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ABSTRACT
Sharing structured data today requires standardizing upon

a single schema, then mapping and cleaning all of the data.
This results in a single queriable mediated data instance.
However, for settings in which structured data is being col-
laboratively authored by a large community, e.g., in the sci-
ences, there is often a lack of consensus about how it should
be represented, what is correct, and which sources are au-
thoritative. Moreover, such data is seldom static: it is fre-
quently updated, cleaned, and annotated. The ORCHESTRA
collaborative data sharing system develops a new architec-
ture and consistency model for such settings, based on the
needs of data sharing in the life sciences. In this paper we
describe the basic architecture and implementation of the
ORCHESTRA system, and summarize some of the open chal-
lenges that arise in this setting.
1 INTRODUCTION

Increasingly, progress in the sciences, medicine,
academia, government, and even business is being fa-
cilitated through sharing large structured data resources.
Examples include curated experimental data, student grades,
census or survey data, customer reports, market projections,
and so on. In general, these data resources are evolving
over time, as they are extended and revised in collaborative
fashion by an entire community. Effective data-centric
collaborations have a number of key properties: (1) they
generally benefit all parties, without imposing undue work or
restrictions on anyone; (2) they include parties with diverse
perspectives, both in terms of how information is modeled or
represented, and what information is believed to be correct;
(3) they may involve differences of authoritativeness among
contributors; (4) they support an evolving understanding of
a dynamic world, and hence include data that changes.

As an example of this type of collaboration in the sci-
ences, consider the field of bioinformatics. Here there are a
plethora of different databases, each focusing on a different
aspect of the field — organisms, genes, proteins, diseases,
etc. — from a unique perspective. Associations exist be-
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tween the different databases’ data (e.g., links between genes
and proteins, or gene homologs between species). Multi-
ple standardization efforts have resulted in large data ware-
houses (e.g., GenBank, SWISS-PROT, InterPro, etc.), each
of which seeks to be the definitive portal for a particular
bioinformatics sub-community. Each such warehouse pro-
vides three services to its community:

1. A conceptual model, in the form of a custom schema
with terminology matched to the community;

2. Access to data, both in the form of raw measurements
and also derived possible associations, e.g., a gene that
appears to be correlated with a disease;

3. Cleaning and curation of data produced locally, as well
as data that has possibly been imported from elsewhere.

Different sub-communities may occasionally disagree about
which data is correct! Yet, some of the databases import data
from one another (typically using custom scripts); and each
warehouse is being constantly updated, with corrections and
new data typically published (in the form of deltas describing
changes) on a weekly, monthly, or on-demand basis.

Currently, there is no principled infrastructure for sup-
porting collaborations along these lines: at best, scientists
use ad hoc collections of scripts to exchange their data.
We observe that their usage model is update-centric and re-
quires support for multiple schemas and multiple data ver-
sions. Tools for managing heterogeneous structured data —
e.g., those developed for data integration and warehousing —
are query-centric, tend to assume a single global schema to
which all data gets mapped, and strive to define a single clean
global data instance. Even recent peer data management sys-
tems [5, 25, 32], while supporting multiple schemas, are not
flexible enough to meet life scientists’ needs for managing
data importation, updates, and inconsistent data. Recent pro-
posals for probabilistic database systems [2, 4, 11, 34] man-
age uncertainty within a single database instance, but do not
help with integration across multiple databases or manage-
ment of consistency and reconciliation of conflicts.

In order to provide collaborating scientists, organizations,
and end users with the tools they need to share and revise
structured data, we have been developing a new architecture
we term collaborative data sharing systems [28] (CDSSs),
and the first implementation of a CDSS in the form of the
ORCHESTRA system. The CDSS provides a principled se-
mantics for exchanging data and updates among autonomous



sites, which extends the data integration approach to encom-
pass scientific data sharing practices and requirements —
in a way that also generalizes to many other settings. The
CDSS models the exchange of data among sites as update
propagation among peers, which is subject to transformation
(schema mapping), filtering (based on policies about source
authority), and local revision or replacement of data.

