper, we are developing mathematical models to better understand the transmission and spread of 

malaria disease. We modified the model of Tumwiine, Mugisha and Luboobi (2007) by considering a fraction of 

transmitted part is shifted to infectious and remaining part gets recovered without becoming infectious. The aim 

of this study is to investigate the effects of vaccination in human population and vector population.  

2. Model Formulation 

Let  𝑁𝐻 𝑎𝑛𝑑 𝑁𝑉 denote the human and mosquito population with the total population size at time t. We assume 

that the host and vector population has constant size with birth and death rate equal to   𝜇𝐻 𝑎𝑛𝑑 𝜇𝑉. The human 

population of size 𝑁𝐻 is formed of Susceptible   𝑆𝐻  , Infective 𝐼𝐻  and Recovered  𝐻 and vector population 

divided into 𝑆𝑉  and  𝐼𝑉 . 

  

http://en.wikipedia.org/wiki/Mosquito-borne_disease
http://en.wikipedia.org/wiki/Jaundice
http://en.wikipedia.org/wiki/Epileptic_seizure
http://en.wikipedia.org/wiki/Coma
http://en.wikipedia.org/wiki/Death
http://en.wikipedia.org/wiki/Immunity_%28medical%29
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Let a portion ρ, 0    1, of newborn host be vaccinated. Assume that the vaccine is not perfect and let 

effectiveness of the vaccine is s, then 𝜇𝐻(    )𝑁𝐻 newborn remains susceptible, and 𝜇𝐻  𝑁𝐻  directly being 

removed to  𝐻.The governing equations are: 

Human population: 

𝑑𝑆𝐻
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 𝜇𝐻(    )𝑁𝐻  
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Here the parameters in the model stand for 
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Table 2.1 Description of variable of the model 

Variables Interpretation 

𝑎 The average infection rate on man by a single mosquito. 

   The proportion of bites on man that produce an infection. 

𝑐 The probability that a mosquito becomes infectious. 

  The per capita rate of loss of immunity in human hosts. 

  The rate at which human hosts acquire immunity. 

  The rate of recovery of human hosts from the disease. 

Using 𝑆𝐻  𝐼𝐻   𝐻  𝑁𝐻   and  𝑆𝑉  𝐼𝑉  𝑁𝑉 , the system (2.1) and (2.2) become 

𝑑𝑆𝐻
𝑑 

 𝜇𝐻(    )𝑁𝐻  
𝑎 𝑆𝐻𝐼𝑉
𝑁𝐻

  𝐼𝐻   (𝑁𝐻  𝑆𝐻  𝐼𝐻)  𝜇𝐻𝑆𝐻 

𝑑 𝐻

𝑑𝑡
 
𝑎 𝑆𝐻𝐼𝑉

𝑁𝐻
  𝐼𝐻   𝐼𝐻  𝜇𝐻𝐼𝐻                                    (2.3) 

𝑎𝑐𝐼𝐻(𝑁𝑉 𝐼𝑉)

𝑁𝐻
 𝜇𝑉𝐼𝑉W 

Writing the system (2.3) in population proportion 

𝑆  
𝑆𝐻

𝑁𝐻
          𝐼  

𝐼𝐻

𝑁𝐻
     𝑎𝑛𝑑   𝐼  

𝐼𝑉

𝑁𝑉
      We write 

𝑑𝑆 
𝑑 

 𝜇𝐻(    )  𝑎  𝑆 𝐼   𝐼     (𝑆  𝐼 )  𝜇𝐻𝑆  

𝑑𝐼 

𝑑𝑡
 𝑎  𝑆 𝐼   𝐼   𝐼  𝜇𝐻𝐼                           (2.4) 

𝑑𝐼 
𝑑 
 𝑎𝑐𝐼 (  𝐼 )  𝜇𝑉𝐼  

Where   
𝑁𝑉

𝑁𝐻
   is the ratio of host and vector population. 

Further we rescale t by ac and let   𝑆     𝐼  𝑎𝑛𝑑   𝐼   , 

𝑑 

𝑑 
 𝜇(   )                 

𝑑 

𝑑 
                                                                                   (   ) 

𝑑 

𝑑 
  (   )      

Where 

𝜇  
𝜇𝐻
𝑎𝑐
            

  

𝑐
     

 

𝑎𝑐
     

 

𝑎𝑐
     

𝜇𝐻   

𝑎𝑐
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𝑎𝑐
     

𝜇𝑉
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3. Steady State and Equilibrium Points 

The system (2.5) has a disease-free equilibrium point    .
 (   )  

 
      /  and an endemic equilibrium Point  

  ( 𝑒   𝑒   𝑒) , where 

 𝑒  
(   ),𝜇(   )    (   ) -

 (   )   (   )
 
(  𝜇𝐻   ),𝑎𝑐*𝜇𝐻(    )   +  (𝜇𝐻     )𝜇 -

𝑎𝑐,𝑎  (𝜇𝐻     )  (𝜇𝐻   )(  𝜇𝐻   )-
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 𝑒  
 ,𝜇(   )   -   (   ) -

 (   )   (   )
 