Each participant or peer in a CDSS controls a local
database instance, encompassing all data it wishes to ma-
nipulate (possibly including data that originated elsewhere).
The participant normally operates in “disconnected” mode
for a period, making local modifications to data stored in a
local DBMS. As edits are made to this database, they are
logged. At the users’ discretion, the update exchange capa-
bility of the CDSS is invoked, which publishes the partic-
ipant’s previously-invisible updates to “the world” at large,
and then translates others’ updates to the participant’s local
schema — also filtering which ones to apply, and reconciling
any conflicts, according to the local administrator’s unique
trust policies, before applying them to the local database.

Declarative schema mappings specify one participant’s
schema-level relationships to other participants, in a com-
positional way resembling the peer data management sys-
tem [25] model1. Schema mappings may be annotated with
trust policies: these specify filter conditions about which data
should be imported to a given peer, as well as precedence lev-
els for reconciling conflicts. Trust policies take into account
the provenance or lineage [4, 6, 7, 9] of data.

EXAMPLE 1. Figure 1 shows a screen shot from the OR-
CHESTRA management interface, featuring a simplified ver-
sion of a bioinformatics collaborative data sharing setting
for the Penn Center for Bioinformatics. GUS, the Ge-
nomics Unified Schema, contains gene expression, protein,
and taxon (organism) information; BioSQL, affiliated with
the BioPerl project, contains very similar concepts; and uBio
establishes synonyms and canonical names for taxa. In-
stances of these databases contain taxon information that is
autonomously maintained but of mutual interest to the oth-
ers. Suppose that BioSQL wants to import data from GUS,
as shown by the arc labeled m1, but the converse is not true.
Similarly, uBio wants to import data from GUS, along arc m2.
Additionally, BioSQL and uBio agree to mutually share some
of their data: e.g., uBio imports taxon names from BioSQL
(via m3) and BioSQL uses mapping m4 to add entries for
synonyms to any organism names it has in its database. Fi-
nally, each participant may have a certain trust policy about
what data it wishes to incorporate: e.g., BioSQL may only
trust data from uBio if it was derived from GUS entries.
The CDSS facilitates dataflow among these systems, using
mappings and policies developed by the independent partic-
ipants’ administrators. 2

In this paper, we provide an overview of the basic opera-
tion of the CDSS, describe our existing prototype implemen-
tation (demonstrated at the SIGMOD 2007 conference [21]),
and describe some of the open research problems that arise
when using ORCHESTRA as a data sharing platform.

1These schema mappings may also include record linking tables
translating terms or IDs from one database to another [32].

Figure 1: Example collaborative data sharing system for three bioinfor-
matics sources. For simplicity, we assume one relation at each participant
(GUS,BioSQL,uBio). Schema mappings are indicated by labeled arcs.

2 ORCHESTRA OVERVIEW
The ORCHESTRA CDSS is a fully peer-to-peer architec-

ture with no central server. An ORCHESTRA runtime sits
above an existing DBMS on every participant’s machine
(peer) P, and manages the exchange and permanent storage
of updates. In general, each peer represents an autonomous
domain with its own unique schema and associated local
data instance (managed by the DBMS). The users located
at P typically query and update the local instance in a “dis-
connected” fashion. Periodically, upon the initiative of P’s
administrator, P invokes the CDSS. This publishes P’s local
edit log — making it globally available. This also subjects P
to the effects of update exchange, which fetches, translates
and applies updates that other peers have published (since the
last time P invoked the CDSS). After update exchange, the
initiating participant will have a data instance incorporating
the most-trusted changes made by participants transitively
reachable via schema mappings. Any updates made locally
at P can modify data imported (by applying updates) from
other peers.

ORCHESTRA’s features are grouped into three main mod-
ules, each of which is described in more detail later in this
paper and in the references.
Publishing and Archiving Update Logs (Section 3). The
first stage of sharing updates with other peers in ORCHES-
TRA is to publish data. Following the philosophy that any
data, once published, should remain part of a permanent
record, ORCHESTRA provides “zero administration,” ver-
sioned, replicated storage for published updates — maxi-
mizing the likelihood that data (whether current or archived)
will be available in the system. This is based on peer-to-peer
replication and storage techniques [41].
Transforming and Filtering Updates (Sections 4–5).
Perhaps the most complex aspect of the CDSS model, and
of the ORCHESTRA implementation, revolves around how
updates are processed, filtered, made consistent, and applied
to a given participant’s database instance. Figure 2 shows
the basic data processing “pipeline” from the perspective of
a given peer. Initially, all updates not-yet-seen by the peer
are fetched. Next, update exchange (Section 4) is performed,
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Figure 2: ORCHESTRA stages for importing updates to a peer.

consisting of two aspects: transforming or mapping the up-
dates using schema mappings, while recording the mapping
steps as data provenance [6, 9]; then, filtering trusted vs. un-
trusted updates based on their provenance, according to local
trust policies. Now, any modifications made by local users
are additionally considered, forming a set of candidate up-
dates. These candidate updates may be grouped into trans-
actions, and they may have data dependencies. The recon-
ciliation process (Section 5) arbitrates among the possible
updates and determines a consistent set to apply to the peer’s
database instance.
Querying across Peers (Section 6). ORCHESTRA’s pri-
mary data sharing mechanisms are oriented around local data
instances, and the user of any peer’s database may never need
to directly interact with ORCHESTRA. However, in some
cases we would like to query across different peers, perhaps
in different sub-fields. A scientist or other user in a CDSS
may not know which peers are most relevant, nor how to
write queries in SQL. ORCHESTRA’s query system, Q [40],
provides a facility through which non-expert users can au-
thor queries (or, more specifically, query templates that gen-
erate Web forms) over the relations on any peers in the sys-
tem. Q is initially given a keyword query, which it attempts
to match against schema elements. From the matching, it
constructs a ranked list of potential conjunctive queries that
meet the user’s information need, executes the top queries,
and returns answers. The user may provide feedback on the
answers, which are used to re-rank the queries and generate
new, more relevant results.
3 ARCHIVING UPDATES PERSISTENTLY

The act of publishing updates to ORCHESTRA is intended
to maintain a permanent record of a peer’s changes to the
data, which is accessible to all users even if future changes
are made. In some sense this resembles a version control
system, except that each peer’s updates occur over a different
schema and they must later be merged by each individual
peer as it refreshes its data instance during update exchange.

The initial step in publishing a peer’s updates is to ex-
tract a log of changes from the peer’s DBMS. Here ORCHES-
TRA uses a DBMS-specific wrapper that may use one of sev-
eral different techniques. In many higher-end DBMSs, the
wrapper hooks into the queuing system used for distributed
replication; this avoids costly data analysis or transaction log
crawling. If the DBMS does not support such capabilities,
we can compare old and new data snapshots, or in some
cases crawl the transaction log (when enough semantic in-
formation is preserved).

Once obtained, updates are published to a fully decen-

tralized, peer-to-peer update store — a persistent, highly
available storage subsystem, which allows updates to be
grouped into transactions, and which records data dependen-
cies among transactions. Transactions are logically globally
timestamped according to when they are published. In [41]
we describe how a distributed hash table [39] is used to par-
tition and replicate data across all of the currently-available
participants. The advantages of this architecture are that (1)
no dedicated machine is required, (2) no administration is re-
quired, and (3) most importantly, as machines in the CDSS
setting are replaced or upgraded, data will automatically mi-
grate to these machines.
4 TRANSFORMING UPDATES

The update store is responsible for making data available
to other peers; however, in the common case, these updates
will not be in the same schema, using the same identifiers.
Moreover, not every peer will consider every update to be
of equal authority or quality. The update exchange oper-
ation involves translating updates across schema mappings
(and possibly identifiers); tracking provenance of those up-
dates; and filtering according to trust policies. Moreover,
the peer’s users may override data imported by update ex-
change, through local curation (updates). Finally, the set of
imported and local updates may not in fact be mutually com-
patible; thus, update exchange is followed by reconciliation
(Section 5).
4.1 Basic Update Exchange

Logically, the process of translating updates in ORCHES-
TRA is a generalization of data exchange [16]. If we take the
data locally inserted by each peer to be the source data in the
system, then (in the absence of deletions or trust conditions)
ORCHESTRA computes at every peer a database instance that
is a canonical universal solution [16]. The canonical uni-
versal solution is a materialized data instance from which
all of the certain answers [24] to a query can be computed
— the user will get back a set of query answers following
the semantics used in over a decade of virtual data integra-
tion research, and matching the results returned by peer data
management systems [25] with the same mappings.