𝑎  𝑐 ,𝜇𝐻(    )   -  (𝜇𝐻   )(  𝜇𝐻   )𝜇 
𝑎𝑐,𝑎  (𝜇𝐻     )  (𝜇𝐻   )(  𝜇𝐻   )-

 

 𝑒  
 ,𝜇(   )   -   (   ) -

 ,𝜇(   )    (   ) -
 
𝑎  𝑐 ,𝜇𝐻(    )   -  (𝜇𝐻   )(  𝜇𝐻   )𝜇 
𝑎  ,𝑎𝑐(𝜇𝐻(    )   )  (  𝜇𝐻   )𝜇 -

 

This has been obtained by setting the time derivatives of system (2.5) equal to zero. Here the basic reproduction 

number    is defined by 

   
𝑎  𝑐 ,𝜇𝐻(    )   -

(𝜇𝐻   )(  𝜇𝐻   )𝜇 
 

And the endemic equilibrium   ( 𝑒   𝑒   𝑒) is stable when  

 ,𝜇(   )   -   (   ) -    

4. Asymptotic Behavior of the Model 

Theorem 4.1:  If        , then the disease-free equilibrium    is locally stable and if      ,      is 

stable and if     , the stable endemic equilibrium    will appears. 

Proof: 

To discuss the stability of the model the governing dynamical system is  

    𝜇(   )                                   (4.1) 

                               (4.2) 

     (   )                             (4.3) 

The Variation matrix of the system (4.1) to (4.2) is given by 

  (

           
        
        

) 

For disease-free equilibrium point   .
 (   )  

 
      / the variation matrix will be 

 (  )  

(

 
 
      

 ,𝜇(   )   -

 

     
 ,𝜇(   )   -

 
    )

 
 

 

 

The characteristic equation of it will be 

(   ) [   (     )  (   )  
 ,𝜇(   )   -

 
]    

By above equation at Eigen values, one can easily seen that disease-free equilibrium    is locally stable if  

(   )  
 ,𝜇(   )   -

 
   

i.e.      

Now we shall discuss about an endemic equilibrium and study its stability. For the endemic equilibrium  

   ( 𝑒   𝑒   𝑒)  , the variation matrix will be  

 (  )  (

     𝑒       𝑒
  𝑒       𝑒
    𝑒   𝑒   

) 
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 (  )  

[
 
 
 
 
 
  
(   ),𝜇(   )   -         

,𝜇(   )    (   ) -
    

 (   ),𝜇(   )    (   ) -

 (   )   (   )

 ,𝜇(   )   -   (   ) 

,𝜇(   )    (   ) -
    

 (   ),𝜇(   )    (   ) -

 (   )   (   )

 
 (   )   (   ) 

 ,𝜇(   )    (   ) -
 
 ,𝜇(   )    (   ) -

 (   )   (   ) ]
 
 
 
 
 
 

 

Then the characteristic equation will be  

𝑎  
  𝑎  

  𝑎   𝑎    

Where 

𝑎  , (   )   (   )-, 𝜇(   )    (   ) -    

𝑎  ,  (   )   (   )-, (   )*𝜇(   )   +         -

 (   ),𝜇(   )    (   ) -,  (   )   (   )-

  , 𝜇(   )    (   ) -,𝜇(   )    (   ) -    

𝑎   , *𝜇(   )   +   (   ) -,(   )*𝜇(   )    (   ) +

 (   )*  (   )   (   )+-

 ,(   ) (   )  (   )    *𝜇(   )   +    (   )-,(   )*𝜇(   )

  +         - 

𝑎   , *𝜇(   )   +   (   ) -,(   )(   )*𝜇(   )         +

 (   )*𝜇(   )    (   ) +   (   )*  (   )   (   )+- 

5. Numerical Result 

To demonstrate the theoretical results obtained in this paper, we will give some numerical simulations. From 

practical point of view, numerical solutions are very important beside analytical study. In system (2.5),  

Stability of disease-free state 

Let 𝜇                                                           

    𝑎𝑛𝑑 ( ( )  ( )  ( ))  (           ) .Then the calculated disease free equilibrium point and basic 

reproduction number are:   (     )    (          ) and.                 . Fig.1 shows that  ( ) 
goes to its steady state, while  ( ) 𝑎𝑛𝑑  ( ) goes to zero with respect to time. Hence disease dies out.  

 

Stability of endemic state  

We change the value 𝜇                           and all other parameter are as above. Then 

  ( 𝑒   𝑒   𝑒)    (                     ) and                 . Therefore the endemic equilibrium 

   is locally asymptotically stable. Fig.2 shows that ( 𝑒   𝑒   𝑒) goes to their steady state values. Hence the 

disease becomes endemic. 
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5. Conclusion 

In this paper, a mathematical model of malaria disease with vertical transmission analyzed. An equivalent system 

is obtained, which has two equilibriums: a disease-free equilibrium and an endemic equilibrium. The stability of 

these two equilibriums is controlled by the basic reproduction number   . In this model the disease-free 

equilibrium state is stable if      and if     , the endemic equilibrium stable. 
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