Of course, there are many additional subtleties introduced
by deletions, the computation of provenance, and trust con-
ditions. We provide a brief overview of the update exchange
process here, and refer the reader to [19] for full details.
Schema mappings. ORCHESTRA uses tuple generating
dependencies (tgds) to express schema mappings as con-
straints between data instances. Tgds are a popular means
of specifying constraints and mappings [13, 16] in data shar-
ing, and can also be viewed as global-local-as-view or GLAV
mappings [24], which in turn generalize the earlier global-
as-view and local-as-view mapping formulations [35]. A tgd
is a logical assertion of the form:

∀x̄, ȳ (φ(x̄, ȳ)→∃z̄ ψ(x̄, z̄))

where the left hand side (LHS) of the implication, φ, is a con-
junction of atoms over variables x̄ and ȳ, and the right hand
side (RHS) of the implication, ψ, is a conjunction of atoms
over variables x̄ and z̄. The tgd expresses a constraint about
the existence of tuples in the instance on the RHS, given a



particular combination of tuples satisfying the conjunctive
query on the LHS.

EXAMPLE 2. Refer to Figure 1. Peers GUS, BioSQL, uBio
have one-relation schemas describing taxon IDs, names, and
canonical names: G(id,can,nam), B(id,nam), U(nam,can).
Among these peers are mappings:

m1 G(i,c,n)→ B(i,n)
m2 G(i,c,n)→U(n,c)
m3 B(i,n)→∃c U(n,c)
m4 B(i,c)∧U(n,c)→ B(i,n)

Observe that m3 has an existential variable: the value of c is
unknown (and not necessarily unique). The first three map-
pings all have a single source and target peer, correspond-
ing to the LHS and the RHS of the implication. In general,
relations from multiple peers may occur on either side, as
in mapping m4, which defines data in the BioSQL relation
based on its own data combined with tuples from uBio. 2

Data Exchange Programs. Let us focus initially on how
ORCHESTRA would compute data instances given data lo-
cally contributed by peers; we will then discuss how to ex-
tend this to updates. ORCHESTRA builds upon the model of
data exchange, where tgds are typically used with a proce-
dure called the chase [1] to compute a canonical universal
solution. Importantly, this solution is not a standard data in-
stance, but rather a v-table, a representation of a set of pos-
sible database instances. For instance, in m3 in the above
example, the variable c may take on many different values,
each resulting in a different instance. Rather than apply the
chase procedure directly, ORCHESTRA instead translates the
mappings into a program in an extended version of Datalog,
which includes support for Skolem functions (these take the
place of existential variables like c). The resulting (possibly
recursive) program computes a canonical universal solution
as well, but has benefits arising from the fact that it is a query
as opposed to a procedure. The program greatly resembles
that of the inverse rules query answering scheme [15], and
also the XQuery rules used in the Clio system [38]. We note
that the set of mappings must be weakly acyclic [14] in order
for the program to terminate.

EXAMPLE 3. The update exchange Datalog program for
our running example includes the following rules (note that
the order of the source and target is reversed from the tgds):

B(i,n) :- G(i,c,n)
U(n,c) :- G(i,c,n)
U(n, f (i,n)) :- B(i,n)
B(i,n) :- B(i,c),U(n,c)

This program is recursive (specifically, with respect to B),
and must be run to fixpoint. 2

From Data to Update Exchange. Update exchange re-
quires the ability for each peer not simply to provide a re-
lation with source data, but in fact to provide a set of lo-
cal updates to data imported from elsewhere: insertions of
new data as well as deletions of imported data. ORCHESTRA

models the local updates as relations, as follows. It takes the
local update log at each peer and first “minimizes it,” remov-
ing insertion-deletion pairs that cancel each other out. Then
it splits the local updates of each relation R into two logical
tables: a local contributions table, Rl , including all inserted
data, and a local rejections table, Rr, including all deletions
of external data. It then updates the Datalog rules for R by
adding a mapping from Rl to R, and by adding a ¬Rr condi-
tion to every mapping. For instance, the first mapping in our
example would be replaced with:

B(i,n) :- Bl(i,n)
B(i,n) :- G(i,c,n),¬Br(i,n)

Finally, for efficiency ORCHESTRA actually performs in-
cremental propagation of insertions and deletions. This re-
quires incremental view maintenance [23] techniques, which
take the set of updates, plus the contents of the existing re-
lations, and propagate the necessary changes to accomplish
the results of the update. Our implementation is novel in that
it exploits data provenance (discussed next) to significantly
speed up deletion propagation. Specifically, provenance is
used to determine whether view tuples are still derivable
when some base tuples have been removed (see [19]).

For peers that require closer collaboration, e.g., that wish
to mirror each other’s data, we have also introduced bidirec-
tional mappings and bidirectional update exchange [30]. The
latter involves a generalization of the view update [12] prob-
lem, where removing a derived tuple also removes (some of)
its source tuples. We provide algorithms that take advantage
of provenance information to detect and avoid side effects at
run-time, as explained in [30].

4.2 Data Provenance
One challenge in data integration — particularly peer-to-

peer-style data integration — is that it becomes very difficult
to determine why and how a tuple came into existence in a
data instance. Such provenance information becomes partic-
ularly essential when not all sources are equally reliable. In
ORCHESTRA, provenance is created and maintained as part
of update exchange, and it is primarily used to allow each
peer to assess how much it trusts a given update (discussed
in the next subsection). Our provenance formalism describes
how each tuple is introduced into a data instance as an imme-
diate consequence of a mapping and a set of source tuples in
other instances.

EXAMPLE 4. Consider the mappings from our running ex-
ample. The provenance of the data in the peers’ instances
can be captured as a graph (Figure 3) with two kinds of
nodes: tuple nodes, shown as rectangles below, and mapping
nodes, shown as ellipses. Arcs connect tuple nodes to map-
ping nodes that use the tuples as input, and mapping nodes
to tuple nodes representing derivations. The 3-D nodes in
the figure represent insertions from the local edit logs. This
“source” data is annotated with its own id (unique in the sys-
tem) p1, p2, . . . etc., and is connected by an arc to the corre-
sponding tuple entered in the local instance.

From this graph we can analyze the provenance of, say,
B(3,2) by tracing back paths to source data nodes — in this



1

2

3 1 2

1

2

3

4

3

4

1

3
4

3

2

3

Figure 3: Provenance graph corresponding to example CDSS setting

case through m4 to p1 and p2 and through m1 to p3. 2

The provenance of each tuple in ORCHESTRA is formally
an expression from the provenance semiring [20], but we en-
code it in relations, which can be updated incrementally with
an extended version of our update exchange program; and
they can be queried using Datalog. As discussed previously,
the provenance graph is also used during incremental main-
tenance to speed performance [19].

4.3 Trust Policies and Provenance
Schema mappings describe the relationships between data

elements in different instances. However, mappings are com-
positional, and not every peer wants to import all data that
can be logically mapped to it. A peer may distrust certain
sources, or favor some sources over others, e.g., because one
source is more authoritative. Trust policies, specified for
each peer, encode conditions over the data and provenance
of an update, and associate a priority with the update. A
priority of 0 means the update is untrusted.

EXAMPLE 5. As examples, U may trust data from G (giv-
ing it priority 2) more than B (given priority 1). B might not
trust any data from mapping m3 with a name starting with
“a” (trust priority 0). 2

During update exchange, ORCHESTRA will automatically
filter out any updates with priority level 0.

5 RECONCILING CONFLICTS AMONG
TRANSACTIONS

The previous section described how updates can be
mapped into a common schema, and untrusted updates can
be filtered. In [41], a model was proposed for reconciliation,
ensuring that each peer receives a consistent (though perhaps
unique) data instance. Here we consider the implications of
transactions (e.g., a user might update an XML tree, which
gets mapped to a set of relation updates, of which all or none
of the updates should be applied). We define the trust priority
of a transaction in terms of its constituent updates: a trans-
action is untrusted if any of its member updates is untrusted
(since we consider it significant when an administrator says
an item is not to be trusted); otherwise, it receives the high-
est trust priority of any contained update (since we otherwise
want to ensure that the most trusted data is likely to be ap-
plied).

Transactions introduce several challenges that do not arise
in a simple delete-insert update model: (1) data dependen-
cies (one transaction may depend on the output of another);
(2) atomicity (all updates, or none, may be applied); (3) seri-
alizability (some transactions can be applied in parallel, and
others cannot). Our solution has the following properties:

Peer-centric consistency model. Every peer receives a
set of updates according to its own policies. This includes
all trusted updates that do not conflict; additionally, for each
set of conflicting transactions, a peer receives the transac-
tion it most trusts [41]. Each peer may reconcile as often as
it wants, or as rarely. The transactions to be reconciled be-
tween a target peer and any other peer are those that occurred
since both peers reconciled.
Automatic reconciliation wherever possible. Each trans-
action is assigned a priority as described above. If two in-
compatible transactions are given the same priority, then a
user must arbitrate; but this intervention may be deferred as
long as the user wishes; the system will continue to recon-
cile any portions of the data that do not “interact” with the
deferred transactions.
Reconciliation with “commit” semantics. Once reconcil-
iation occurs and a data instance is updated, subsequent rec-
onciliation operations will not roll back the previous work.
They may apply updates that modify its results, however.
Scalable algorithm with simple rules. ORCHESTRA’s
reconciliation algorithm [41] runs in time polynomial in the
number of transactions, and uses rules that are simple for
users to understand. Transactions are considered in order of
priority, from highest to lowest; if they are to be applied and
they depend on previous transactions, such transactions are
also applied. However, if any transaction in a chain cannot
be applied while satisfying database constraints, then neither
it nor any transaction dependent upon it will be applied.

The ORCHESTRA reconciliation algorithm runs on the
reconciling peer, and fetches the set of transactions it has
not yet seen from the update store (Section 3). It assigns
priorities to every transaction; then, in descending order of
priority, it attempts to find the latest transactions of that pri-
ority that can be applied (together with any antecedent trans-
actions needed in order to satisfy read-write or write-read
dependencies). This runs in time polynomial in the num-
ber of priorities and updates and the length of the transaction
chains. Details can be found in [41].
6 Q: SYSTEM-WIDE QUERYING

ORCHESTRA is primarily used to exchange data and up-
dates among databases owned by different peers. However,
in a large CDSS there will be need to query across different
peers, e.g., if a user does not know which peer holds the most
relevant information. This is where the Q system [40] serves
an important role. Q takes a keyword query and turns it into
a view template (a ranked union of conjunctive queries that
may be parametrized at runtime), which is saved persistently
along with ranking parameters. When the view template is
executed, users see the top answers and provide feedback on
these answers; the feedback is used to refine the ranking pa-
rameters, and thus the ranked query results.

Unlike prior keyword query systems for databases, Q tar-
gets context-specific information needs: different users from
different communities (or with different goals, e.g., explo-
ration vs. hypothesis confirmation) may ask queries that use
similar terms, but they may value individual sources differ-
ently. For instance, a poorly curated source might be very
useful in exploratory querying, but uninteresting for vali-



dating a hypothesis. Some users may value human-curated
sources more (or less) than automatically curated ones. Q
allows each view template to be custom-tailored to find the
sources most appropriate for a specific information need.

Q starts with a schema graph describing all of the peers,
relations, schema mappings, foreign keys, and other asso-
ciations among tables. It may additionally have access to
inverted indices and ontology (especially subclass and syn-
onym) information. Relations are modeled as nodes in the
graph (labeled with the relation and attribute names), and as-
sociations are modeled as weighted edges between nodes.
6.1 From Keyword Search to Top Queries

In Q a user first poses a keyword query describing the con-
cepts (schema elements such as relations or attributes) rele-
vant to his or her information need. Q matches the keywords
against the schema graph and finds join paths among the
relations matching different search terms. It uses a Steiner
tree algorithm to find the least costly trees containing nodes
matching the terms (where the cost of the query is the sum
of the edge weights). The top-k trees, by rank, are selected
and used to generate conjunctive queries for the view tem-
plate. Additionally, a Web form is generated as a front-end
to this view template; this form allows a user to add selection
criteria and to project out attributes.
6.2 Posing Queries and Returning Answers

The Web form can be made persistent for reuse by the
query author and others. A user parametrizes the form’s text
fields and then executes the query. As answers are computed,
they are annotated with data provenance by ORCHESTRA;
provenance plays a role in the feedback stage discussed next.
Results appear in ranked order, where each tuple receives a
weight from the query(ies) that produced it.
6.3 View Template Refinement by Feedback

Now the user may provide feedback on individual answers
(raising or lowering their ranking by confirming or refuting
their relevance). The system will use this feedback to adjust
the relative scores of the queries, and ultimately the edges in
the schema graph. It does this by determining the provenance
of the results, and the constraints that the user imposed on
the relative ranking of results (e.g., a tuple output by Query
3 must score higher than a result from Query 1). A machine
learning algorithm called MIRA [8] adjusts edge weights in
a way that attempts to satisfy these constraints. Finally, Q
uses the updated schema graph weights to compute a new
set of top-k queries, and then a revised set of answers for the
user. Over time, the system learns which relations are most
relevant to the particular family of queries — and informa-
tion needs — represented by the view template. The edge
weights for this view template are stored with the template,
and can even be made the defaults for the system.

The learning scheme in Q has been shown to be highly
effective in learning real “gold standard” bioinformatics
queries, over moderately large schemas; and it has been
shown to scale to hundreds of relations [40].

7 RELATED WORK
Naturally, ORCHESTRA has connections to many existing

efforts and systems in the literature. The peer-to-peer storage

components of ORCHESTRA make heavy use of distributed
hash table [39] techniques, including replication and trans-
parent fail-over. In some ways this resembles peer-to-peer
file systems like CFS [10].

Update exchange builds upon the foundations of PDMSs
(e.g., [25, 32]), which support query reformulation over com-
posable mappings, and data exchange [16, 17, 36, 38], which
supports materialization of instances that support certain an-
swers. An alternative mapping formalism with similar prop-
erties was proposed in [5]. Rather than simply propagat-
ing data, we implement view update [12] and view mainte-
nance [23] behaviors; our implementations differ from prior
techniques in that they exploit data provenance for reason-
ing about side effects (view update) and derivability (main-
tenance). Our work differs substantially from the data ex-
change, data cleaning [18], and distributed consistency [33]
literature, whose goal is always a single unified, clean data
instance: we support trust conditions (based on provenance)
and a peer-centric model of consistency, in which many data
items are common across instances, but each is allowed to
diverge based on local updates or different trust priorities.
Our scheme for modeling inconsistent data as a set of indi-
vidually consistent, overlapping instances also contrasts with
recent work on creating single uncertain and probabilistic
databases [2, 4, 11, 34]. Our provenance model is based on
the formalism of [20], which unifies several previous mod-
els [4, 6, 7, 9].

The Q system shares many high-level goals and tech-
niques with keyword search engines over databases [26, 29],
which also seek to model the authority of relations [3, 22,
31]. Our key difference is a feedback and learning-based ap-
proach, which allows rankings to be customized to a given
view template and user information need.

8 ONGOING WORK
While we have developed a prototype ORCHESTRA sys-

tem, work continues in many directions.
Reliable distributed queries. ORCHESTRA’s update
store employs peer-to-peer techniques to provide persistent
archival that adapts to currently available machines and re-
sources. We plan to take even further advantage of peer ma-
chines in the system: to actually push portions of update
exchange query processing, or on-the-fly query answering
over virtual views, directly to the nodes holding the stored
updates. This should result in higher parallelism in com-
putation, and in many cases less network utilization. How-
ever, new techniques must be developed to support cor-
rect and complete answers in peer-to-peer query process-
ing: we cannot lose answers even if a node fails in mid-
computation. Prior work on peer-to-peer query processing,
such as [27, 37], assumes best-effort semantics and does not
guarantee complete answers. New fail-over techniques, and
new cost models for query optimization, must be developed.
Querying data provenance. Data provenance is often
useful for performing post-mortem analysis, understanding
the roles of different contributors, etc. We are developing a
query language and engine specifically for allowing allowing
administrators and advanced users to query the provenance
of data in the system, in order to debug, assess confidence



or determine authority, perform data forensics, or simply to
understand the relationships among data values.
Mapping evolution. A key principle behind ORCHESTRA
is that the system should be tolerant of constant change, not
only at the data level, but also at the level of schemas, map-
pings, and even trust conditions. In ongoing work we are
investigating how to efficiently update the data instances in
the system when mappings are replaced, added, or removed.

9 CONCLUSIONS
The ORCHESTRA project represents a re-thinking of how

data should be shared at large scale, when differences of
opinion arise not only in the data representation, but also
which data is correct. It defines new models and algorithms
for transactional consistency, update exchange, provenance,
and even ranking of keyword queries. Our initial prototype
system demonstrates the feasibility of the concept, and we
are in the process of developing a variety of real pilot appli-
cations in bioinformatics and medicine, soon to be followed
by a release into open source.

We believe that many opportunities for further research
are enabled by our platform. Not only is highly distributed
query processing a natural fit for our setting, but there are
many interesting avenues of exploration along derivations,
conflicting data, data versions, etc. Ultimately we would like
to explore probabilistic data models in our architecture.
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